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ABSTRACT

In this article, we consider local estimations loé Monte Carlo method for solving the equationhaf global
illumination. The local estimations allow directtglculating the luminance at a predetermined paing given
direction for an arbitrary bidirectional reflect@ndistribution function (BRDF). Thus, there is need to
construct the map of the illumination. Therebysitniuch more effective than direct modeling or thethad of
finite element. The use in lighting calculations tbe object described by the spherical harmonicalss
discussed in the article.
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1. INTRODUCTION grid and the formation of large memory

Visualization of 3D scenes is produced on the basis consumption.
of solving the global illumination equation, which  Solving the equation of global illumination theifen
represents Fredholm integral equation of the secondelement method is also used, which got its name
kind [BudO0]: radiosity in the theory of the global illuminatiofihe
. -1 - an A A method is based on the assumption that all elements
L(r,|)=|-o¢1)+;J.|-( l ')oT(l;I,’)T\U,'*d', ) of the scene are diffuse reflection, and then the
) equation (1) can be written as
where L(r,l) is the radiance at the pointin the -
direction T, o(r;i /") is the bidirectional scattering M(r)=MO(r)+;fM¢ HFEE e, Hdrr', (2)
distribution function (reflectance or transmittajce ) : ] ]
Lo is the radiance of the direct radiation straiggam  Where M(r) is the radiant exitance at the surface
the sourcesN is the normal at the point to the point rd Mo(r) .'Sh rad|]:';1nt exnahnce ?t rt]he point
surface of the scene. The equation (1) in a skghtl emitte straight rom the fight  source,

different form called the rendering equation was F_‘(N(r),(r - '))‘NA( M+ ) is the elementar
originally obtained by J.Kajiya, but further we Wil B (r-rn* y
use it in the form (1). form-factor, ©(rr’) is the visibility function of

The global illumination equation (1) does not have glementd?’ from pointr, N(r) is a normal at the
the analytical solution, and the numerical simolati pointr to the surface of the scene.

methods are used for its solutions. It is possible )
pick out some guidelines among them: ray tracing, !N this paper, we propose to use the local Monte

direct Monte Carlo simulation and the finite elemen Carlo estimation method, well known for solving the
method. radiative transfer equation in the atmosphericaspti

[Mar80] [EM76]. In addition, the ability of
visualizing three-dimensional (3D) objects defimed
the spectrum of spherical harmonics is also andlyze
in the paper.

Ray tracing has been widespread and included in
such well-known simulation program like 3D Studio

Max and Maya. One can differentiate between
forward and backward tracing, where, respectively,
the rays are traced from a light source, or from th 2. LOCAL ESTIMATION

receivers (the camera). Equation (1) is not suitable for statistical modgli

In the case of direct simulation, the scene isdaig as a required fu.ncti(.)n Is in the integrapd at tp'mtp
into elements in which photons are counted. As a ', but the SO|LftIOI’] |sA'found at th? pointBesides,
result, the illumination map is constructed. This the variablesr’ and I’ are not independent, but
approach is associated with the complexity of the related by
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|r—r’

Accordingly, we can rewrite thequatioi (1) in the
form of the integral over the volur

L) =L,¢ 1)+

d’r'. (4)

i

Lo o g gl r-r QD[
LMot 1 )6E i ] e

The kernel of the global illumination equati«(4)
contains a d-function, which determines tt
singularity of the radiance angular distributiomd:
makes it impossible to simulatthe radiance by
Monte Carlo methods. The singularity be
eliminatedby the integration over the space tfor
the diffuse reflections equivalent to equatic(2). As

a result, the estimatidnfor L(r,i) takes the forr

| =MS QKT (5)

wherek(r,r,) is the kernel of equatit (4), Q, is the
statistical weight of the Markov chi, andM is the
expectation operator of the random ray traject.

