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ABSTRACT
Image features are obtained by using some kind of interest point detector, which often is based on a symmetric
matrix such as the structure tensor or the Hessian matrix. These features need to be invariant to rotation and to
some degree also to scaling in order to be useful for feature matching in applications such as image registration.
Recently, the spinor tensor has been proposed for edge detection. It was investigated herein how it also can be
used for feature matching and it will be proven that some simplifications, leading to variations of the response
function based on the tensor, will improve its characteristics. The result is a set of different approaches that
will be compared to the well known methods using the Hessian and the structure tensor. Most importantly the
invariance when it comes to rotation and scaling will be compared.
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1 INTRODUCTION
Several novel interest point detectors based on the
spinor tensor are proposed and it is shown that
they are invariant.
Interest points are used as base points for com-

paring image features for many types of applica-
tions in many fields of computer vision, such as
tracking [ST94], image registration and stitching
[BL07, Sze06], just to mention a few.
Several methods for extracting such interest or

feature points from images have been proposed.
Some of the most notable are the Harris corner
detector [HS88], which is based on the so called
structure tensor and the determinant of the Hes-
sian, used for SURF [BETVG08]. Another ap-
proach is based on the difference of Gaussians
(DOG), which is used for SIFT [Low04, BL07].
More feature point detectors are found in litera-
ture such as [TH98, SB97] and several overviews
of different detectors have been published [SMB98,
SMB00, TM07, GHT11, ZKM04].
A novel interest point detector is investigated,

which is based on the so called spinor tensor. It
will be shown that it is invariant to rotation and
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to some degree to scaling. Moreover, it will be dis-
cussed how it could be improved in several ways.

2 INTEREST POINT DETEC-
TORS

In this section both the Harris detector based on
the structure tensor and the detector based on the
determinant of the Hessian will be explained in
detail. In the following section it will be shown
how the spinor tensor is different but also very
similar to the already explained techniques.
The image derivatives of an image I will be de-

noted Ix and Iy for the derivatives in the x and
y direction respectively, and so on. These can
be computed efficiently using convolution [Has14]
and simple cubic filters were used for the presented
evaluation.

2.1 The Structure Tensor
The Harris detector is based on the so called struc-
ture tensor, or second moment matrix, T of an
image I, which is defined as

T =

[
I2x IxIy

IxIy I2y

]
(1)

In the original paper, Harris and Stephens
[HS88], proposed to compute the response using
the trace and determinant of the matrix as

R = det(T )− k · tr2(T ), (2)

where k is a constant, typically set to 0.04. How-
ever, the formulation by Noble [Nob89] will be
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used herein since it does not involve any constant
and is therefore, in some sense more general. See
also [Foe86]. The response is therefore computed
as

R = det(T )/(tr(T ) + ε), (3)

where ε is a small constant used to avoid divi-
sion by zero. This approach will be referred to as
Harris in the following sections. The geometrical
interpretation of equation 2 is that it fires for cor-
ners, i.e. both eigenvalues λ1 and λ2 of the tensor
T are high. Remember that

det(T ) = λ1λ2 (4)
tr(T ) = λ1 + λ2 (5)

Hence, the corners corresponds to where the re-
sponse function R has its local maximas. There-
fore, it is necessary to suppress non local maximas
in the response [NVG06].
One of the key ideas is to make use of a Gaussian

window, i.e. the elements in the matrix in equa-
tion 1 are filtered using a Gaussian kernel. This
was an improvement compared to the early detec-
tor by Moravec [Mor80], which used a square win-
dow, yielding non isotropic responses. Nonethe-
less, the Gaussian is needed as the determinant
would otherwise be zero. As an example, the de-
terminant is computed as

det(T ) = (G(σ)∗I2x)G(σ)∗I2y−(G(σ)∗IxIy)2 (6)

The parameter σ will determine the size of the fea-
tures being detected and a larger value will help
detecting larger features. However, for clarity the
Gaussian is omitted in the equations presented
here.

