
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Testing environment for
user studies of distorted
triangle meshes in virtual

reality

Plzeň 2017 Petr Šroub

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 16th May 2017

Petr Šroub

Acknowledgments

I would like to thank Doc. Ing. Libor Váša Ph.D. for an interesting and fun
project to work on as well as his efforts, suggestions, enthusiasm and most
importantly patience during the protracted development. I would also like to
thank Palmer Luckey, John Carmack and the hundreds of other individuals
responsible for bringing affordable virtual reality back from the realm of
science fiction and to the forefront of public interest.

Abstract
The subject of this work is software for conducting subjective experiments in
virtual reality on the subject of perception-oriented triangle mesh distortion
metrics. The work entails the creation of this software and iterative im-
provement of its design in order to increase its usability. In this document,
a background necessary for understanding the problem domain is provided,
including the topics of virtual reality and perception-oriented metrics. The
project goals and requirements are supplied. A detailed overview of the
software’s final implementation as well as several development iterations is
provided. A description of the pilot study that was conducted to improve
on the user interface along with the alternations to the software based on
its results is given. Finally a conclusion about the final software is reached
and possible future work is discussed.

Abstrakt
Tématem této práce je program pro provádění subjektivních experimentů ve
virtuální realitě na téma percepčně-orientovaných metrik deformací trojú-
helníkových sítí. Práce obsahuje vytvoření tohoto programu a iterativní vy-
lepšování jeho designu pro zvýšení jeho použitelnosti. V tomto dokumentu
je dodáno pozadí nutné pro pochopení problémové domény, zahrnující vir-
tuální realitu a percepčně-orientované metriky. Dále jsou předloženy cíle a
požadavky projektu. Je popsán detailní přehled o finální verzi programu a
několika iteracích vývoje. Následuje popis provedené pilotní studie zaměřené
na vylepšení uživatelského rozhraní a z jejích výsledků provedených změn.
Nakonec je o programu podán závěr a je diskutováno o možné budoucí práci.

Contents

1 Introduction 9

2 Background 11
2.1 Distortion sources . 11

2.1.1 Mesh simplification 11
2.1.2 Mesh compression . 12

2.2 Human perception . 13
2.3 Perception-oriented metrics 14

2.3.1 Static mesh metrics 15
2.3.2 Dynamic mesh metrics 17

2.4 Dihedral angle mesh error metric 18
2.5 Subjective test validation . 18

2.5.1 Subjective tests . 18
2.5.2 DAME subjective test 19

2.6 MeshTest . 21
2.6.1 MeshTest usage . 21

2.7 Virtual reality . 23
2.7.1 History . 23
2.7.2 Current state . 23
2.7.3 Advantages . 23
2.7.4 Issues . 24
2.7.5 Health effects . 25
2.7.6 Uses . 26

3 Project goal 28

4 Project design requirements 29
4.1 Binary forced choice . 29
4.2 Anchored scoring . 30

5 Application use cases 31
5.1 Typical usage (experimenter) 31
5.2 Typical usage (test subject) 31
5.3 Conclusion . 31
5.4 Result logging . 32

6

6 Application design 33
6.1 Hardware platform . 33

6.1.1 Technical specifications 34
6.2 Engine . 35

6.2.1 Unity . 36
6.3 File storage . 37
6.4 Interactivity . 38
6.5 Experiment file format . 39
6.6 Log file format . 40
6.7 Recording file format . 40

7 Implementation details 41
7.1 Singletons . 41
7.2 GlobalStateHolder . 42
7.3 User input system iterations 42

7.3.1 Keyboard/mouse button iteration 42
7.3.2 Gaze input iteration 42
7.3.3 Worldspace cursor iteration 43
7.3.4 Position tracked controllers iteration 43
7.3.5 Final solution . 43

7.4 Model data . 43
7.4.1 wavefront .obj format 44
7.4.2 application-specific .dat format 44
7.4.3 Model loaders . 45
7.4.4 Postprocessing . 45

7.5 Screen system . 47
7.6 Individual screen implementations 47

7.6.1 BaseMCOScreen . 47
7.6.2 MCOCommandlineScreen 48
7.6.3 MCOCustomScreen 49
7.6.4 MCODummyStartScreen 49
7.6.5 MCOModelDisplayScreen 49
7.6.6 MCOPersonalInfoScreen 49
7.6.7 MCORecordingPlaybackScreen 49
7.6.8 MCOTutorialScreen 49
7.6.9 MCOCustomScreenEditorScreen 50
7.6.10 BaseExperimentScreen 50
7.6.11 MCOComparingExperimentScreen 50
7.6.12 MCORatingExperimentScreen 51

7.7 Worldspace UI implementation 51

7

7.7.1 Dashboards . 51
7.7.2 Model manipulation panel 53
7.7.3 Configuration UI . 53

7.8 Model display objects . 53
7.9 Experiment file format . 54

7.9.1 Model file paths . 54
7.9.2 Experiment log . 55
7.9.3 User movement recording 56
7.9.4 Result e-mail . 56

7.10 Abandoned features . 57
7.10.1 Editor . 57
7.10.2 Prop system . 57

8 Pilot study 59
8.1 Study conduct . 59
8.2 Form . 59
8.3 Results . 60

8.3.1 Changes enacted . 60

9 Application usage 62
9.1 Launch options . 62
9.2 Typical experiment example 62

9.2.1 Tutorial . 62
9.2.2 Personal data collection 63
9.2.3 Additional explanations 63
9.2.4 Experiment . 63
9.2.5 Finalization . 63

10 Conclusion 65
10.1 Future work . 65

8

1 Introduction

In computer graphics, 3D objects are defined using various means, such as
mathematical object definitions, voxel arrays or point clouds. The most
common method of 3D object representation are polygonal meshes (in most
cases specifically triangle meshes), which offer significant advantages over
the alternatives.

When manipulated these meshes are often unavoidably altered. However,
in many cases these alternations are undesirable, as it is preferable or even
necessary to preserve the original shape of the object.

In order to design and optimize algorithms that manipulate models it is
necessary to measure the amount of introduced distortion. Depending on
the use case, it may be necessary to preserve the model shape in the absolute
sense (for example, in the case of CAD models it is critical not to distort
the object past specified tolerances) or it may be desirable to preserve the
models perceptible visual quality (such as when the models are meant to be
viewed by humans). These two considerations are fundamentally different.

As part of their work on their work on human-perception oriented mesh
simplification algorithms, Váša and Rus have noticed that for most sources
of distortion (other than those commonly used as part of validation experi-
ments, such as Gaussian noise or sine waves, which poorly model distortions
introduced by mesh simplification or compression algorithms) there is only
a weak correlation between the commonly used metrics of mesh distortion
and the actual human observer-determined degradation of quality. As part
of their paper on the proposal of a more perception-oriented metric (Váša
and Rus 2012), the Dihedral angle mesh error (DAME) metric, they per-
formed a validation subjective experiment.

This validation experiment was conducted using a purpose-built soft-
ware named MeshTest, which presented test subject with model triplets
(one model of which was designated as the original) and asked them to de-
cide which of the two model copies was more similar to the original. Not
only was this application initially intended for this singular purpose, de-
velopments since then have resulted in the base this software was built on
(Microsoft XNA) becoming unsupported.

More recent developments have resulted in the resurfacing of virtual real-
ity devices on the customer market for the first time in several decades.
Thanks to advances in technology these devices are now of sufficient qual-
ity to provide for a viable alternative to traditional display methods, which

9

means that they represent an avenue worth exploring for perception-based
metrics such as DAME. In order to determine the accuracy of DAME when
models are viewed using a virtual reality device, a new subjective experiment
must be conducted.

In order for this experiment to take place a new corresponding experiment
software is required, since MeshTest is incapable of rendering to a virtual
reality headset. The creation of that software is the subject of this work.

10

2 Background

In computer graphics objects are predominantly represented using triangle
meshes: collections of vertices and their connectivity data. Since the speed
and difficulty of mesh rendering is heavily related to its triangle count, there
is usually a soft upper limit to the triangle count of any mesh intended for
a given application, and by extension its maximum detail level. In order to
obtain the highest possible quality level achievable within this limit, many
techniques exist to simplify meshes. All of these affect the triangle mesh by
distorting it, and therefore possibly negatively affect the perceptible visual
quality of the mesh. Even for applications where this is not required, other
processes may be applied with similar results. For example, mesh compres-
sion algorithms may be employed in order to reduce the file size. While in
some cases this kind of distortion is a non-issue, for example when the data
is intended for industrial use (such as CAD models or 3D), in other cases
the model will be viewed by human observers (such as 3D games or movies)
and as such it is desirable to minimize or ideally eliminate the perceived
distortion.

2.1 Distortion sources
Algorithms and processes that distort triangular meshes are a pivotal part of
computer graphics and cannot be avoided in all but the simplest use cases.
While there are many such algorithms (such as mesh watermarking), two
specific kinds stand out as highly explored regions of research.

2.1.1 Mesh simplification
Mesh simplification algorithms are used to reduce the triangle count of a
model in a way that does not affect vertex positions. Usually this involves
merging and replacing nearby triangles with consideration towards minimiz-
ing the error caused by the change, though numerous alternate approaches
exist (Cignoni, Montani and Scopigno 1998), (D. P. Luebke 2001). Some
of the reasons for using such an algorithm are:

Rendering complexity reduction Difficulty and speed of triangular mesh
rendering is amongst other things (such as texture size, lightning model
used, post processing effects) tightly correlated with triangle counts of

11

the meshes rendered. Simply put, the more triangles there are, the
more times the renderer has to perform operations related to pro-
cessing them. Therefore, reducing the triangle count in a realtime
rendering situation can lead to increased framerates or the possibility
of increasing the count of unique objects in a scene. Even when the
rendering scenario is not realtime, such as in the case of pre-rendered
videos, reducing the scene complexity results in less computing time
and resources required and is thus desirable.

Level of detail Level of detail (LOD) implementations take advantage of
the fact that distant objects often only occupy a small amount of
screen space. In the case of these objects, the detail required when the
object is close up becomes imperceptible as the objects draws further
away from the camera, and therefore becomes a waste of rendering
resources. In these cases, LOD systems replace objects with lower-
quality versions. These LOD version can either be created by hand
or generated on the fly. However, in most cases LOD variations are
pre-generated and saved along with the full detail version.

Aesthetic choice In some cases, an intentional low-fidelity aesthetic is
desirable (such as in the case of retro videogames or movies, or 3D
presentations). While in most cases the better approach is to create
the models used with such an aesthetic in mind from the start, some-
times there are situations where usage of preexisting models is neces-
sary (such as legacy characters or real world object scans). While it is
unrealistic to expect an algorithm to produce an aesthetically better
low-polygon version of existing models than one produced by a talen-
ted artist, in some cases relying on such an approach can be more cost
effective or even necessary (with scenes containing a large amount of
unique objects).

2.1.2 Mesh compression
Mesh compression algorithms focus on reducing mesh file size through many
different approaches (Peng, C.-S. Kim and Kuo 2005), from more space-
efficient connectivity encoding to quantization of vertex data. Depending
on the approach, this compression can be lossless or lossy. In the case of
lossy compression, care must be taken not to degrade the mesh past the
point of perceptability, or in the case of industrial applications, the point
of error tolerance. Mesh compression algorithms are also sometimes paired
in sequence with mesh simplification algorithms, as a reduction in triangle

12

count also leads to a reduction in data to compress. Some reasons for mesh
compression algorithm usage include:

Limited storage space Applications that work with model data are often
limited in the amount of storage space available to them (for example,
a videogame is limited in storage space to the amount of data that can
be stored on the disc it is stored on). Even when the actual limit is
larger than the storage space required by the application, reducing its
storage space footprint is often desirable.

