ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program: Studijní zaměření: B 2301 Strojní inženýrství Materiálové inženýrství a strojírenská metalurgie

BAKALÁŘSKÁ PRÁCE

Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů

Autor: Daniel MELZER

Vedoucí práce: Doc. Ing. Ján Džugan, Ph.D.

Akademický rok 2016/2017

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta strojní Akademický rok: 2016/2017

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Daniel MELZER
Osobní číslo:	S16B0314P
Studijní program:	B2301 Strojní inženýrství
Studijní obor:	Materiálové inženýrství a strojírenská metalurgie
Název tématu:	Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů
Zadávající katedra:	Katedra materiálu a strojírenské metalurgie

Zásady pro vypracování:

Osnova bakalářské práce:

- 1. Úvod do problematiky, klasické měření mechanických vlastností
- 2. Metody využívající miniaturní zkušební vzorky
- 3. Měření lomového chování na miniaturních vzorcích
- 4. Provedení zkoušek experimentální výsledky (Vliv velikost zkušebních těles na výsledky lomové houževnatosti)
- 5. Vyhodnocení výsledků, porovnání výsledků klasických a netradičních zkoušek
- 6. Diskuze výsledků

7. Závěr

Rozsah grafických prací: fotodokumentace, obrázky

Rozsah kvalifikační práce: 30 - 40 stran

Forma zpracování bakalářské práce: tištěná/elektronická

Seznam odborné literatury:

Mikhail A. Sokolov,Lucon, E. Small Specimen Test Techniques 6th Volume, STP 1576, Eds., pp. 12-29, doi:10.1520/STP157620140022, ASTM International, West Conshohocken, PA 2014.

Sborník ASME 2015 pressure vessels and piping konference, skecve: Fracture and Mechanical Property Predictions by Sub-sized Specimens for Standards

Skálová, J., Kovařík, R., Benedikt, V. Základní zkoušky kovových materiálů ZČU Plzeň

ČESKÁ TECHNICKÁ NORMA ČSN ISO 148-1, Zkouška rázem v ohybu metodou Charpy

ČESKÁ TECHNICKÁ NORMA ČSN EN ISO 14556 - Zkouška rázem v ohybu na kyvadlovém kladivu tyčí Charpy s V-vrubem - Instrumentovaná zkušební metoda

Vedoucí bakalářské práce:

Konzultant bakalářské práce:

Doc. Ing. Jan Džugan, Ph.D. COMTES FHT, a. s. Ing. Pavel Konopík, Ph.D. COMTES FHT

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: 19. září 2016 2. června 2017

Doc. Ing. Milan Edl, Ph.D. děkan

V Plzni dne 19. září 2016

Prof. Dr. Ing. Antonín Kříž vedoucí katedry

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě bakalářskou/diplomovou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto bakalářskou/diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů, uvedených v seznamu, který je součástí této bakalářské/diplomové práce.

V Plzni dne:

podpis autora

Poděkování

Tímto bych rád poděkoval vedoucímu mé práce Doc. Ing. Jánovi Džuganovi, Ph.D. a konzultantovi Ing. Pavlovi Konopíkovi, Ph.D za odborné vedení a pomoc při řešení experimentální části práce. Firmě COMTES FHT a.s. za poskytnutí technického zázemí pro uskutečnění experimentální části této práce a všem jejím pracovníkům, kteří mi ochotně a trpělivě pomáhali.

ANOTAČNÍ LIST BAKALÁŘSKÉ PRÁCE

AUTOR	Příjmení Melzer		Jméno Daniel		
STUDIJNÍ OBOR	B 2301 – Strojní inženýrství				
VEDOUCÍ PRÁCE	Příjmení (včetně titul Doc. Ing. Džugan,	ů) Ph.D.	Jméno Ján		
PRACOVIŠTĚ		ZČU - FST	- KMM		
DRUH PRÁCE	DIPLOMOVÁ	BAKA	LÁŘSKÁ	Nehodící se škrtněte	
NÁZEV PRÁCE	Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů				

FAKULTA	strojní	KATEDRA	KMM	ROK ODEVZD.	2017

POČET STRAN (A4 a ekvivalentů A4)

CELKEM	75		TEXTOVÁ ČÁST	43		GRAFICKÁ ČÁST	32	
--------	----	--	--------------	----	--	------------------	----	--

STRUČNÝ POPIS (MAX 10 ŘÁDEK) ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Bakalářská práce se zabývá problematikou mechanických zkoušek kovových materiálů, za použití miniaturizovaných zkušebních těles. V práci jsou porovnány výsledky ze zkoušek tahem, vrubové houževnatosti a lomové houževnatosti provedených na standardních a miniaturizovaných zkušebních tělesech. Zkoušky lomové houževnatosti byly provedeny na tělesech typu 1T-CT, PCC a PKLST s cílem vzájemného porovnání stanovených referenčních teplot a J-R křivek lomové houževnatosti pro jednotlivá tělesa.
KLÍČOVÁ SLOVA ZPRAVIDLA JEDNOSLOVNÉ POJMY, KTERÉ VYSTIHUJÍ PODSTATU PRÁCE	M-TT, vrubová houževnatost, lomová houževnatost, miniaturní vzorky, referenční teplota, Master křivka, J-R křivka

SUMMARY OF BACHELOR SHEET

AUTHOR	Surname Melzer			Name Daniel
FIELD OF STUDY	B 2301 – Mechanical Engineering			
SUPERVISOR	Surname (Inclusive of Degrees)NameDoc. Ing. Džugan, Ph.D.Ján			Name Ján
INSTITUTION	ZČU - FST - KMM			
TYPE OF WORK	DIPLOMA	BAC	Delete when not applicable	
TITLE OF THE WORK	Evaluation of fracture behaviour of steels on miniaturized specimens			

FACULTY	Mechanical Engineering	DEPARTMENT	КММ	SUBMITTED IN	2017
---------	---------------------------	------------	-----	-----------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY 75	TEXT PART	43	GRAPHICAL PART	32	
------------	-----------	----	-------------------	----	--

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	This thesis is focused on mechanical testing of metallic materials using miniaturized specimens. There are compared results obtained from tensile tests, impact tests and fracture toughness tests carried out on the standard and miniaturized specimens. Fracture toughness tests were performed on the 1T- CT, PCC and PKLST type of specimens for determining and comparing reference temperatures and J-R curves obtained from samples of different size.
KEY WORDS	M-TT, impact test, fracture toughness, miniaturized specimen, reference temperature, Master curve, J-R curve

Obsah

1	Úvod.		9
2	Klasic	cé měření mechanických vlastností	10
	2.1 Sta	ntická zkouška tahem	10
	2.2 Zk	ouška rázem v ohybu metodou Charpy	12
	2.2.1	Podstata zkoušky	12
	2.2.2	Teorie přechodové teploty	13
	2.2.3	Instrumentovaná zkušební metoda	15
	2.3 Zk	oušky lomové houževnatosti	16
	2.3.1	Rozdělení lomové mechaniky	16
	2.3.2	Energetická analýza	16
	2.3.3	Hnací síla trhliny	17
	2.3.4	Faktor intenzity napětí (LELM)	17
	2.3.5	Metoda křivkového J-integrálu (EPLM)	
	2.3.6	Zkoušky standardních CT těles	19
	2.3.7	Stanovení hodnoty lomové houževnatosti K _{IC}	20
	2.3.8	Stanovení hodnoty lomové houževnatosti J _{Ic} (J-R křivka)	21
	2.3.9	Master křivka lomové houževnatosti	24
3	Metod	y využívající miniaturní zkušební vzorky	26
	3.1 M	cro-Tensile Test (M-TT)	26
	3.2 M	niaturized Charpy Test	
4	Měřen	í lomového chování na miniaturních vzorcích	
	4.1 Ch	arpy tělesa (PPC, PKLST)	
5	Úvod o	lo experimentální části	32
6	Experi	mentální materiál	32
	6.1 GO	DST 15Ch2NMFA (mat_1)	32
	6.2 EN	X5CrNi18-10 (mat_2)	
7	Zkoušl	xy tahem	34
	7.1 Ta	hové zkoušky standardních vzorků	34
	7.1.1	Vyhodnocení standardních zkoušek tahem	35
	7.2 Ta	hové zkoušky miniaturních vzorků – M-TT	36
	7.2.1	Vyhodnocení zkoušek M-TT	36
	3.3. Poro	vnání výsledků tahových zkoušek	
8	Zkoušl	ky vrubové houževnatosti	40
	8.1 Pr	ovedení zkoušek	40
	8.2 Vy	hodnocení zkoušek standardních zkušebních těles	41
	8.3 Vy	hodnocení zkoušek miniaturních zkušebních těles	46
	8.4 Po	rovnání výsledků standardních a miniaturních rázových těles	51
9	Zkoušl	ky lomové houževnatosti	53
	9.1 Pr	ovedení zkoušek standardních 1T-CT těles	53
	9.1.1	Výsledky zkoušek 1T-CT těles	54

9.	.2 Pi	covedení zkoušek lomové houževnatosti na Charpy těles (PCC, PKLST)	.57
	9.2.1	Výsledky zkoušek PCC těles	58
	9.2.2	Výsledky zkoušek PKLST těles	.61
9	.3 O	dhad referenční teploty T ₀	.64
10	Maste	r křivka lomové houževnatosti (mat_1)	65
11	Porov	nání J-R křivek lomové houževnatosti (mat_2)	.68
12	Vyhoo	dnocení experimentálního programu	69
13	Závěr		72
14	Sezna	m použité literatury	74

1 Úvod

Materiálové zkušebnictví je v současnosti, nejen v technickém odvětví, důležitým oborem, který je významný jak pro vyhodnocení základních vlastností materiálů, tak především pro stanovení zbytkové životnosti zařízeních, u jejichž pracovních částí dochází během provozu k degradaci mechanických vlastností a délka doby jejich činnosti dosahuje plánované životnosti. Zkušební metody užívané pro vyhodnocení zbytkové životnosti zařízení jsou standardní mechanické zkoušky jako je zkouška tahem, zkouška vrubové houževnatosti dle Charpyho a zkoušky lomové houževnatosti na kompaktních tělesech CT. Jsou-li vlastnosti provozní součásti degradovány vlivem provozu, projeví se to změnou lomového chování a tedy změnou získaných křivkových průběhů zkoušek a naměřených hodnot oproti získaným výsledkům téhož materiálu za nedegradovaného stavu.

Aby bylo možné konkrétní materiál podrobit zkoušce a získat potřebné hodnoty, je nutné z něj napřed vytvořit zkušební těleso, které je namáháno a ve většině případů destruováno. To znamená, že způsob jakým se materiál během zkoušky bude chovat a jaké naměříme hodnoty, do určité míry závisí právě na rozměrech a tvaru zkušebního tělesa. Z hlediska provozního zařízení není vždy možné odebírat takové množství zkušebního materiálu, které by bylo dostačující pro tvorbu zkušebních vzorků standardních rozměrů. Na základě tohoto omezení došlo k navržení zkušebních metod, které využívají miniaturizovaných zkušebních těles tzv. semi-destruktivních metod. Použití miniaturních těles do určité míry odstranilo negativa, která vznikala při odběrech materiálů pro standardní vzorky. Jelikož odběrem materiálu pro tvorbu miniaturních vzorků nedochází k velkému zásahu do konstrukce součásti a po drobné úpravě odběrového místa je zařízení schopné pokračovat v provozu. Nicméně aby bylo možné data získané zkouškou použít k posouzení materiálových vlastností, je nutné zajistit reprodukovatelnost těchto zkoušek. Změnou rozměrů používaných vzorků totiž dochází ke změně zkušebních podmínek, které byly stanovené pro standardní vzorky. To má za následek nerovnost získaných výsledků, plynoucí z rozdílné odezvy vzorků na zatížení, kdy během zatížení miniaturního vzorku vzniká v jeho průřezu rozdílné napěťové pole oproti standardnímu vzorku. Z těchto důvodů se provádějí analýzy, jejichž cílem je posoudit změny v chování zkušebních těles, spojené s rozdílností rozměrů vzorků a stanovení korelací pro převod hodnot získaných zkouškami miniaturních vzorků.

Tato práce se zabývá vyhodnocováním lomového chování na vzorcích malých rozměrů a posouzením vlivu velikosti tělesa při vyhodnocování lomového chování konstrukčních ocelí s použitím lomové mechaniky a její koncepce tranzitních teplot, která pojednává o chování materiálu v tranzitní oblasti a koncepce zabránění iniciace lomu. Součástí práce je tedy uvedení teoretických poznatků z mechanických zkoušek standardních a miniaturních vzorků, a také uskutečnění experimentální části, cílené především na zkoušky tahem standardních a miniaturních těles, zkoušky vrubové houževnatosti a zkoušky lomové houževnatosti, její závislosti na teplotě a odchylek vznikajících při použití miniaturních těles.

2 Klasické měření mechanických vlastností

Zkoušení mechanických vlastností materiálů je dnes již součástí samotného procesu výroby od jejího prvopočátku až po výstupní kontrolu jakosti výrobku. Již v prvovýrobě jsou materiálům dány vlastnosti výrobními podmínkami a ty dále měněny na základě technologického postupu výroby.

Mechanické vlastnosti vyjadřují odezvy materiálu na působení vnějšího zatížení. Mají význam pro pevnostní výpočty zařízení a součástí (např. meze pevnosti, meze kluzu atd.). Hodnoty získané z měření mají rozhodující význam pro posouzení vhodnosti materiálu z hlediska jeho použití konstruktérem a pro technologa a metalurga z hlediska návrhu technologického postupu výroby.

Dnes se pro měření mechanických vlastností užívá normovaných zkoušek, které udávají postupy potřebné pro získání požadovaných výsledků a docílení jejich opakovatelnosti. Výsledkem měření jsou hodnoty, případně datový záznam průběhu. Tyto výsledky slouží k posouzení charakteru materiálu a stanovení např. tranzitní teploty, aktuálního stavu zařízení pro posouzení zbytkové životnosti, či pevnostních charakteristik pro návrh konstrukcí.

2.1 Statická zkouška tahem

Tato zkouška je jedna z nejzákladnějších a nejdůležitějších mechanických zkoušek. S její pomocí se zjišťují základní materiálové napěťové a deformační charakteristiky materiálů. Tyto charakteristiky jsou potřebné pro dimenzování navrhovaných součástí a samotný konstrukční návrh výrobků. Její správná aplikace a zkušební podmínky jsou udány normou ČSN EN 6892-1[1]. Tato zkouška se řadí mezi zkoušky destruktivní. Zkušební vzorky jsou vyrobeny obráběním nebo odlitím konkrétního materiálu na normou stanovené vzorky daných rozměrů. Příklady zkušebních tyčí jsou na **obr. 1**.

Obr. 1 – Vzorek rotačního tvaru (nahoře), plochý vzorek (dole)

Vlastní podstata zkoušky tedy spočívá v upnutí zkušebních tyčí do čelistí zkušebního stroje a následného plynule rostoucího tahové zatěžování do okamžiku porušení zkušební tyče. Pokud se působící síla *F* vztáhne na jednotku plochy, mluví se o tzv. napětí, viz vztah (1). Toto napětí působí po ose vzorku kolmo na jeho průřez, nazývá se tedy napětí normálové σ .

Západočeská univerzita v Plzni, Fakulta strojní,Bakalářská práce, akad. Rok 2016/2017Vyhodnocování lomového chování ocelí na vzorcích malých rozměrůMelzer Daniel

$$\sigma = \frac{F}{S_0} \left[MPa \right] \tag{1}$$

Na zkušebním vzorku je vyznačena počáteční měřená délka tyče l_0 , která závisí na průřezu a délce zkušební tyče. V případě tyčí kruhového průřezu je pro dlouhé vzorky $l_0 = 10d_0$ a pro krátké $l_0 = 5d_0$. Pro jiné průřezy se uvádí $l_0 = 11, 3\sqrt{S_0}$ pro tyče dlouhé a $l_0 = 5,65\sqrt{S_0}$ pro krátké. V důsledku působící síly dochází během zkoušky k prodloužení délky l_0 na konečnou délku l_U . Z těchto hodnot se poté určí hodnota absolutního prodloužení Δl dle vztahu (2).

$$\Delta l = l_U - l_0 \ [mm] \tag{2}$$

Případně se může tato délková změna vyjádřit jako poměrné prodloužení ε.

$$\varepsilon = \frac{\Delta l}{l_0} \left[- \right] \tag{3}$$

Z poměrného prodloužení je možné vypočítat tažnost materiálu A, která je vyjádřena jako poměrné prodloužení v procentech z původní měřené délky a udává tvárnost materiálu.

$$A = \frac{\Delta l}{l_0} .100 \, [\%] \tag{4}$$

Při značení tažnosti se využívá indexů, které značí druh použité tyče. Jestliže se jedná o poměrné tyče, jejichž délka l_0 je vztažená k počátečnímu průřezu a součiniteli proporcionality $k_p = 5.6$ (příp. 11.3), nemusí se index uvádět. Pokud je součinitel odlišný, je doporučeno jej vyznačit jako index. Pro nepoměrná zkušební tělesa se užívá indexu, který označuje hodnotu počáteční měřené délky v mm.

Tvárnost materiálu se určuje také ze změny průřezu materiálu před zkouškou a po zkoušce, která se nazývá kontrakce Z.

Obr. 2 – Průběh závislosti napětí na prodloužení vzorku z měkké uhlíkové oceli

Během celé zkoušky se zaznamenávají data o průběhu růstu zatěžovací síly a k ní odpovídající deformaci vzorku. Vzniklý diagram závislosti $F - \Delta l$ se nazývá pracovní diagram. Této závislosti odpovídá závislost veličin $\sigma - \varepsilon$ tvořící tzv. smluvní diagram, viz **obr. 2**.

2.2 Zkouška rázem v ohybu metodou Charpy

Tato destruktivní zkouška patří mezi základní metody vyhodnocování houževnatosti materiálů. Její určení je významné z hlediska bezpečnosti provozu konstrukcí. Vznik křehkého lomu je velmi rizikový, neboť se jedná o druh porušení materiálu, který vyžaduje nepatrnou energii, malou plastickou deformaci a šíří se velkou rychlostí. Faktory, které mají přímý vliv na vznik křehkého porušení, jsou nízká provozní teplota, rychlost zatěžování, tloušťka konstrukce, přítomnost vrubu nebo jiných vnějších či vnitřních vad. Výsledky zkoušky tedy stanovují odolnost materiálu proti místní (vrubové) koncentraci napětí a náchylnosti ke křehkému porušení. Zkouška je udávána normou ČSN ISO 148-1:2009 [2]. [3]

2.2.1 Podstata zkoušky

Obr. 3 – Schéma provedení zkoušky vrubové houževnatosti metodou Charpy [2]

Princip metody je zobrazen na **obr. 3**. Zkušební vzorek je uložen na podpěrách zkušebního stroje, který se skládá ze stojanu a kyvadlového kladiva. Toto kladivo je spuštěno ze své výchozí polohy a cílem je přeražení vzorku na dvě části a zjištění velikosti práce, která k tomu byla potřebná. Vzorek je opatřen vrubem, který funguje jako místní koncentrátor napětí pro vznik oblasti složité napjatosti. Pro možné porovnání výsledků musí být rozměry vzorků normovány, protože při pouhé geometrické podobnosti zkušebních tyčí rozdílných rozměrů dochází při rázu ke vzniku rozdílné napjatosti. Příklady rozměrů používaných vzorků a jejich vrubů jsou na **obr. 4**. Standardní délka zkušebního tělesa je 55 mm a je čtvercového průřezu o stranách 10 x 10 mm.

Zkušební tyč musí být obrobena na všech stranách bez povrchových vad a nerovností viditelných pouhým okem. Zjištěnou hodnotou zkoušky je spotřebovaná nárazová práce K na přeražení vzorku, která se značí podle typu vrubu KV případně KU. Vztáhneme li tuto práci na jednotku příčného průřezu vzorku, obdržíme tzv. vrubovou houževnatost KC dle vzorce (**6**):

$$KC = \frac{K}{s_0} [J. cm^{-2}].$$
 (6)

Vrubová houževnatost se označuje obdobně jako nárazová práce podle typu vrubu *KCV* nebo *KCU* v kombinaci s čísly, které označují největší energii kladiva, hloubku vrubu a šířku zkušebního tělesa (např. *KCU* 150/2/5 = 36 J/cm²).

Výsledky zkoušky jsou závislé na teplotě, při které jsou prováděny. Pokud je zkouška prováděna při teplotě jiné než je obvyklá teplota $20^{\circ} \pm 10^{\circ}$, uvede se konkrétní teplota jako horní index u označení (např. $KCV^{50^{\circ}}$).