2.2 Features by using the Hessian
The Hessian matrix used for SURF by Bay et al.
[BETVG08], is defined as

H =

[
Ixx Ixy

Ixy Iyy

]
(7)

They proposed to use the determinant of H

det(H) = IxxIyy − I2xy (8)

This approach will be referred to as Hessian in
the subsequent sections. Furthermore, the trace
can also be used for interest point detection and
it can be noted that

tr(H) = Ixx + Iyy = ∇2I, (9)

which is known as the Laplacian.

3 INTEREST POINTS FROM
THE SPINOR TENSOR

Spinors form a subalgebra of geometric algebra
[Hes71], which in its turn is a Clifford algebra. In
fact quaternions are related to spinors.
Recently, the spinor tensor was derived by

Batard and Berthier [BB13a] building on the
work by Friedrich [Fri98]. It has got appli-
cations such as the spinor Fourier transform
[BB13c, BB13b] and for color edge detection
[BSJB09]. Especially, Berthier [Ber13] shows
in details how to derive the spinor tensor from
the fact there is an one to one correspondence
between a spinor field ϕ∗ of constant length on
a Riemann surface and isometric immersions of
the image, regarded as a 3D surface, where the
gray level intensities are the height values of that
surface.
The spinor tensor Sϕ∗ , which is obtained from

the derivative of the spinor field ϕ∗ is defined as

Sϕ∗ =
1

2(I2x + I2y + 1)2

[
S11ϕ∗ S12ϕ∗

S21ϕ∗ S22ϕ∗

]
(10)

with

S11
ϕ∗ = I2xx + I2xy + I2xxI

2
y + I2xyI

2
x − 2IxxIxyIxIy (11)

S22
ϕ∗ = I2yy + I2xy + I2yyI

2
x + I2xyI

2
y − 2IyyIxyIxIy (12)

S12
ϕ∗ = IxxIxy + IxyIyy + IxxIxyI

2
y + IxyIyyI

2
x (13)

− I2xyIxIy − IxxIyyIxIy

S21
ϕ∗ = S12

ϕ∗ (14)

As already mentioned, a Gaussian window is
typically applied to each of the elements of the
matrices in equations 1 and 7 when the response
is computed. In section 4 the response from do-
ing this on equation 10 (with the factor multiplied
into the matrix) is reported and it is obvious that
both the determinant and the trace can be used as
interest point detectors as well as the determinant
divided by the trace as in equation 3. These ap-
proaches will be referred to as Spinordet, Spinortr
and Spinordet/tr, respectively in the subsequent
sections.
Nonetheless, they will perform noticeably worse

than the Hessian in equation 8. Therefore it was
investigated what result could be obtained by us-
ing the expansions of both the determinant and
the trace of equation 10 and then performing the
Gaussian convolution on each of the resulting ele-
ments.
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3.1 Simplifying the Determinant of
the Spinor Tensor

The expansion and addition of the resulting 57
terms in the determinant of equation 10 is a simple
but tedious algebraic exercise left for the reader
and therefore only the final result is shown in the
following equation

det(Sϕ∗) =
1

2(I2x + I2y + 1)4(
I4xy + I2xI

4
xy + I2yI

4
xy + I2xxI

2
yy (15)

−2I2yIxxIyyI
2
xy − 2I2xIxxIyyI

2
xy

+I2xI
2
IxxI

2
yy + I2yI

2
xxI

2
yy − 2IxxIyyI

2
xy

)
The right hand side of the expression can be

factorized into
1

2(I2x + I2y + 1)4
(IxxIyy − I2xy)2(I2x + I2y + 1) (16)

The determinant of equation 10 can therefore be
simplified as

det(Sϕ∗) =
(IxxIyy − I2xy)2

2(I2x + I2y + 1)3
(17)

Note that the dividend is actually the square of
the determinant of the Hessian: det2(H). Fur-
thermore, the divisor is related to the norm of
the surface normal as explained by Batard and
Berthier [BB13b]. Since the values of I2x and I2y
are much smaller than 1, the divisor will have al-
most no impact on the final result as reported in
section 4. Hence, the determinant of equation 10
and thereby the response can be computed as

R = det2(H) (18)

In fact, the result will be even better than for
Spinordet ,as will also be shown in section 4, where
this approach will be referred to as Hessian2,
which emphasizes what it in fact is.
The Geometrical interpretation of the Hessian

matrix in equation 7 is that positive eigenvalues
indicate a local maxima, negative ones indicate a
local minima and different signs indicate a saddle
point. Hence, the determinant in equation 8 will
fire for local maximas only. Equation 18 will on
the other hand fire for all these three cases since
(λ1λ2)2 will always be a positive value regardless
of the type of point in question.