File transfer speed In a similar vein, smaller files are easier to transfer in
reasonable time over the internet. In addition, some mesh compression
algorithms focus specifically on this usage and encode the data in such
a way that a partially downloaded mesh data file can still be used,
albeit with a corresponding decrease in detail quality.

GPU memory footprint While in use, meshes also use up memory on
the graphical processing unit (GPU) used for rendering, which is typ-
ically far more limited than the primary storage medium of a computer.
When this memory is full, the GPU must start switching data between
its local memory and the computer’s, which can lead to a drastic re-
duction in performance. Mesh compression algorithms that aim to
alleviate this problem are geared towards producing encoded meshes
that are either quickly decodeable or usable in GPU memory directly.

2.2 Human perception
In order to effectively and objectively measure the perceptible distortion of
a mesh, an understanding of human perception is required. While there is a
certain degree of subjectivity to the result, there are thresholds in difference
of quality that most observers will agree upon. In order to model human per-
ception and cognition, the human visual system (HVS) is described. When a
thorough enough understanding of the HVS is reached, it can be artificially
modeled and thus human perception data can be estimated without actual
human involvement. This model can then also be used advantageously to
mask imperfections or highlight specific details. The HVS perceives stimuli
depending on many factors, including color, contrast, orientation, spatial
distribution, etc. Some properties of the HVS are briefly explored below:

• There is a significant amount of existing work on the subject of the con-
trast sensitivity function (CSF) detection threshold, which determines

13

at which point an observer will fail to notice imperceptible information
(such as a monochrome gradient becoming uniform gray given enough
distance), and the creation of metrics for 2D image quality based on
it. There are several ways of defining the CSF. Some examples include
the CSF defined in the 1970 (Mannos and Sakrison 1974) for the de-
velopment of the first image quality metric for encoded monochrome
images. Another is a three parameter exponential function (Movshon
and Kiorpes 1988). A model accounting for orientation, luminance,
image size, eccentricity, and viewing distance was proposed by Daly
in his Visual Difference Predictor (Daly 1992). Other, more complex
models also exist.

• Some related works (Larabi, Brodbeck and Fernandez 2006) instead
focus on determining the discrimination threshold, at which an ob-
server can no longer distinguish between two similar stimuli. This is
a more applicable metric when considering quality assessment tasks
which rely on the observer comparing the examined visual stimulus to
some reference (either another visual stimulus or an implicit reference
given a lack of one). Little work has been dedicated to color-based
CSFs. This is primarily thanks to the HVS being less sensitive to
changes with its chromatic mechanisms as opposed to luminance ones.
A suggested explanation (Fairchild 2013) is that this is caused by the
lack of edge detection and enhancement in the color dimension.

• Visual masking defines the reduction of visibility of one visual stimulus
due to the presence of another. This effect is strongest when the two
stimuli share orientation, location and frequency (Pappas, Safranek
and J. Chen 2000). It is widely used as a tool in many vision-related
fields, such as image or video compression, watermarking, computer
generated graphics, etc.

There are many other visual systems that are too numerous to elaborate
upon in detail, such as visual saliency, luminance adaptation, binocular com-
pensation, etc.

2.3 Perception-oriented metrics
Generally-used metrics for evaluating the effectiveness of mesh compression
or simplification algorithms (for example the Mean-Squared Error (MSE) or
Hausdorff distance) do have some advantages, such as ease of computation
or predictability of results, but ultimately they can be proven (Váša and

14

Rus 2012) to be only weakly correlated to actual visual quality as judged by
a human observer. Perception-oriented metrics attempt to rectify this issue,
usually by incorporating some approximation of human perception as part
of their definition.

Mesh distortion perception-oriented metrics can be divided into two main
categories. First are the metrics focused on static 3D meshes, used mainly
for measuring distortion introduced by mesh compression, watermarking or
as a guiding data source for mesh simplification and perceptually based
rendering. Second are metrics focused on dynamic 3D meshes which are
focused on artefacts either introduced by or made visible by animating the
mesh over time.

2.3.1 Static mesh metrics
Static mesh metrics can be further split into two categories: view-dependent
and view-independent.

View-dependent metrics

View-dependent metrics rely on applying perceptual properties and prin-
ciples of the HVS in image space to a still image (in the case of 3D models,
rendered images of a 3D mesh). This approach cannot be described as fully
reliable, as it has been demonstrated (Rogowitz and Rushmeier 2001) that
the results of visual perception of a set of images of a 3D mesh are not equi-
valent to the results of actually observing that 3D mesh in a more robust
manner (such as a 3D model viewer application). Some of the more pivotal
view-dependent metrics are presented below.

CSF Used as part of one of the first perceptually driven rendering solutions
(Reddy 1997), this metric analyzed the frequency content in several
prerendered images to determine the best LOD to use in a realtime
rendering system. It was later used as a basis for a simplified CSF
metric (D. Luebke and Hallen 2001) which also accounted for silhou-
ette changes and considered worst-case contrast and frequency results
before determining whenever the results were imperceptible, which was
itself later extended (Williams et al. 2003) to integrate texture and
lightning effects into the calculation.

VDP Proposed (Ferwerda, Shirley et al. 1997) as an extension of the earlier
Daly VDP image metric (Daly 1992), this metric was the first per-
ception model that paid particular attention to visual masking. This

15

work was later used (Myszkowski 1998) as a basis of an algorithm
that would produce a simplified mesh that would result in a visually
identical rendered image. Similarly, another work proposed (Ramas-
ubramanian, Pattanaik and Greenberg 1999) a VDP-based approach
that would reduce the rendering power necessary for a global illumin-
ation rendering model. Another interesting application is a proposed
(Dumont, Pellacini and Ferwerda 2003) real time rendering system
capable of on-the-fly optimization of performance based on image qual-
ity and framerate.

Visual discrimination model (VDM) A simplified version of an earlier
visual differences metric (Lubin 1995), this metric was used (Bolin
and Meyer 1998) as a perceptual model for optimizing the sampling
for ray-tracing algorithms. modified in order to account for chromatic
aberration effects in color image renders. Later work (Qu and Meyer
2008) would expand upon this metric by taking into consideration the
visual masking properties of texture maps and using them to allow
simplification and remeshing of of textured meshes.

Visual equivalence Amore recent work, this approach proposes the concept
of visual equivalence: images being considered visual equivalent if they
offer the same scene appearance impression, which is defined by visual
perceptions of geometry, illumination, materials and other properties
of the scene and affected by changes in environment lighting. Other
works (Ferwerda, Ramanarayanan et al. 2008) written around the
same time also deal with this concept. The concept of visual equival-
ence has also been used to investigate rendering artefacts seen in global
illumination-based approximations of minerals and shapes (Křivánek,
Ferwerda and Bala 2010).

View-independent metrics

In contrast to view-dependent metrics, view-independent (model based) met-
rics seek to analyze the geometry and other properties of a 3D model directly
and from there predict any visual artefacting that may arise, with the pur-
pose being elimination of the bias towards detecting only those artefacts that
show up on still image renders (and may not even be apparent in motion),
rather than artefacts revealed when the model is manipulated in real time.
Some more relevant examples of this sort of metric are presented below.

Geometric laplacian First defined in order to evaluate the efficiency of a
mesh compression algorithm (Karni and Gotsman 2000), this metric

16

measures the Geometric Laplacian, which relates to the visual smooth-
ness of each vertex and from it derives a visual metric to compare two
3D objects. Even with a later proposal (Sorkine, Cohen-Or and Toledo
2003) of a modification that would use different parameter values, this
metric correlates poorly with actual human perception.

Curvature-based Various works have explored the idea of basing a met-
ric around the idea that human perception is sensitive to changes in
curvature. The first metric based on this approach was the Discrete
Differential Error Metric (S.-J. Kim, S.-K. Kim and C.-H. Kim 2002).
Later, a similar metric (Howlett, Hamill and O’Sullivan 2004) that
further emphasized visually salient features using an eye tracking was
suggested. A similar approach that had the advantage of automatically
extracting the visually salient areas using computed multi-resolution
curvature maps surfaced not long after (C. H. Lee, Varshney and Jac-
obs 2005). Of high importance to this work is the Mesh Structural Dis-
tortion Measure metric (Lavoue, Denis and Dupont 2007), proposed
for evaluation of mesh watermarking algorithms. This metric, based
on an the concept of structural similarity first introduced (Wang et al.
2004) for the purposes of 2d image quality evaluation, computes dif-
ferences of statistics local to corresponding windows on the compared
meshes. A global difference is then defined as a Minkowski sum of the
distances of the windows, with one window being considered per ver-
tex. A later multi-resolution based improvement (MSDM2) (Lavoué
2011) provides better performance and allows comparison of meshes
with differing connectivity.

Strain energy This metric (Bian, Hu and Martin 2009) is based on strain
energy (energy which causes the deformation between the two com-
pared meshes). The larger is the strain energy, the bigger is the per-
ceivable distortion and by extension the larger are the odds that a
human observer will notice the distortion. This metric is only suitable
for relatively small distortions.

2.3.2 Dynamic mesh metrics
Unlike with static meshes, dynamic meshes enforce the consideration of the
effect of perception shifting with time. A not insignificant number of dis-
tortion artefacts can be concealed by the still nature of a static mesh and
brought to the forefront by animating it. Other distortions are only ap-
parent with the passage of time, and are referred to as temporal artefacts.

17

An example of such a distortion would be the addition of a small amount
of noise each frame: on a static mesh, this would only result in a slightly
bumpy surface that is mostly unnoticeable, whereas on an animated mesh
it will result in a clearly visible bubbling or rolling effect.

While static mesh metrics can be used on individual frames of the anim-
ation analyzed and their results then averaged, this approach inherits all the
issues of static mesh metrics while failing to account for the peculiarities of
dynamic mesh analysis. It is for this reason that metrics specifically geared
towards dynamic meshes tend to lead to more accurate results.

2.4 Dihedral angle mesh error metric
The paper that this work is an extension upon (Váša and Rus 2012) de-
scribes a novel objective metric that can achieve higher correlation between
its results and results of a subjective test experiment (Pearson > 90) and
is about two orders of magnitude faster than the next best approach of the
time, MSDM2 (Lavoué 2011).

This metric is based on measuring the distortion of dihedral angles, which
is closely linked to quadratic bending energy functionals and is invariant with
translations and rotations. It explicitly models the model masking effect by
taking the original dihedral angle into account and assigning higher influence
to areas which were originally close to flat.

2.5 Subjective test validation
In order to validate this metric, actual human observation data was also
required. This data was collected using a subjective test.

2.5.1 Subjective tests
Subjective tests related to human perception, even regardless of the type of
data being tested (3D models, image data, video, etc.) should all follow the
same basic format:

• A database of objects to perform the experiment with is constructed,
differentiating between reference objects and their distorted versions.

• The subjective experiment is conducted, with human observers giving
their opinion on perceived distortions of the objects in the database.

18

• A mean opinion score (MOS) is then computed for each distorted ob-
ject in the database. Afterwards it is normalized in order to equate
the different rating scales used by the different test subjects. Finally,
a filtering step is applied to eliminate potential outliers.