Obr. 4 – Standardní vzorky pro zkoušku rázem v ohybu

Nejběžněji se při zkoušení vzorků standardních rozměrů využívá kladiv s maximální energií *300 J.* Rychlost kladiva je ve chvíli přeražení vzorku v rozmezí 4 až 7 $m.s^{-1}$. Charpyho kladivo má vybrání, do kterého je uložen kalený klín daného tvaru, tak aby ležel v těžnici kladiva. [4]

Vrubová houževnatost sama o sobě není materiálovou konstantou, ale její hodnota je funkcí mnoha faktorů. Především je ovlivněna samotnou strukturou materiálu, která je dána chemickým složením, tepelným zpracováním atd. Dalšími faktory je teplota, rychlost deformace, velikost vrubu, šířka zkušební tyče a orientace podélné osy tyče vůči směru tváření. V případě, že podélná osa je rovnoběžná se směrem vláken dosahuje hodnota KC nejvyšších hodnot. Pokud jde o vliv šířky zkušební tyče, vycházíme z **obr. 5**, kde je znázorněn průběh napětí ve zkušebním vzorku v okamžiku rázu. Na dně vrubu působí hlavní tahové napětí σ_1 podél osy vzorku. Ve směru příčném ke vzorku působí tahové napětí σ_2 a kolmo k těmto napětím působí tahové napětí σ_3 . Velikost napětí σ_1 je ovlivněna především hloubkou a ostrostí vrubu, zatímco napětí σ_2 je ovlivněno jeho délkou a tedy šířkou zkušební tyče. S rostoucí šířkou zkušební tyče se zvyšuje hodnota σ_2 a v malé míře roste i vrubová houževnatost. Po dosažení tzv. kritické šířky tyče, jejíž velikost závisí na druhu materiálu, dochází ke vzniku předčasného křehkého lomu vlivem překročení mezního příčného napětí σ_2 . [4]

Obr. 5 – Průběh napětí ve zkušební tyči [7]

2.2.2 Teorie přechodové teploty

Naměřené hodnoty vrubové houževnatosti jsou silně závislé na teplotě, při které se zkouška provádí. Tuto závislost vrubové houževnatosti na teplotě popisuje tzv. tranzitní křivka, nebo též Vidalova, zobrazena na **obr. 6**. Z jejího průběhu je patrné, že při klesající zkušební teplotě velikost nárazové práce potřebné k přeražení vzorku klesá. Pokles probíhá buďto prudce v určitém rozmezí teplot, nebo je pokles pozvolný.

Západočeská univerzita v Plzni, Fakulta strojní,	Bakalářská práce, akad. Rok 2016/2017
Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů	Melzer Daniel

Spodní průběh křivky je oblast spodních prahových hodnot I, kdy se materiál porušuje výhradně za vzniku křehkého lomu. S růstem zkušební teploty roste podíl houževnatého lomu a v oblasti III horních prahových hodnot se materiál porušuje výhradně za vzniku houževnatého lomu, čemuž odpovídají i vysoké hodnoty nárazové práce a tedy absorbované energie. Oblast II odpovídá lomu, který je charakteristický tím, že je tvořen z části křehkým a z části houževnatým lomem. Teplota, při které dochází k přechodu lomu houževnatého na křehký, je tzv. přechodová (tranzitní) teplota- T_p . [4]

Obr. 6 – Teplotní závislost vrubové houževnatosti

Vzhledem k materiálu a jeho provozním podmínkám se užívají různé definice tranzitní teploty a tedy i různých metod jejího vyhodnocení. V praxi se hojně používá metoda stanovení T_p , které odpovídá dohodnutá hodnota vrubové houževnatosti (např. teplota T_{27KV} pro nízkouhlíkové svařitelné oceli). Případně ji lze vyhodnotit na základě určení tzv. střední hodnoty vrubové houževnatosti $KC_{stř}$. Další metodou je určení T_p pomocí inflexního bodu přechodové křivky. Poslední metodou je určení na základě podílu zastoupení křehkého a houževnatého lomu. V tomto případě lze tedy T_p definovat jako teplotu, při níž je lom zkušební tyče v celém průřezu houževnatý, nebo jako teplotu, při níž houževnatý lom a tedy i lom křehký tvoří 50% plochy. Tato teplota se označuje jako T_{50} nebo v anglické literatuře označením $FATT_{50}$ a hodnota této teploty se stanoví na základě závislosti podílu křehkého lomu na teplotě. Podíl křehkého lomu se určí pro měřenou teplotu vztahem (7), do kterého jsou dosazovány hodnoty zjištěné optickým měřením lomové plochy vycházející z **obr. 7**, kde $S_{0(CH)}$ je velikost plochy pod vrubem. [4]

$$BF = \frac{x_1 x_2}{S_{0(CH)}} \tag{7}$$

Obr. 7 – Vyhodnocení podílu křehkého lomu z lomové plochy

2.2.3 Instrumentovaná zkušební metoda

Tato metoda je udávána normou ČSN EN ISO 14556 Ocel – Zkouška rázem v ohybu na kyvadlovém kladivu tyčí Charpy s V-vrubem – Instrumentovaná zkušební metoda [5] a provádí se v souladu s ISO 148-1[2]. Princip spočívá v měření průběhu závislosti síly na čase pomocí aktivních elektrických tenzometrů připojených na břit kladiva. Není-li průhyb tyče měřen přímo, určuje se na základě měření závislosti sílačas. Z grafové závislosti síla-průhyb lze poté z ploch pod daným intervalem průběhu křivky vyhodnotit celkovou nárazovou práci W_t a velikosti charakteristických hodnot práce, které odpovídají maximální síle W_m , okamžiku iniciaci trhliny W_{iu} a okamžiku zastavení trhliny W_a . [5,6]

Výhoda této metody je v zachycení průběhu lomového procesu a snazší porovnání lomového chování materiálů. Např. porovnání dvou materiálů, které vykazují stejné hodnoty KV, ale z průběhů závislosti síla-průhyb jsou patrné rozdíly ve velikostech energií iniciace a šíření trhliny. Na **obr. 8** je znázorněn obecný průběh závislosti síla-průhyb s vyznačenými charakteristickými hodnotami sil F_{gy} , F_m , F_{iu} , F_a v průběhu zkoušky. [5,6]

Obr. 8 – Grafická závislost síly na průhybu F - v, s vyznačenými silami [5]

2.3 Zkoušky lomové houževnatosti

Při zkoumání podmínek křehkého porušení materiálů se ukázalo, že únosnost konstrukcí a strojních součástí nemusí být adekvátní vůči zjištěným charakteristikám materiálu (např. mez pevnosti), ale je do jisté míry ovlivněna odolností materiálu proti iniciaci trhliny z přítomného defektu. Tato skutečnost dala vznik nového vědního oboru lomové mechaniky, která definuje nový materiálový parametr tzv. lomovou houževnatost, čímž rozumíme schopnost materiálu odolávat vznikům a následnému šíření trhlin. Lomová mechanika tedy respektuje vliv přítomnosti defektů v materiálech a pojednává o napjatosti kolem nich s cílem definovat maximální kritické hodnoty napětí, největší přípustnou velikost defektu a způsob šíření trhliny nebo defektu.

2.3.1 Rozdělení lomové mechaniky

V průběhu vývoje lomové mechaniky došlo k jejímu rozdělení z hlediska přístupu pro stanovení lomové houževnatosti do dvou hlavních směrů:

- Lineární elastická lomová mechanika (LELM) Tento přístup je základem pro všechny pozdější teorie. Základem je předpoklad lineární závislosti mezi napětím a deformací (oblast Hookeova zákona) v oblasti blízko u kořene trhliny. Hlavní koncepcí je tedy stanovení veličiny faktoru intenzity napětí *K* pro napěťovou analýzu a hnací síly trhliny *G* pro analýzu energetickou. S ohledem na zjednodušené předpoklady lze LELM použít pro stanovení napěťových deformačních poměrů u kořene trhliny i při výskytu malé plastické zóny. [7, 6]
- Elasto-plastická lomová mechanika (EPLM) S rostoucí velikostí plastické zóny před kořenem trhliny klesá přesnost výsledků LELM. V okamžiku, kdy je velikost plastické zóny velká je potřeba využít EPLM. Pro tento přístup je na rozdíl od LELM uvažováno velké plastické zóny u kořene trhliny. Základem je metoda kritického rozevření trhliny δ_c (CTOD Crack Tip Opening Displacement) a metoda křivkového J-integrálu. [7, 6]

2.3.2 Energetická analýza

Tato analýza vychází ze základů, které položil A. A. Griffith kolem roku 1920, když provedl výpočet uvolnění deformační energie za růstu trhliny délky *a* založený na energetické bilanci. Tato bilance je dána deformační elastickou energií tělesa W_{el} , prací vnějších sil působících na tělesa W_p a energií potřebnou pro vznik nových povrchů W_{γ} .

$$W_c = W_{el} - W_p + W_\gamma. \tag{8}$$

Z této rovnice je možné stanovit rovnovážný stav, tedy kritickou délku trhliny a_c , která je hranicí pro nestabilní šíření trhliny (tvorba křehkého lomu) v případě, že se uvolněná energie W_{el} rovná spotřebované energii W_p . Na základě těchto závěrů Griffith definoval kritické napětí σ_f při kterém dojde k lomu

$$\sigma_f = \sqrt{\frac{2Ew_f}{\pi a}},\tag{9}$$

kde w_f je energie zahrnující složku elastické a plastické práce včetně dalších vlivů disipace energie.

2.3.3 Hnací síla trhliny

Griffithovo energetické kritérium bylo dále upraveno G. R. Irwinem, který zavedl veličinu G, tzv. hnací sílu trhliny. Vychází se z podmínky nestability trhliny, která je vyjádřena rovnicí (10).

$$\frac{\partial}{\partial a} (W_p - W_{el}) = \frac{\partial}{\partial a} W_{\gamma}$$
⁽¹⁰⁾

Hnací síla trhliny odpovídá levé straně rovnice a po derivaci je dána vztahem (11). Pravá strana rovnice vyjadřuje odpor tělesa proti nestabilnímu šíření trhliny neboli energii pro vznik lomové plochy a značí se R.

$$G = \frac{\sigma_N^2 \pi a}{E} \,. \tag{11}$$

Obecně lze tedy podmínku nestability zapsat ve tvaru $G = R = G_c$. Pokud je podmínka splněna, dochází k šíření trhliny.

Kritické napětí je tedy dané vztahem

$$\sigma_c = \sqrt{\frac{G.E}{\pi.a}}.$$
 (12)

Nestabilita trhliny tedy může vzniknout, pokud:

- a = konst. a napětí se zvyšuje $\sigma \ge \sigma_c$
- $\sigma = \text{konst.}$ a trhlina roste $a \ge a_c$.

2.3.4 Faktor intenzity napětí (LELM)

Vhledem k obtížnosti výpočtu hnací síly trhliny v součásti libovolného tvaru byla podmínka navržená Griffithem obtížně použitelná. Irwin tedy při výpočtu průběhu napětí na čele trhliny odvodil vztah

$$\sigma_{X,Y} = \frac{\sigma\sqrt{\pi.a}}{\sqrt{2\pi r}} f(x;y;z).$$
(13)

Výraz v čitateli nahradil označením K_I a zavedl tak konstantu zvanou Faktor intenzity napětí, který zcela definuje podmínky u čela trhliny. Porovnáním (12) a (13) je získán vztah

$$K_I = \sqrt{G.E} \left[MPa.m^{-\frac{1}{2}} \right]. \tag{14}$$

Tímto vztahem je ověřena rovnocennost nestability šíření trhliny energetického Griffithova a napěťového Irwinova přístupu. Rovnice (15) uvádí výpočet faktoru intenzity napětí pro tělesa konečných rozměrů s průchozí trhlinou. Z jejího předpisu je patrné, že faktor intenzity napětí je závislý na velikosti a charakteru působícího napětí obr. 9, rozměrech trhliny a tvarové funkce charakterizující velikost, tvar tělesa a umístění trhliny v něm.

Obr. 9 – Charaktery působícího napětí [7]

$$K_{I,II,III} = \sigma \sqrt{\pi. a.} Y\left(\frac{a}{W}\right) \tag{15}$$

Kritická hodnota faktoru intenzity napětí se značí K_C a je charakteristickou odolností materiálu proti vzniku nestabilního křehkého lomu. Nazývá se lomová houževnatost. Jako charakteristika musí být lomová houževnatost nezávislá na způsobu namáhání (tah, ohyb) a rozměrech zkušebního tělesa v určitých mezích. Splnění těchto podmínek odpovídá rovinné deformaci, jelikož uvnitř materiálu se stav rovinné deformace mění na stav rovinné napjatosti. Podle této skutečnosti byly stanoveny podmínky zkoušek. Takto definovaná materiálová charakteristika se nazývá K_{IC} – lomová houževnatost při rovinné deformaci. [7, 6]

2.3.5 Metoda křivkového J-integrálu (EPLM)

Přístup LELM neboli K_{IC} je možné použít pouze pro velmi křehké materiály a tedy případy plastické deformace v malé části čela trhliny. Aplikovatelnost tohoto přístupu je však omezena vzhledem k rozměru tělesa, kterou popisuje vztah (**16**). Zde *B* odpovídá tloušťce tělesa, *a* je délka trhliny, (*W* - *a*) označuje délku neporušeného průřezu před čelem trhliny, K_{IC} je kritická hodnota součinitele intenzity napětí a R_e je mez kluzu materiálu.

$$B, a, (W-a) = 2,5. \left(\frac{K_{IC}}{R_e}\right)^2$$
(16)

Proto se hledaly jiné přístupy a kritéria, které by byly využitelné pro větší plastické deformace na čelech trhlin. Metody EPLM jsou použitelné jak pro hodnocení odolnosti materiálu proti růstu nestabilního lomu, tak i pro oblasti větších plastických deformací. Jednou z těchto metod je právě metoda J-integrálu (pojmenovaná podle autora J. Rice). Tato metoda je energetickým hlediskem EPLM, který je formálně stejný jako hnací síla trhliny *G*. Je to tedy metoda založena na energetické bilanci na čele trhliny. Rice popsal deformační pole v okolí vrcholu trhliny křivkovým integrálem (**17**), jehož hodnota nezávisí na integrační cestě kolem kořene trhliny **obr. 10**. [8]

$$J = \int_{\Gamma} W d_{y} - T\left(\frac{\partial u}{\partial x}\right) ds \tag{17}$$

 $W = \frac{dU}{dv} = \int_0^{\epsilon} \sigma_{ij} d\epsilon_{ij} - \text{hustota deformační energie.}$ $T - \text{působící síla ve směru normály } \vec{n} \text{ vůči křivce } \Gamma.$ s - délka integrační cesty. $u - \text{přemístění.} T_{ij} = \sigma_{ij}. \vec{n}_i$

Obr. 10 – Integrační oblast pro výpočet J-integrálu

Pokud se křivka Γ zvolí blízko vrcholu trhliny, hodnota J-integrálu představuje průměrnou hodnotu deformačního pole v tomto místě a můžeme ho tedy použít jako lomové kritérium $J = J_c$. Rice dále dokázal, že J-integrál představuje změnu potenciální energie dvou stejných těles, kdy jedno má trhlinu délky *a* a druhé $a+\Delta a$, což je vyjádřeno vztahem (**18**). Tento vztah je formálně stejný s definiční rovnicí rychlosti uvolňování elastické energie s tím rozdílem, že hnací síla trhliny *G* je nahrazena *J*integrálem. [8]

$$J = -\frac{dU}{da} \tag{18}$$

Z tohoto vztahu vyplývá, že stejně jako v případě G je veličina J nezávislá na způsobu zatěžování. J-integrál má tedy význam hnací síly trhliny i v případě výskytu plastické deformace na čele trhliny.

2.3.6 Zkoušky standardních CT těles

Lomová houževnatost materiálu se stanovuje zkoušením těles předepsaných rozměrů a tvaru s ostrým vrubem ukončeným únavovou trhlinou. Jak již bylo ukázáno, vyjádření lomové houževnatosti je závislé na způsobu šíření trhliny. Pro nestabilní šíření trhliny se využívá parametr K_I a lomová houževnatost vyjadřuje jako K_{IC} . Pro stabilní šíření trhliny se sestavuje *J*-*R* křivka a lomová houževnatost se vyjadřuje jako kritická hodnota J-integrálu J_{IC}. Vyhodnocení lomové houževnatosti pomocí parametrů *K* a *J* udává norma ASTM E 1820 – 09 [9], kterou jsou také definována zkušební tělesa.

Pro potřeby této práce se bude využívat tzv. 1T-CT těles, českou normou označována jako tělesa B. Jak lze vidět na **obr. 11**, velikost rozměrů jednotlivých úseků na vzorku je vztažená v určitém poměru k rozměru *W*.

Norma také uvádí podmínky pro tvorbu únavové trhliny. Všechna tělesa jsou opatřena nakmitanou únavovou trhlinou, jelikož strojní výroba úzkého a ostrého vrubu, který by simuloval přirozený lom, není optimální. V závislosti na velikosti vzorků se počet kmitů pohybuje od $10^4 – 10^6$ cyklů. Délka vzniklé únavové trhliny i s vrubem se pohybuje mezi $(0,45\div0,75)W$ pro potřeby zjištění J-integrálu, pro stanovení K_{IC} je tato délka $(0,45\div0,55)W$. Pro tvorbu trhliny je udávána horní mez intenzity napětí v praxi nejčastěji $K_{max} = 25$ MPa.m^{1/2}. Dolní mez intenzity při dokončení trhliny potom $K_{max} = 18$ MPa.m^{1/2}. [9]

Obr. 11 – Standardní těleso pro excentrický tah (CT – Compact tension) [9]

Zkoušky se provádějí na univerzálních zkušebních strojích. V případě CT těles se měří závislost působící síly F na rozevření vrubu v. Toto rozevření se měří pomocí sponového snímače (COD extenzometru). Podle charakteru šíření trhliny se poté zvolí parametr pro vyhodnocení lomové houževnatosti. Schematické zobrazení vlastní zkoušky je na **obr. 12**. [9]

Obr. 12 – Schematické znázornění zkoušky CT tělesa

2.3.7 Stanovení hodnoty lomové houževnatosti K_{IC}

Lomová houževnatost K_{IC} jak již bylo napsáno je charakteristickou hodnotou lomové houževnatosti definující odolnost materiálu proti statické iniciaci křehkého porušení. Principem určení je zkouška, při které se zaznamená závislost síly F na rozevření vrubu v. Zkouška se může provádět jak za normálních teplot, tak i za zvýšených nebo snížených. Vzhled získané závislosti F - v je na **obr. 13**. Zde lze vidět 3 typy možných průběhů. Vyhodnocením záznamu se určí síla F_Q , pomocí které se počítá provizorní hodnota lomové houževnatosti K_Q . Určení síly F_Q spočívá v proložení lineární části grafu přímkou začínající v počátku. Tímto počátkem se poté povede druhá přímka, která má oproti přímce proložení sklon 5%. Průsečík této přímky s grafovým průběhem se označuje F_5 . Stanovení konkrétní hodnoty F_Q je potom závislé na typu grafu. Jestliže na záznamu síle F_5 předchází maximální hodnota síly F_C , je F_Q této maximální síle rovna (III). Pokud je síla F_5 nejvyšší hodnota v rozmezí sil O až F_5 , tak potom $F_Q = F_5$ (I). V případě grafického průběhu typu II je za sílu F_Q považována hodnota síly, která předchází síle F_5 a která je zároveň větší než tato síla. Následujícím krokem je stanovení délky trhliny, které se provede měřením v devíti bodech lomové plochy, kde krajní body jsou od povrchu ve vzdálenosti 0,005W. Z těchto měření se potom jako průměr vypočte délka trhliny a_p . Podle vztahu (**19**), který stanovuje norma ASTM E 1820 - 09 [9], se poté vypočte součinitel intenzity napětí pro těleso tvaru CT. [6, 10, 11]

Obr. 13 – Typy závislostí F - v [5]

$$K = \frac{F_Q}{\sqrt{BB_NW}} f\left(\frac{a}{W}\right) \tag{19}$$

$$f\left(\frac{a}{W}\right) = \frac{\left[\left(2 + \frac{a}{W}\right)\left(0,886 + 4,64\left(\frac{a}{W}\right) - 13,32\left(\frac{a}{W}\right)^2 + 14,72\left(\frac{a}{W}\right)^3 - 5,6\left(\frac{a}{W}\right)^4\right)\right]}{\left(1 - \frac{a}{W}\right)^{3/2}}$$

2.3.8 Stanovení hodnoty lomové houževnatosti J_{Ic} (J-R křivka)

J-integrál definuje napjatost na čele trhliny, což znamená, že v případě iniciace lomu J_I nabývá kritické hodnoty J_{Ic} , která charakterizuje odolnost materiálu proti iniciaci lomu. Pro stanovení houževnatosti materiálu v oblasti horních prahových hodnot se využívá koncepce R-křivky (*J-R* nebo δ -*R*). R-křivka charakterizuje závislost J-integrálu nebo otevření při přemístění čela trhliny δ na velikosti přírůstku tvárné trhliny Δa . Zkušebními tělesy jsou tělesa CT a tělesa pro tříbodový ohyb, během jejichž zatěžování je získáván záznam závislosti síly *F* na průhybu *f* (příp. posunutí) **obr. 14**. Pro určení J-R křivky se využívá experimentálních metod jednoho a více těles. Vztah (**20**) udává výpočet hodnoty J-integrálu ze závislosti *F - f*. Jak lze vidět i z **obr. 14** tvoří ho 2 složky. Hodnota elastické části J_{el} se určí přepočtem z hodnoty *K* vztahem (**21**) a plastická část J_p se určí výpočtem z plastické práce A_{pl} vztahem (**22**), která je dána plochou pod křivkou závislosti *F - f*. Pro složku J_p je udán vztah (**23**) charakterizující tvarový vliv tělesa CT. [10, 11]

$$J_c = J_{el} + J_p \tag{20}$$

Západočeská univerzita v Plzni, Fakulta strojní, Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů

$$J_{el} = \frac{K^2(1-\nu^2)}{E}$$
(21)

$$J_p = \left[\frac{x_i\left(\frac{a}{W}\right) \cdot A_{pl}}{b_0 \cdot B_N}\right] \tag{22}$$

$$x_i \left(\frac{a}{W}\right)_{CT} = 2\left(2 + 0.522\frac{b_0}{W}\right) \tag{23}$$

Obr. 14 – Závislost působící síly na přemístění (F - f) [7]

2.3.8.1 Stanovení J_{Ic} metodou více těles

Tato metoda využívá pro stanovení hodnoty J_{Ic} více zkušebních těles, kterých musí být minimálně 6 se stejnými rozměry a stejně velikými únavovými trhlinami. Každé těleso je podrobeno různé hodnotě působícího zatížení, pro dosažení rozdílných rozšíření trhlin o Δa .