3.2 Simplifying the Trace
The trace of equation 10 can be factorized into

tr(Sϕ∗) =
1

2(I2x + I2y + 1)2
(19)(

(IxIyy − IyIxy)2 + (IyIxx − IxIxy)2 (20)

+ I2xx + I2yy + 2I2xy
)

(21)

Here it is important to note that the terms in
equation 20 (after expansion) are all of higher de-
gree than the terms of equation 21 and will there-
fore have almost no impact of the result, as will be
shown in section 4. In fact 21 can be rewritten by
removing the divisor, but keeping the constant, as

(1/2)
(
I2xx + I2yy + 2I2xy

)
= (22)

(1/2)
(
(Ixx + Iyy)2 − 2(IxxIyy − I2xy)

)
= (23)

−
(
(IxxIyy − I2xy)− (1/2)(Ixx + Iyy)2

)
(24)

Note that the left term of equation 24 is the
determinant of the Hessian and the right one is
the trace of the same matrix. Also note that it
is written in a form resembling equation 2, with
k = 1/2. However, using the Hessian instead of
the structure tensor. Hence the trace of the spinor
tensor can be approximated by

R = −
(
det(H)− 1/2 · tr2(H)

)
(25)

This approach will be referred to as
Harris of Hessian from now on.
The geometrical interpretation of this response

curve, still with the Hessian in mind, is the follow-
ing

R = −
(
λ1λ2 − 1/2(λ1 + λ2)2

)
=
λ21 + λ22

2
(26)

This implies that R will fire for all three men-
tioned cases as well. However, it will be enough
that just one of the eigenvalues are large. Hence,
it will detect edges rather than corners.

3.3 A new type of Interest Point
Detector

It turns out that equation 20 can be used alone
to compute the response as well. This time it is,
however, not possible to rewrite the response as
a determinant or the trace of a single tensor as it
contains terms from both the structure tensor and
the Hessian. Nevertheless, it is composed of two
determinants

R =

det2

[
Ix Iy

Ixy Iyy

]
+ det2

[
Iy Ix

Ixy Ixx

]
(27)

This approach will be referred to as Asymmetric2
from now on since it is based on the square of two
asymmetric matrices.
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4 INVARIANCE TO ROTATION
AND SCALE CHANGES

A series of testes were performed where the top
2500 feature points were computed for an image
and also for a rotated variant of itself ( 5◦ − 45◦

with step size 5◦) in order to find out whether if
the detector is sensitive to rotations or not. The
images were all cropped so that matching was per-
formed on the inner circular disc, as shown in fig-
ure 1 and 2. The ratio between features appearing
in the same position after rotation and the total
number of features was computed. This was per-
formed for triplets of images so that the mean re-
sult is computed. All distances less than 1.5 pixels
in the original image was considered as being in
the same position after rotation. Moreover, this
was also done on an image downscaled to have
sides that are 75% of their initial size, giving a
scale of 1 : 4/3.
Both figure 1 and 2 show three images to the left

that were rotated and feature points extracted.
The diagrams to the right show the average re-
sult from the three images, using both scale 1 : 1
(upper bundle of curves) and 1 : 4/3 (lower bun-
dle of curves). The y-axis shows the ratio of fea-
ture points that are preserved during rotation and
the x-axis shows σ. The Hessian is depicted
in blue and Harris in green, in both diagrams,
so that they could be easily compared with the
spinor tensor and its variations. The diagram to
the left shows Spinordet (red), Spinortr (cyan)
and Spinordet/tr (magenta). The diagram to the
right shows Hessian2 (red), Asymmetric2 (equa-
tion 27) (cyan), Harris of Hessian (equation 25)
(magenta), Hessian2/Harris of Hessian (yel-
low). Where the latter is an approximation of
Spinordet/tr.
The σ was varied in the same way for the none