Markov chain models the sequential of random r
wandering around the scer#tatistical veight of the
first ray Q, is determined by the initial radiance
the light source L (r.i). In this case k(r,ry)

determines the probability of transition from !
point of the Markov chaim, to the given pointr.

[Mar80] [EM76]. From all thenodes of thdrajectory
r,, where its intersection with the surface of

scene occurredhe contribution to the illuminatio
at the point is calculated on the basis of the ker
k(r,r,) in equation (5). Thusall the probability
distribution mussatisfy the normality conditic.

The values L,(r,[) and k(r,r,) will determine the

statistical weights of the Markov chi Q,. In the
case of the diffusereflectance model, ear
subsequent statistical weight will be multiplied
the coefficient of reflection.

Equation (5)has been called the local estimate of
Monte-Carlo [Mar80] [EM76].It allows evaluating
the illumination ata given position on the scer
Thus, to calculate the illumination at a given pu

it is necessary to construct tMarkov chain and fo
every act of reflection to calculate the kerk(r,r )
for all given points. The mathematical expectaof
the obtained/alue is equal to the illumination. Figu
1 shows the general scheme for construcithe
Markov chain and illuminatiorcalculations using

local estimation at a given point.

The Markov tain is a sequence of random eve
with a finite or countable number of outcom
characterized by the property thktosely speaking,
for thefixed present the future is independen the
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past. In this case, the chain is constructed fra
light source Furthermore, the initial weight of tt
ray is set to the light source radiance, taking
account the normalization by the flow. After thidue
point of intersection of a ray with an element loé
scene is founded, and the weight is multiplied Hx
coefficient of reflection. Then the kernel of edaat
(4) is calculated for each of the observable poi
multiplied by the weight of the ray and added
previous values. Whereupon the statistical sam;
of the ray is performed in accordance with

diffuse reflection, and then the following intersen
is sought. The process is repeated until eitherak
leaves the scene or its weight falls below
predetermined threshold. Sampling and avera
the number of rays, one obtains values of

illuminance atthe observable points. We emphas
that the local estimation allows calculating théue:
of the illumination atseveral points by one ray. Tt
is a fundamental difference of the local estima
from the direct simulation and ray traci

Scenc surfaces

T

Light source ™ Q,(r.ry) \r

T ok |

Trajectory,

Figure 1. The scheme for constructing a Markoy
chain and local estimation calculation: solid line—
the ray trajectory, dashed line— the local
estimation, dasheddot line — the trajectory
continuation.

3.DOUBLE LOCAL ESTIMATION

Mathematics of Double Local Estimation
Global illumination equation can be wen in the
operator form

L=L,+KL. (6)

The solution of this equation can represented in
the form of a Neumann series, which allc
performing the following transformatio

L=3 KL= Ly+K Lo+ DK "Ly =
n=0 n=2

=L +KL+K DK "Ly=Lo+K LK 2L, (7)
n=0

that in an analytical form that takes the v
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L(r.)=Lo¢ ))+K Ly+

1 .A/ . A/ r
+;ja(r,| | )56 -

()

_r,JF(r,r’)x
—r

XI L(r",l’\”)ﬂ(r lj'\//l'\/)é‘EA//_ r-r -

- jF(r’,r d3r"d®’ . (8)
® Ir'=r

Local estimationl corresponding to (8) may be
called a double local estimation [Mar80] [EM76] and
will have the form

| =M QK1) 9

where
k(r,F;nl‘n)=%m( B Jer( LR (r, 7). (20)

In the expression (10) the angular singularityoist |
as a result of integration, and the independent

variables r,i,r ,I",,r')”" correspond to the
geometry of the ray propagation [EM76].

Therefore, the double local estimation allows
straightly simulating the global illumination eqjigat
(4) and calculating the radiance at a given paira i
given direction for the reflection order greatearth
one.