Je doporučeno první těleso zatížit na hodnotu maximální síly a zatížení dalších těles poté volit tak, aby byly rovnoměrně rozložené mezi Δa_{max} a Δa_0 . Přírůstek trhliny Δa je před samotným dolomením vzorku vyznačen na lomové ploše pomocí značkování. Pro oceli se užívá procesu žíhání, kdy ohřev vzorku na konkrétní teplotu (dle typu oceli) vyvolá oxidaci lomové plochy a vytvoří se rozdílový kontrast oproti vzniklé lomové ploše po dolomení vzorku, které proběhne po ochlazení na teplotu tekutého dusíku. Přírůstek trhliny Δa se určí fraktograficky ze vztahu (**24**) jako průměrná hodnota z několika měření. [6, 11]

$$\Delta a_{i} = \frac{1}{8} \left[\frac{\Delta a_{i1} + \Delta a_{i9}}{2} + \sum_{j=2}^{8} \Delta a_{ij} \right]$$
(24)

Stanovené hodnoty J_i na základě předchozích vzorců jsou zaneseny do grafové závislosti na Δa_i a vytvořenými body se proloží regresivní křivka udávaná vztahem (25). Vztah (26) vyjadřuje sklon tzv. Construction line (čára otupení). Z obr. 15 je zřejmé, že spojením regresivní křivky s rovnoběžkou čáry otupení posunuté o délku tvárného natržení 0,2 mm je získána provizorní hodnota J-integrálu J_Q , která se stává platnou hodnotou lomové houževnatosti při splnění kritérií platnosti dle normy ASTM E 1820 – 09 [9]. [6, 11]

Západočeská univerzita v Plzni, Fakulta strojní, Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů Bakalářská práce, akad. Rok 2016/2017 Melzer Daniel

 $J = C_1 \left(\frac{\Delta a}{k}\right)^{C_2} \tag{25}$

$$J = M\sigma_y \Delta a \tag{26}$$

$$\sigma_y = \frac{R_e + R_m}{2} \tag{27}$$

Obr. 15 – Konstrukce J-R křivky s určením hodnoty J_Q [9]

2.3.8.2 Stanovení J_{Ic} metodou použití jednoho tělesa

Principem metody je zatěžování daného tělesa, které je vždy částečně odlehčeno a následně opět zatíženo silou větší oproti předešlému stavu. Záznam tohoto procesu je znázorněn na **obr. 16**. Pokud dochází k růstu trhliny, roste i poddajnost tělesa 1/C, která se při odlehčování vyhodnocuje. Norma ASTM E 1820 - 09 udává vztahy pro závislost (a_0/W) a poddajnosti. Použití jednoho tělesa je technicky velmi náročné a praktické použití je možné pouze v laboratořích s příslušným vybavením. Mimo metody založené na měření poddajnosti (komplianční metoda – UC) se využívají také metody elektropotenciálové a metody akustické emise. Z takto stanovené závislosti $J_i - \Delta a_i$ je opět konstruována J-R křivka ze které se vyhodnocuje provizorní hodnota J_Q , která se stává platnou hodnotou J_{Ic} při splnění podmínek platnosti udaných standardem. [6, 11]

Obr. 16 - Určení J-R křivky metodou jednoho tělesa měřením poddajnosti [11]

2.3.9 Master křivka lomové houževnatosti

Křivky lomové houževnatosti, které jsou vztažené k tzv. referenčním teplotám, se nazývají referenční křivky lomové houževnatosti. Referenčními teplotami se rozumí například teplota T_{28J} , což je tranzitní teplota, při které je Charpyho zkouškou dosaženo nárazové práce o hodnotě 28J. $T_{50\%}$ je teplota, při níž houževnatý lom, resp. lom křehký zaujímá 50 % lomové plochy. T_{NDT} je teplota nulové houževnatosti a T₀ teplota při níž je hodnota lomové houževnatosti 100 MPa.m^{1/2}. Pro vztah lomové houževnatosti s referenční teplotou se užívá tzv. Master křivky (anglické označení Master curve, v české literatuře se objevují názvy Univerzální, Milionová nebo Základní křivka). [12]

Master křivku zavedl Wallin a její stanovení je podmíněno hodnotami lomové houževnatosti, určených za podmínek SSY (malé plastické oblasti). Využívá se tedy k popisu lomové houževnatosti v tranzitní oblasti, kde platí hodnoty K_{IC} a K_{JC} a pro oblast tvárného porušení se nevyužívá. Rovnice Master křivky je dána vztahem (**28**) a pro konstrukční oceli s feritickou matricí a mezí kluzu od 220 do 825 MPa udává průběh mediánu lomové houževnatosti $K_{Ic(med)}$.

$$K_{lc(med)} = 30 + 70 \exp[0.019(T - T_0)]$$
⁽²⁸⁾

Je zřejmé, že pro určení průběhu Master křivky a její polohy na ose teplot stačí určit teplotu T_0 , což je referenční teplota, která odpovídá hodnotě mediánu lomové houževnatosti $K_{Jc(med)} = 100 MPa . m^{1/2}$ pro těleso tloušťky 25 mm a $P_f = 0.5$. P_f je tzv. kumulativní pravděpodobnost porušení při hodnotě K_I od působícího zatížení. Vztah (29) popisuje tento rozptyl lomové houževnatosti použitím tří parametrového Weibullova rozdělení lomové houževnatosti při jedné teplotě.

$$P_f = 1 - exp\left[-\left(\frac{K_I - K_{min}}{K_0 - K_{min}}\right)^4\right]$$
(29)

 K_{min} je spodní prahová hodnota lomové houževnatosti 20 MPa.m^{1/2} a K_0 je normalizační parametr závislý na teplotě. Analýzou velkého množství dat Wallin určil závislost parametru K_0 pouze na teplotě plynoucí ze vztahu (**30**).

$$K_0 = 31 + 77exp[0,019(T - T_0)]$$
(30)

Metoda určení Master křivky je v současnosti dána standardem ASTM E 1921-10 [13]. Předností této koncepce je získání dat lomové houževnatosti v tranzitní oblasti při zkoušení malého počtu standardních těles. Standard udává postup s použitím standardních těles pro excentrický tah 1T-CT nebo těles pro tříbodový ohyb SE(B) o tloušť ce B = 25 mm. Zvolí se teplota, při níž se bude provádět zkoušení minimálně šesti těles. Tato zkušební teplota by měla být blízko očekávané teplotě T_0 . Wallin rozborem vysokého počtu tranzitních křivek Charpyho tělesa s V-vrubem určil, že tato zkušební teplota by měla být v blízkosti teploty TK_{28J} . Následně se měří závislost síly na rozevření vrubu až do porušení. Z této závislosti se určí J_c (kritická hodnota J-integrálu) a přepočtem této hodnoty se určí K_{Jc} . Hodnoty K_{Jc} musí plnit podmínku stavu SSY na čele trhliny v okamžiku porušení. Použitím metody maximální věrohodnosti se z hodnot K_{Jc} vypočte parametr K_0 a z něj se následně vypočte $K_{Jc(med)}$. Použitím vztahu (**31**) se vypočte teplota T_0 . Americký standard dále uvádí výpočtový vztah pro stanovení referenční teploty multi-teplotní procedurou, která je dána vztahem (**32**). [12]

$$T_0 = T - \left(\frac{1}{0,019}\right) ln\left[\left(\frac{K_{Jc(med)} - 30}{70}\right)\right]$$
(31)

$$\sum_{i=1}^{N} \delta_{i} \frac{exp[0,019(T_{i} - T_{0Q})]}{11 + 77 exp[0,019(T_{i} - T_{0Q})]} - \sum_{i=1}^{N} \frac{(K_{JC(i)} - 20)^{4} exp[0,019(T_{i} - T_{0Q})]}{\{11 + 77 exp[0,019(T_{i} - T_{0Q})]\}^{5}} = 0$$
(32)

N – Počet zkoušených vzorků

T_i – Teplota připadající konkrétní hodnotě K_{JC(i)}

K_{JC(i)} - Platná nebo cenzurovaná hodnota houževnatosti

 δ_i – Označuje platnou hodnotu číslem 1, nebo cenzurovanou hodnotu číslem 0

Obr. 17 – Master křivka lomové houževnatosti

Na **obr. 17** je vyobrazena podoba Master křivky. Je zde vidět průběh $K_{Jc(med)}$ a také hodnoty K_{Jc} odpovídající pravděpodobnosti porušení 5% a 95%. Hodnota lomové houževnatosti daná Master křivkou roste se zvyšující se teplotou bez omezení. Určení horní prahové hodnoty, kdy dochází k iniciaci tvárného lomu, se provádí na základě měření *J-R* křivky.

Standard ASTM E 1921 - 10 nevyžaduje použití výhradně zkušebních těles typu 1T-CT. Pro tvorbu Master křivky je také možné užít standardní Charpy tělesa pro zkoušku vrubové houževnatosti a hodnoty z těchto vzorků převést na hodnoty standardních 1T-CT těles pomocí vzorce (**33**), kde $K_{Jc(0)}$ je hodnota naměřené lomové houževnatosti, B_0 je šířka měřeného tělesa a B_X je predikovaná tloušťka. Možnost tohoto převodu hodnot je velikou výhodou v metodice Master křivky, vzhledem k množství potřebného materiálu.

$$K_{JC(X)} = K_{min} + \left[K_{Jc(0)} - K_{min}\right] \cdot \left(\frac{B_0}{B_X}\right)^{\frac{1}{4}}$$
(33)

3 Metody využívající miniaturní zkušební vzorky

Skupina těchto zkoušek patří mezi semi-destruktivní zkušební metody hodnocení mechanických vlastností. Jelikož z pohledu konstrukčního celku, ze kterého odebíráme materiál pro tvorbu vzorku, jsou tyto metody nedestruktivní, ale z pohledu vzorku jako takového, který je během zkoušky nevratně zničen, se jedná o metody destruktivní. Vývoje těchto metod a pokusy o jejich normování je v současnosti hodně diskutované téma. Oblast použití miniaturních vzorků je totiž široká. Ať už se jedná o posouzení vlastností svarových kloubů, stanovení vlastností vyvíjených nanostrukturních materiálů nebo stanovení zbytkové životnosti provozních komponent, u kterých díky odběru malého množství materiálu je možné do značné míry odstranit nutnost následné odstávky zařízení z důvodu potřeby opravy místa odběru. Tato odstávka představuje ekonomické ztráty pro provozovatele a místo odběru se může stát zdrojem nových vad nebo lokální degradace materiálu. Ustanovení norem pro tyto zkoušky by tedy bylo velmi užitečné pro zjištění žádaných materiálových vlastností.

3.1 Micro-Tensile Test (M-TT)

Tahová zkouška s využitím miniaturních vzorků je ve své podstatě identická s klasickou metodou využívající vzorky standardní velikosti. Metoda není ustanovena normou a její provedení závisí pouze na předpisech konkrétní laboratoře, kde je prováděna. Výhoda této metody je stejný režim zatížení miniaturních a standardních vzorků. Tato skutečnost snižuje složitost převádění získaných výsledků. Výsledky jsou získány přímo a není potřeba použití korelačních vztahů pro jejich převod, které zvyšují nejistotu výsledků.

Používané geometrie vzorků jsou ukázány na **obr. 18**. Tvar plochého vzorku byl navržen na základě geometrie vzorku pro zkušební metodu SPT. Délka tělíčka je 3 mm, tloušťka vzorku se může lišit od 0,2 mm do 2 mm. Ramena vzorku se mohou při výrobě zhotovit delší pro jeho lepší upnutí. Rotační vzorek má oproti plochému vzorku dvakrát tak velký průřez, což znamená, že zkoušce je podrobeno větší množství materiálu a podmínky jsou bližší zkouškám standardních vzorků.

Obr. 18 – a) plochý vzorek pro M-TT, b) kruhový vzorek pro M-TT [14]

Nezanedbatelný vliv na naměřené hodnoty má u miniaturních tahových vzorků i metodika výroby vzorků, jelikož vliv na vlastnosti materiálu má i povrchová drsnost vzorků.

Západočeská univerzita v Plzni, Fakulta strojní,	Bakalářská práce, akad. Rok 2016/2017
Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů	Melzer Daniel

V Práci [15] byl za spolupráce Japonské vlády a Evropského společenství pro atomovou energii zkoumán vliv povrchové drsnosti miniaturních tahových vzorků RAFM ocelí na naměřené hodnoty. Cílem bylo docílení takového postupu přípravy zkušebních vzorků, aby rozptyl naměřených hodnot byl oproti standardním vzorkům co nejmenší. Nejoptimálnější výrobní postup spočíval v odběru vzorků metodou WEDM, leštění boků vzorku abrazivními papíry, slisováním vzorků na příslušnou zkušební tloušťku a opětovným leštěním suspenzí oxidu hlinitého. Tímto postupem byly získané naměřené hodnoty v rozptylu 16 MPa oproti zkouškám standardních vzorků. Jednotlivé vzorky byly odebírány v rozdílně orientovaných polohách a z rozdílných míst komponenty, ale díky aplikované úpravě vzorků nebyly tahové hodnoty a hodnoty prodloužení těmito rozdíly ovlivněné.

Výsledkem zkoušky je opět záznam závislosti napětí na deformaci vzorku, ze kterého se hodnoty meze pevnosti a meze kluzu vyhodnocují stejně jako u standardní zkoušky. Ukázka porovnání křivkových průběhů vzorků M-TT metody a vzorků metody klasické je na **obr. 19**. Tyto porovnané průběhy, které jsou výsledkem práce [14] ukazují, skvělou shodu mezi použitými vzorky. To značí dobrou reprodukovatelnost výsledků.

Obr. 19 – Porovnání průběhů tahových diagramů M-TT a standardních vzorků [14]

V případě vyhodnocování tažnosti lze její hodnotu určit na základě záznamu z tahové zkoušky. Označení tažnosti tedy bude obsahovat index označující rozměr počáteční měřené délky v mm (např. A_{2,5}). Tento typ měření ale vyžaduje označení této délky přímo na vzorku, což z hlediska malých rozměrů nemusí být optimální. Za počáteční měřenou délku se tedy může považovat délka celé oblasti mezi rameny vzorku včetně přechodového rádiusu. Z hlediska přesnosti obrábění při výrobě vzorků je tato počáteční délka jednotná pro všechny vzorky a tento rozměr je snáze měřitelný před i po samotné zkoušce. Odpovídající způsob určení tažnosti musí být zaznamenán v protokolu o zkoušce. [16, 17]

Hodnoty tažností miniaturních a standardních vzorků, které byli získány zkouškou, nejsou automaticky vzájemně porovnatelné. Pro jejich porovnání je potřeba, aby hodnoty tažností miniaturních vzorků byly přepočteny na hodnoty tažností standardních vzorků podle vzorce (**34**). [17]

$$A_X = \frac{A_{gm} \cdot L_{0x} + (A_m - A_{gm}) \cdot L_{0m}}{L_{0x}}$$
(34)

Příčné zúžení tzv. kontrakce Z se vyhodnocuje stejně jako u standardní zkoušky měřením dvou nejužších míst průřezu v na sebe kolmých směrech a jejich následným vynásobením.

3.2 Miniaturized Charpy Test

Zkouška rázem v ohybu je široce využívanou metodou pro vyšetření aktuálního stavu jaderných zařízení (např. štěpné reaktory, termonukleární fúzní reaktory) a stanovení míry jejich radiačního poškození. Aby bylo možné získat velké množství potřebných dat, je k tomu potřeba i velké množství standardních vzorků. Použití miniaturizovaných vzorků (dále obecně označení MCVN), které mohou být vyrobeny z již přelomených standardních tyčí, nebo přímo z odebraného materiálu zařízení je řešením, jak tohoto velkého množství dat dosáhnout.

Obr. 20 – Miniaturizované zkušební těleso pro zkoušku rázem v ohybu [18]

Rozměry MCVN vzorků jsou definovány v normě ČSN EN ISO 14556 ZMĚNA A1 [4], která je změnou normy pro instrumentovanou zkušební metodu. Na **obr. 20** je zobrazen MCVN vzorek s vyznačenými rozměry. Norma dále udává i další rozměry tyčí, které jsou úspěšně používány. Je možné použit i tyče bočně vrubovaných.

Obr. 21 – Výroba MCVN z přeražené poloviny standardního Charpy vzorku[19]

Na **obr. 21** lze vidět způsob získání miniaturních zkušebních těles znovu využitím přelomených polovin vzorků standardních velikostí. Z jedné přelomené poloviny vzorku se dají zhotovit 4 miniaturní tělesa.

V práci [20] se M. Manahan zabýval mimo jiné také vlivem bočních vrubů na naměřené hodnoty zkoušek miniaturních Charpy vzorků vyrobených z RPV oceli. Grafické porovnání těchto zkoušek je na **obr. 22**. Je zde vidět, že miniaturní vzorky, které nebyly opatřeny bočními vruby, vykazovaly posun naměřených hodnot na tepelné ose oproti standardním vzorkům směrem k nižším teplotám. Rozmístění těchto hodnot je na grafu označeno prázdnými kruhy. Miniaturní vzorky, které byly opatřeny bočními vruby, vykazovaly rozmístění hodnot na tepelné ose v podstatě ve stejném teplotním rozsahu s minimálními odchylkami. To znamená, že v průřezech miniaturních vzorků s bočními vruby vznikají během zkoušek obdobná napěťová pole jako u standardních těles. Při stanovení přechodové teploty je tak potřeba pouze malých korelací, nebo jak vychází z dalších studií u některých materiálů korelací žádných. Posunutí hodnot MCVN vzorků bez bočních vrubů v přechodové oblasti je výsledkem snížení constraintu a doprovázeného snížení rozměrů.

Obr. 22 – Grafické porovnání hodnot z měření standardních a miniaturních těles Charpy [20]

4 Měření lomového chování na miniaturních vzorcích

Zkoušky miniaturních vzorků umožňují optimální využití dostupného ozářeného materiálu, avšak jsou omezeny platným zkušebním teplotním oknem, které udává menší teplotní rozsah než pro standardní vzorky. Vzhledem k tomuto omezení je tedy nutné zvětšit počet provedených zkoušek miniaturních vzorků pro zajištění větší přesnosti referenční teploty. Výroba a zkoušení vzorků malých velikostí může být z technického pohledu náročné vzhledem k rozměrům vzorků. Při těchto zkouškách je také nutno počítat s možným nárůstem nákladů na větší počet zkušebních těles oproti standardním vzorkům. Z tohoto hlediska je tedy nutné provést více zkoušek. I přes větší počet zkušebních těles je procentuální využití materiálu pro jejich výrobu vyšší než u standardních vzorků.

4.1 Charpy tělesa (PPC, PKLST)

Ke zkouškám lomové houževnatosti se využívá i zkušebních těles typu Charpy a to jak standardní velikosti 10 x 10 x 55 mm označovaných jako PPC, tak i podrozměrných těles o velikostech 5 x 5 x 27 mm ($\frac{1}{2}$ PPC) nebo 3 x 4 x 27 mm označovaných jako PKLST. Tyto vzorky jsou podrobeny stejné přípravě před samotnou zkouškou dle standardu ASTM E 1921 - 10 jako standardní CT a SE(B) tělesa.

Zkušební tělesa PPC se vyznačují vyššími naměřenými hodnotami lomové houževnatosti a většími rozptyly těchto hodnot v tranzitní oblasti oproti standardním CT tělesům, což je způsobeno vlivem ztráty constraintu. Použití těchto těles v metodice Master křivky potom dává odhady referenčních teplot T_0 zhruba o 10 °C nižší než u těles standardních. Tyto rozdíly jsou patrné z **obr. 23**, kde na levém grafu je typické rozdělení dat lomové houževnatosti, aniž by byl brán zřetel na vliv velikosti. Na pravém grafu je statistický vliv tloušťky zapojen, což výrazně zvyšuje shodu rozptylu naměřených dat a snižuje odchylku stanovení referenční teploty vznikající užitím vzorků rozdílných velikostí. [21, 22]

Obr. 23 – Porovnání rozdělení naměřených dat [21]

Ve studii [21] byla zkoumána použitelnost podrozměrných ohybových těles typu Charpy ke stanovení referenční teploty Master křivky. Získané výsledky byly porovnány s hodnotami ze standardních Charpy vzorků. Všechna tělesa byla připravena dle standardu ASTM E1921 - 10 nakmitáním únavové trhliny (a/w = 0,5) a vytvořením bočních vrubů. V rámci této práce Wallin vzhledem k smluvnímu deformačnímu limitu $M_{\text{limit}} = 30$ navrhl teplotní okno provedení zkoušek v rozsahu 50 °C $\leq T - T_0 \leq -20$ °C. Pro vyšší teploty mimo tento pás jsou vyšší hodnoty houževnatosti ležící nad deformačním limitem cenzurovány a nesprávně tak popisují rozdělení houževnatosti dle metodiky Master křivky. Na **obr. 24** je porovnání potřebného objemu materiálu pro stanovení platné hodnoty T_0 . Je zřejmé, že i přes potřebné vyšší množství miniaturních zkušebních těles je celkový objem materiálu nižší při porovnání se standardními vzorky.