• A correlation is computed between the MOSs of the objects and the
values computed using the tested metric. Usually, two correlation
coefficients are considered: the Spearman Rank Order Correlation and
the Pearson Linear Correlation Coefficient. The Pearson coefficient is
calculated over a non-linear regression on the values calculated by the
metric in order to improve the matching between the metric and the
subjective opinion values.

Some other considerations must also be made during the test design, as
the quality of results can be heavily dependent on several secondary factors
(Ebrahimi 2009):

• The testing environment, such as the computer monitors used to dis-
play the objects, the viewing distance, and the room lighting condi-
tions.

• The test object themselves should contain multiple variations with dia-
metrically opposite qualities in order to generalize the test results. Se-
lecting for specific kinds of test objects or scenarios should be avoided,
and special care should be given to include worst-case scenarios.

• The methodology must be decided upon. For example, how the objects
will be presented (on their own or with a reference version) or how they
will be rated, such as on a numeric scale or using a preselected set of
adjectives.

• The data analysis technique also plays a significant role.

2.5.2 DAME subjective test
The validation experiment for the DAME metric was conducted on a collec-
tion of five models:

Bunny The Stanford bunny, a widely used mesh built from a scan of a real
object. Its shape is complex and well known to a human observer.

Jessi An artificially created model of a female human head.

James An artificially created model of a male human figure.

19

Nissan An artificially created model of a car’s industrial design.

Helix An artificial, computer generated model of an abstract shape.

Figure 2.1: Models used in the experiment

The models were then distorted using several distortion processes or com-
pression algorithms:

• Random noise in each axis

• Random noise with uniform distribution in each axis

• Sine signal in the X axis

• Random noise with Gaussian distribution applied to each axis

• Uniform quantization of coordinates

• quantization of coordinates scaled by the model’s bounding box

• Random affine transformation

• Smoothing

• Angle preserving mesh noise

• Normal preserving mesh noise

• Result of the angle analyzer mesh compression algorithm (H. Lee,
Alliez and Desbrun 2002)

• Result of the spectral mesh compression algorithm (Karni and Gots-
man 2000)

• Result of the high-pass encoding mesh compression algorithm (Sork-
ine, Cohen-Or and Toledo 2003)

20

The experiment was conducted using a known-original forced-choice task
with a hidden anchor. The users were presented with triplets of models.
One was the original and designated as such. It was accompanied by two
distorted versions, displayed at once on a single monitor to eliminate the
effect of differing viewing conditions. The subjects were then tasked with
selecting which of the two distorted versions was a better match to the
original. The distorted versions were never identical, but could contain the
original itself as a hidden anchor, in order to evaluate the level of distortion
imperceptible by human observation.

While ideally this experiment would be conducted on every pair possible
from the generated combinations, in practice this proved to be far too many
comparisons to make without the subject losing concentration on the task.
The final experiment was conducted using 40 comparison pairs per user.

2.6 MeshTest
The experiment was conducted using the purpose-built software MeshTest.
MestTest was implemented using Microsoft XNA and the C# programming
language. The software was iterated upon during development in order to
maximize usability and ease of use, reaching final version after eight iter-
ations. A pilot study was also conducted in a usability lab at the Czech
Technical University in Prague.

It allowed for simple model manipulation using the keyboard and mouse,
allowing for translational and rotational movement as well as model scaling,
all of which was shared between all models to maintain identical conditions.
The models were displayed in a pyramid formation with the original model
on top. It used the default lighting and shading setup, with specular and
ambient illumination disabled and models being rendered with anti-aliasing
enabled.

While the MeshTest software was perfectly functional at its time of use,
developments since then (Microsoft has discontinued support for their XNA
platform) coupled with the lacking source code documentation and code
practices have have made further modifications difficult.

2.6.1 MeshTest usage
The following is a run-through of a MeshTest experiment:

Introduction The user is presented with an introductory test describing
the experiment. It specifies the amount of model triplets and the

21

Figure 2.2: MeshTest software

intended comparison criteria. It also specifies that there is no time
limit, but the experiment is expected to take about 25 minutes.

Mouse control - moving A visual tutorial explains to the user that they
can move the model around the screen by dragging the mouse with
the right mouse button pressed.

Mouse control - rotation The tutorial continues to explain that the model
can be rotated by dragging the mouse with the left mouse button
pressed.

Mouse control - magnification The tutorial explains that the model can
be rescaled by using the mousewheel and reset to a neutral size using
the spacebar.

Experiment clarification The comparison criteria is explained again, with
an example image to increase clarity.

Tutorial finalization The tutorial concludes by clarifying what to do if the
user cannot decide between the models presented (pick at random) and
that the experiment is voluntary, anonymous and can be terminated
at any time by closing the window.

Sex choice The user is presented with a binary choice of their sex for the
purposes of data gathering.

Experiment The user is presented with 40 model triplets in sequence and
asked to select either the right or left model from each as the more

22

similar to the central one.

2.7 Virtual reality
Virtual Reality can be defined as an immersive simulation of a three-dimensional
environment, created using interactive software and hardware, and experi-
enced or controlled by movement of the body.

2.7.1 History
While the term "virtual reality" was first coined in 1987 by Jaron Lanier
(founder of the visual programming lab) (Lanier 1992), devices that were
in some form related to the concept have existed for decades. One early
example is the Headsight HMD developed for military use in 1961, which
allowed an operator to move a remote camera via head movement.

"The ultimate display" concept, written about in 1965 by Ivan Suther-
land, was the first description of the modern concept of immersive virtual
reality. "The sword of Damocles" also developed by Ivan Sutherland along
with his student Bob Sproull was the first head-mounted motion tracking
device that used computer generated graphics for the displayed environment.

In 1995 the first consumer-grade virtual reality device was released, the
Nintendo Virtual Boy. The technology at the time was however still too
primitive and the product was a failure, being taken off-market in only six
months after release. For the next two decades, the Virtual Boy would serve
as a prime example of why virtual reality devices are considered unfeasible.

2.7.2 Current state
In recent years costumer-grade hardware has finally achieved resolution
and synchronization speeds comfortable for human usage and advances in
motion-sensing technology has allowed for near-perfect tracking of positions
of objects in reality and matching of their location in the virtual space (in
most cases this means the headset and controllers).

2.7.3 Advantages
Virtual reality offers some advantages over a standard monitor + controller
setup.

23

Stereoscopic vision Unlike with a traditional computer monitor, virtual
reality headsets allow for stereoscopic vision. This allows the user to
better judge distances and better navigate the virtual world.

Immersion With the headset covering the users entire field of vision, there
is nothing in the visual space that can distract them from the virtual
world. Coupled with a position audio system, this leads to a much
higher amount of immersion compared to a traditional setup.

Presence Presence is defined as the sense of being physically present in
a virtual world. Closely related to immersion, it is however distinct
as a user can be immersed in a situation without necessarily placing
themselves within it. Positionally tracked controllers help with this, as
they are often used to simulate interactions analogous to those a user
would be capable of performing with their own hands. Some examples
include firing a bow by drawing and releasing a virtual bowstring or
picking up objects by moving the controller into the right space and
squeezing a grip button.

Ease of use The position tracked headsets allow the user to interact with
the virtual space in a much more natural fashion. For example, in order
to look at something, the user simply has to face in its direction. In a
more traditional control scheme, the user would have to move a camera
or change the facing of their avatar using a controller or a mouse.
In the case of room-sized experiences this extends to movement, as
instead of moving an avatar the user can simply walk to the desired
location. With position tracked controllers, interacting with objects
in the virtual space also becomes more in line with a users natural
expectations.

2.7.4 Issues
There are however also some disadvantages.

Inability to see In order to facilitate proper immersion, the headset has
to be opaque and cover the users entire field of view. The obstructed
vision can result in accidental collisions.

Controller limitations For any controller that is not position tracked
(such as the standard keyboard and mouse) interaction can become
rather difficult as the user cannot actually see what they are doing.

24

Screen door effect Displays with insufficient resolution or built for a dif-
ferent purpose can cause the screendoor effect, wherein the user can
distinguish the individual pixels on the headset screens and thus can
see a screendoor-like covering over their entire field of view.

Lens distortion With the lenses of virtual reality headsets being located
so close to the users eyes, some distortion is inevitable, as a set of lenses
capable of perfectly distorting a flat screen display to the human eye’s
field of view would require a set of nine lenses (Abrash 2014) that
would be too bulky to fit within any reasonable headset design. Careful
positioning, purpose-built lenses and countermeasures implemented in
the software layer can minimize this effect, but it cannot be eliminated
completely.

Limited field of view The lack of a field of view provided by virtual real-
ity headsets equivalent to a users actual field of view results in limited
peripheral vision.

Loss of tracking When the headset loses tracking, the displayed world
ceases maintaining synchronization with the users movement. This
can be uncomfortable or render the application unusable, or in extreme
cases even temporarily blind the user (until the headset is removed).

Real-world mismatch Care must be given when constructing virtual ex-
periences so that they match the users space as closely as possible
given the limited real world information available. For this reason vir-
tual reality experiences often rely on the user either staying in a seated
position or, when movement is necessary, limiting the interaction to a
predetermined area that matches the users available space, otherwise
problems can occur (such as accidentally walking into a table that fails
to be presented in the virtual space). A different consideration of the
same problem is the possibility of an user relying on the presence of a
virtual construct that does not exist in reality (such as by attempting
to sit in a virtual chair).

2.7.5 Health effects
It must be noted that virtual reality has been known to cause health issues
in some users, such as temporary nausea. Depending on the individual user
there can also be significant differences of both the onset time and severity
of such effects.

25

Due to these issues it is generally recommended to keep modifiers to the
users position to an absolute minimum, limit sessions to an hour or less, and
to remove the headset as soon as discomfort is experienced.

Simulator sickness, Motion sickness, Virtual reality sickness While
significant progress has been made, there are still some problems caused
by the difference between the virtual reality perceived by sight and
the actual reality perceived by other senses. These closely-related but
distinct effects are known as simulator sickness, motion sickness, and
virtual reality sickness. Virtual motion is a typical culprit of causing
nausea and discomfort, as the body senses no motion is occurring re-
gardless of the velocities experienced because of the scene presented by
the VR device. The opposite is also true, as it can prove very unpleas-
ant if the application restricts the camera despite the users movement.

Headset A more mundane issue is the weight of the headset itself and
the straps necessary for it to stay firmly attached to the head as well
as the bright screens focused into the eyes from a distance of a few
centimeters causing discomfort due to prolonged usage.

Vergence-accommodation conflict The Vergence-accommodation con-
flict (Hoffman et al. 2008) is caused by the fact that unlike with the
real world, where the eye’s focal distance and vergence distance match
for any given observed object (after a short accommodation period),
with virtual devices the actual distance to the screen is always the
same regardless of the virtual scene’s perceived distance. While the
human eye is capable of adjustment, long term use can cause eye strain
and fatigue. While great strides have been made in the field of redu-
cing this effect (Huang, K. Chen and Wetzstein 2015), completely
eliminating them is difficult if not impossible.