First Order of Double Local Estimation

The first order of reflection is contained in thenn
KLy of the equation (7) and can be calculated
straightly. Let's consider the calculation of thestf
order of the reflection brightness. In our
implementation, we considered the isotropic
spherical light sources, and Phong reflection model
[Ph75] was used as a model for the reflection. The
general scheme for calculating the radiance of the
first order of reflection is shown in Figure 2.

7
e
z
h.
>
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>

Figure 2. The scheme of sampling the ray from
the source in the first order of reflection.

For the calculation of the first order, it is nesa@y to
integrate over the source from the point where the
reflection occurs. To evaluate the integral the Mon

spherical source, one can write the formula for the
spherical triangle

(L) = v+ (1= )2~ v*) comp

where z=([,R)=cosg,v= R N ).

(11)

The ray sampling may be performed in a solid angle
Q, circumscribed around the sphere. Besigess
sampled equiprobably from 0O ter,2and the anglé
equiprobably from O tesing,,,=a/R, wherea is a
sphere radiusR is a distance from its center to the
target point.

Then the normalizing condition of the probability
density by takes the form:

I97"6)(

C, [ singdg=1= G,= 1 !
0

1-cos$,., -
1-,/1-

and the formula fop sampling will be

~.(12)
a

R

1
ﬁj‘dx= a=u =1—0t(1— COngax ). (13)

max u
Accordingly, the integral for the normalization
condition, multiplied by the inverggy:

2
Cll=1- /1—% .

Thus, sampling the ray in the direction to the seur
one obtains the value of the radiance at the pafint
source. Then using the Phong formula one obtains
the reflection coefficient in the direction of intst.
Multiplying it by the radiance and taking into
account the cosine in the kernel of equation (1 on
accumulates statistics. After that, one averages an
multiplies result by the normalization coefficient
(14). The resulting value is the radiance of thst fi
order of reflection. [BZK11]

(14)

Highest Orders of Double Local

Estimation

Consider the calculation of the higher orders
radiance by the method of the double local Monte
Carlo estimation. In general, it is similar to the

simulation of local estimation, but there are some
differences. Figure 3 shows a schematic diagram of
the calculation of the radiance by the double local
estimation.

To calculate the radiance at a given point in a&giv
direction (r,/) one finds a point of intersection with
an element of the scene in the opposite direation
This point is called sub-point.

Sampling the ray emission from the source that in
case of an isotropic spherical source is not
complicated, one finds a point of its intersectiaith

Carlo method was used. In the case of an isotropic 4 element of the scene. The initial weight of e
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(Markov chain) will be equal to the value of t
radiance at the sampling point on the source. ¢
double local estimation, similar to a local estimat
it is necessaryo compute the two kerrs of the
global illumination equation. The first kerr
describes the transition from the point of intetisec
of the ray into the supeint, and the seconone
describes the transition frorie sub-point to the
observed point. Therefori,is necessary to take in
account the normalization by Phong reflect
model.

Scene surfaces

ro

# I
S

H ,
¢

Figure 3. The scheme for constructinghe
Markov chain and the calculation of the double
local estimation.Legend is the same as aFigure

1. Direction fan of I' at the point r' corresponds
to different points r,,.

Similarly with the local estimation one accumula
statistics. After averagingne obtains the radiance
the observed point ia given direction from the ord
of reflection greater than one.

4. VALIDATION

The ideal option for the comparison of any numét
method is the presenad exact analytical solutior
for the special cases. There gus! two analytical
solutions for the equation (ZJhe first of thenis the
photometric sphere. However, to compare
accuracy of the method it poorly suited due tthe
full symmetry. The secondspeidal case is the
illuminance distribution in the scene two infinite
parallel planes and a point lighturce between the
has been nametthe Sobolev probler[Sob44]. The
solution deriving in Sobolev'sarticle is not
convenient to thelirect calculationsLet’s consider
the solution of Sobolevproblen that allows
obtaining the result im more acceptable analytic
form.