Table 7

Number of specimens needed to produce a valid T_0 estimate

Specimen type	Number of specimens needed	Amount of material as CVN equivalent				
10×10	7	7				
5×10	7	3.5				
5×5	12	1.5				
3×4	28	2.5				
3.3×3.3	40	2.5				

Obr. 24 - Porovnání potřebného počtu zkušebních těles v závislosti na typu vzorku [21]

Ve výzkumné práci [23], kde byla opět zkoumána použitelnost zkušebních vzorků o velikostech menších než standardní Charpy vzorky, pro stanovení lomové houževnatosti metodou Master křivky, byly porovnávány výsledky standardních Charpy vzorků 10x10x55 mm³, 5x10x55 mm³, 5x5x27 mm³, 3x4x27 mm³. Hodnoty lomových houževnatostí byly podrobeny pouze korekci na vliv velikosti tělesa dle vztahu (**34**), smluvní hodnota deformačního limitu byla $M_{\text{limit}} = 30$ a referenční teplota T_0 byla stanovena multi-teplotní procedurou. Na **obr. 25** je přehled zjištěných hodnot referenční teploty dvou materiálů pro jednotlivé typy vzorků včetně odhadu pro celé použité spektrum. Je zřejmé, že se snižující se velikostí zkušebních vzorků se zvyšoval odhad hodnoty referenční teploty. Důvod těchto rozdílů v odhadu referenční teploty, u níž se vzhledem ke ztrátě constraintu se zmenšující se velikostí vzorků očekávala snižující se tendence, je zřejmě v nedodržení doporučeného zkušebního teplotního rozmezí Wallinem dle práce [21], což paradoxně odhad referenční teploty zvyšuje.

TABLE 3-Reference temperatures To (100 MPavm) measured with various specimens.

Steel		Spea	All specimens			
	3×4 mm	5×5 mm	5×10 mm	10×10 mm	T ₀ (°C)	
VVER	-123	-128	-131	-131	-128	
HSST-3	-28	-38	-31	-35	-33	

Obr. 25 - Přehled hodnot referenční teploty pro jednotlivé typy zkušebních vzorků [23]

5 Úvod do experimentální části

Experimentální část této práce popisuje průběh a provedení jednotlivých zkušebních metod, jejichž principy a základy jsou blíže popsány v teoretické části bakalářské práce. Jsou zde prezentovány výstupní hodnoty zkoušek tahem, rázem v ohybu a lomové houževnatosti. Na základě získaných výsledků a jejich vyhodnocení jsou diskutovány příčiny jejich rozdílností v závislosti na velikosti a typu použitého zkušebního vzorku.

6 Experimentální materiál

Pro potřeby práce byly vybrány dva materiály, které jsou v této kapitole blíže specifikované.

6.1 GOST 15Ch2NMFA (mat_1)

První zkušební materiál byl dodán ve formě vzorků typu 2T-CT pro zkoušky lomové houževnatosti. Jeden z dodaných vzorků je znázorněn na **obr. 26**. Materiál nebyl nijak tepelně upraven. Chemické složení vzorků bylo zjištěno pomocí optického emisního spektrometru Bruker Q4 TASMAN. Zjištěné složení je zobrazeno v **tab. 1**.

Obr. 26 – Zkušební vzorek pro zkoušku lomové houževnatosti typu 2T-CT

С	Si	Mn	Р	S	Cr	Mo	Ni	Cu	Al
0,221	0,26	0,458	0,007	0,009	2,2	0,611	1,352	0,045	0,001
As	В	Ce	Со	Mg	Ν	Nb	Pb	Sb	Sn
0,005	0	<0,003	0,007	-	0,018	0,005	<0,003	<0,005	0,002
Та	La	Ti	V	W	Zr	Zn	Se	Fe	
<0,001	<0,001	0,001	0,107	0,008	<0,001	-	-	94,662	

Tab. 1 – Chemické složení zkušebního materiálu [hm%]

Zkoumaným materiálem je nízkolegovaná žáruvzdorná feriticko-martenzitická ocel s označením dle ruské normy GOST 15Ch2NMFA. Tento materiál je jedním z nejvíce využívaných v konstrukci tlakových nádob jaderných reaktorů typu VVER-1000, konkrétně ke konstrukci kovaných prstenců. V průběhu provozu zařízení je materiál vystaven působení vysokého tlaku, tepelnému namáhání, cyklickému zatížení a neutronovému záření, což vede k degradaci materiálových vlastností. Z toho důvodu je vyžadováno kontrol aktuálního stavu materiálu a zbytkové životnosti zařízení. Využití miniaturních vzorků při těchto kontrolách je z ekonomického hlediska výhodné. Vlastnostmi tohoto materiálu se podrobněji například zabývá práce [24], kde je porovnáván s dalšími materiály užívanými pro jaderné reaktory, vyráběnými podle předpisů ASME, s vyhodnocením jako více náchylným k radiačnímu zkřehnutí z důvodu většího obsahu Niklu.

Pro zjednodušení bude materiál v dalších kapitolách experimentálního programu označován zkratkou mat 1.

6.2 EN X5CrNi18-10 (mat_2)

Pro další část experimentálního programu byl vybrán druhý materiál, vykazující vyšší houževnatost než předchozí ocel, který poslouží pro zkoušky lomové houževnatosti v oblasti elasticko-plastické lomové mechaniky s cílem vytvoření J-R křivek a porovnání jejich průběhů a rozdílných hodnot vzhledem k typu použitého vzorku a jeho velikosti.

Zvoleným materiálem je Cr-Ni austenitická ocel odolná korozi značena dle evropské normy EN X5CrNi18-10 (1. 4301). Ocel byla dodána ve formě hranolu o rozměrech 60 mm x 30 mm a délce 1500 mm v základním stavu bez tepelného zpracování. Tato ocel je hojně využívaná v potrubních systémech odpařovačů, k výrobě sterilizačních zařízení a dále v potravinářském a farmaceutickém průmyslu.

Ocel se vyznačuje vynikající odolností proti korozi. Především pak v prostředích jako je voda, ovzduší bez koncentrace chloridů, anorganických kyselin a solí. Výrobky z ní zhotovené jsou použitelné do provozních teplot až 350 °C. Od teplot nad 450 °C roste její náchylnost ke vzniku mezikrystalové koroze. Ocel má sklon ke zpevňování za studena při tažení. Významnou vlastností je její schopnost udržet si dobré mechanické vlastnosti i při extrémně nízkých teplotách. Její chemické složení je uvedeno v tab. 2.

Tab. 2 – Chemické složení oceli EN X5CrNi18-10	

С	Si	Mn	Р	S	Cr	Ni	Ν	Fe
<0,07	<1,00	<2,00	< 0,045	< 0,030	17,5 - 19,5	8,00 - 10,5	<0,11	69,75

Pro zjednodušení bude materiál v dalších kapitolách experimentálního programu označován zkratkou mat 2.

7 Zkoušky tahem

Experimentální materiály byly podrobeny zkoušce tahem pro stanovení základních mechanických vlastností. Tato měření proběhla jak na standardních tak miniaturizovaných typech těles. Hodnoty těchto charakteristik budou poté využité při následných zkouškách lomové houževnatosti.

7.1 Tahové zkoušky standardních vzorků

Pro stanovení základních mechanických charakteristik zkoumaných materiálů byly provedeny quasi-statické zkoušky tahem při pokojové teplotě na celkem 3 vzorcích standardní velikosti pro každou ocel. Zkoušky byly provedeny v souladu s normou ČSN EN ISO 6892-1: Kovové materiály - Zkoušení tahem - Část 1: Zkušební metoda za pokojové teploty [1]. Pro realizaci zkoušek bylo využito servohydraulického zkušebního zařízení MTS 810 s maximální silovou kapacitou 250 kN a maximální rychlostí pístu 0,5 m/s pro oba materiály. Použitý snímač deformace byl axiální extenzometr Epsilon 3542-25M-020-LT. Zkušební stroj a extenzometr jsou zobrazeni na **obr. 27**.

Obr. 27 – Zkušební stroj MTS 810 (vlevo), vzorek a snímač deformace (vpravo)

Použité standardní vzorky byly krátké zkušební tyče, jejichž geometrie je zobrazena na **obr. 28**. Před provedením samotných zkoušek byly naměřeny základní charakteristické rozměry jednotlivých vzorků (l₀, D₀) pro vyhodnocení napěťových a deformačních charakteristik materiálu ($R_{P0,2}$, R_m , A_g , A, Z). Testy všech vzorků byly provedeny za zkušební teploty 23 °C. Zkušební deformační rychlost pro mat_1 byla nastavena na 0,00025 s⁻¹, pro mat_2 byla nastavena na hodnotu 0,001 s⁻¹. Naměřené počáteční rozměry vzorků jsou uvedeny v **tab. 3**.

Obr. 28 – Standardní tahový vzorek

7.1.1 Vyhodnocení standardních zkoušek tahem

Z průběhů tahových zkoušek, které jsou vyobrazeny na **obr. 29**, byly vyhodnoceny základní charakteristiky a ty shrnuté v **tab. 3**. Jak je z grafických průběhů zřejmé, k přetrhnutí vzorků došlo u obou materiálů bez výrazné meze kluzu. Proto byla hodnota této charakteristiky u všech vzorků stanovena jako hodnota smluvní meze kluzu $R_{P0,2}$.

Obr. 29 – Souhrn grafických závislostí zkoušek tahem standardních vzorků mat_1 a mat_2

Matariál	Vzorok	Т	\mathbf{D}_{0}	$\mathbf{D}_{\mathbf{u}}$	L ₀	L_{U}	Ε	R _{p0,2}	R _m	A_{g}	A ₅	Ζ
Waterial	V ZUI CK	[°C]	[mm]	[mm]	[mm]	[mm]	[GPa]	[MPa]	[MPa]	[%]	[%]	[%]
	T1	23	8,01	4,37	40,00	48,61	184,8	484,9	638,5	9	21,5	70,2
	T2	23	8,01	4,35	40,00	48,66	203,2	495,1	642,3	8,3	21,7	70,5
mat_1	T3	23	8,00	4,41	40,00	47,64	198,3	525,9	662,8	6,8	19,1	69,7
	Průměr	-	-	1	-	-	195,4	502,0	647,9	8,0	20,8	70,1
	Směr. Odchyl.	ŀ	-	-	-	-	7,78	17,42	10,67	0,91	1,18	0,33
	T_1	23	8,01	3,54	40,00	64,65	185	348,1	664,8	48,6	61,6	80,5
mat 2	T_2	23	8,00	3,29	40,00	65,49	166,6	301,4	651,7	48,2	63,7	83,1
mat_2	T_3	23	8,01	3,20	40,00	66,33	151,2	299,2	655,0	50,6	65,8	84
	Průměr	-	-	•	-	-	167,6	316,2	657,1	49,1	63,7	82,5
	Směr. Odchyl.	-	-	-	-	-	13,81	22,5	5,56	1,05	1,71	1,48

Tab. 3 – Souhrn mechanických charakteristik ze standardních zkoušek tahem

Pro jednotlivě naměřené charakteristiky jsou v **tab. 3** vyjádřené průměrné hodnoty a směrodatné odchylky. Mat_1 se vyznačuje mezí pevnosti o průměrné hodnotě $R_m = 648$ MPa a smluvní mezí kluzu $Rp_{0,2} = 502$ MPa. Z grafických průběhů vzorků T2 a T3 je zřejmé, že vyhodnocení tažností nebylo možné na základě záznamu zkoušky, jelikož vzniklý krček a zmenšení průřezu bylo orientováno mimo měřící ramena extenzometru. Proto bylo vyhodnocení tažnosti u těchto vzorků provedené následným měřením prodloužení vzorků pomocí měřidel.

Pro mat_2 se průměrná hodnota meze pevnosti nachází okolo 660 MPa a mez kluzu byla v průměru 320 MPa.

7.2 Tahové zkoušky miniaturních vzorků – M-TT

Bylo zkoušeno celkem 5 miniaturních tahových vzorků pro každý materiál za zkušební teploty 23 °C a quasi-statických podmínek zatěžování. Zkoušky byly provedeny v souladu s vnitřním zkušebním předpisem firmy COMTES FHT [16]. Použité zkušební zařízení byl stroj LabControl s lineárním pohonem, s maximální silovou kapacitou 5kN. Zkušební sestava je znázorněno na **obr. 30** vpravo. Byly použity modifikované ploché miniaturní vzorky s měřenou kontrolní délkou těla $l_0 = 5$ mm, tloušťkou a_0 0,5 mm a šířkou $b_0 = 1,5$ mm, protože více poměrově odpovídají použitým standardním vzorkům, oproti geometrii miniaturních vzorků vycházející z geometrie těles pro SPT metodu. Geometrie použitých miniaturních zkušebních vzorků je zobrazena na **obr. 30** vlevo. Deformační rychlost v průběhu všech zkoušek byla nastavena na hodnotu $\dot{e} = 0,001$ s⁻¹. Prodloužení vzorků bylo v průběhu zkoušky snímáno pomocí obrazové korelace systémem Mercury RT. Po zkoušce byly konečné hodnoty prodloužení a zúžení přeměřeny pomocí mikroskopické kamery.

Obr. 30 – Zkušební miniaturní tahový vzorek (vlevo), Zkušební stroj LabControl (vpravo) [25]

7.2.1 Vyhodnocení zkoušek M-TT

Na **obr. 31** jsou zobrazeny získané grafické průběhy zkoušek M-TT. Z těchto průběhů je patrné, že oba materiály stejně jako u standardních těles nevykazují výraznou mez kluzu, která je tedy vyjádřena jako smluvní hodnota Rp_{0,2}. V **tab. 4** jsou společně s počátečními rozměry vzorků zobrazeny naměřené mechanické charakteristiky pro jednotlivé materiály. Pro značení prodloužení miniaturních těles dolní index neznačí součinitel proporcionality jako u standardních poměrných těles, ale počáteční měřenou délku tělesa. V **tab. 4** jsou dále uvedené průměrné hodnoty charakteristik a směrodatných odchylek, které jsou zvýrazněné.
Výsledky z měření M-TT pro mat_1 tedy dávají průměrnou hodnotu meze pevnosti $R_m = 655 MPa$ a meze kluzu $R_{P0,2} = 503 MPa$. Pro mat_2 je zjištěná průměrná hodnota meze pevnosti $R_m = 680 MPa$ a hodnota smluvní meze kluzu $R_{P0,2} = 340 MPa$. Na **obr. 32** je znázorněno měření prodloužení a zúžení pro vzorek MT1.

Obr. 31 – Záznamy zkoušek M-TT mat_1 a mat_2

Matariál	Vzorok	Т	\mathbf{a}_0	b ₀	au	$\mathbf{b}_{\mathbf{U}}$	L ₀	Rp _{0,2}	R _m	A_{g}	A_5	Ζ
wrateriai	V ZUI EK	[°C]	[mm]	[mm]	[mm]	[mm]	[mm]	[MPa]	[MPa]	[%]	[%]	[%]
	MT1	23	0,49	1,5	0,19	1,1	5	484,3	641,9	6,5	17,2	71,5
	MT2	23	0,49	1,49	0,2	1,1	5	506	657,2	6,5	16,6	69,5
1	MT3	23	0,48	1,49	0,21	1,11	5	514,9	664,4	6,3	17,9	67,3
	MT4	23	0,48	1,49	0,21	1,27	5	509,9	658,5	6,1	14,8	62,9
mat_1	MT5	23	0,46	1,49	0,25	1,13	5	501,8	653,6	5,9	14,7	58,6
	Průměr	-	-	-	-	-	-	503,38	655,12	6,26	16,24	65,96
	Směr. od.	-	-	-	-	-	-	10,475	7,47	0,23	1,28	4,66
	MT_1	23	0,51	1,50	0,21	0,89	5	324,5	675,9	50,3	60,9	75,2
	MT_2	23	0,50	1,49	0,22	0,88	5	339,5	686,5	47,1	59,0	74,1
	MT_3	23	0,51	1,48	0,20	0,90	5	344,4	681,5	49,5	59,9	75,8
mat 2	MT_4	23	0,51	1,49	0,22	0,88	5	351,0	676,0	49,0	64,0	75,0
mat_2	MT_5	23	0,52	1,48	0,20	0,84	5	344,3	675,9	50,4	66,2	78,5
	Průměr	-	-	-	-	-	-	340,7	679,1	49,3	62,0	75,7
	Směr. od.	-	-	-	-	-	-	8,89	4,26	1,19	2,7	1,5

Tab. 4 – Souhrn výsledných hodnot M-TT vzorků mat_1 a mat_2

Západočeská univerzita v Plzni, Fakulta strojní, Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů Bakalářská práce, akad. Rok 2016/2017 Melzer Daniel

Obr. 32 – Změření prodloužení (vlevo nahoře), zúžení průřezu (vlevo dole a vpravo) pro zkušební vzorek MT1

3.3. Porovnání výsledků tahových zkoušek

Průměrné hodnoty výsledných charakteristik jsou dle typu materiálu a zkušebního vzorku pro porovnání shrnuty do **tab. 5**. Hodnoty tažností jsou porovnatelné bez potřeby přepočtu hodnot miniaturních vzorků podle vzorce (**34**) uvedeného v teoretické části. Jelikož M-TT vzorky jsou svými rozměry poměrově podobnější standardním vzorkům a získané hodnoty tažností jsou v dobré shodě i bez přepočtu. Z porovnání v tab. **5** lze vidět dobrou shodu mezi průměrnými hodnotami naměřených charakteristik. Samotná porovnání průměrných hodnot jednotlivých charakteristik by nebylo dostatečně vypovídající, jelikož by mohly reflektovat zdánlivě vysoké rozdíly. Při zahrnutí směrodatných odchylek, které zahrnují míru odchýlení naměřených hodnot od jejich průměru je patrné, že naměřené hodnoty standardních a miniaturních vzorků jsou v dobré shodě. Měření M-TT vzorků vykazovala dobrou reprodukovatelnost výsledků a mnohdy i s menšími směrodatnými odchylkami oproti standardním vzorkům, což značí malé rozptyly naměřených hodnot od jejich průměrné hodnot od jejich průměrných hodnot od jejich průměrných hodnot od jejich průměrní směrodatných odchylek produkovatelnost výsledků a

Matariál	Vzorok	R _{p0,2}	R _m	$\mathbf{A}_{\mathbf{g}}$	A_5	Z
	V ZUI EK	[MPa]	[MPa]	[%]	[%]	[%]
	Т	502,0	647,9	8,0	20,8	70,1
mat_1	Směr. od.	17,43	10,67	0,91	1,18	0,33
	M-TT	503,38	655,12	6,26	16,24	65,96
	Směr. od.	10,47	7,47	0,23	1,28	4,66
	Т	316,2	657,1	49,1	63,7	82,5
mat 2	Směr. od.	22,5	5,56	1,05	1,71	1,48
mat_2	M-TT	340,7	679,1	49,3	62,0	75,7
	Směr. od.	8,89	4,26	1,19	2,7	1,5

Fab. 5 – Porovnání h	odnot z měření	standardních	a M-TT vzorků
-----------------------------	----------------	--------------	---------------

Obr. 33 – Porovnání průběhů tahových diagramů standardních a M-TT vzorků

Na **obr. 33** je zobrazeno porovnání grafických záznamů z měření pro oba materiály. Z průběhů je na první pohled patrná dobrá shoda mezi vzorky zejména pro průběhy na mezi kluzu a mezi pevnosti obou materiálů. Největší rozdíly jsou pozorovány pro hodnoty prodloužení. Ty jsou s největší pravděpodobností způsobené rozdílnými typy průřezů. Standardní vzorky mají kruhový průřez, M-TT vzorky jsou ploché. Dále tyto rozdíly mohou být způsobeny rozdílným objemem materiálu v průřezu standardního a M-TT vzorku.

Na **obr. 33** je dále zobrazen průběh M-TT vzorku z mat_2, který vykazoval značně vyšší charakteristické hodnoty průběhu. Takové průběhy vykazovaly vzorky ze sady, která byla vyráběna z povrchové části materiálu vzorku 1T-CT pro zkoušky lomové houževnatosti. Je zde tedy patrné ovlivnění naměřených výsledků v závislosti na volbě odběrové oblasti materiálu pro výrobu miniaturních vzorků. Mat_2 má tendence k deformačnímu zpevňování a horní vrstva materiálu je po obrobení zpevněná. To mělo za následek zvýšení pevnostních charakteristik oproti standardním vzorkům.

8 Zkoušky vrubové houževnatosti

Cílem této části je stanovení přechodové teploty FATT₅₀ experimentálních materiálů. Zkoušky jsou provedeny jednak na tělesech Charpy standardních velikostí a také na miniaturizovaných Charpy tělesech typu KLST. Stanovení přechodové teploty je klíčové pro určení referenční teploty lomové houževnatosti a tedy stanovení Master křivky lomové houževnatosti pro mat_1. Budou porovnány rozdíly v získaných průbězích přechodových křivek standardních a miniaturních vzorků.