2.7.6 Uses
Virtual reality can be used in many varied applications from various fields.

Entertainment Virtual reality can be used in the entertainment sector
in many ways. Virtual reality games take the lessons learned from
the decades of game development and apply them to virtual reality,
though this is still a rapidly developing field with many issues yet to
be solved, as many of the traditional videogame paradigms translate
to virtual reality poorly at best. Virtual reality experiences focus on
the possibility of virtual reality to simulate locations that the user

26

might not be capable of traveling to, wherever for monetary reasons
(a virtual trip to Paris), simply because they are incapable of it (the
frozen summit of Mount Everest), because the means of travel does
not exist in the first place (a crater on Mars, or the night sky as seen
from one of the moons of Jupiter) or even because such a location
is fictional (visiting Helm’s Deep from the Lord of the Rings series).
3D movies, when experienced in virtual reality, allow for an entirely
new level of immersion, as the user is essentially fully surrounded by
the experience. While with recordings of the real world an impressive
amount of expensive technology is required to record the necessary 3D
data, an avenue worth considering is computer animation movies.

Medical In the medical sector, virtual reality has been used as a tool to
allow telepresense of surgical machine operators over vast distances. In
a similar vein, 3D scans of patient bodies and cadaver slice scans can
be more naturally observed in virtual reality as opposed to 2D slice
displays. While human body simulation is not yet quite sophisticated
enough to offer perfectly accurate results, virtual reality can also be
used for medical training without risking the life of an actual patient.

Military The military sector has been experimenting with virtual reality
uses for decades. Simulators are a well-established use of virtual reality,
allowing for vehicle pilot or driver training without risking the lives of
the operators or the expensive vehicles in real training exercises. They
also allow for exposing the operator to situations that would in real life
prove fatal. Other uses have also been explored, such as troop training
simulations or remote control of turret weapons and vehicles.

27

3 Project goal

This project has three primary goals:

Create a VR application that is equivalent to MeshTest Given the
increased ease of interaction and user immersion as well as the increase
in field of view, refresh rate, and other such statistics that affect the
quality of perception of a virtual reality-based environment as opposed
to a typical monitor display, it is of interest what effects will a virtual
reality-based experiment environment have on the results of a study
conducted in a manner equivalent to MeshTest. Hopefully, the results
will be close to identical, thus proving the accuracy of the DAME
metric regardless of the display method used. If this proves not to be
the case, an alternate set of metrics and perception-oriented algorithms
may be required for use in virtual reality applications.

Additionally, the ability to observe meshes up close and from different
angles with ease should allow for a more natural interaction of using
the users own body to move around the environment as opposed to
controller or keyboard-and-mouse based interaction, thus reducing the
amount of preexisting experience and time needed to participate in an
experiment.

Explore the problem space As a part of this project comes determining
the requirements of a project of this nature for future efforts of a similar
nature. The knowledge gained in its development will hopefully lead
to faster and easier development should a similar virtual reality project
be required in the future.

Draw conclusions After the project is finished, it is to be analyzed. Con-
clusions are to be drawn as to its viability as a MeshTest alternative in
specific and as a data collection tool in general. Depending on its rel-
ative usability, further experiments of a similar nature may also make
use of virtual reality technology.

28

4 Project design requirements

The goal of this project is to create a virtual reality-based application that
serves the same purpose as the original MeshTest software, with some addi-
tional improvements as detailed in the project’s initial description.

The following is a listing of project-critical requirements:

• Implement functionality identical to MeshTest.

• Expand on functionality with required additional features (such as
experiment definition files and result logging).

• Perform pilot study to verify functionality.

In addition, there are these requirements:

• Expand on functionality with quality-of-life features (such as further
experiment customization, user recordings, or an experiment editor
application).

• Improve ease of use and clarity of experiment task.

• Iterate on user interface design based on user feedback.

• Explore the results of a VR interactive environment on the experiment
results.

Otherwise, in order to allow an accurate comparison, the application
must be as similar to MeshTest as possible.

There are two kinds of experiments that must be supported: Binary
forced choice and Anchored scoring.

4.1 Binary forced choice
In this experiment, the user is tasked with choosing which of the two op-
tions presented better match the original. The original is also presented
for comparison. The two options may be identical, or contain the original.
This kind of experiment focuses on enabling the subject to decide between
relative options instead of assigning an absolute rating value to any specific
model variation. This leads to a result set where it is possible to broadly sort
the subject’s opinions on models from best to worst without ever requiring
the subject to sort them in such a fashion themselves, at least given the
assumption every model pair was presented.

29

4.2 Anchored scoring
In this experiment, the user is presented with an original and a copy and
is tasked with rating how closely the copy matches the original on a pre-
determined scale. The copy may be identical to the original. This kind
of experiment allows for a more granular result, but is susceptible to the
problem of rating compression: since the subject initially has no frame of
reference, they may assign the minimum value to a model they consider aw-
ful, only to then not be able to assign a lower value to a later, much worse
model (or vice versa with high-quality matches).

30

5 Application use cases

The application has two distinct categories of users: there are users per-
forming experiments (experimenters), and there are users participating in
experiments (test subjects).

5.1 Typical usage (experimenter)
Define the experiment The experimenter defines the experiment to be

run, using either a purpose-built editor or an experiment definition
file.

Perform the experiment The experimenter runs the experiment on one
or more test subjects.

Collect the results The experimenter collects the results of the experi-
ment, collates the data and draws conclusions from it.

5.2 Typical usage (test subject)
Learn how to interact with the VR environment The subject learns

how to participate in the experiment with no prior experience and
minimal assistance.

Perform the experiment The subject performs his run of the experiment.

5.3 Conclusion
Based on the typical usages, it is clear that experimenter users will interact
with the application mostly by manipulating experiment data files, while the
bulk of VR interaction will be performed by the test subject users. Given this
and the isolating nature of a VR environment (which completely obscures
the users vision), it makes sense to focus the VR environment on ease of use
by users with no prior experience with the application itself, and in extreme
cases computer use in general.

31

5.4 Result logging
While it is certainly possible for the experimenter to manually log the results
of the experiment, noting down the user choices between model pairs as they
make them, this is impractical given the length of an individual experiment.
A much better approach is for the result logging to be automated, printing
the subject’s choices to the command line as they are made or saving them
to a file for later processing.

Additionally, while logging the results of the subject’s choices is sufficient
for the purposes of the experiment, an extension on the concept is logging
the user’s interactions with the application itself. Not only does this ease
debugging during development, the resulting data on user movement and
interaction choices can also be used to further improve the user experience
and offers at least some insight into the subject’s thought process.

In order to simplify data gathering, automated sending of the results
is a desirable feature. A simplistic implementation approach is to e-mail
the results to a provided e-mail address. In order to extend the supported
experiment time, the file size of the resulting e-mail attachment must be
kept below the threshold limit at which significant numbers of e-mail clients
restrict file attachments of that size.

32

6 Application design

The following components are necessary to implement this project:

Hardware platform The subset of virtual reality devices and their asso-
ciated supporting hardware platforms that will be used by the applic-
ation.

3D graphics engine A 3D graphics engine that supports both the VR
device and its platform that can be used to develop the application.

File storage A method of data file storage, either offline on-disk or cloud-
based online.

Additionally, the following must be decided upon:

Method of interaction A system for user interactivity that incorporates
aspects unique to virtual reality spaces.

Experiment definition file format A file format for the files that define
experiments.

Experiment log file format A file format for the logged results of an ex-
periment.

Experiment recording file format A file format for the recording of a
user’s movement during an experiment.

6.1 Hardware platform
Since the field of customer-grade virtual reality devices is still in its infancy,
the quality of presentation as well as user interaction devices vary greatly
with device manufacturer and model due to a lack of standardization. The
following is a brief overview of VR devices and their associated platforms
available.

Oculus Rift DK2 (PC) The most recent device available at the start of
development. Despite being a development kit, the DK2 is a fully
capable virtual reality device that remains supported to this day. Its
main disadvantages lie in the lack of motion tracked controllers and
somewhat lower resolution.

33

Oculus Rift CV (PC) The consumer release version of the Oculus Rift,
featuring an improved screen resolution that drastically reduces the
screen-door effect and more accurate head-tracking. There are now
also motion-tracked controllers designed to work with the Rift, but
they are not a part of the default package. Unfortunately a Rift CV
was not available for development or testing.

Playstation VR (PS4) The Playstation VR headset only works with the
Playstation 4 game console. This, coupled with the fact its motion-
tracked controllers are also optional (and less accurately tracked), as
well as the fact that none were available, made it a poor choice.

Google Cardboard, others (smartphones) Smartphone-based platforms
like Google Cardboard are designed to be a more affordable alternat-
ive to full-featured VR devices. As such, they lack positional tracking
and their resolution and processing power is limited to the smartphone
used.

HTC Vive (PC) The HTC Vive was released at nearly the same time
as the Oculus Rift CV, but unlike the Rift it contains the motion
controllers as part of the initial package (and thus they can be relied on
to be present for every user). In addition, its Lighthouse-based motion
tracking allows for room-sized interactive experiences as opposed to
the seated-position restriction of the alternatives. Out of the options,
the Vive proved to be the best final target platform.

6.1.1 Technical specifications
A brief comparison of technical specifications of the mentioned devices:

Device Resolution Refresh rate FOV Head track. Cont. track.
Rift DK2 960x1080 per eye 75 Hz 100 Yes No
Rift CV 1080x1200 per eye 90 Hz 110 Yes Optional
PS VR 960x1080 per eye 90 Hz 100 Yes Optional
HTC Vive 1080x1200 per eye 90 Hz 110 Yes Yes
Cardboard Varies Varies Varies No No

Table 6.1: Device specifications comparison.

34

6.2 Engine
A 3D graphics engine is an API layer that handles the rendering of 3D
objects and the displaying thereof on a display device (usually a computer
monitor screen, but other options are also possible, such as a virtual reality
headset) through interfacing with the operating system. A typical 3D engine
usually takes care of interaction with more low-level graphics APIs such as
OpenGL or DirectX, and through them with the GPU itself. Additionally, it
simplifies the handling of data such as vertex and index arrays for triangular
meshes, texture coordinates and images, and other associated data. It also
provides related functionality, such as transformation matrix operations, 3D
projection helper functions, or physics simulation.

Videogame 3D engines are more specialized engines. In addition to the
functionality mentioned above, a modern videogame engine usually includes
a 3D positional audio system, an input handling system capable of handling
both keyboard-and-mouse and controller input, a networking layer, and a
realtime physics simulation system. They are usually designed to handle a
steady framerate. While they are meant for a different class of application,
well designed ones are also perfectly capable of supporting simulations and
any other purpose of a similar nature.

The choice of an underlying engine is an important one, as by their
very nature engines dictate a significant portion of the application’s internal
design. The following options were considered:

From-scratch solution This approach would entail implementing an ap-
plication specific engine from scratch on top of a bare graphics pro-
cessing API layer, such as OpenGL or DirectX. While this does res-
ult in the highest possible amount of control over the application, it
is a project unto itself and a very time consuming and unecessarily
error-prone solution for a problem with already existing fully-featured
solutions. It would also necessitate interfacing with the virtual reality
device using its raw API instead of a prebuilt engine-specific interface
package.

Unreal engine Unreal engine is a time proven high quality engine with
many web-based resources available, both for tutorials on program-
ming with it and assets. It is however very game-oriented. It also
uses C++ as its scripting language, which is a powerful but difficult
to master programming language.

VTK While VTK better fits the problem domain, during initial develop-

35

ment it was not yet capable of VR integration. Its module-based sys-
tem is also an unnecessary complication in this projects case.

Unity While Unity is primarily a videogame engine, its implementation is
generic enough to be easily usable for this project. This coupled with
its very early implementation of native Oculus Rift integration as well
as usage of the C# language as its scripting language ultimately made
it the best choice.