Analyzing the Sobolev problem one transforms
equation (2) into a system of two integral equati
Each of the guations describes the distribution
illumination on one of the planes. The correspogt
equation for the first plane takes the form (foe
second onewill be a similar expression with oth
indices):
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E()T
[1+¢ -] (hF+r2)%2’

where E(r) is the illuminance c the i-th plane
(i=1,2), r is the radiusrector of the investigate
point fromthe projection of a poi source in thé-th
plane,p; is the reflection coefficient (thei-th plane,
h; is the distance from the source to i-th plane.
Let's suppose the source intensity equ¢ 1 and
h1+h2:l.

Equations form a system of integral equations

convolution type. To solvéhe system of equations
one should perfornthe Fourier transform. Afte

some analyticatransformation and performing the
inverse Fourier transformne can obtain the final
expression for thélumination distribution on each
plane:

E(r)=

(15)

E()=22]

T

h
© _hk ok
+sze plelz(k);Le
1- pup Kk K3(K)

0

where K(k) is the modified Bessel function ¢
imaginary argument or the MacDonald functior
the first order, glis the zeroerder Bessel functic.

Equation (16) is convenient for computer
calculations and allows comparing the mathema
modeling techniques. Figure 4 shows the compal
of the illumination distribution received by tl
methodof the local Monte Carlo estimation, by t
double local estiman and the exact solution
Sobolev problem (16).

K,(K)J,(kr)k?dk, (16)

The figure clearly shows a surge in the bottormhel
chart of the double local estimation. It is coned

with the fact that in our implementation for e:
calculated point in the double local estimat
different packages rays atesed. Byincreasing the
ray numberthese artifacts disappe
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Figure 4. llluminance distribution in Sobolev
problem: h;=h,= 0.5, andcoefficients of reflectionp, =
p2=0.5

In the calculation by the local estimaticof 2000
rays wereused, and the computation time was
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than 1 second by a computer with the processor
AMD Athlon 64 X2 5200.

5. SPECTRAL REPRESENTATION OF
3D OBJECTS

Spherical Harmonics

Standard representation of 3D objects is a mesh
representation in which objects are described by th

set of vertices connected in the faces. This
representation is universal and can describe any
object. However, it can't precisely reproduce

precisely many of the objects, and in the case of
significant impact of error on the result the solid

modeling of objects can be used, when objects are
described analytically. SolidWorks and TracePro are
examples of the most popular programs of such an
approach.

One of the promising directions in the represeoiati
of 3D objects is the usage of object expansiomn t
basis of spherical functions [MCA06]. Such a
description of the objects allows controlling the
visualization quality of objects. So objects that a
far away from the camera can be rendered at the
visualization with low quality. From the standpoint
of photometry, the significant advantage of this
approach is the continuous reproduction of normal
without  approximation. Let's consider the
mathematical formalism underlying the spherical
harmonics.

Spherical harmoni({Yk"‘(H, @) |m< k} is the special
function, defined on the unit sphere

2k+1
47t

Y'(6,¢) = Qi'(cosd )€™, (17)
where# is the zenith angle [8], ¢ is the azimuthal

angle [0 2],

(k—m)! P
(k+ m!

Q)= (). (18)
are the semi-normalized Schmidt polynomials,

P (cod ) are the associated Legendre polynomials

Spherical harmonics are orthogonal on the unit
sphere:

2n

[ [Y(0,0)Y(6,0)sin0d00 =5, 3, 1y, (19)
00

whereé is Kronecker delta symbol.

The system of spherical functions is complete and
any twice continuously differentiable function
defined on the sphere can be expanded in the
spectrum of spherical harmonics [TS76]

10,0)=3 > ALPI(co® )&,

k=0m=—k

(20)

whereA, are Fourier coefficients defined as
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A= [ [ £(0.0) Y (cosd)siddodyp .