Všechny zkušební vzorky byly zkoušeny pomocí instrumentované zkušební metody.

8.1 Provedení zkoušek

Zkoušky rázem v ohybu byly provedeny v souladu s normami ČSN EN ISO 14 556 - Zkouška rázem v ohybu na kyvadlovém kladivu tyčí Charpy s V-vrubem -Instrumentovaná zkušební metoda [5] a zároveň ve shodě s ČSN ISO 148-1 Kovové materiály - Zkouška rázem v ohybu metodou Charpy - Část 1: Zkušební metoda [2]. Byla použita standardní Charpy tělesa s rozměry 10 x 10 x 55 mm³. Celkem bylo zkoušeno 16 těles pro materiál mat 1 a 10 těles pro mat 2. Geometrie použitého standardního rázového tělesa s V vrubem je zobrazena v teoretické části obr. 4. Jako zkušební zařízení bylo použito instrumentované Charpy kladivo WPM PSd s počáteční energií 300J. Zkušební zařízení je zobrazeno na obr. 34 (vlevo). Dále byla použitá miniaturizovaná Charpy tělesa o rozměrech 3 x 4 x 27 mm³, jejichž geometrie je zobrazena v teoretické části na obr. 20. Celkem bylo zkoušeno 21 těles z mat_1 a 10 těles z mat 2. Pro provedení zkoušek bylo použito instrumentované kladivo o počáteční energii 15 J, které je zobrazeno na obr. 34 (vpravo). Užití miniaturních vzorků má vzrůstající význam zejména pro hodnocení zbytkové životnosti zařízení, proto byly provedeny zkoušky miniaturních Charpy těles pro stanovení přechodové teploty FATT₅₀ a následně diskutován vliv rozměru těchto těles na naměřené hodnoty.

Obr. 34 – Charpy kladivo WPM PSd – 300 J (vlevo) a Charpy kladivo s počáteční energií 15 J (vpravo)

Pro stanovení přechodové křivky byly vzorky zkoušeny při různých teplotách. Z důvodu menšího počtu vzorků byly na každé teplotě přeraženy 2 maximálně 3 vzorky. Pro chlazení vzorků bylo použito směsi tekutého dusíku a metylalkoholu. Aby bylo zaručeno správné zchlazení vzorků v celém průřezu a délce, byly vzorky na dané teplotě drženy minimálně po dobu pěti minut.

Západočeská univerzita v Plzni, Fakulta strojní,	Bakalářská práce, akad. Rok 2016/2017
Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů	Melzer Daniel

Při potřebě vyšší zkušební teploty, byly vzorky ohřívány ve vodě. Zkušební teplota vzorků byla ve všech případech kontrolována kalibrovaným digitálním teploměrem Greisinger GTH 175 PT WPT3 s rozsahem (+199,9 až – 199,9) °C.

Přechodová teplota $FATT_{50}$ se určí z křivky závislosti podílu křehkého lomu na teplotě. Norma instrumentované metody [5] uvádí 4 výpočtové vztahy pro určení podílu křehkého lomu (**35**), (**36**), (**37**), (**38**) s přesností určení do 20 %.

$$BF = \left[1 - \frac{F_{iu} - F_a}{F_m}\right]. \ 100\%$$
(35)

$$BF = \left[1 - \frac{F_{iu} - F_a}{F_m + (F_m - F_{gy})}\right]. \ 100\%$$
(36)

$$BF = \left[1 - \frac{F_{iu} - F_a}{F_m + K(F_m - F_{gy})}\right]. \ 100\%$$
(37)

$$BF = \left[1 - \sqrt{\frac{\left(\frac{F_{gy}}{F_m} + 2\right)}{3}} \cdot \left(\frac{\sqrt{F_{iu}}}{\sqrt{F_m}} \cdot \frac{\sqrt{F_a}}{\sqrt{F_m}}\right)\right] 100\%$$
(38)

8.2 Vyhodnocení zkoušek standardních zkušebních těles

V tab. 6 a 7 jsou uvedeny konkrétní rozměry standardních zkušebních těles a souhrn výsledných naměřených hodnot rázových energií následně přepočítaných na hodnoty vrubové houževnatosti KCV pro jednotlivé zkušební teploty. Zvýrazněné hodnoty jsou průměrem naměřených hodnot při dané teplotě.

Na **obr. 35** a **36** je zobrazen přehled instrumentálních záznamů, kdy je pro každou teplotu vyobrazen vždy jeden vzorek. Tím jsou ukázány změny v průbězích závislostí síla - posunutí s měnící se teplotou. Z průběhů závislostí mat_2 je zřejmé, že oproti mat_1 se snižující se teplotou zkoušky rostla hodnota síly potřebné k přeražení zkušebního vzorku. Zkoumaný materiál se vyznačuje schopností zpevňování za studena. Nárůst síly je tak pravděpodobně způsoben vznikem martenzitické fáze vlivem rostoucí plastické deformace probíhající během zkoušky za nízkých teplot.

Melzer Daniel

23,6

43,4

35,2

20,6

33,1

I	Tab. 6 -	- Výsled	lky vrubo	ové houževr	natosti sta	andardníc	h vzorků m	at_1	
	Vrub	Pr	ůřez	Rozměr pod	Т	KV	Průměr	KCV	Průměr KCV
Vzorek		w	h	vrubem			KV		KUV
CV1	v	[mm]	[mm]	[mm]	[°C]	[1]	[J]	[J/cm ²]	[J/cm ²]
CV1	V	10	9,99	7,99	100	159,6	145.2	199,7	101 7
CV2	V	9,99	9,99	8,01	100	131	145,5	163,7	181,7
CV3	V	10	9,99	8,2	80	177,7	177.05	216,7	217
CV4	V	10	10	8,2	80	178,2	177,95	217,3	217
CV5	V	10	9,99	7,98	60	176,3		220,9	
CV6	V	10,01	9,99	7,98	60	91,2	138,8	114,2	173,9
CV7	V	10	9,99	7,98	60	148,9		186,6	
CV8	V	10	9,99	7,99	20	68,6	92.45	85,9	104.2
CV9	V	10,04	9,98	7,99	20	98,3	85,45	122,5	104,2
CV10	V	10	9,99	8	0	101,5	06.6	126,9	122.45
CV11	V	10,01	9,99	8	0	96,1	90,0	120	123,43
CV12	V	10	9,99	8,2	-10	46,9	22.0	57,2	40.4
CITI4 2		10	0.00	0	10	10.0	54,9	22.6	40,4

-10

-20

-20

-20

18,9

34,7

28,2

16,5

26,5

CV13

CV14

CV15

CV16

V

V

V

V

10

10

9,99

9,99

9,99

9,99

9,99

9,99

8

8

8,01

8,01

Obr. 35 – Souhrn instrumentovaných záznamů standardních těles mat_1

		Rozi	měry						
Vzorek	Vrub	W	h	Výška pod vrubem	Т	KV ₂	KV ₂	KCV	KCV
	V	[mm]	[mm]	[mm]	[°C]	[J]	[J]	[J/cm ²]	[J/cm ²]
CV_1	V	10,02	9,99	8,06	20	228,7	220.2	283,2	205.9
CV_2	V	10,00	10,00	8,03	20	247,6	238,2	308,3	295,8
CV_3	V	10,02	10,01	8,03	-20	205,0	220.7	254,8	274 3
CV_4	V	10,02	10,00	8,03	-20	236,4	220,7	293,8	274,3
CV_5	V	9,99	10,01	8,02	-100	144,1	157 8	179,9	106 5
CV_6	V	10,02	10,01	8,03	-100	171,5	137,0	213,1	190,3
CV_7	V	10,02	10,01	8,02	-130	183,7	107 5	228,6	246.0
CV_8	V	10,00	10,01	8,02	-130	211,3	197,5	263,5	240,0
CV_9	V	10,03	10,01	8,03	-196	132,2	1/8 3	164,1	18/1
CV_10	V	10,03	10,01	8,03	-196	164,4	140,5	204,1	104,1

Tab. 7 – Výsledky vrubové houževnatosti standardních vzorků mat_2

Obr. 36 - Souhrn instrumentovaných záznamů za zkoušek rázem v ohybu standardních zkušebních těles mat_2

Obr. 37 – Měření podílu křehkého lomu vzorku CV7

Pro použití vzorců výpočtů podílů křehkého lomu tedy musí být ze získaných instrumentovaných záznamů závislostí síla-průhyb stanoveny jednotlivé charakteristické hodnoty sil F_{gy} , F_m , F_{iu} , F_a , dle **obr. 8** teoretické části.

V následující **tab. 8** a **9** je přehled všech charakteristických silových hodnot instrumentovaných záznamů pro všechny vzorky a z nich vypočtené podíly křehkých lomových ploch dle jednotlivých výpočtových vzorců a dle přímého změření rozměru plochy křehkého lomu. Přímé měření podílu křehkého lomu je znázorněno na **obr. 37** pro vzorek CV7. Z porovnání hodnot v **tab. 8** vykazuje výpočtový vzorec (**37**) největší shodu s hodnotami z přímého měření lomových ploch. Výchozí hodnoty tohoto vzorce jsou tedy použity při konstrukci přechodové křivky.

Vacable	Т	Fm	Fiu	Fa	Fgy	Křeh	ký lom sí	ze zázi ly	namu	Křehký lom z přímého
v zorek						(35)	(36)	(37)	(38)	měření
	$[^{\circ}C]$	[kN]	[kN]	[kN]	[kN]	[%]	[%]	[%]	[%]	[%]
CV1	100	20,05	0,00	0,00	14,08	0,00	0,00	0,00	0,00	0,00
CV2	100	19,24	0,00	0,00	14,12	0,00	0,00	0,00	0,00	0,00
CV3	80	19,75	0,00	0,00	13,96	0,00	0,00	0,00	0,00	0,00
CV4	80	19,86	0,00	0,00	13,83	0,00	0,00	0,00	0,00	0,00
CV5	60	19,85	0,00	0,00	14,85	0,00	0,00	0,00	0,00	0,00
CV6	60	20,49	19,38	7,23	14,68	59,30	46,20	51,94	36,02	34,13
CV7	60	20,00	12,70	6,51	14,02	30,94	23,82	26,92	21,47	15,90
CV8	20	20,39	20,04	2,08	14,66	88,10	68,78	77,25	63,98	72,40
CV9	20	21,19	18,56	3,07	15,17	73,10	56,94	64,02	52,83	61,28
CV10	0	21,01	18,56	1,53	15,09	81,05	63,22	71,03	63,77	52,50
CV11	0	21,05	19,65	0,82	15,17	89,45	69,91	78,48	73,21	77,80
CV12	-10	20,94	13,61	0,00	15,54	65,00	51,68	57,58	77,08	67,24
CV13	-10	17,41	17,11	0,00	16,99	98,29	96,00	97,13	98,75	84,21
CV14	-20	19,56	19,21	0,00	19,39	98,22	97,38	97,80	98,96	88,47
CV15	-20	19,22	19,00	0,00	14,49	98,87	79,37	88,05	95,28	81,36
CV16	-20	17,61	17,52	0,00	16,95	99,50	95,91	97,67	99,12	86,67

Tab. 8 – Výsledky podílů křehkých lomů standardních vzorků mat_1

Jak je z tab. 7 zřejmé, mat_2 dle očekávání vykazoval vysoké hodnoty vrubové houževnatosti a její nepříliš výrazný pokles s ohledem na snižující se zkušební teplotu. Vyhodnocení podílu křehkého lomu nebylo možné na základě přímého měření plochy křehkého lomu, jelikož lomové plochy přeražených zkušebních vzorků v tomto případě nevykazovaly žádnou souvislou plochu křehkého lomu, jak lze vidět na obr. 38, kde je porovnání lomových ploch vzorků CV_1 a CV10. Pro kontrolu podílu křehkého lomu byly tyto vzorky podrobeny analýze elektronovým mikroskopem. Výsledkem bylo stanovení obou lomů jako trans-krystalických tvárných. Z tohoto důvodu byl podíl křehkého lomu vyhodnocen pouze na základě instrumentovaných záznamů s použitím výpočtových vzorců (35) ÷ (48). Vzhledem k nemožnosti porovnání podílů křehkých lomů získaných z výpočtových vzorců a přímého měření plochy lomu, byl pro konstrukci závislosti křehkého lomu na teplotě vybrán vzorec (37), z hlediska dřívější zkušenosti při práci s ním.

	т	Em	F :	Fo	For	Podíl kř	ehkého lor	nu ze zázn	amu síly
Vzorek	1	гш	гш	га	гду	(35)	(36)	(37)	(38)
	°C	[kN]	[kN]	[kN]	[kN]	[%]	[%]	[%]	[%]
CV_1	20	19,14	12,11	10,90	13	6,3	4,7	5,4	3,8
CV_2	20	18,93	0,00	0,00	12	0,0	0,0	0,0	0,0
CV_3	-20	25,98	20,91	16,23	17	18,0	13,4	15,4	10,0
CV_4	-20	21,07	13,28	10,82	14	11,7	8,7	10,0	7,3
CV_5	-100	24,69	22,84	18,89	17	16,0	12,1	13,8	8,2
CV_6	-100	25,14	23,18	16,82	17	25,3	19,0	21,7	13,4
CV_7	-130	26,15	24,35	13,77	17	40,5	30,2	34,6	22,5
CV_8	-130	25,39	23,05	10,32	17	50,1	37,5	42,9	29,7
CV_9	-196	26,62	26,12	11,00	18	56,8	42,8	48,8	32,8
CV_10	-196	27,44	26,18	10,15	18	58,4	43,8	50,0	34,7

Tab. 9 - Výsledky podílů křehkých lomů standardních vzorků mat_2

Obr. 38 – Porovnání lomových ploch vzorku přeraženého při 20 °C (vlevo) a při–196 °C (vpravo)

Na **obr. 39** a **40** jsou zobrazeny finální závislosti absorbované energie na teplotě a podílů křehkého lomu na teplotě a z této závislosti je vyhodnocená přechodová teplota FATT₅₀, která je v bodě průsečíku křivkové závislosti a hodnoty křehkého lomu 50 % pro mat_1 a mat_2.

Pro mat_1 je stanovena hodnota přechodové teploty pomocí standardních zkušebních těles Charpy jako $FATT_{50STANDARD1} = 14$ °C. Pro mat_2 je stanovena hodnota přechodové teploty pomocí standardních zkušebních těles Charpy jako $FATT_{50STANDARD2} = -204$ °C.

Západočeská univerzita v Plzni, Fakulta strojní, Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů

Obr. 39 – Graf určení přechodové teploty FATT_{50STANDARD1}

Obr. 40 – Graf určení přechodové teploty FATT_{50STANDARD2}

8.3 Vyhodnocení zkoušek miniaturních zkušebních těles

V tab. 10 a 11 jsou zobrazené naměřené základní rozměry jednotlivých zkušebních vzorků. Hodnoty rázových energií jsou přepočtené na hodnoty vrubových houževnatostí při jednotlivých teplotách, které jsou následně zprůměrovány v rámci konkrétní teploty.

Stejně jako v případě standardních zkušebních vzorků byly během zkoušek pořízeny instrumentované záznamy závislosti síly – průhyb a z těchto grafů poté vyhodnoceny charakteristické síly potřebné pro výpočet podílu křehkého lomu při dané teplotě. Na **obr. 41** a **42** jsou zobrazeny souhrny instrumentovaných záznamů pro jednotlivé materiály, kde je možné vidět trend průběhu křivek v závislosti na zkušební teplotě.

Vzorek

MCV1

MCV2 MCV3

MCV4

MCV5

MCV6 MCV7

MCV8

MCV9

MCV10

MCV11

MCV12

MCV13

MCV14

MCV15

MCV16

MCV17

MCV18

MCV19

MCV20

MCV21

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

3,00

3,00

3,00

3,00

3,10

3,00

3,00

3,00

3,00

3,00

3,00

3.01

3,00

3,01

3.01

4,03

4,02

4,02

4,02

4,02

4,02

4,02

4,02

4,01

4,01

4,02

4,02

4,02

4,03

4,02

Vrub	Rozi	Rozměry Výška pod		Teplota	KV	Průměr	KCV
	W	h	vrubem	_		KV	
V	[mm]	[mm]	[mm]	[°C]	[J]	[J]	[J/cm ²]
V	2,96	4,02	2,95	20	8,2		93,9
V	2,98	4,01	2,96	20	8,1	8,2	91,8
V	2,99	4,01	2,96	20	8,2		92,7
V	3,00	4,01	2,97	-20	8,7		97,6
V	3,00	4,01	2,96	-20	8,3	7,5	93,5
V	3,00	4,01	2,96	-20	5,6		63,1

-40

-40

-40

-60

-60

-60

-60

-80

-80

-80

-100

-100

-100

-120

-120

5,8

4.4

5,4

2,8

5,5

5,8

3,9

3,3

1,3

4,4

1,3

4,4

3,3

4,4

0,4

5,2

4,5

3,0

3,0

2,4

2,96

2,96

2,95

2,97

2,96

2,98

3,02

2,96

2,98

2,98

2,97

2,96

2,98

2,97

2,96

Tab. 10 - Výsledky vrubových houževnatostí miniaturních těles mat_1

Průměr

KCV

 $[J/cm^2]$

92,8

84,7

58,6

49,8

33,6

33,6

26,9

65,3

49,5

61,0

31,4

59,9

64,9

43,0

37,2

14,5

49,2

14,6

49,4

36,9

49,2

4.5

Obr. 41 – Souhrn instrumentovaných záznamů za zkoušek rázem v ohybu miniaturních těles mat 1

Vzorek

MCV

MCV

MCV 3

MCV 4

MCV 6

MCV 8

MCV 9

MCV_10

MCV

MCV

1

2

_5

7

V

V

V

V

V

V

V

V

2,99

3,00

3.00

2.99

2,99

2,99

3,00

2,99

3.98

3,98

3.99

3,98

3,98

3,98

3.99

3,98

	- J -					
	Rozi	něry		I		
rub	W	h	Výška pod vrubem	Т	KV ₂	\mathbf{KV}_2
V	[mm]	[mm]	[mm]	[°C]	[J]	[J]
V	2,99	3,98	2,99	20	10,8	10.9
V	3.02	3.99	3.00	20	10.7	10,8

2,98

3,00

2.98

2,99

3,00

2,99

2,99

2,99

-40

-40

-80

-80

-120

-120

-196

-196

12,3

13,8

13.3

13,4

15,0

15,0

14,4

14,6

13,0

13,4

15,0

14,5

 Tab. 11 - Výsledky vrubových houževnatostí miniaturních těles mat_2

KCV

 $[J/cm^2]$

120,8

118,1

137,8

153,3

148,8

150,0

167,2

167,8

160.9

163,5

KCV

 $[J/cm^2]$

119,5

145,6

149,4

167,5

162,2

Obr. 42 – Souhrn instrumentovaných záznamů zkoušek miniaturních těles mat_2

Jak je z **tab. 11** zřejmé vzorky pro mat_2 vykazovaly vzrůstající tendenci absorbované energie a tedy i vrubové houževnatosti s klesající zkušební teplotou. To se neslučuje s předpokládaným trendem, který počítá s klesající hodnotou vrubové houževnatosti s ohledem na klesající zkušební teplotou, jako tomu bylo u miniaturních vzorků mat_1 v **tab. 10**. Naměřené hodnoty energií by navíc podle zkušebního standardu neměly přesáhnout 80 % počáteční energie rázového kladiva. To znamená, že hodnoty, které převyšují energii 12 J, jsou dle normy považovány za přibližné hodnoty. Jedná se o všechny naměřené hodnoty za teplot nižších než 20 °C. Tyto hodnoty jsou barevně označené.

Z uvedených hodnot je tedy zřejmé, že křivka závislosti absorbovaná energie – teplota nevykazuje sestupnou tendenci a hodnoty tak reflektují pouze horní prahové hodnoty závislosti. Pro získání výraznějšího rozdílu hodnot houževnatosti by bylo potřeba uskutečnit zkoušky za nižších teplot pod -200 °C, což ale vzhledem k technickému vybavení nebylo možné.

V tab. 12 a 13 je zobrazen souhrn výsledných hodnot podílů křehkého lomu, zjištěných pomocí jednotlivých výpočtových vzorců a přímého měření lomové plochy pro jednotlivé zkušební teploty, společně s charakteristickými hodnotami sil instrumentovaných záznamů.

Na základě porovnání hodnot stanovených z výpočtových vzorců a přímého měření byla největší shoda výsledků pozorována pro vzorec (**37**) a hodnoty z něj získané jsou tak použity pro tvorbu závislosti podílu křehkého lomu na teplotě. Přímé měření lomové plochy je znázorněno na **obr. 43** pro vzorek MCV18.