6.2.1 Unity
Unity (also known as Unity3D) is a videogame engine first released in June
6, 2005. While initially only supporting Mac OS X, the engine quickly
expanded support to Windows and web browsers, later also expanding to
the iPhone, Adobe Flash, Linux and Android.

One of the major reasons for Unity’s success (Haas 2014) was its support
for independent developers who did not have the resources to license expens-
ive game development technology. Until the more recent release of Unreal
Engine 4 in 2015, there were precious few options for developers looking for
a professional grade engine affordable on a budget. Combined with Unity’s
quick rate of improvement, extensive documentation, up-to-date video tu-
torials and an open approach to developer feedback-based improvements this
has made it one of the most used engines by independent game developers.

The strongest feature of Unity is its editing interface, the Unity Editor.
In comparison to alternatives at the time, the Unity Editor is both powerful
and incredibly easy to use, supporting such conveniences as drag-n-drop,
file handling and automatic importing of model, texture and image data.
Object manipulation is handled through handle controls similar to that of
3D modeling software, albeit simplified for ease of use.

In Unity, scripting is handled through usage of a powerful strongly-
typed component system, with support for two languages: Unity JavaScript
an C#. Historically, Boo was also supported, but it was dropped due to
the minimal amount of developers using it. Other features include a ro-
bust animation system (Mecanim), a standardized particle system and a
code-controlled wireframe rendering system intended for debugging. The
inspector for game object components is automatically dynamically gener-
ated from their class files and allows for object specific direct variable entry,
though a custom inspector can also be implemented on a class specific basis.

Unity also supports live debugging, with the possibility of changing game
object positions, rotations, hierarchy, variable data, and even recompiling of

36

Figure 6.1: Unity editor

the scripts themselves during gameplay. It also contains a powerful profiler,
allowing a developer to monitor the application’s memory and CPU time
usage, as well as framerate and other miscellaneous statistics. The profiler
can also be used to track down problematic issues such as frame drops, down
to the individual method calls causing them.

Figure 6.2: Unity profiler

6.3 File storage
The application must be capable of loading, editing or saving the following
data files:

37

• Triangular mesh models

• Experiment definition

• Experiment log

• Experiment recording

There are several options for file storage:

Disk storage Simply storing the data files directly on disk. A simple solu-
tion that is easy to debug and practically necessary for the application
to be usable.

Online dedicated storage Storing the data files on a dedicated server ac-
cessible by internet connection and transmitted over FTP. This option
would allow remote storage and acquisition of experiment data.

Online cloud storage Using a cloud-based file storage solution, such as
Google Drive or Dropbox. This option is simpler to set up than a
specialized server while still offering most of its advantages, but it
relies on a third party provided service.

Since online storage is not part of the project requirements, it is a optional
feature. Disk storage is trivial to implement and required for any degree of
iterative testing and is therefore the most sensible initial choice.

6.4 Interactivity
In order for the application to be interactive, it must be capable of receiving
user input in some form. The following options were considered:

Mouse + keyboard A traditional input method which uses the mouse as a
pointing device and the keyboard as a general input device. This input
method presents the issue of users losing hold of their mouse/keyboard
and having difficulty regaining it due to obscured vision.

Classical controller While controllers have adequate amounts of inputs
(including analog axis movement that can be mapped to model rota-
tion), they tend to require memorization of button location and do not
provide as quick an input as the alternatives.

38

Leap Motion controller While this hand-tracking input device offers some
intriguing options for design, its requirement of an additional API in-
tegration module as well as its relative rarity in the general user base
left it as a last-resort option.

Gaze controls This option would eschew any external input devices in
favor of using the users vision directly as an input.

Position tracked controllers Controllers whose positions are tracked in
the real world in real time, allowing them to be represented by their
virtual counterparts inside the virtual space.

6.5 Experiment file format
In order to store the experiment between application uses, its definition must
be able to be saved to a file. This file must be easily editable, preferably
without the usage of a specialized editor and should ideally be of a small
size. There are several options available in order to achieve this, each with
its own advantages and disadvantages:

Raw binary file While an application-specific binary file does offer the
best possible file size, this is of little importance for this particular
problem. The disadvantages include susceptibility to complete loading
failure or corruption due to errors caused by a few misplaced data
points, the necessity of implementing an editor to edit the file, and the
lack of human readability.

Unity asset file Unity provides asset export functionality, including re-
usable prefabricated assets (prefabs) created an runtime. These pre-
fabs could be made to contain an experiment definition. This could
be used to export experiments created using an editor included in the
application. However, while this is the solution that is most native to
Unity, the lack of an ability to quickly edit the file is an unnecessary
hindrance.

Raw text file A text-based application specific file (such as a CSV file)
does provide increased human reliability and can be edited using a
standard text editor of the users choice, but remains prone to errors.

XML file Using the standardized XML file format offers several advant-
ages. Text editors with syntax highlighting or similar features will
usually include XML in their supported languages. The file format is

39

also somewhat resistant to errors. Furthermore, C# natively supports
object serialization into XML files, massively simplifying their defini-
tion and eliminating any accidental differences between the file format
and the actual supported experiment definitions caused by any addi-
tional layers between a file loader and the application objects them-
selves. The verbose nature of XML does however lead to comparatively
larger file sizes.

In the case of the experiment definition file, the XML file is the best fit.

6.6 Log file format
The options for the log file format are the same as those for the experiment
file format, but the considerations are different. The file must primarily be
easily human-readable. Additionally, it must be simple to parse in order to
allow automatic experiment result data entry. Given these, a raw text file
is the most appropriate choice.

6.7 Recording file format
In the case of the recording file, the primary consideration is file size as the
recording must keep track of position and rotation data of multiple objects
at sixty data points (corresponding to sixty fixed physics frames) per second.
The file should also be simplistic in order to allow better file compression.
Therefore, the best option is a specialized binary file format.

40

7 Implementation details

The project is split into two primary code portions: the part that interfaces
with Unity classes and the part that interfaces with native C#, though there
is of course some overlap. The major distinction that necessitates this divide
is that Unity objects can only be manipulated by the Unity primary thread,
and cannot be serialized.

7.1 Singletons
In order for the two parts of the application to interact, some sort of inter-
face was necessary. The application uses singleton objects as this interface.
During initialization, a singleton object attached to a Unity gameObject as-
signs itself into its related globally accessible static variable which can then
be accessed by classes which are not part of the Unity system themselves.
While there are alternate solutions such as searching for specific gameOb-
jects by name or class, they are comparatively slower and less reliable (as it
is possible for more than one object with the same name or component to
exist). The singletons used by the applications are:

UnityInterface The primary singleton that holds references to most of the
gameObjects used by the application and all utility methods used to
manipulate the world state.

DebugToggles This contains contains a few binary switches that control
various debug options in the application. It is a singleton simply be-
cause it is easier to change values through the the inspector rather
than edit class files or setting files and force recompiling the applica-
tion. They can also be changed during runtime.

DashController This singleton controls the dashboard user interface, en-
forcing that always one and only one dashboard is visible at all times.

MaterialsHolder This singleton holds references to the materials used for
rendering models, allowing them to be quickly and easily changed
through the inspector.

PrefabHolder This singleton holds references to various prefabs (prebuilt
gameObjects that can be created on demand).

41

TutorialStages This singleton holds references to the gameObjects that
represent the various stages of the VR device-specific tutorials and
controls the displaying thereof while the tutorial is running.

7.2 GlobalStateHolder
The GlobalStateHolder is a static class that contains references to all globally
accessible singletons as well as utility methods for accessing the currently
loaded experiment, the currently active screen, and the next screen in the
experiment screen list. It also contains the application exit method.

7.3 User input system iterations
The user interactivity implementation was iterated upon during develop-
ment. The following are the major revisitions presented in order of imple-
mentation time:

7.3.1 Keyboard/mouse button iteration
The most simplistic and thus initial solution was to simply assign buttons on
the keyboard and mouse to the interaction required (specifically, confirma-
tion of instructions and choosing between two options, for a total of two key
bindings), binding mouse movement to model rotation and the mousewheel
to model scale. While this solution was functional, it was prone to accidental
input, lack of intuitiveness and losing hold of the mouse/keyboard.

7.3.2 Gaze input iteration
In this version, instead of clicking buttons on the mouse or the keyboard, the
user could simply focus their vision on a virtual button using a worldspace
cursor in the center of their vision, and after a short interval a click would
be triggered. While this did reduce the need for keyboard or mouse input,
it did not eliminate it entirely as the mouse was still required to rotate
or scale the models. Additionally, the need to hold the users head almost
perfectly still while facing specific objects, even for short periods of time,
proved to eventually lead to neck cramps and was much slower than the
previous solution.

42

7.3.3 Worldspace cursor iteration
Using parts of both previous approaches, the mouse was now used in a
more typical fashion, moving the cursor implemented for the gaze input in a
rectangle projected ahead of the user and locked to the users field of vision,
with mouse buttons triggering clicks as normal. Model rotation and scaling
was moved to sliders on a worldspace panel located in front of the user,
which allowed for a more precise manipulation with no accidental input.
This solution proved as a more natural approach.

7.3.4 Position tracked controllers iteration
After shifting development to the HTC Vive, it seemed prudent to take
advantage of its position tracked controllers. Instead of projecting a cursor
from the user themselves, there are laser pointer-like cursors projected from
the front of the controllers which can be used to interact with the virtual
world much like one would with a pointing finger. Model rotation using the
controllers directly was also implemented (mimicking the user grabbing the
object and rotating it by hand), though the manipulation panel remains as
a more precise option.

7.3.5 Final solution
The finalized solution is the position tracked controllers iteration combined
with a fallback of the worldspace cursor iteration in case the VR device in use
does not use position tracked controllers. In order to improve ease of use, a
highlight system was added that dynamically displays 3D hint objects when
the user moves a controller near to an object with interactivity capabilities.

7.4 Model data
While the Unity engine and editor do have functions for loading and pro-
cessing triangular mesh model data, they are not available at runtime, as
Unity processes any such data into Unity-specific assets which then become
part of the application’s resources. However, since the .obj and .dat formats
are relatively simply defined, it is not difficult to implement a solution for
loading the raw data separately. Once loaded, Unity has functions available
for turning raw triangular mesh data into a Mesh object, which can then be
used by the Unity engine. Simplified definitions of the formats used are as
follows:

43

Figure 7.1: Controller gripping a model

7.4.1 wavefront .obj format
One data point per line. Data separated by spaces, with the first entry
specifying data type.

• Vertex definition: v x y z

• Vertex normal definition: vn x y z

• Face definition: f v1 v2 vn

• Face with normals definition: f v1//n1 v2//n2 vn//nn

Note that this is only a small subset of the format. In order to process all
possible files, the .obj loader must also handle cases where the data contains
texture coordinates data.

7.4.2 application-specific .dat format
The .dat format, used originally by MeshTest, reduces the file size by limiting
itself to only to vertices, triangle faces, and vertex normals, as well as using
a binary file as opposed to a text file. The definition is as thus:

• Triangle faces count represented by a single 32 bit integer

• Index data, represented by three 32 bit integers per face, one for each
vertex in the face

• Vertex count represented by a single 32 bit integer

44

• Vertex data, represented by six 64 bit doubles, one per each coordinate
and one per each vertex normal coordinate

As with all simplistic binary files, the data must be in this exact order or
the file will fail to load or result in corrupt data.