Note that the use of the semi-normalized Schmidt
polynomials eliminates the need to calculate
factorials in the spectral representation of thipctis
that significantly improves computing performance.
Therefore, any object uniquely defined on the spher
relative to a certain point can be expanded in
spherical harmonics.

Visualization Spectral Objects

For rendering 3D scenes by any methods, it is adway
necessary to solve two basic problems: finding the
intersection point of the ray with the object ahe t
normal at a given point on the 3D object. In theeca
of the object representation by a grid, these tas&s
successfully solved and optimized. Let's consider
these problems in the case of object representation
the basis of spherical functions.

Normal to the surface described by the function
u(r.0,9), given in spherical coordinates, is equal to
the gradient at this point

ou 10U .

gradU=—8 +=—
or r o

1 U,
r sind &

(21)

Therefore, it is necessary to find the partial
derivatives, and then to transfer to Cartesian
coordinate system. Finding derivatives with respect
to r ande is not difficult. In turn, the derivative with
respect tdd requires differentiating the polynomials
Schmidt. Using the known relations one can
eventually obtain the following expression:

gradU =

ou

:f(—psin26c03p+ sifd co8 cm@%— e

o
+j| —psin®0 sing + sird cod simﬁ+ cmﬂ +
0 op

+I2(—psin6 cod - siﬁea—u). (22)

5]
Finding the intersection of the ray with the object
specified by spherical harmonics is also not aatkiv
task. Consider an object defined by the spherical
harmonics and located in the center of a Cartesian
coordinate system, and the ray from paigtin the

direction| defined in a vector form
re)=ro+4 . (23)

Cosine of the anglé at the point of intersection of
the surface and the ray relative to the centetef t
object can be expressed as

o= Kir) _ Btle
Il Jreveze2edin,)

(24)
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Vectorp is equal consequentially

p=r-Kkr)=r o+t k (%-18). (25
Cosine and sine of the angldake the form
cosp= (P _ Wl
ol \/(ro +8 Kz, K 1E)
sing = U.p) _ Yot b5 (26)

\p\ \/(ro + éIA —kAz0 -« |Zg)2 .

As a result, one get dependences of the arigiesl
¢ from one variablé&. At the point of intersection the
equality takes place

U (Jr,-410€).0€)=0.

Equation (27) contains a set of solutions, but ahéy
first point of intersection is interested in thisse. It
can be found through various methods, ranging from
low efficiency, such as successive approximatien, a
well as more sophisticated algorithms such as
genetic. The use of a particular algorithm depends
the requirements of performance and accuracy. In
our implementation, we calculated values
successively with a fixed interval and localize@ th
position of the first intersection point, and the&sing

the bisection method refined it.

(27)

6. PRACTICE
In our work, we implemented the algorithm of the
double local estimation in the MATLAB

environment. Double local estimation allows dirgctl
calculating the radiance at any point in 3D scene.
Figure 5 shows the luminance angular distributibn o
multiply reflected light at the point of the lower
plane in Sobolev problem. The uniform spherical
light source is used as a luminaire. The Phong mode
describes the reflection from the surface.

Figure 5. The radiance angular distribution of
multiple reflected light in the Sobolev problem.

7. SUMMARY

Nowadays we do not know any method or software
application that allows calculating directly the

radiance at rendering 3D scene. The double local
estimation is a method that allows obtaining the
radiance values at any point of 3D scene. Its
application allows reviewing newly the complete
regulatory  framework for the illuminating
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engineering that was created due to the ability of
calculation only the illumination. The double local

estimation allows calculating the value of the

radiance at several points by one ray.

Note that the convergence of the local estimatfon i
significantly higher than the traditional radiosand
the direct simulation, because it allows evaluating
light immediately at all the points in the scene¢tife
same time, it is significant that the local estiioat
does not require constructing the mesh, which
greatly reduces the amount of RAM.

Methods of local estimation could find its use not
only in lighting calculations, but also in computer
graphics.
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