						Křeh	ký lom z	e záznan	nu síly	Křehký lom
Vzorek	Т	Fm	Fiu	Fa	Fgy	(35)	(36)	(37)	(38)	z přímého měření
	[°C]	[kN]	[kN]	[kN]	[kN]	[%]	[%]	[%]	[%]	[%]
MCV1	20	1,22	0	0	0,84	0	0	0	0	0
MCV2	20	1,20	0	0	0,85	0	0	0	0	0
MCV3	20	1,22	0	0	0,85	0	0	0	0	0
MCV4	-20	1,26	0	0	0,89	0	0	0	0	0
MCV5	-20	1,26	0	0	0,87	0	0	0	0	0
MCV6	-20	1,28	1,07	0,35	0,95	56,13	44,49	49,64	37,35	46,63
MCV7	-40	1,28	1,00	0,39	0,93	47,77	37,58	42,07	31,69	42,27
MCV8	-40	1,36	1,15	0,26	0,96	65,55	50,67	57,16	45,85	58,14
MCV9	-40	1,35	1,02	0,37	0,97	48,18	37,71	42,31	32,94	41,69
MCV10	-60	1,36	1,30	0,18	1,01	82,37	65,42	72,92	58,68	73,53
MCV11	-60	0,15	0,13	0,05	0,13	47,18	40,31	43,47	30,70	40,79
MCV12	-60	0,07	0,04	0,01	0,07	42,97	39,94	41,40	37,13	38,35
MCV13	-60	1,32	1,24	0,31	0,95	70,19	54,67	61,47	46,03	63,87
MCV14	-80	1,33	1,24	0,16	0,97	80,91	63,67	71,26	58,91	69,54
MCV15	-80	0,06	0,05	0,00	0,05	87,98	81,80	84,78	74,81	83,73
MCV16	-80	1,37	1,14	0,21	0,99	67,66	53,00	59,44	49,53	61,66
MCV17	-100	1,33	1,31	-0,03	1,07	100,54	83,90	91,47	78,26	85,46
MCV18	-100	1,36	1,15	0,37	0,96	57,54	44,43	50,14	37,85	56,36
MCV19	-100	1,37	1,26	0,24	1,02	74,41	59,21	65,94	51,67	68,41
MCV20	-120	1,37	1,09	0,13	1,02	70,00	55,63	61,99	55,79	60,67
MCV21	-120	0,91	0,85	0,00	0,91	93,42	93,44	93,43	96,66	96,65

Tab. 12 – Výsledky podílů křehkých lomů mat_1

Obr. 43 – Měření plochy křehkého lomu mini Charpy tělesa MCV18

	т	Fm	F in	Fo	For	Křeh	ký lom z	e záznam	u síly
Vzorek	I	ГШ	гш	га	гду	(35)	(36)	(37)	(38)
	[°C]	[kN]	[kN]	[kN]	[kN]	[%]	[%]	[%]	[%]
MCV_1	20	1,63	0,00	0,00	0,89	0,0	0,0	0,0	0,0
MCV_2	20	1,67	0,00	0,00	0,94	0,0	0,0	0,0	0,0
MCV_3	-40	1,86	0,86	0,43	1,03	23,2	16,0	19,0	18,4
MCV_4	-40	1,87	0,79	0,41	1,04	20,1	13,9	16,4	16,6
MCV_5	-80	2,05	0,92	0,46	1,19	22,8	16,1	18,8	18,5
MCV_6	-80	2,03	1,32	0,87	1,16	22,4	15,7	18,5	14,2
MCV_7	-120	-	-	-	-	-	-	-	-
MCV_8	-120	2,04	1,22	0,41	1,19	39,8	28,1	32,9	30,1
MCV_9	-196	2,25	1,16	0,27	1,34	39,7	28,3	33,0	34,6
MCV_10	-196	2,36	1,53	1,12	1,41	17,6	12,5	14,7	11,0

 Tab. 13 - Výsledky podílů křehkých lomů KLST vzorků mat_2

Při pokusu hodnocení výsledných lomových ploch přímým měřením podílu křehkého a houževnatého lomu pomocí mikroskopové kamery bylo pro mat_2 docíleno stejného výsledku jako u standardních těles. Tedy, že touto analýzou je vzhledem k charakteru oceli podíl nezjistitelný. Kontrola lomových ploch u vzorku MCV_1 a MCV_10 pomocí elektronového mikroskopu potvrdila, že lomové plochy jsou v celé ploše tvořeny trans-krystalickým houževnatým lomem. Na **obr. 44** je zobrazena plocha vzorku MCV_10 při zvětšení 600x. Pro konstrukci křivky závislosti podílu křehkého lomu na teplotě byl opět zvolen výpočtový vzorec (**37**), vzhledem k jeho použití u standardních zkušebních těles.

Obr. 44 – Snímek lomu vzorku MCV_10 mat_2

Na **obr. 45** a **46** jsou zobrazeny finální závislosti absorbované energie na teplotě a podílů křehkého lomu na teplotě a z této závislosti je vyhodnocená přechodová teplota FATT₅₀, která je v bodě průsečíku křivkové závislosti a hodnoty křehkého lomu 50 %. Pro mat_1 je stanovena hodnota přechodové teploty pomocí standardních zkušebních těles Charpy jako FATT_{50MINI1} = -53 °C. Pro mat_2 je stanovena hodnota přechodové teploty pomocí standardních zkušebních těles Charpy jako FATT_{50MINI2} = -270 °C. Tato hodnota je vzhledem k její poloze mimo oblast měřených dat stanovena extrapolací a je pouze přibližná.

Obr. 46 – Graf určení přechodové teploty FATT_{50MINI2}

8.4 Porovnání výsledků standardních a miniaturních rázových těles

Zkoušky rázem v ohybu byly provedeny na dvou typech vzorků za účelem stanovení vlivu velikosti zkušebních těles na hodnotu přechodové teploty FATT₅₀. Závislost mezi rozdílnými přechodovými teplotami získanými na standardních a miniaturních vzorcích se dá obecně popsat vztahem (**39**). V tomto vztahu je předpokládán teplotní posun Δt , což je konstanta měnící se v závislosti na materiálu. V práci [26], která se zaobírá zkouškami miniaturizovaných Charpy těles s V vrubem, je posunutí přechodové teploty v závislosti na snižujících se rozměrech těles popsáno vztahem (**40**), který stanovuje teplotní posun souboru naměřených hodnot miniaturizovaných těles o -53 °C se směrodatnou odchylkou ± 24 °C. Aplikací tohoto vztahu na námi naměřené hodnoty přechodových teplot získáme teplotní posun Δt pro konkrétní materiály. Výsledné hodnoty přechodových teplot jsou společně s teplotními posuny miniaturních vzorků shrnuty v **tab. 14**. Vztahem (**41**) je dán teplotní posun pro mat_1. Odhad teplotního posunu přechodové teploty pro mat_2 je dán vztahem (**42**).

$$DBTT_{full \, size} = DBTT_{typex} + \Delta t \tag{39}$$

$$FATT_{STANDARD} = FATT_{MINI} + 53 (\pm 24) \,^{\circ}C \tag{40}$$

Matariál	toriál Twp wzorku		$\Delta \mathbf{t}$	
wrateriai	1 yp v201Ku	[°C]	[°C]	
mat_1	STANDARD - 10x10x50	14	66	
_	KLST - 3x4x27	-52		
mat_2	STANDARD - 10x10x50	-204	66	
=	KLST - 3x4x27	-270		

Tab. 14 – Přehled přechodových teplot materiálů a teplotních posunů miniaturizovaných těles

 $FATT_{50STANDARD1} = FATT50_{MINI1} + 66 \,^{\circ}C \tag{41}$

$$FATT_{50STANDARD2} = FATT50_{MINI2} + 66^{\circ}C \tag{42}$$

Z výsledků v **tab. 9** lze vidět, že teplotní posun pro mat_1 je $\Delta t_1 = 66$ °C a pro mat_2 činí odhad $\Delta t_2 = 66$ °C. Teplotní posuny přechodových teplot miniaturních vzorků v obou případech splňují obecné odvození vztahu (**40**) a jejich hodnoty leží ve stanovené směrodatné odchylce.

Z porovnání výsledků pro mat 1 lze zpozorovat, že miniaturizovaná tělesa vykazovala stejně jako tělesa standardní výrazný pokles houževnatosti s klesající teplotou a vyhodnocení přechodové teploty nebylo v tomto ohledu nijak problematické. Avšak pro mat 2 se vzhledem k charakteru oceli ukázalo použití miniaturizovaných těles jako méně vhodná varianta. Vzhledem k přechodové teplotě, která z měření standardních vzorků byla stanovena na -204 °C, bylo stanovení přechodové teploty z miniaturizovaných vzorků očekáváno dle vzorce (40) za značně nižší teploty. Instrumentované záznamy miniaturizovaných vzorků tedy nevykazovaly tak výraznou změnu průběhu s ohledem na snižující se zkušební teplotu, jako standardní zkušební vzorky. Jelikož minimální dosažitelná zkušební teplota byla vzhledem k technickým možnostem laboratoře -196 °C. Zkoušky miniaturizovaných těles tak v podstatě probíhaly v oblasti přilehlé k horním prahovým hodnotám vrubové houževnatosti. Hodnoty rázových energií vzhledem k úrovni houževnatosti oceli a použitého rázového kladiva přesahovaly 80 % jeho počáteční energie. Vzhledem k charakteru lomové plochy po přeražení, která v celém spektru teplot byla tvořena trans-krystalickým tvárným lomem, nebylo možné porovnání hodnot podílů křehkých lomů z výpočtových vzorců instrumentálních záznamů s hodnotami přímého měření. Vzhledem k těmto skutečnostem lze uvažovat o použití miniaturizovaných těles s bočními vruby. Přechodová křivka takto upravených vzorků by neměla vykazovat tak značný posun k nižším teplotám a instrumentované záznamy by mohly lépe reflektovat pokles houževnatosti jako je tomu u standardních vzorků. Zmenšení průřezů vzorků by také snížilo hodnotu potřebné energie na přeražení vzorků a hodnoty by tak neměly přesahovat 80 % počáteční energie kladiva.

9 Zkoušky lomové houževnatosti

Tato část experimentálního programu využívá zkušební metody a vztahy uvedené v teoretické části a uvádí konkrétní zkušební podmínky a postupy pro použitá tělesa.

9.1 Provedení zkoušek standardních 1T-CT těles

Zkoušky lomové houževnatosti standardních těles byly provedeny v souladu se standardem ASTM E 1820 – 09 – (Standard Test Method for Measurement of Fracture toughness) [9] a dle ASTM E 1921 – 10 (Standard Test Method for Determination of Reference Temperature, T_0 , for Ferritic Steels in the Transition Range) [13].

Pro koncepci Master křivky bylo zkoušeno celkem 6 1T-CT těles z mat_1. Geometrie těles je zobrazena na **obr. 47**. Na tělesech byly nakmitány únavové trhliny s poměrem a/W ≈ 0.5 , přičemž posledních 0,5 mm délky trhliny probíhalo při hodnotě K < 20 *MPa*. $m^{1/2}$, jak stanovuje norma. Po samotném nakmitání byla tělesa opatřena bočními vruby o hloubce 0,1*B*. Vzhledem k použité multi-teplotní proceduře byla zkoušena vždy dvě tělesa za teplot -25 °C, -30 °C a -35 °C. Pro zajištění požadovaných teplotních podmínek byly zkoušky provedeny v environmentální komoře MTS 651 se zajištěným přívodem dusíku.

Zkoušky lomové houževnatosti mat_2 byly provedeny metodou měření změny poddajnosti na jednom tělese. Pro konstrukci J-R křivek lomové houževnatosti byla zkoušena celkem 3 tělesa typu 1T-CT. Zkoušky v tomto případě probíhaly za pokojové teploty. Na vzorcích byly dle normy nakmitány únavové trhliny s poměrem a/W \approx 0,5 a před samotnou zkouškou byla tělesa opatřena bočními vruby o hloubce 0,1*B*.

Použitý stroj pro nakmitání i samotné provedení zkoušek všech 1T-CT vzorků byl servo-hydraulický zkušební stroj MTS 810. Rozevření vrubu vzorku bylo měřeno pomocí sponového COD extenzometru.

Obr. 47 – Standardní 1T-CT vzorek

9.1.1 Výsledky zkoušek 1T-CT těles

Na **obr. 48** je souhrn grafických záznamů síla – rozevření pro 1T-CT tělesa mat_1. Získaná a vyhodnocená data budou použita v metodice Master křivky v kapitole 10. Wallin [12] doporučuje pro její konstrukci využívat hodnot lomové houževnatosti K_{JC}. Jelikož pro lomovou houževnatost vyhodnocenou jako K_{IC} by bylo nutné splnit podmínky rovinné deformace a porušení zkušebních vzorků bez předchozí plastické deformace u čela trhliny a tedy vzniku tvárné oblasti. Porušení tělesa za těchto podmínek je v praxi navíc ojedinělé. U čela trhliny se ve většině případů objeví plastická zóna. Následující rovnice jsou konkrétním příkladem výpočtu hodnoty lomové houževnatosti pro zkušební vzorek A-1. Vypočtené hodnoty jsou uvedené v **tab. 15** s výsledky dalších vzorků.

Obr. 48 – Souhrn záznamů ze zkoušek lomové houževnatosti mat_1

Vztah (43) je výpočtem hodnoty faktoru intenzity napětí odpovídající maximální působící síle F_m odečtené ze záznamu zkoušky obr. 48. Vztahy (44) a (45) jsou výpočtem elastické, resp. plastické složky J-integrálu. Jejich sečtením ve vztahu (46) získáme kritickou hodnotu J-integrálu J_{IC} , při splnění normou stanovených podmínek. Tato hodnota je dále podle převodového vztahu (44) přepočtena na hodnotu lomové houževnatosti K_{JC} .

$$K = \frac{F_m}{\sqrt{BB_NW}} f\left(\frac{a}{W}\right) = \frac{56647}{\sqrt{24,9.18,8.50,1}} \cdot \frac{9,019}{\sqrt{1000}} = 105,5 \text{ MPa. m}^{1/2}$$
(43)

$$J_{el} = \frac{K^2 (1 - \nu^2)}{E} = \frac{105, 5^2. (1 - 0, 3^2)}{209000} = 0,04813 \left[\frac{\text{kN}}{\text{mm}}\right]$$
(44)

$$J_p = \left[\frac{x_i\left(\frac{a}{W}\right) \cdot A_{pl} \cdot \frac{F_{max}}{F_Q}}{b_0, B_N}\right] = \left[\frac{2\left(2 + 0.522\left(\frac{29.9}{50.1}\right) \cdot 3.46\right) \cdot 1.34}{26.2.18.8}\right] = 0.0159 \,[\text{kN/mm}]$$
(45)

$$J_{IC_2CT_A} = J_{el} + J_p = (0,04813 + 0,0159). \ 1000 = 64, 03 \ [kN/m]$$

$$K_{JIC} = \sqrt{\frac{J_{IC}, E}{(1 - v^2)}} = \sqrt{\frac{64,03.209}{1 - 0.3^2}} = 121,26 \ [MPa. m^{1/2}]$$
(46)

Vzonalz	W	В	B _N	a _{0m}	a _{0c}	Т	$\mathbf{J}_{\mathbf{E}}$	\mathbf{J}_{Pl}	J _C	K _{JIC}
v zorek	[mm]	[mm]	[mm]	[mm]	[mm]	[°C]	[kN/m]	[kN/m]	[kN/m]	[MPa.m ^{1/2}]
A-1	50,1	24,9	18,8	23,9	23,9	-25	48,3	16	64,3	122,6
A-2	50	24,8	19,8	24,5	24,5	-25	49,4	17,2	66,6	124,9
A-3	50,1	24,8	19,2	24,5	24,5	-35	71,6	25,3	96,9	150,9
A-4	50,1	24,9	19,4	25	25	-35	31,6	7,6	39,2	96
B-1	50,1	24,9	19,9	25,4	25,4	-30	46,1	20,6	66,7	125
B-2	50,2	24,9	19,9	25,8	25,8	-30	31,2	5,5	36,7	92,7

Tab. 15 – Výsledky měření lomových houževnatostí vzorků 1T-CT

Na obr. 49 je snímek lomové plochy vzorku A-1. Lze vidět, že během samotné zkoušky nedocházelo ke stabilnímu růstu trhliny.

Obr. 49 – Lomová plocha vzorku A-1

Na obr. 50 je zobrazen záznam z měření lomové houževnatosti metodou měření změny poddajnosti vzorku CT-3 pro mat 2, kdy délky trhlin za příslušného zatížení jsou počítány na základě změny poddajnosti tělesa. V tab. 16 je uvedený souhrn rozměrů jednotlivých těles se stanovenými hodnotami lomových houževnatostí. Obr. 51 uvádí souhrn a porovnání průběhů jednotlivých J-R křivek pro 1T-CT tělesa mat_2.

Obr. 50 – Záznam zkoušky tělesa CT-3 mat_2

Vzorek	W	В	B _N	a ₀	a _f	$\mathbf{J}_{\mathbf{Q}}$	K _Q
	[mm]	[mm]	[mm]	[mm]	[mm]	[kN/m]	$[MPa,m^{1/2}]$
CT-1	50	24,97	20,1	25,3	28,49	580	367
CT-2	50	24,99	19,97	24,9	27,73	604	375
СТ-3	50	25,02	19,79	25,07	27,86	611	377
Průměr	-	-	-	-	-	598	369

Tab. 16 – Souhrn hodnot lomových houževnatostí 1T-CT těles mat_2

Obr. 51 – Souhrn J-R křivek 1T-CT těles mat_2

Pro všechny křivky byly zkonstruovány Construction line dle vzorce (**26**) uvedeného v teoretické části. Dle zkušební normy pro předpis této přímky platí M = 2 a $\sigma_Y = \frac{R_{P0,2} + R_m}{2} = 490,5 MPa$. Posunutím takto vytvořené construction line o 0,2 mm je získána rovnoběžka, označena jako offset line (0,2 mm), jejíž průsečík s J-R křivkou udává provizorní hodnotu J-integrálu J_Q. Na základě vyhodnocení J-R křivek pro jednotlivá tělesa byly stanovené provizorní hodnoty J_Q všech těles které se stávají platnými hodnotami J_{IC} při splnění řady podmínek udaných standardem ASTM E 1820 - 09. V rámci vyhodnocení kritérií platnosti všech těles nebyla splněna veškerá kritéria platnosti dle uvedené normy a stanovené provizorní hodnoty J-integrálu J_Q nemohou být vzaty jako platné hodnoty lomové houževnatosti J_{IC}, resp. K_{IC}. **Tab. 16** uvádí souhrn stanovených hodnot J_Q a K_Q. Průměrná hodnota provizorní hodnoty J-integrálu je tedy $J_Q = 574 \frac{kN}{m}$ a průměrná provizorní hodnota faktoru intenzity napětí je $K_Q = 366 MPa.m^{1/2}$.

9.2 Provedení zkoušek lomové houževnatosti na Charpy těles (PCC, PKLST)

Zkoušky PCC a PKLST těles byly provedeny dle shodných zkušebních norem jako zkoušky standardních 1T-CT těles. Rozměry použitých těles jsou zobrazeny na **obr. 52** PCC těleso nahoře, PKLST těleso dole. Všechna tělesa byla opatřena nakmitanou únavovou trhlinou s dokončeným finálním úsekem trhliny za stejných podmínek jako 1T-CT tělesa a s poměrem a/W \approx 0,5. Po nakmitání byla tělesa opatřena

bočními vruby o hloubce 0,1*B*. Zkoušky všech těles probíhaly na servo-hydraulickém stroji Si-PLAN.

Pro stanovení referenční teploty lomové houževnatosti bylo zkoušeno celkem 14 PCC a 13 PKLST těles. Zkoušky probíhaly za snížených teplot ve chladící komoře s přívodem tekutého dusíku. V průběhu zkoušky byla měřena závislost síla – průhyb. Průhyb vzorků byl během zkoušky měřen sponovým extenzometrem. COD Ustavení PKLST vzorku na podporách a extenzometru je znázorněno na obr. 53.

Obr. 52 - Geometrie PCC tělesa (nahoře), PKLST těleso (dole)

Při stanovení lomové houževnatosti mat_2 byla pro oba typy vzorků užita metoda J-R křivky. V tomto případě byla pro oba typy vzorků lomová houževnatost stanovena metodou měření více těles. Bylo zkoušeno celkem 7 PKLST těles a 6 PCC těles. Zkoušky těles proběhly za pokojové teploty. Následně byla jednotlivá tělesa podrobena procesu žíhání pro zvýraznění délky trhliny, po něm ochlazena v tekutém dusíku a dolomena křehkým lomem. Tím se dosáhlo barevného odlišení tvárného růstu trhliny dosaženého během zkoušky od lomové plochy vzniklé dolomením po zkřehnutí vzorku. Následně byl tvárný růst trhliny opticky změřen a byla vyhodnocena hodnota lomové houževnatosti.

Obr. 53 – Uložení vzorku PKLST a COD snímače

9.2.1 Výsledky zkoušek PCC těles

Pro stanovení referenční teploty lomové houževnatosti multi-teplotní procedurou Master křivky byla PCC tělesa mat_1 zkoušena v teplotním pásmu snížených teplot. Na **obr. 54** je zobrazeno zkušební těleso v průběhu zkoušky s uchyceným extenzometrem. Shrnutí výsledných grafických záznamů závislosti síla – posunutí je zobrazeno na **obr. 55**. Ze záznamů byly vyhodnocené hodnoty lomových houževnatostí jako parametr K_{JC}. **Tab. 17** uvádí souhrn základních rozměrů jednotlivých zkušebních těles, zkušební teploty a hodnoty K_{JC}, kterých za daných teplot bylo dosaženo.