7.4.3 Model loaders
There are three model loader classes. Two of them (ObjLoader and Dat-
Loader) correspond to their respective model data formats. The third (Quick-
Loader) skips loading entirely, instead creating a placeholder object that only
contains the model’s file path. This loader and placeholder objects are used
during model preloading. All three loaders also inherit from the abstract
class AbstractLoader which implements their common functionality.

7.4.4 Postprocessing
Once the data is loaded, there are only a few things left to do.

Coordinate system mismatch Since the files use different coordinate sys-
tems, they must first be matched (specifically, by inverting the z co-
ordinate of .dat files).

Recentering In order to keep models in the same spot when switched to,
all mesh data is recentered so that its averaged center lies at (0,0,0).
This is done simply by adding up all vertices, then dividing by their
count and substracting the resulting offset from every vertex in the
mesh.

Splitting Unity has a maximum limit of 65535 vertices in a single mesh.
When a model with too many vertices is imported into Unity using
the usual means, the import process will automatically split the mesh
into submeshes to avoid this issue. However, when meshes are gener-
ated dynamically (or in this application’s case, created from raw data
without involving Unity code), this check is bypassed. Since the im-
porter code is not exposed, the process must be reimplemented. Due
to the relative rarity of this issue, a naive approach to solving it is suf-
ficient. The application simply adds faces to a submesh until it nears
the limit, at which point all vertices used by this subset of the mesh
faces are duplicated into a separate array that the submesh then uses
as its vertex array. This process is repeated until all mesh triangles
have been duplicated into submeshes.

45

Figure 7.2: High-poly bunny mesh with separated polygons highlighted

Normals validation Some of the meshes used for experiments have incor-
rect normal directions. These cases result in incorrect visuals, as the
object essentially looks as if lit from the inside out (if double-sided face
rendering is enabled), or as an inversion of itself (if it is disabled).

In order to combat this issue, the application performs a normals check:
for a small number of randomly selected normals, a ray is fired in its
direction. The number of hits is then counted. An even number of hits
(including zero) implies correct normals facing, while an odd number
implies inverted facing. The amount of odd and even results is then
totaled, and if the number of odd results exceeds the number of even
results, the normals of the entire mesh are inverted. This check can
however only be performed on a closed mesh (as with an open mesh,
the rays could enter or exit through the holes in the mesh). For open
meshes, the application relies on disabling backface culling for model
rendering.

At this point, the mesh is ready to be displayed. It remains in this state
until the application needs to display it. At that point the mesh data is
inserted into a Unity Mesh object, which is then provided to a MeshFilter
component attached to a GameObject that exists within the virtual scene.

46

7.5 Screen system
In order to represent the experiment, a system of screen definitions is used.
A screen in the application is a distinct scene of an experiment, such as a per-
sonal data entry screen or a tutorial screen. Each screen has an entry point
and exit point. When a screen switch occurs (usually when the user finishes
the task the screen represents) the following order of operation happens:

• The current screen finalizes any data storage it may be responsible for.

• The current screen runs any screen-specific cleanup code.

• The generic cleanup code is executed for the current screen.

• The next screen runs its screen-specific initialization code.

• The generic screen initialization code is executed.

• The application switches to the next screen.

• The screen after the next screen starts preloading any model data it
may initially require.

There are two special cases. In the case the current screen is the second-
last or the last one, the preloading step is skipped. In the case the current
screen is the last one, the initialization of the next screen is also skipped and
the experiment finalization code is executed. Finally, in order to simplify
this process and eliminate edge case errors, a dummy screen is inserted at
the beginning of each experiment. This screen simply proceeds to the next
screen on the first frame its displayed on.

7.6 Individual screen implementations
Since the individual screens implement most of the applications functional-
ity, they each contain a sizable portion of unique code. In order to further
distinguish their classes from similarly-named base C# classes, they contain
the keyword MCO in their name (standing for MeshComparisonOculus, from
when the application only supported the Oculus Rift).

7.6.1 BaseMCOScreen
The abstract class is inherited from by all other screens. It defines the
following abstract or virtual methods and their common functionality:

47

jumpedTo This method is called when the screen is jumped to (usually
from the preceding screen) and contains setup code.

jumpedFrom This method is called when the screen is jumped from and
contains cleanup and finalization code.

frameEnd This method is called once every logic frame and contains up-
date code.

frameEndfixed This frame is called once every 1/60th of a second exactly,
and contains update code that relies on precise timing.

setAsFinished Sets this screen as finished. On the next frame, the screen
system will jump from it to the next one.

preload This method is called during a jump to the preceding screen. It
starts the preloading of any models required by this screen.

getShortLabel This method is used to fetch the short label displayed on
top of the screen dashboard.

getText This method is used to fetch the longer descriptive text that some
screens use.

Additionally, as part of the abandoned prop system, it defines the following
methods:

serialiseProps Serialises props into their Unity-independent versions, as
Unity game objects cannot be serialised.

deserialiseProps Deserialises props from their Unity-independent versions
into Unity game objects.

showProps Enables all props attached to this screen.

addProp Adds a new prop to this screen.

7.6.2 MCOCommandlineScreen
Intended primarily for debugging purposes, this screen displays the com-
mandline arguments the application was launched with, using the GetCom-
mandLineArgs method of the Environment class from the System namespace.

48

7.6.3 MCOCustomScreen
The simplest of the screens, this screen implements no base functionality
whatsoever. Its intended primarily for displaying text to the user. It was
also meant to be used with the unfinished prop system.

7.6.4 MCODummyStartScreen
Unlike other screens, this screen is not supported in the XML definition file,
but rather automatically added to the start of an experiment during the
loading process. It is a simple solution to some edge case issues (such as
the lack of a model preload step for the first screen in an experiment). It
automatically sets itself as finished when jumped to, resulting in a single
frame duration.

7.6.5 MCOModelDisplayScreen
Used as a single model display. The model is displayed using the central
model gameObject of the comparison experiment triplet.

7.6.6 MCOPersonalInfoScreen
Used to collect subject personal information. Since the only data required
at this point is the user’s sex, this boils down to a simple two-button binary
choice. If further data is required in the future, this class is the one that
will be modified.

7.6.7 MCORecordingPlaybackScreen
Plays back an experiment recording file. In order to allow quick seeking, all
the models required by the experiment recording are loaded immediately.
During playback the process is simple: during every fixed frame, read the
next frame’s data and update the position and rotation of the experiment
models as well as the headset and controller stand-ins, then check if any of
the models have changed and replace them if they have. When seeking, the
file reader skips to the desired percentage and then keeps reading until it
finds the magic constant "|F|", at which point it proceeds at normal.

7.6.8 MCOTutorialScreen
Most of the tutorial functionality is implemented in the TutorialStages singleton.
This screen therefore simply calls its setupPath() method when jumped to.

49

7.6.9 MCOCustomScreenEditorScreen
While this screen can be inserted as a part of an experiment definition, this
is not its intended usage. Rather, this screen allows the saving, loading and
creating of other experiment definition files. It provides an editing interface
capable of changing most of the defining variables of screens contained in
an experiment, as well the addition of new screens and removal of existing
ones.

7.6.10 BaseExperimentScreen
This abstract class implements the common functionality between the two
supported experiment types and is inherited from by their respective screens.
In its frameEnd override, it checks if all models from the current duplet or
triplet are displayed, and if not and they are done preloading, displays them.
It also handles the counting of tasks performed by the user and storage of
available models. It defines the following abstract method:
generateChoiceSet This method generates a set of model data paths from

the given set to perform an experiment on (either a duplet or a triplet,
in either case containing the original model).

Additionally, it implements the following methods.
addDataSource Adds a new model data source.

deleteDataSource Removes an existing data source.

setupModelStructure Generates the model structure required to run this
experiment.

setupNextChoice Called after the user performs a step in the experiment
and a new set of models is required. It calls the generateChoiceSet
method, then starts preload threads for the model data paths gen-
erated by it. It also handles the final step by setting the screen as
finished instead.

7.6.11 MCOComparingExperimentScreen
This screen represents the Binary-forced choice experiment method. Its
implementation of the generateChoiceSet method generates model triplets
using a simple random generation algorithm. Depending on the flags set
in the experiment definition file, the algorithm might exclude triplets that
contain the original model in one of the copy slots or triplets that contain
the same copy twice.

50

7.6.12 MCORatingExperimentScreen
This screen represents the Anchored scoring experiment method. Its imple-
mentation of the generateChoiceSet method generates model duplets using
a similar random generation algorithm as the screen above.

7.7 Worldspace UI implementation
Unlike applications displayed on a regular screen, virtual reality applications
cannot draw their user interface directly on top of the world in predefined
locations relative to the screen. An alternative solution is therefore required.
Usually and in the case of this application, this is handled by drawing the
user interface on objects existing in the virtual reality world (or in "world-
space"). Luckily, the Unity user interface system supports this approach.

Figure 7.3: User interface example

7.7.1 Dashboards
The primary user interface of the application is the dashboard, a panel
located directly in front and below the user that contains all information
required for the specific screen currently active. Each dashboard class has
a similarly named singleton game object that it is attached to. Only one
dashboard can be active at a given time and all screens are directly associated
with a specific kind of dashboard.

51

BaseDashboard This abstract class implements the common functionality
of all dashboards, which all inherit from it. It has the virtual meth-
ods open and close, which when overridden implement any additional
setup and removal code necessary by the inheriting dashboards. It also
implements the methods setTopText, which sets the text on the title
bar common to all dashboards, and the method setModelRotatorVis-
ibility, which enables or disables the model rotation panel described
further on.

Simple inheriting dashboards The dashboards SimpleDashboard, Com-
mandlineDashboard, PersonalInfoDashboard, PlaybackDashboad im-
plement the relatively simple functionality required by their associ-
ated screens, ranging from simple comfirmation buttons to a slider
controlling the current position in a recording.

EditorDashboard More complicated than the other dashboard, this dash-
board offers three panels that provide experiment definition editing
functionality. The left panel offers buttons for saving, loading and cre-
ating experiment definition files. The central panel lists the screens in
the currently loaded experiment definition file and allows for selecting
specific screens to edit, as well as buttons that allow removal of indi-
vidual screens. The right panel contains a list of screens, each with
a corresponding button that adds a new screen of that type to the
experiment definition being edited after the currently selected screen.

A fourth, context sensitive panel is displayed for selective screens, al-
lowing for editing their screen-specific variables. For example, for a
binary forced choice experiment screen, this panel displays a slider
that determines the number of the tasks in the experiment, whenever
the experiment allows for trick questions and if the tasks can contain
the original model as one of the comparison options, followed by a
listing of models used for the experiment and buttons that allow the
addition of new ones using a file browser panel.

CommonExperimentDashboard Implements the common functionality
between the two experiment-related dashboards, which is: displaying
the progress of the task and a spinning loading icon when preloading
is still in progress for the currently active model set.

MCOComparisonExperimentDashboard Has two buttons, one for the
left model and one for the right model, and some clarification text.

52

MCORatingExperimentDashboard Has a rating slide with one button
per number on the scale defined in the experiment definition file.

7.7.2 Model manipulation panel
The model manipulation is only displayed for screens that have models to
manipulate. It has four sliders, one for each dimensional axis and one for
scaling the model.

7.7.3 Configuration UI
Under the dashboard a configuration checkmark can be found. When en-
abled, a separate user interface opens to the right of the dashboard allowing
configuration of the dashboards scale, position, and height. It is separate
from the dashboard since in order to provide useful feedback, the changes
are applied immediately, which would result in a feedback loop if it were
attached to the dashboard.