rotated reference image and the rotated image.
One can note that the upper three curves in each
diagram come closer to a ratio of 1.0 than the
lower ones do, since the upper represent the none
scaled images.
In table 1 each triplet of images used in

both figures was used to compute the similarity
between pairs of detectors. In each column the
percentage of detected points falling within a
radius of 0.1 pixels is reported. The columns
corresponds to A: Hessian2, with our without the
divisor. B: Harris of Hessian, one detector with
both the divisor and the elements of equation 20,
compared to the approach without both of them.
C: Hessian2 and Harris of Hessian (both with-
out divisor). D: Hessian2 and Asymmetric2.
E: Harris of Hessian (without divisor) and
Asymmetric2.

A B C D E

1 99.81 99.57 5.87 0.03 0.39
2 99.88 99.74 7.89 0.00 0.27
3 99.63 99.34 10.07 0.00 0.73

1 99.87 99.61 5.08 0.02 10.27
2 99.47 96.27 2.17 0.00 0.18
3 99.74 99.39 2.82 0.01 0.28
4 99.83 99.53 5.20 0.08 0.55
5 99.66 99.37 7.54 0.00 0.28

Table 1: Comparison of how equal detec-
tors are, showing the percentage of features
detected within a radius of 0.1 pixels from
each other of two different detectors. Each
first three rows in the table corresponds to
each row in figure 1, while the last four
rows corresponds to each row in figure 2.
A: Hessian2 with and without divisor. B:
Harris of Hessian with divisor and elements
of equation 20 or without both. C: Hessian2
and Harris of Hessian (both without di-
visor). D: Hessian2 and Asymmetric2. E:
Harris of Hessian and Asymmetric2.

One can note (column A and B) that the divi-
sor really is not necessary as it has a very small
impact on the result, as already concluded. More-
over, the Hessian2 and Harris of Hessian (col-
umn C) are different but sometimes come close to
each other. The Asymmetric2 is, however, quite
different from both of them.

5 DISCUSSION
It is very important that an interest point detec-
tor is invariant to rotation so that the response
function will fire for the same positions (i.e. fea-
tures) in the image, regardless of orientation. It is
also desirable that the response function fires for
the same features regardless of image scale. These
are the reasons why one image was compared to a
rotated variant of itself. Furthermore, the rotated
image was down scaled in size, in a second evalua-
tion, to investigate if the response function would
still fire in the same places as for the original sized
image. It can be noted that both Hessian and
Harris do very well, almost regardless of σ for
the first case, with rotation only. However, when
there is a difference in scale it is obvious that σ
will be more important. This is why the curves in
the lower bundle has smaller peaks than the upper
bundle of curves.
It was chosen to use three images for each dia-

gram so that a mean value was computed for the
ratio and it would be less dependent on that par-
ticular image. Moreover, it was considered de-
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Figure 1: Evaluation of the invariance of the different detectors. The three images to
the left were rotated and feature points extracted. The diagrams to the right show the
average result from scale 1 : 1 (upper curves) and 1 : 4/3 (lower curves), where the y-
axis shows the ratio of feature points that are preserved during rotation and the x-axis
shows σ. The Hessian is depicted in blue and Harris in green, in both diagrams. The
diagram to the left shows Spinordet (red), Spinortr (cyan) and Spinordet/tr (magenta). The
diagram to the right shows Hessian2 (red), Asymmetric2 (cyan), Harris of Hessian (magenta)
and Hessian2/Harris of Hessian (yellow). Two top rows c©MiBAC-ICCD, Aerofototeca
Nazionale, fondo RAF. Third row c©The Human Protein Atlas (HPA) project [PSAE11].