Obr. 54 – Zatížené PCC těleso s uchyceným COD extenzometrem

Obr. 55 - Souhrn záznamů ze zkoušek lomové houževnatosti PCC těles mat_1

21.75

136,06

114,29

26,21

10,72

37,26

40,48

31.07

23,83

43.98

73.14

72,75

37.86

162,57

137,23

43.37

22,62

53,59

57,80

41.34

41,68

57,98

93.24

93,60

K_{JC}

[MPa,m^{1/2}]

163,03

160,50

91,46

189,94

174,52

98,10

71,01

109,29

113,63

96.10

96,59

113,92

144,47

144,74

Tab. 17 – Souhrn hodnot K_{JC} teles PCC mat_1								
Vacab	Т	W	В	B _N	a _{0m}	$\mathbf{J}_{\mathbf{el}}$	\mathbf{J}_{pl}	J _C
Vzorek	[°C]	[mm]	[mm]	[mm]	[mm]	[kN/m]	[kN/m]	[kN/m]
PCC_1	-50	9,99	9,97	7,81	5,68	23,36	96,92	120,28
PCC_2	-50	9,99	10	7,89	4,89	21,52	95,05	116,57

7.81

7,84

7,81

7.86

7,87

7,83

7.85

7.85

7,88

7,87

7,83

7,81

Západočeská univerzita v Plzni, Fakulta strojní.

9.99

9.99

9.99

9.99

10

9.99

10,01

9.99

10

10

10

10

-50

-60

-60

-60

-70

-70

-75

-75

-80

-80

-80

-80

10

10

9.99

10

9,99

9.99

9.99

10

9,99

9.99

10

9.99

PCC 3

PCC 4

PCC_5

PCC 6

PCC 7

PCC 8

PCC 9

PCC 10

PCC 11

PCC 12

PCC_13

PCC_14

5,47

5,20

5,15

5.10

5,36

5,50

5.73

5,24

4,86

5.18

5.14

5,19

16.11

26,50

22,94

17.15

11,90

16,33

17,32

10.28

17,85

14,00

20,10

20,84

Zkoušky PCC těles mat 2 byly provedeny za pokojové teploty. Souhrn získaných grafických záznamů závislostí síla - posunutí je zobrazen na obr. 56. Pro jednotlivé vzorky byly zvoleny rozdílné hodnoty posunutí zatěžující síly pro docílení rozdílného nárůstu tvárné trhliny Δa_i . Optické měření tvárného nárůstu trhliny je zobrazeno na obr. 57 pro těleso PCC 3, kdy průměrná délka trhliny byla výsledkem podílu velikosti plochy tvárného lomu ku šířce tělesa. V tab. 18 je uvedený souhrn základních rozměrů zkoušených těles a vyznačenými hodnotami J-integrálů a Δa_i , které budou použité při konstrukci J-R křivky.

Obr. 56 – Souhrn záznamů ze zkoušek lomové houževnatosti PCC těles mat 2

Vacab	W	В	$\mathbf{B}_{\mathbf{N}}$	$\mathbf{J}_{\mathbf{el}}$	$\mathbf{J}_{\mathbf{pl}}$	a ₀	\mathbf{a}_1	$\Delta \mathbf{a_i}$	J
v zогек	[mm]	[mm]	[mm]	[kN/mm]	[kN/mm]	[mm]	[mm]	[mm]	[kN/m]
PCC_1	9,98	10,01	7,92	0,02	0,33	4,76	5,1	0,34	347,71
PCC_2	10,02	10	7,92	0,032	0,57	4,51	5,06	0,55	605,78
PCC_3	10,03	10,01	7,95	0,03	0,57	5,17	5,99	0,82	597,82
PCC_4	10	10,01	8	0,04	0,67	5,2	6,49	1,29	706,53
PCC_5	10	10,01	7,99	0,02	0,61	5,16	6,61	1,45	631,72
PCC_6	10,01	10,01	7,92	0,03	0,65	4,5	6,23	1,73	684,23

Obr. 57 – Optické měření trhliny vzorku PCC_3 mat_2

Na **obr. 58** je zobrazena J-R křivka lomové houževnatosti ze závislosti J - Δa . Předpis Construction line je v tomto případě stejný jako pro 1T-CT tělesa. Na základě průniku J-R křivky s offset line (0,2 mm) byla provizorní hodnota lomové houževnatosti stanovena jako $J_Q = 573,3 \ kN/m$, resp. $K_Q = 350 \ MPa. m^{1/2}$. Tato hodnota se stává platnou hodnotou lomové houževnatosti při splnění řady podmínek dle zkušebního standardu ASTM E 1820 - 09. Vzhledem k překročení hodnoty J_{limit} stanovující horní mez naměřené hodnoty J-integrálu a hodnoty Δa_{max} stanovující maximální nárůst trhliny, nelze hodnotu J_Q brát jako platnou hodnotu lomové J_{IC}, resp. K_{IC}.

9.2.2 Výsledky zkoušek PKLST těles

Pro mat_1 byla tělesa typu PKLST zkoušena v teplotním pásmu snížených teplot vzhledem k použité multi-teplotní proceduře stanovení referenční teploty lomové houževnatosti. Na **obr. 59** je souhrn grafických záznamů síla – posunutí pro jednotlivé vzorky s uvedenými příslušnými zkušebními teplotami. V **tab. 19** je uveden souhrn základních rozměrů jednotlivých vzorků, nakmitaných únavových trhlin a vyhodnocených hodnot lomových houževnatostí, které stejně jako pro tělesa 1T-CT byly vzhledem k následnému využití při konstrukci Master křivky vyhodnocené jako parametr K_{JC} .

Obr. 59 - Souhrn záznamů ze zkoušek lomové houževnatosti PKLST těles mat_1

	Т	W	В	B _N	a _{0m}	$\mathbf{J}_{\mathbf{el}}$	\mathbf{J}_{pl}	$\mathbf{J}_{\mathbf{C}}$	K _{JC}
Vzorek	[°C]	[mm]	[mm]	[mm]	[mm]	[kN/m]	[kN/m]	[kN/m]	[MPa.m ^{1/2}]
160	-60	4,00	3,00	2,40	2,05	13,23	19,50	32,73	85,2
260	-60	4,00	3,01	2,35	1,69	14,75	99,75	114,50	159,4
365	-65	4,00	2,98	2,43	2,00	17,14	38,68	55,82	111,4
465	-65	4,00	2,99	2,40	2,27	13,99	93,30	107,29	154,5
565	-65	3,99	3,00	2,31	2,14	13,47	87,91	101,38	150,2
680	-80	4,00	3,00	2,40	1,78	13,35	16,09	29,45	81,2
780	-80	4,00	3,00	2,52	1,57	27,66	301,11	328,77	271,3
880	-80	4,00	3,00	2,40	1,85	13,68	94,15	107,84	155,4
985	-85	3,98	2,99	2,40	1,93	19,10	94,58	113,68	159,7
1090	-90	4,00	3,00	2,38	1,95	16,07	77,43	93,50	145,0
1190	-90	4,00	2,99	2,40	1,58	13,58	23,05	36,63	90,7
1290	-90	4,00	3,00	2,52	1,98	11,52	23,84	35,36	89,2
1395	-95	3,99	3,00	2,34	1,86	14,45	114,12	128,58	170,2

Tab. 19 – Souhrn hodnot K _{JC} pro	PKLST tělesa mat_1
---	--------------------

Zkoušky vzorků PKLST pro mat_2 byly provedeny za pokojové teploty s cílem stanovení J-R křivky lomové houževnatosti. Na **obr. 60** je uvedený souhrn grafických záznamů síla – posunutí pro jednotlivá naměřená tělesa. Z těchto záznamů byly vyhodnocené jednotlivé hodnoty J-integrálů, pro něž byly opticky změřené příslušné nárůsty tvárné trhliny Δa_i . Na **obr. 61** je stejně jako u PCC těles znázorněno změření lomové plochy pro vzorek 7 s vytvořeným rozdílovým kontrastem trhlin. Červená křivka znázorňuje délku nakmitané trhliny, žlutá křivka znázorňuje tvárný nárůst trhliny během zkoušky. Jejich rozdíl ku šířce tělesa je nárůstem trhliny Δa_i . Základní rozměry zkoušených těles s tvárnými nárůsty trhlin Δa_i a hodnotami J-integrálů jsou shrnuty v **tab. 20**.

Obr. 60 - Souhrn záznamů ze zkoušek lomové houževnatosti PKLST těles mat_2

X 7l-	W	В	B _N	J _{el}	$\mathbf{J}_{\mathbf{pl}}$	aO	a1	$\Delta \mathbf{a_i}$	J _{IC}
vzorek	[mm]	[mm]	[mm]	[kN/mm]	[kN/mm]	[mm]	[mm]	[mm]	[kN/m]
1	3,98	2,98	2,33	0,02	0,2	2,10	2,19	0,09	216,3
2	3,98	3,01	2,38	0,02	0,42	1,82	2,14	0,24	436,7
3	3,99	2,99	2,37	0,03	0,5	1,59	2,06	0,47	530,1
4	3,99	3,01	2,32	0,04	0,57	1,89	2,52	0,62	611,2
5	3,99	2,99	2,38	0,02	0,52	1,72	2,39	0,67	538,6
6	3,99	2,99	2,38	0,06	0,45	2,10	2,80	0,7	502,2
7	3,98	2,99	2,36	0,16	0,38	1,97	3,09	1,12	541,2

Tab. 20 - Souhrn hodnot J_{IC} a Δa_i pro PKLST tělesa mat_2

Obr. 61 – Měření lomové lochy PKLST vzorku 7 mat_2

Ze získaných dat je následně vytvořen graf závislosti J - Δa . Vytvořená J-R křivka lomové houževnatosti je zobrazena na **obr. 62**. Construction line je vytvořena na základě stejného předpisu, jako tomu bylo u 1T-CT těles. Stanovená provizorní hodnota J-integrálu je J_Q = 558,2 kN/m a tedy provizorní hodnota faktoru intenzity napětí je $K_Q = 360,6 MPa. m^{1/2}$. Tato hodnota se stává platnou hodnotou lomové houževnatosti při splnění řady podmínek dle zkušebního standardu ASTM E 1820 - 09. Vzhledem k překročení hodnoty J_{limit} stanovující horní mez naměřené hodnoty J-integrálu a hodnoty Δa_{max} stanovující maximální nárůst trhliny, nelze hodnotu J_Q brát jako platnou hodnotu lomové houževnatosti a tedy J_Q \neq J_{IC} a K_Q \neq K_{IC}.

Obr. 62 – J-R křivka lomové houževnatosti pro PKLST tělesa mat_2

9.3 Odhad referenční teploty T₀

Pro snazší nalezení referenční teploty lomové houževnatosti T₀ se využívá jejího odhadu vycházejícího ze zkoušek přechodové teploty vrubové houževnatosti. Na základě normy ASTM E 1921 – 10 [13], která se zabývá metodikami určováním referenční teploty, lze tuto teplotu zjistit pomocí korelace hodnot z měření vrubové houževnatosti vztahem (47). Standardní odchylka této korelace je \pm 13 °C. Hodnota TK_{28J} odpovídá teplotě, při níž je hodnota nárazové práce KV = 28 J. Na **obr. 63** je zobrazen graf závislosti nárazové práce na teplotě. Proložením naměřených hodnot regresivní křivkou a získáním jejího předpisu je získána konkrétní hodnota teploty TK_{28J} = -34,7 °C. Vztah (48) určuje finální hodnotu odhadu referenční teploty T_{0(est)}. Tato stanovená teplota slouží jako pomocný bod pro provedení prvních zkoušek lomové houževnatosti, které by měly proběhnout v blízkosti této teploty. Master křivka se následně upřesňuje pro splnění kritérií platnosti dle ASTM E 1921 - 10.

$$T_0 = TK_{28I} - 18 \,^{\circ}C \tag{47}$$

$$T_{0(est)} = -34, 7 - 18 = -52, 7 \ ^{\circ}C \tag{48}$$

Obr. 63 – Graf odhadu provizorní referenční teploty

10 Master křivka lomové houževnatosti (mat_1)

Stanovené hodnoty lomové houževnatosti K_{JC} jsou pro tělesa 1T-CT, PCC a PKLST přepočítány dle vztahu (**33**) v teoretické části na hodnoty K_{JC_1T} , které jsou poté využité v konstrukci Master křivky. Takto vyhodnocené hodnoty lomové houževnatosti musejí splňovat podmínku danou vztahem (**49**), který určuje platnost hodnot a vytváří teplotní okno platnosti. Hodnoty, které podmínku splňují, jsou označeny hodnotou $r_i = 1$. Neplatné hodnoty jsou označené $r_i = 0$ a pro konstrukci Master křivky jsou tyto hodnoty cenzurovány a nahrazeny odpovídající hodnotou $K_{JC(limit^{30})}$. V **tab. 21** je uvedený souhrn naměřených hodnot K_{JC} , jejich přepočtu dle statistického vlivu velikosti a označení platných a cenzurovaných dat.

Vzorek	Т	T-T ₀	K _{JC}	K _{JC_1T}	K _{JC_limit} ³⁰	
	[°C]	[K]	$[MPam^{1/2}]$	$[MPam^{1/2}]$	$[MPam^{1/2}]$	Γ _i
A-1	-25	40	122,63	122,12	230,07	1
A-2	-25	40	124,86	124,24	227,24	1
A-3	-35	30	150,87	150,09	227,94	1
A-4	-35	30	95,99	95,61	226,03	1
B-1	-30	35	125,03	124,51	224,72	1
B-2	-30	35	92,71	92,35	223,69	1
PCC_1	-50	15	163,03	133,21	130,36	0
PCC_2	-50	15	160,50	131,29	141,80	0
PCC_3	-50	15	91,46	76,61	133,50	1
PCC_4	-60	5	189,94	154,62	137,43	0
PCC_5	-60	5	174,52	142,36	138,14	0
PCC_6	-60	5	98,10	81,87	138,85	1
PCC_7	-70	-5	71,01	60,40	135,26	1
PCC_8	-70	-5	109,29	90,71	133,05	1
PCC_9	-75	-10	113,63	94,15	129,91	1
PCC_10	-75	-10	96,10	80,28	136,85	1
PCC_11	-80	-15	96,59	80,65	142,36	1
PCC_12	-80	-15	113,92	94,38	137,86	1
PCC_13	-80	-15	144,47	118,59	138,43	0
PCC_14	-80	-15	144,74	118,79	137,71	0
PKLST_1	-60	5	85,23	58,24	87,68	1
PKLST_2	-60	5	159,41	101,80	95,44	0
PKLST_3	-65	0	111,42	73,50	88,80	0
PKLST_4	-65	0	154,47	98,77	82,59	0
PKLST_5	-65	0	150,16	96,30	85,41	0
PKLST_6	-80	-15	81,19	55,87	93,56	1
PKLST_7	-80	-15	271,28	167,31	97,88	0
PKLST_8	-80	-15	155,37	99,36	92,07	0
PKLST_9	-85	-20	159,69	101,83	89,90	0
PKLST_10	-90	-25	144,98	93,27	89,90	0
PKLST_11	-90	-25	90,75	61,44	97,68	1
PKLST_12	-90	-25	89,16	60,54	89,24	1
PKLST_13	-95	-30	170,19	108,05	91,64	0

Tab. 21 – Vyhodnocení platnosti hodnot lomové houževnatosti

Západočeská univerzita v Plzni, Fakulta strojní, Bakalářská práce, a Vyhodnocování lomového chování ocelí na vzorcích malých rozměrů

$$K_{JC(limit30)} = \sqrt{\frac{E \cdot b_0 \cdot R_{p0,2}}{M \cdot (1 - 0, 3^2)}}$$
(49)

Hodnota referenční teploty byla stanovena pro jednotlivé typy zkušebních těles. V **tab. 22** je uvedený souhrnný přehled stanovených hodnot referenční teploty dle typu použitého tělesa, stanovené váhové faktory a rozdíly ve stanovených hodnotách oproti hodnotě stanovené ze všech zkušebních těles.

Těleso	Počet těles	T ₀	σ_{T0}	$\sum r_i \cdot n_i$	Rozdíl T ₀
		[°C]	[°C]		[°C]
Všechna (ALL)	33	-65	4,5	2,88	-
1T-CT	6	-41	10,6	1	24
PCC	14	-73	6,9	1,33	-8
PKLST	13	-51,8	7,5	0,56	13,2

Tab. 22 – Porovnání hodnot referenčních teplot dle typu tělesa

Z tabulky je zřejmé, že stanovené hodnoty referenčních teplot z 1T-CT a PCC těles splňují dle váhového faktoru platnost a hodnoty lze brát jako platné. Pro 1T-CT tělesa je stanovená hodnota referenční teploty $T_{0(1T-CT)} = -41 \,^{\circ}C$, pro PCC tělesa $T_{0(PCC)} = -73 \,^{\circ}C$. Referenční teplota vyhodnocená z měření těles PKLST má hodnotu $T_{0(PKLST)} = -51,8 \,^{\circ}C$. Avšak dle váhového faktoru takto stanovená hodnota nesplňuje platnost a lze jí tedy považovat pouze za provizorní hodnotu referenční teploty $T_{0Q(PKLST)}$.

Jednotlivé hodnoty lomových houževnatostí jsou zobrazeny na o**br. 64**, kde je zkonstruována Master křivka lomové houževnatosti ze všech naměřených těles. Podle této závislosti je hodnota referenční teploty stanovená ze sady 33 zkušebních těles přepočtených na standardních tělesa 1T-CT. Určená hodnota referenční teploty je $T_0 = -65 \,^{\circ}C$. Nejistota stanovení této hodnoty je v závislosti na počtu zkušebních těles určena jako $\sigma_{T0} = 4,5 \,^{\circ}C$.

Obr. 64 – Master křivka standardních 1T-CT těles

Kontrola platnosti takto stanovené hodnoty je provedena dle ASTM E 1921 - 10. V tab. 23. Jsou uvedeny teplotní rozsahy a pro ně jednotlivé váhové faktory. S užitím vztahu (49) je platnost referenční teploty ověřena následovně:

$(T - T_0)$	Počet pletných hodpot r.	Vábový faktor n	r. n.
[°C]	i ocet platifych nounot, fi	vanovy faktor, n _i	1 į •11į
(50 ÷ -14)	13	1/6	2,167
(-15 ÷ -35)	5	1/7	0,714
(-36 ÷ -50)	0	1/8	0

Tab. 23 – Souhrnná kvalifikace dat a platnosti referenční teploty

$$\sum r_i \cdot n_i = 2,88 \ge 1 \tag{50}$$

Na základě vyhodnocení vztahu (50) lze vidět, že byla splněna podmínka přípustného počtu zkušebních těles v rámci teplotního rozsahu. Hodnota stanovené referenční teploty tak může být vzata jako platná hodnota a je označena jako hodnota $T_0 = -65 \,^{\circ}C$. Toto označení vyjadřuje referenční teplotu, která splňuje veškeré požadavky dle standardu ASTM E 1921 - 10.

Při porovnání hodnot referenčních teplot lze vidět, že stanovená hodnota $T_{0(1T-CT)}$ je o 24 °C vyšší oproti $T_{0(ALL)}$. Referenční teplota $T_{0(PCC)}$ je v souladu s výsledky zjištěnými v teoretické části a oproti $T_{0(ALL)}$ nižší o 8 °C. Stanovená referenční teplota $T_{0Q(PKLST)}$ je naopak oproti předpokladům vycházejícím z odborné literatury o 13,2 °C vyšší oproti hodnotě $T_{0(ALL)}$. Dle stanovené hodnoty $T_{0(1T-CT)}$ byly zkoušky PKLST těles prováděny od zkušební teploty -60 °C s cílem dodržení doporučeného zmenšeného teplotního okénka 50 °C \leq T – T₀ \leq -20 °C. Nicméně počet 13 PKLST těles není dostatečný ke stanovení platné hodnoty referenční teploty. Zkušebních těles bylo vyrobeno celkem 18, vzhledem k neúspěšnému získání několika zkušebních záznamů a technickým problémům, které zapříčinily znehodnocení zkušebních těles, bylo úspěšně vyzkoušeno a vyhodnoceno pouze 13 těles. S ohledem na zvyšující se rozptyl naměřených hodnot se snižující se velikostí zkušebního tělesa roste počet požadovaných zkoušek. Lze tedy doporučit provedení dodatečných zkoušek PKLST těles v doporučeném teplotním pásmu s dostatečným množstvím platných hodnot a znovu vyhodnocení referenční teploty.

11 Porovnání J-R křivek lomové houževnatosti (mat_2)

J-R křivky lomové houževnatosti mat_2 pro tělesa typu 1T-CT, PCC a PKLST stanovené v předchozích kapitolách jsou zobrazené společně na **obr. 65** pro porovnání jejich průběhů a vyhodnocených hodnot lomových houževnatostí.

Jak je zřejmé i z číselného porovnání uvedeného v **tab. 24** vyhodnocené hodnoty J_Q, resp. K_Q jsou pro zkoušené typy vzorků a použité zkušební metody v dobré shodě. Stanovená hodnota parametru J_Q byla na základě výsledků z měření standardních 1T-CT těles metodou měření poddajnosti rovna J_{Q(CT)} = 611 kN/m. Tělesa PCC a PKLST byla zkoušena metodou multiple specimen a stanovené hodnoty parametrů jsou $J_{Q(PCC)} = 573 kN/m$ a $J_{Q(PKLST)} = 557 kN/m$. Z porovnání samotných J-R křivek je zřejmé, že průběhy pro tělesa typu PCC a PKLST nevykazovaly tak značný růst hodnot J-integrálů s rostoucím přírůstkem trhliny Δa . I přesto bylo dosaženo dobré shody vyhodnocených parametrů J_Q, jelikož výraznější rozdíly v průbězích J-R křivek lze pozorovat pro hodnoty J-integrálů vyšší než stanovené J_Q.