7.8 Model display objects
In order to render the model meshes in worldspace, they must be attached
to a gameObject with the MeshFilter and MeshRenderer components. In
order to simplify their removal and (in case of meshes split into submeshes)
generation, these components are actually attached to objects generated
on demand that are then anchored to a parent object. These anchor ob-
jects always exist in the world and also contain the supporting components
necessary to enable manipulating them. Primary amongst these is the Gri-
pRotatableModel component, which handles motion controller interaction
and controls the rendering of interaction hints.

In order to eliminate differences in perception caused by different scales
and rotations, all models share the same scale, with their rotation also being
the same, only offset as to form a partial ring around the user’s starting
position.

Additional objects attached to the anchor object are a platform on the
ground that represents the objects location even when there is no object
displayed, a label that shows the loaded model file that is only displayed
during debugging, and crucially, an object specific light source. This light
source only affects the specific model that it is attached to (and is in fact
the only light source that model is affected by) in order to provide identical
lighting conditions for all the models.

53

Figure 7.4: Model object hierarchy

7.9 Experiment file format
During application runtime, the experiment is represented by C# objects.
The application is capable of both exporting and importing an experiment
definition to XML files using C#’s System.Xml.Serialization namespace.
The XML format is derived directly from its equivalent C# classes.

The XML file defines the experiment’s parameters along with various
utility data and all the screens contained withing the experiment. Figure
7.5 is a minimalistic example file. A file that contains all supported options
and screens can be found in Attachment A.

7.9.1 Model file paths
In order to save model paths in at least partially environment-independent
manner, they are stored as a class that inherits from the abstract class
BaseMCODatapathReference (which class is used depends on what kind of
path is being stored: a path to the original model, a path to one of its
copies, or a path to a directory containing multiple model files) instead of a
raw string. When an instance of this class is created from a raw string file
path, it attempts to first generalize this path to a relative one.

54

<?xml version ="1.0" encoding ="utf -8"?>
<Experiment >

<Screens >
<TutorialScreen />
<PersonalInfoScreen />
<ComparingExperimentScreen >

<TaskCount >40 </ TaskCount >
<Randomize >true </ Randomize >
<IncludeOriginal >false </ IncludeOriginal >
<AllowTrickQuestions >true </ AllowTrickQuestions >
<Models >

<ModelGroup >
<Paths >

<Directory > ExpData /bunny </ Directory >
<OriginalModel >
ExpData /bunny/ original .dat
</ OriginalModel >

</Paths >
</ModelGroup >

</Models >
</ ComparingExperimentScreen >
<CustomScreen >

<Title >Thank you!</Title >
<Text >You are done! Click to send results .</Text >

</CustomScreen >
</Screens >
<Language >En </ Language >
<ReportEmail > targetmail@fictional .com </ ReportEmail >

</Experiment >

Figure 7.5: Example experiment definition file

7.9.2 Experiment log
The format used by the experiment logs is very simple, with one entry per
line.

Personal data choice Chosen ["male"|"female"]

Binary forced choice Rating [better model name] > [worse model name]

55

Anchored scoring rating Rating for [rated model name] is [rating value]

7.9.3 User movement recording
In order to record the experiment, the singleton Recorder takes a snapshot
of the world state every fixed frame, specifically the position and orientation
of the model display objects and the user’s headset and controllers, as well as
the models currently displayed by the model display objects. It also keeps a
Dictionary of model files used. It stores the position and rotation data into a
RecorderFrame struct which is then compressed and written to a temporary
file. The format of this struct is as thus:

Positions and rotations are encoded into 48 bits (16 bits per coordinate).

• magic constant string "|F|"

• Headset position/rotation

• Left controller position/rotation

• Right controller position/rotation

• Model shared scale encoded as a single byte

• Model shared rotation

• Five bytes encoding the currently active models

Once the experiment is finished a new file is created at the location
specified in the experiment definition file. The models used are written into
this file first, followed by a copy of the temporary recording file, which is then
deleted. Finally, the recording file is compressed along with the experiment
log.

7.9.4 Result e-mail
To simplify data gathering and aid in development, the application sup-
ports sending experiment results using e-mail using the System.Net.Mail
namespace. The application only attempts this if the experiment definition
file contains a target e-mail address. As this requires a SMTP mail host,
there are also fields in the experiment definition file for all necessary inform-
ation: the host’s address, port, e-mail account login and password. If these
fields are omitted, the application defaults to a public G-mail account with
a known password.

56

While this is an unsafe and poorly scaling solution, it is sufficient for
development and small-scale purposes. In case it is necessary, the code is
easily replaceable.

7.10 Abandoned features
The application also contains two features that, while functional, have been
abandoned in favor of alternate solutions during development.

7.10.1 Editor
The application is capable of presenting an almost completely featured ex-
periment definition editor. The only feature missing is the ability to enter
text. While the editor was perfectly usable, ultimately it proved to be a
slower and more difficult way of creating experiment definitions than simply
editing them directly with a text editor. The editor is however still available
and functional.

Figure 7.6: Experiment editor

7.10.2 Prop system
As a subsystem of the screen system, the application at one point suppor-
ted arbitrarily-positioned screen-specific props. Four kinds of props were
supported:

ImageProp This prop would have displayed the specified image.

57

TextProp This prop would have displayed the specified text.

ModelProp This prop would have displayed the specified model.

ButtonProp This prop would have enabled the user to select an arbitrarily-
defined option that would then be logged to the result file.

In order to manipulate the props in the editor, they were suspended over a
platform (which was hidden at runtime) that, when rightclicked on, displayed
various manipulation handles.

While the prop system remains functional, there is no longer any way to
add one short of manually entering the data into the experiment definition
file directly. While this is possible, the definition is somewhat cumbersome
and it is difficult to properly position the props without a reference point.

58

8 Pilot study

In order to validate the functionality of the application as well as to improve
its usability, a pilot study was performed. A pilot study can be defined as
a small-scale preliminary study conducted to determine possible issues and
improvements before conducting a full-scale study. The advantage of a pilot
study is that it can be conducted without significant investment of time and
resources, with the results being used to improve the project before further
use.

8.1 Study conduct
The study was performed on West Bohemia University premises on the 6th
of April, 2017. There were three participants. Interaction with the test
subjects related to the application was kept to a minimum in order to gather
authentic data.

8.2 Form
The form for the study was created using Google Forms. It contained the
following questions:

Performance - Frame drops Rated from 1 (best) to 5 (worst).

Performance - Model loading time Rated from 1 (best) to 5 (worst).

Performance - Overall framerate Rated from 1 (best) to 5 (worst).

Tutorial - Quality Rated from 1 (too short) to 5 (too long), with 3 being
just right.

Tutorial - Topic coverage Rated from 1 (best) to 5 (worst).

Tutorial - Topic suggestion Text entry.

Model manipulation - Quality Rated from 1 (best) to 5 (worst).

Model manipulation - Method Rated from 1 (best) to 5 (worst).

Model manipulation - Suggestions Text entry.

59

User interface - Readability Rated from 1 (best) to 5 (worst).

User interface - Informativeness Rated from 1 (best) to 5 (worst).

Experiment - Attention span Rated from 1 (best) to 5 (worst).

Experiment - Nausea Rated from 1 (best) to 5 (worst).

Experiment - Clarity Rated from 1 (best) to 5 (worst).

Other suggestions Text entry.

8.3 Results
Results were as follows:

Question 1 2 3 4 5
1 2 1 0 0 0
2 3 0 0 0 0
3 1 2 0 0 0
4 0 2 1 0 0
5 2 1 0 0 0
7 0 2 1 0 0
8 1 2 0 0 0
10 2 1 0 0 0
11 2 1 0 0 0
12 1 1 1 0 0
13 2 1 0 0 0
14 2 1 0 0 0

Table 8.1: Pilot study results.

8.3.1 Changes enacted
The following changes were enacted based on the pilot study results as well
as observations made during it:

Manipulation panel enlargement It was suggested by one of the par-
ticipants to increase the size of the model manipulation panel. The
panel was resized, with a corresponding increase of precision in model
manipulation.

60

Tutorial clarification A slight issue with the tutorial was observed during
the study. The last step that clarifies the experiment purpose was
improved to further differentiate between the presented models and to
highlight the correct choice.

Figure 8.1: Clarified tutorial section

Manipulation code improvements Slight improvements were made to
the grip model rotation code to fix some observed issues.

Grammar fixes A few grammar errors in the tutorial were corrected.

61

9 Application usage

This section describes user usage of the application.

9.1 Launch options
In order to facilitate user friendliness, the application can be launched in
several ways by drag-n-dropping different filetypes onto it:

No file Launching the application directly will start the application using
the experiment found in the file default.xml in the application’s root
directory.

.xml file Launching the application with a valid experiment definition file
will run that experiment

.dat or .obj file A short experiment definition is generated and run, con-
taining a commandline arguments screen and a model display screen
keyed to the model supplied.

.rec file A short experiment definition is generated and run, containing a
recording playback screen keyed to the recording supplied.

In order to ease debugging, the application saves a copy of any experiment it
runs into the file latestRun.xml in the application’s root folder upon launch.
This copy will also contain empty XML tags for any option that was miss-
ing in the original file, since it is generated via serialization of the runtime
experiment object as opposed to directly copying the input file.

9.2 Typical experiment example
The following text examines the typical user experience in detail.

9.2.1 Tutorial
First, the application runs each user through a short tutorial:

UI interaction This screen explains how to interact with the user interface,
using either the motion controls or mouse pointer system depending on
used virtual reality device. This section comes first primarily because it
is necessary to proceed through the rest of the tutorial and experiment.

62

Manipulation - Rotation This section of the tutorial explains how to ro-
tate displayed models, presenting both the control panel option and
the motion controller grab option (or only the control panel if motion
controllers are unavailable). For this section, the scaling controls of
the manipulation panel are disabled.

Manipulation - Scaling This section explains how to change the size of
the model using the control panel. For this section, the rotation con-
trols of the manipulation panel are disabled.

Explanation of experiment goal Finally, the goal of the experiment is
explained using example models in order to increase clarity.

9.2.2 Personal data collection
At this point, personal information about the user is collected. In the in-
terest of simplicity and anonymity, this is limited to the minimal amount of
information required: the subject’s sex. This choice is made using a simple
two-option panel.

9.2.3 Additional explanations
Any other supplemental information may be presented here using a collec-
tion of custom screens, such as expanded details on the experiment, model
examples or listings. Usually the user will simply click a confirmation button
in each of these screens.

9.2.4 Experiment
The experiment is run. The user is presented with randomized model triplets
of a preset count and chooses between them (in the case of a binary forced
choice experiment) or randomized model duplets of a preset count and rates
their similarity on a predefined scale (in the case of an anchored scoring
experiment). The user makes a choice using either the two-button panel or
rating slide presented to them.

9.2.5 Finalization
After the last triplet or duplet, the user is thanked for his contribution. The
application then saves the resulting experiment log and recording and closes.
If a target email was specified in the experiment definition file, the applic-
ation also copies the resulting files into a compressed archive and emails

63

it along with a timestamp of the experiment. If the attempt to send the
email fails (for example because the computer’s internet connection drops
or because the email account data entered was incorrect), the application
will crash after a timeout period. The experiment will however finalize prop-
erly and the compressed experiment package can still be found in the game
directory and sent by other means.