sirable to test different groups of images showing
different details. The first two rows in figure 1
contains historical aerial photos with two rather
different characteristics. Row three shows breast
tissue samples, while the rows in figure 2 show
buildings and trees at different scales.
It was not investigated how the σ can be set

by some kind of automatic scale space selection
[Lin98, Lin99, MS01]. The proposed methods
might benefit from using adaptive settings of σ
and this is proposed for future research.
One can note several things from the diagrams

in both figures. The diagrams to the left show
that bothHessian andHarris generally performs
better than Spinordet, Spinortr and Spinordet/tr,
with a few exceptions for certain values of σ.
The diagrams to the right, on the other hand,

reveal that some of the so called variations,
perform better and they are almost as good as
the methods based on the structure tensor and
the Hessian. In fact, they often do even better
for images of different scales. One exception

is the Harris of Hessian, which obviously
has the worst performance, even if it for some
images performs better than the three Spinor
approaches. The reason for this is most probably
due to the fact that the response function in
equation 26 will fire for situations where just one
of the eigenvalues is large, i.e. edges are found
rather than corners. It is clear from the diagrams
that also Spinortr generally performs worse than
Spinordet, since Harris of Hessian is a valid
approximation of Spinortr, i.e. it will also fire for
edges.

One can also note that the Hessian2 and
Hessian2/Harris of Hessian performs almost
equally good in all cases. The reason for this
is that they often find the same interest points,
or points close to one another, just as Spinordet
and Spinordet/tr do. After all, the first two are
variants of the latter. These facts are also visible
in figure 3.

The Asymmetric2 is perhaps the big surprise
since it is just the residual of the trace of the spinor
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Figure 2: Evaluation of the invariance of the different detectors. The three images to
the left were rotated and feature points extracted. The diagrams to the right show the
average result from scale 1 : 1 (upper curves) and 1 : 4/3 (lower curves), where the y-axis
shows the ratio of feature points that are preserved during rotation and the x-axis shows
σ. The Hessian is depicted in blue and Harris in green, in both diagrams. The diagram
to the left shows Spinordet (red), Spinortr (cyan) and Spinordet/tr (magenta). The diagram
to the right shows Hessian2 (red), Asymmetric2 (cyan), Harris of Hessian (magenta) and
Hessian2/Harris of Hessian (yellow). All images c©Anders Hast.
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Figure 3: Comparison of different detectors, with a close-up of Ponte Vecchio in Flo-
rence (rightmost image, row 3 in figure 1) detected using σ = 1.0 with the following de-
tectors: Spinordet (red ∆), Spinortr (cyan ∆) and Spinordet/tr (magenta ∆), Hessian2 (red
+), Asymmetric2 (cyan +), Harris of Hessian (magenta +) and Hessian2/Harris of Hessian
(yellow +).

tensor. Even if its impact on the trace is negligi-
ble, it still turns out to do very well when used as
a response function on its own. For low values of
σ it outperforms all other methods in most cases
when scaling (lower bundle of curves). Actually it
tend to follow the Hessian even closer than what
the Hessian2 does.
One interesting question is: what is actually

detected by the proposed detectors? In figure
3 an example is shown of the different detec-
tors. It is obvious that some will find corners
and others tend to be more sensitive to edges,
like the long dark edge in the top of the im-
age. To the latter category belongs Spinortr and
harris of Hessian. This is an direct effect of
equation 26, which allow just one eigenvalue to be
large.
Finally, it was concluded in the previous section

that the divisors in equation 17 and 19 do almost
have no impact at all for the images used in the
tests as shown in table 1. Nevertheless, it should
be kept in mind that the impact of the divisors
will be larger for images with higher derivative
variations. In any case, the detectors in question
are proven to be invariant without the divisors.

6 CONCLUSION
Invariance with respect to rotation and scaling are
two important features of any interest point de-
tector. The determinant of the Hessian (DoH)

and the Harris detectors are known to perform
well for moderate changes in scale. The so called
spinor tensor has recently been introduced and it
was compared to these approaches. However, it
turns out that they generally do noticeable worse.
Therefore, some variations was introduced that do
just as good or even better than both Harris and
DoH, especially for differences in scale. These
variations are based on expansions of the deter-
minant and the trace and many terms will cancel
out, giving at hand simpler formulations.

7 FUTURE WORK
The proposed variations of the spinor tensor’s de-
terminant and trace should be investigated fur-
ther. Especially it is interesting to find out what
automatic scale space selection would add to their
performance when it comes to scale differences.
Moreover, it seems likely that the approach re-

ferred to as Asymmetric2 could be described in
another way than presented here, i.e. as the sum
of the square of two asymmetric determinants.
Perhaps there are some symmetric tensor that de-
scribes the very same thing, still waiting to be
found.
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