64

10 Conclusion

The application performs well without any issues, significant or otherwise,
with all required functionality implemented along with most of the op-
tional functionality. The user interface, while not perfect, is comfortably
usable with no immediately obvious improvements presenting themselves.
Performance-wise, on all tested machines (which measured from state-of-
the-art to barely meeting the standard virtual reality-capable device require-
ments) the application maintains a steady framerate with only occasional
dips caused by model loading (which themselves only occur when the user
rushes through multiple model sets in rapid succession).

Only a small number of non-developer testing was performed, so the
possibility of missed bugs still exists. However, confidence remains high
that any crippling issues have been eradicated. Any remaining issues should
be of an annoying nature at worst.

An interesting facet of development was the rapidly changing nature of
the field. During the two years invested into the work, several new vir-
tual reality platforms were made available, and the software API layer was
changed several times as a result, both from the developer side and from
the hardware vendor side. Even Unity has changed its own virtual reality
integration from an external plugin, to an official plugin, to a integrated part
of the engine itself.

10.1 Future work
Some further iteration on the user interface system might prove beneficial.
While the current system performs fine, there have been some voiced com-
plaints regarding the initially unintuitive results of grabbing the models.

An undocumented but nonetheless present feature of the original MeshT-
est software was the ability to move the light source. A similar implementa-
tion would be trivial once the application would no longer require to maintain
parity with the official feature set of MeshTest.

At present, the application supports two types of experiment. Other
types could be implemented in order to broaden the possible experiments
that could be run using the software.

Dynamic mesh support could be implemented in order to facilitate dy-
namic mesh algorithm data collection. This would probably require the
addition of an animation control user interface, possibly containing a play

65

button and a slider similar to the recording playback screen. Given the
amount of raw data contained in a polygonal-mesh defined animation, a
more robust loading system might also be necessary.

66

Bibliography

Abrash, Michael (2014). What VR Could, Should, and Almost Certainly
Will Be within Two Years - Steam Dev Days 2014. url: http : / /
media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%
202014.pdf (visited on 10/05/2017).

Bian, Zhe, Shi-Min Hu and Ralph R Martin (2009). “Evaluation for small
visual difference between conforming meshes on strain field”. In: Journal
of Computer Science and Technology 24.1, pp. 65–75.

Bolin, Mark R and Gary W Meyer (1998). “A perceptually based adaptive
sampling algorithm”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. ACM, pp. 299–309.

Cignoni, Paolo, Claudio Montani and Roberto Scopigno (1998). “A compar-
ison of mesh simplification algorithms”. In: Computers & Graphics 22.1,
pp. 37–54.

Daly, Scott J (1992). “Visible differences predictor: an algorithm for the
assessment of image fidelity”. In: SPIE/IS&T 1992 Symposium on Elec-
tronic Imaging: Science and Technology. International Society for Optics
and Photonics, pp. 2–15.

Dumont, Reynald, Fabio Pellacini and James A Ferwerda (2003). “Perceptually-
driven decision theory for interactive realistic rendering”. In: ACM Trans-
actions on Graphics (TOG) 22.2, pp. 152–181.

Ebrahimi, Touradj (2009). “Quality of multimedia experience: past, present
and future”. In:MM" 09: Proceedings of the seventeen ACM international
conference on Multimedia. MMSPL-CONF-2010-003. ACM, pp. 3–4.

Fairchild, Mark D (2013). Color appearance models. John Wiley & Sons.
Ferwerda, James A, Ganesh Ramanarayanan et al. (2008). “Visual equival-

ence: an object-based approach to image quality”. In: Color and Imaging
Conference. Vol. 2008. 1. Society for Imaging Science and Technology,
pp. 347–354.

Ferwerda, James A, Peter Shirley et al. (1997). “A model of visual masking
for computer graphics”. In: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co., pp. 143–152.

Haas, John (2014). “A History of the Unity Game Engine”. PhD thesis.
WORCESTER POLYTECHNIC INSTITUTE.

67

http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf

Hoffman, David M et al. (2008). “Vergence–accommodation conflicts hinder
visual performance and cause visual fatigue”. In: Journal of vision 8.3,
pp. 33–33.

Howlett, Sarah, John Hamill and Carol O’Sullivan (2004). “An experimental
approach to predicting saliency for simplified polygonal models”. In: Pro-
ceedings of the 1st Symposium on Applied Perception in Graphics and
Visualization. ACM, pp. 57–64.

Huang, F., K. Chen and G. Wetzstein (2015). “The Light Field Stereoscope:
Immersive Computer Graphics via Factored Near-Eye Light Field Dis-
plays with Focus Cues”. In: ACM Trans. Graph. (SIGGRAPH) 4 (34).

Karni, Zachi and Craig Gotsman (2000). “Spectral compression of mesh
geometry”. In: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley Pub-
lishing Co., pp. 279–286.

Kim, Sun-Jeong, Soo-Kyun Kim and Chang-Hun Kim (2002). “Discrete dif-
ferential error metric for surface simplification”. In: Computer Graphics
and Applications, 2002. Proceedings. 10th Pacific Conference on. IEEE,
pp. 276–283.

Křivánek, Jaroslav, James A Ferwerda and Kavita Bala (2010). “Effects of
global illumination approximations on material appearance”. In: ACM
Transactions on Graphics (TOG). Vol. 29. 4. ACM, p. 112.

Lanier, Jaron (1992). “Virtual reality: The promise of the future.” In: Inter-
active Learning International 8.4, pp. 275–79.

Larabi, Mohamed-chaker, Vincent Brodbeck and Christine Fernandez (2006).
“A novel approach for constructing an achromatic contrast sensitivity
function by matching”. In: Image Processing, 2006 IEEE International
Conference on. IEEE, pp. 441–444.

Lavoué, Guillaume (2011). “A multiscale metric for 3D mesh visual quality
assessment”. In: Computer Graphics Forum. Vol. 30. 5. Wiley Online
Library, pp. 1427–1437.

Lavoue, Guillaume, Florence Denis and Florent Dupont (2007). “Subdivision
surface watermarking”. In: Computers & Graphics 31.3, pp. 480–492.

Lee, Chang Ha, Amitabh Varshney and David W Jacobs (2005). “Mesh
saliency”. In: ACM transactions on graphics (TOG). Vol. 24. 3. ACM,
pp. 659–666.

Lee, Haeyoung, Pierre Alliez and Mathieu Desbrun (2002). “Angle-Analyzer:
A Triangle-Quad Mesh Codec”. In: Computer Graphics Forum. Vol. 21.
3. Wiley Online Library, pp. 383–392.

68

Lubin, Jeffrey (1995). “A visual discrimination model for imaging system
design and evaluation”. In: Vision models for target detection and recog-
nition 2, pp. 245–357.

Luebke, David P (2001). “A developer’s survey of polygonal simplification
algorithms”. In: IEEE Computer Graphics and Applications 21.3, pp. 24–
35.

Luebke, David and Benjamin Hallen (2001). “Perceptually driven simplifica-
tion for interactive rendering”. In: Rendering Techniques 2001. Springer,
pp. 223–234.

Mannos, James and David Sakrison (1974). “The effects of a visual fidelity
criterion of the encoding of images”. In: IEEE transactions on Informa-
tion Theory 20.4, pp. 525–536.

Movshon, J Anthony and Lynne Kiorpes (1988). “Analysis of the develop-
ment of spatial contrast sensitivity in monkey and human infants”. In:
JOSA A 5.12, pp. 2166–2172.

Myszkowski, Karol (1998). “The visible differences predictor: Applications
to global illumination problems”. In: Rendering Techniques’ 98. Springer,
pp. 223–236.

Pappas, Thrasyvoulos N, Robert J Safranek and Junqing Chen (2000). “Per-
ceptual criteria for image quality evaluation”. In: Handbook of image and
video processing, pp. 669–684.

Peng, Jingliang, Chang-Su Kim and C-C Jay Kuo (2005). “Technologies for
3D mesh compression: A survey”. In: Journal of Visual Communication
and Image Representation 16.6, pp. 688–733.

Qu, Lijun and Gary W Meyer (2008). “Perceptually guided polygon reduc-
tion”. In: IEEE Transactions on Visualization and Computer Graphics
14.5, pp. 1015–1029.

Ramasubramanian, Mahesh, Sumanta N Pattanaik and Donald P Green-
berg (1999). “A perceptually based physical error metric for realistic
image synthesis”. In: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., pp. 73–82.

Reddy, Martin (1997). “Perceptually modulated level of detail for virtual
environments”. In:

Rogowitz, Bernice E and Holly E Rushmeier (2001). “Are image quality met-
rics adequate to evaluate the quality of geometric objects?” In: Photon-
ics West 2001-Electronic Imaging. International Society for Optics and
Photonics, pp. 340–348.

69

Sorkine, Olga, Daniel Cohen-Or and Sivan Toledo (2003). “High-Pass Quant-
ization for Mesh Encoding.” In: Symposium on Geometry Processing.
Vol. 42.

Váša, Libor and Jan Rus (2012). “Dihedral angle mesh error: a fast percep-
tion correlated distortion measure for fixed connectivity triangle meshes”.
In: Computer Graphics Forum. Vol. 31. 5. Wiley Online Library, pp. 1715–
1724.

Wang, Zhou et al. (2004). “Image quality assessment: from error visibility to
structural similarity”. In: IEEE transactions on image processing 13.4,
pp. 600–612.

Williams, Nathaniel et al. (2003). “Perceptually guided simplification of lit,
textured meshes”. In: Proceedings of the 2003 symposium on Interactive
3D graphics. ACM, pp. 113–121.

70

	Introduction
	Background
	Distortion sources
	Mesh simplification
	Mesh compression

	Human perception
	Perception-oriented metrics
	Static mesh metrics
	Dynamic mesh metrics

	Dihedral angle mesh error metric
	Subjective test validation
	Subjective tests
	DAME subjective test

	MeshTest
	MeshTest usage

	Virtual reality
	History
	Current state
	Advantages
	Issues
	Health effects
	Uses

	Project goal
	Project design requirements
	Binary forced choice
	Anchored scoring

	Application use cases
	Typical usage (experimenter)
	Typical usage (test subject)
	Conclusion
	Result logging

	Application design
	Hardware platform
	Technical specifications

	Engine
	Unity

	File storage
	Interactivity
	Experiment file format
	Log file format
	Recording file format

	Implementation details
	Singletons
	GlobalStateHolder
	User input system iterations
	Keyboard/mouse button iteration
	Gaze input iteration
	Worldspace cursor iteration
	Position tracked controllers iteration
	Final solution

	Model data
	wavefront .obj format
	application-specific .dat format
	Model loaders
	Postprocessing

	Screen system
	Individual screen implementations
	BaseMCOScreen
	MCOCommandlineScreen
	MCOCustomScreen
	MCODummyStartScreen
	MCOModelDisplayScreen
	MCOPersonalInfoScreen
	MCORecordingPlaybackScreen
	MCOTutorialScreen
	MCOCustomScreenEditorScreen
	BaseExperimentScreen
	MCOComparingExperimentScreen
	MCORatingExperimentScreen

	Worldspace UI implementation
	Dashboards
	Model manipulation panel
	Configuration UI

	Model display objects
	Experiment file format
	Model file paths
	Experiment log
	User movement recording
	Result e-mail

	Abandoned features
	Editor
	Prop system

	Pilot study
	Study conduct
	Form
	Results
	Changes enacted

	Application usage
	Launch options
	Typical experiment example
	Tutorial
	Personal data collection
	Additional explanations
	Experiment
	Finalization

	Conclusion
	Future work