140.24 Shinuti Vysicuku J-K kiivek inat_2							
Tělaga	$\mathbf{J}_{\mathbf{Q}}$	K _Q					
I eleso	[kN/m]	$[MPa.m^{1/2}]$					
CT-1	580	367					
CT-2	604	375					
CT-3	611	377					
Průměr hodnot CT těles	598	369					
PCC	573	349					
PKLST	557	360					

Tab. 24 – Shrnutí výsledků J-R křivek mat_2

12 Vyhodnocení experimentálního programu

Cílem této Bakalářské práce bylo nalézt a vyhodnotit rozdíly mezi materiálovými charakteristikami standardních a miniaturních zkušebních vzorků. Zkoušky probíhaly na dvou experimentálních materiálech. Prvním byla ocel GOST 15Ch2NMFA označovaná jako mat_1 a druhým byla ocel X5Cr-Ni18-10 značena jako mat_2.

V rámci zkoušek tahem bylo pro mat_1 naměřeno tří standardních a 5 miniaturizovaných těles při teplotě 23 °C. Hodnota meze pevnosti a kluzu materiálu byla pro standardní a M-TT vzorky stanovena v dobré shodě. Její průměrná hodnota byla 648 ± 10MPa pro standardní vzorky a 655 ± 7,5 MPa pro miniaturní vzorky. Mez kluzu byla pro oba typy vzorků hodnocena jako $R_{p0,2}$. Průměrná hodnota pro standardní vzorky byla 502 ± 17,4 *MPa*. U M-TT vzorků byla průměrná hodnota meze kluzu 503 ± 10,5 MPa. Hodnoty tažností byly pro oba typy vzorků naměřené v relativně dobré shodě i bez přepočtu hodnot miniaturních těles.

Pro mat_2 byly provedeny zkoušky tahem ve stejném rozsahu jako pro mat_1. Shoda mezi výsledky standardních a miniaturních vzorků byla menší než pro mat_1 zejména pro mez pevnosti a mez kluzu. Mez pevnosti u standardních vzorků dosahovala průměrné hodnoty 657 \pm 5,5 MPa, zatímco u M-TT těles 680 \pm 9 MPa. Průměrná hodnota meze kluzu pro standardní vzorky byla 316 \pm 22,5 MPa, pro vzorky M-TT byla 340 \pm 8,9 MPa. Výraznější rozdíly mohly být způsobeny morfologií materiálu, velikostí zrn základní matrice, nebo rozdílným deformačním chováním základního materiálu v závislosti na objemu materiálu v průřezu vzorku. Hodnoty tažností byly nicméně naměřené v dobré shodě pro oba typy vzorků. I přes výraznější rozdíly mezi hodnotami meze kluzu a meze pevnosti jsou zřejmé v určitých případech značně menší směrodatné odchylky pro sady miniaturních zkušebních těles, což značí dobrou reprodukovatelnost naměřených hodnot.

Zkoušky rázem v ohybu mat_1 byly provedeny na 16 standardních Charpy tělesech s V vrubem a 21 miniaturních Charpy tělesech typu KLST. Byla stanovena přechodová křivka z měření jak standardních tak miniaturních vzorků a byla stanovena přechodová teplota FATT₅₀ z výpočtu podílu křehkého lomu z instrumentovaných záznamů zkoušek a přímého měření lomové plochy vzorků po přeražení. Přechodová teplota pro standardní vzorky byla určena hodnotou $FATT_{50STANDARD1} = 14$, °C a pro miniaturní vzorky $FATT_{50MINI1} = -52$ °C. Byl pozorován posun přechodové teploty k nižším teplotám vlivem zmenšení rozměrů zkušebního tělesa. Podle vztahu z práce [26] byl tento posun stanoven vztahem z rovnice (**41**) $FATT_{50STANDARD1} = FATT_{50MINI1} + 66$ °C.

Rázové zkoušky mat_2 byly provedeny na 10 standardních Charpy tělesech a 10 miniaturizovaných tělesech typu KLST. Vzhledem k vysoké houževnatosti, kterou se mat_2 vyznačuje a posunu tranzitní křivky směrem k nižším teplotám při užití KLST těles, materiál vykazoval značně menší pokles houževnatosti v rozmezí zkušebních teplot. Přičemž tento pokles byl pozorovatelný pouze z instrumentovaných záznamů. Číselné hodnoty houževnatosti nevykazovaly sestupnou tendenci a větší část hodnot rázových energií překročila limit počáteční energie kladiva 12 J. Hodnoty tedy byly označené jako přibližné. Řešením se v tomto ohledu nabízí použití KLST těles s bočními vruby. Tyto vzorky by dle práce [20], uvedené v teoretické části, měly vykazovat polohu tranzitní křivky s razantně menším posunem k nižším teplotám a vzorky by tedy měly vykazovat větší pokles houževnatosti v rozsahu zkušebních teplot. To by zjednoznačnilo vyhodnocení instrumentovaných záznamů, které nevykazují výraznější změny průběhů v rozmezí teplot.

Zmenšení průřezu bočními vruby sníží navíc energii potřebnou k přeražení vzorků a bude splněna podmínka pro platnost hodnot, které byly pouze přibližné. Vzhledem k charakteru ocele vykazovaly všechny lomové plochy vzorků, bez ohledu na použitý typ, trans-krystalický tvárný lom. Z tohoto důvodu přímé měření lomových ploch pro stanovení podílu křehkého lomu nebylo využitelné a změna houževnatosti byla vyhodnocena analýzou pořízených instrumentovaných záznamů zkoušek. Na základě jejich vyhodnocení byla přechodová teplota standardních vzorků stanovena hodnotou $FATT_{50STANDARD1} = -204 \,^{\circ}C$. Hodnota přechodové teploty KLST těles byla vzhledem ke své očekávané poloze mimo oblast měřených dat vyhodnocena extrapolací dat jako odhadovaná teplota $FATT50_{MINI2} = -270 \,^{\circ}C$. Posun přechodové mat 2 teploty v rámci sníženého byl pro průřezu vyhodnocen jako $FATT_{50STANDARD2} = FATT_{50MINI2} + 66 \,^{\circ}C.$

Ze závislosti hodnot nárazové práce na teplotě standardních vzorků mat_1 byl stanoven odhad referenční teploty lomové houževnatosti $T_{0(est)} = -54,7$ °C. Tento odhad referenční teploty pomohl při stanovení zkušebních teplot při zkouškách lomových houževnatostí s cílem stanovení Master křivky lomové houževnatosti mat_1.

Byly provedeny zkoušky 1T-CT těles pro mat_1. Zkoušeno bylo celkem 6 těles za teplot -25 °C, -30 °C a – 35 °C, vždy 2 tělesa za jedné teploty. I přes zcela křehké porušení zkušebních vzorků byly hodnoty lomových houževnatostí vyhodnocené dle přístupu elasto-plastické lomové mechaniky jako parametr K_{JC}. A to s ohledem na jejich použití při konstrukci Master křivky. Hodnoty houževnatostí byly následně přepočteny dle vzorce (**33**), uvedeného v teoretické části a byla zkontrolována jejich platnost dle vzorce (**49**). Z vyhodnocených hodnot byla stanovená hodnota referenční teploty jako $T_{0(1T-CT)} = -41$ °C, vzhledem k splnění podmínky počtu těles v rámci zkušebního rozsahu teplot. Nejistota stanovení této hodnoty je v závislosti na počtu zkušebních těles určena jako $\sigma_{T0} = 10,6$ °C.

Dále byly provedeny zkoušky 14 těles PCC a 13 PKLST těles v teplotním pásmu snížených teplot. Vyhodnocené hodnoty K_{JC} byly užity v metodice Master křivky. Pro oba typy těles byla stanovená hodnota referenční teploty. Pro PCC byla hodnota referenční teploty $T_{0(PCC)} = -73$ °C, pro PKLST tělesa $T_{0Q(PKLST)} = -52$ °C. Byla také stanovená hodnota referenční teploty ze všech 33 zkušebních těles, jejíž hodnota je $T_{0(ALL)} = -65$ °C. Stanovené referenční teploty byly následně vzájemně porovnány. Tělesa PCC vykazovaly očekávaný teplotní posun referenční teploty od $T_{0(ALL)}$ o -8 °C. Referenční teplota PKLST těles nesplňuje platnost dle standardu ASTM E 1921 - 10 a nelze jí tedy brát jako platnou hodnotu. Stanovená teplota navíc vykazuje vyšší hodnotu oproti předpokladu z odborné literatury. Příčinou takto zvýšené hodnoty je zřejmě nesplnění kritérií platnosti dle váhového faktoru. Dle odborné literatury není počet 13 PKLST těles dostatečný ke stanovení platné hodnoty referenční teploty. Zkušebních těles bylo vyrobeno celkem 18, vzhledem k neúspěšnému získání několika zkušebních záznamů a technickým problémům bylo úspěšně vyzkoušeno a vyhodnoceno pouze 13 těles.

Pro mat_2 byly provedeny zkoušky tří 1T-CT těles za pokojové teploty pro stanovení J-R křivky lomové houževnatosti metodou měření poddajnosti. Byla vyhodnocena průměrná provizorní hodnota parametru $J_{Q(CT)} = 598 \ kN/m$ a faktoru intenzity napětí $K_{Q(CT)} = 369 \ MPa. m^{1/2}$.

J-R křivky lomové houževnatosti byly také stanovené z měření šesti PCC a sedmi PKLST těles metodou multiple specimen. Vzhledem k nesplnění veškerých kritérií platnosti byly pro PCC tělesa stanoveny provizorní hodnoty parametru $J_{Q(PCC)} = 573 \ kN/m \ a \ K_{Q(PCC)} = 349 \ MPa. m^{1/2}.$

Pro PKLST tělesa hodnoty parametrů činily $J_{Q(PKLST)} = 557 kN/m$ a $K_{Q(PKLST)} = 360 MPa. m^{1/2}$. Vyhodnocené parametry z rozdílných těles a zkušebních postupů byly v dobré shodě. Z porovnání samotných křivkových průběhů je zřejmá jejich dobrá shoda do stanovené hodnoty J_Q, nad touto hodnotou vykazují J-R křivky pro 1T-CT vzorky odklon ke značně vyšším hodnotám oproti křivkám těles PCC a PKLST, jejichž průběhy nemají tak výrazný rostoucí charakter.

13 Závěr

V rámci této Bakalářské práce byly hodnoceny vlivy velikostí těles na lomové chování materiálů. Testovanými materiály byly nízkolegovaná žáruvzdorná feritickomartenzitická ocel s označením dle ruské normy GOST 15Ch2NMFA (mat_1) užívaná na tlakové nádoby jaderných zařízení a Cr-Ni austenitická ocel odolná korozi značena dle evropské normy EN X5CrNi18-10 (mat_2).

Provedené zkoušky materiálu byly zkoušky tahem, zkoušky rázem v ohybu a zkoušky lomové houževnatosti, Charakteristiky, které se vyhodnocovaly v rámci těchto zkoušek, byly R_m , $Rp_{0,2}$, A, Z, KV, FATT₅₀, K_{IC} a J_{IC} , T_0 .

V rámci zkoušek tahem byly pro každý materiál zkoušeny 3 standardní vzorky a 5 miniaturních vzorků. Získané charakteristiky byly v dobré shodě a to i při porovnání tažností bez přepočtu jejích hodnot u miniaturních těles. Vzhledem k použití M-TT vzorků, které poměrově byly svými rozměry standardním vzorkům podobnější než M-TT vzorky s geometrií odvozenou od těles pro zkoušky SPT, nebyly tyto přepočty tažností potřebné. U zkoušek miniaturních těles byla pozorována dobrá reprodukovatelnost výsledků s obvykle menšími hodnotami směrodatných odchylek než u vzorků standardních velikostí.

V rámci určení přechodové teploty $FATT_{50}$ bylo zkoušeno 16 standardních Charpy těles s V vrubem a 21 KLST těles s V vrubem pro mat_1. Pro mat_2 bylo zkoušeno 10 standardních těles a 10 KLST těles opět s V vrubem. Z vyhodnocení výsledných teplot $FATT_{50}$ pro standardní a miniaturizované vzorky byly stanovené teplotní posuny v závislosti na změně velikosti zkušebního tělesa, které byly v souladu s výsledky publikovanými v odborné literatuře. Z výsledků průběhu hodnot nárazové práce v závislosti na teplotě byl z hodnot standardních Charpy těles mat_1 stanoven odhad referenční teploty materiálu $T_{0(est)}$.

Pro mat 1 proběhly zkoušky lomové houževnatosti na vzorcích typu 1T-CT, PCC a PKLST. Materiál se za těchto teplot porušoval výhradně křehce a lomová houževnatost byla stanovena z grafické závislosti působící síly na rozevření vrubu jako K_{IIC}. Z vyhodnocených hodnot byly stanovené hodnoty referenčních teplot ze zkoušek jednotlivých těles a referenční teplota pro celou sadu zkušebních těles. Při porovnání hodnot referenčních teplot lze vidět, že stanovená hodnota T_{0(1T-CT)} je o 24 °C vyšší oproti T_{0(ALL)}. Referenční teplota T_{0(PCC)} je v souladu s výsledky zjištěnými v teoretické části a oproti $T_{0(ALL)}$ je nižší o 8 °C. Stanovená referenční teplota $T_{00(PKLST)}$ je naopak vyšší o 13 °C. Příčinou takto zvýšené hodnoty je zřejmě nesplnění kritérií platnosti dle váhového faktoru. Dle odborné literatury není počet 13 PKLST těles dostatečný ke stanovení platné hodnoty referenční teploty. S ohledem na zvyšující se rozptyl naměřených hodnot se snižující se velikostí zkušebního tělesa roste počet požadovaných zkoušek. Zkušebních těles bylo vyrobeno celkem 18, vzhledem k neúspěšnému získání několika zkušebních záznamů a technickým problémům bylo úspěšně vyzkoušeno a vyhodnoceno pouze 13 těles. Lze tedy doporučit provedení dodatečných zkoušek PKLST těles s dostatečným množstvím platných hodnot a znovu vyhodnocení referenční teploty.

Zkoušky lomové houževnatosti pro mat_2 byly provedeny na tělesech 1T-CT metodou unloading compliance a na PCC a PKLST tělesech metodou multiple specimen. Pro uvedené metody bylo docíleno dobré shody vyhodnocených provizorních hodnot J-integrálů J_Q a provizorních hodnot lomových houževnatostí K_Q . Porovnáním křivkových průběhů byla pozorována dobrá shoda v průbězích do stanovené hodnoty J_Q . Po dosažení této hodnoty vykazovaly křivky 1T-CT těles rostoucí tendenci a dosahovaly vyšších hodnot oproti závislostem pro PCC a PKLST tělesa, jejichž křivkové průběhy byly značně plošší a nedosahovaly takového růstu.
Závěrem lze konstatovat, že mechanickými zkouškami tahem, vrubové houževnatosti a lomové houževnatosti bylo docíleno shodných nebo očekávaných výsledků mezi standardními a miniaturizovanými vzorky a obecně lze tedy říci, že zkouškami miniaturizovaných vzorků lze získat hodnoty ve velmi dobré shodě se vzorky standardních rozměrů.

14 Seznam použité literatury

- [1] ČSN EN ISO 6892-1: Kovové materiály zkoušením tahem Část 1: Zkušební metoda za pokojové teploty, únor 2010
- [2] ČSN ISO 148-1: Kovové materiály Zkouška rázem v ohybu metodou Charpy -Část 1: Zkušební metoda
- [3] KŘÍŽ, A., Podklady pro cvičení ze SMA, Zkoušky založené na principu šíření defektů; Zkoušky lomové houževnatosti, [online], [cit. 2015-11-29]. Dostupné z: <u>http://www.ateam.zcu.cz/download/Zk sireni trhlin%2009_10.pdf</u>
- [4] SKÁLOVÁ, J., KOVAŘÍK, R., BENEDIKT, V., Základní zkoušky kovových materiálů, ZČU Plzeň, 3. vydání, ISBN 80 – 7082 – 623 – 1
- [5] ČSN EN ISO 14556: Ocel Zkouška rázem v ohybu na kyvadlovém kladivu tyčí Charpy s V-vrubem Instrumentovaná zkušební metoda, Červen 2001
- [6] KONOPÍK, P., Kompatibilita výsledků hodnocení mechanických vlastností konstrukčních materiálů, Diplomová práce, ZČU Plzeň, 2014
- [7] KÁLNÁ, K., Úvod do lomovej mechaniky. Bratislava: Výskumný ústav zváračský, 1999. ISBN 80-88734-23-1.
- [8] ZHIGANG, S., Engineering Sciences 247: Fracture Mechanics: The J integral. IMechanica [online]. 2014 [cit. 2015-11-29]. Dostupné z: http://imechanica.org/files/J%20integral%202014%2004%2006_0.pdf
- [9] ASTM Standard E 1820 09, Standard Test Method for Measurement of Fracture Toughness, 2009
- [10] VLK, M. a Z. FLORIAN. MEZNÍ STAVY A SPOLEHLIVOST [online]. Brno, 2007 [cit. 2015-11-29]. Dostupné z: http://www.zam.fme.vutbr.cz/~vlk/meznistavy.pdf
- [11] VLACH, B., Materiály pro studenty, Elasticko-plastická lomová mechanika a měření lomové houževnatosti, VUT Brno, [online], [cit. 2015-11-29]. www.zam.fme.vutbr.cz/~vlach/6ms/prednasky/Hou4.doc
- [12] JURÁŠEK, L. a HOLZMANN, M., Princip koncepce Master křivky, její určování a aplikace. Konstrukce, ISSN 1803-8433 [online], [cit. 2015-11-29]. Dostupné z: <u>http://www.konstrukce.cz/clanek/princip-koncepce-master-krivkyjeji-urcovani-a-aplikace/</u>
- [13] ASTM Standard E 1921 10, Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range, 2010
- [14] Výsledky prezentované na ASME Pressure Vessels and Piping Conference, July 19–23, 2015, Boston
- [15] SOKOLOV, M. A. (ed.), LUCON, E (ed.). Small Specimen Test Techniques: 6th Volume. West Conshohocken: ASTM INTERNACIONAL, 2015. ISBN 978-0-8031-7597-6.
- [16] COMTES FHT Interní předpis ŘD 2/30 Postup zkoušení mikro-tahových vzorků
- [17] ŠINDELÁŘOVÁ, M. Faktory ovlivňující výsledky zkoušky tahem na miniaturních vzorcích, Bakalářská práce, ZČU Plzeň, 2015

- [18] ČSN EN ISO 14556 ZMĚNA A1 : Ocel Zkouška rázem v ohybu na kyvadlovém kladivu tyčí Charpy s V-vrubem – Instrumentovaná zkušební metoda, Únor 2007
- [19] SCIBETTA, M., Lucon, E., van Walle, E. Optimum use of broken Charpy specimen from surveillance programs for the application of the master curve approach. International Journal of Fracture, 2002, roč. 116, č. 3, s. 231-244.
- [20] MANAHAN, Sr., M. P., Miniaturized Charpy Test for Reactor Pressure Vessel Embrittlement Characterization, Effects of Radiation on Materials: 18th International Symposium, ASTM STP 1325, Nanstad, R. K., Hamilton, M.L., Garner, F.A., and Kumar, A.S., Eds., American Society for Testing and Materials, 1997, [cit. 2015-11-29]. Dostupné z: <u>https://static1.squarespace.com/static/5710e44ccf80a10d47b387e3/t/571e7e38a3</u> <u>360c01dc84b8e2/1461616185022/Miniaturized+Charpy+Test+for+Reactor+Pre</u> <u>ssure+Vessel+Embrittlement+Characterization.pdf</u>
- [21] Wallin, K., Planman, T., Valo, M., Rintamaa, R. Applicability of miniature size bend specimen to determine the master curve reference temperature To. *Enginnering Fracture Mechanics*, 2001, roč. 68, č. 11, s. 1265-1296.
- [22] Holzmann, M., Dlouhý, I., Brumovský, M. Measurement of fracture toughness transitiv behaviour of Cr-Ni-Mo-V pressure vessel steel using pre-cracked Charpy specimens. *International Journal of Pressure Vessels and Piping*, 1999, roč. 76, č. 9, s. 591-598.
- [23] Wallin, K., Valo, M., Planman, T., & Rintamaa, R. (1997). Applicability of smaller than Charpy specimens for fracture toughness characterization with the VTT method (IWG-LMNPP--97/2). International Atomic Energy Agency (IAEA)
- [24] Brynda J., Cerny V., Konop R., VVER REACTOR PRESSURE VESSEL MATERIALS DATABASE AND MONITORING OF AGEING AND LIFETIME EVALUATION, 2002, Varna
- [25] PROCHÁZKA, R., J. DŽUGAN a M. KÖVER. Miniature specimen tensile testing of AZ31 alloy processed by ECAP. Archives of Materials Science and Engineering. World Academy of Materials and Manufacturing Engineering, 2015, 76(2), 134-139.
- [26] Sokolov, M., A., Nanstad R, K., On impact testing of subsize charpy v-notch type specimens, Effects of Radiation on Materials, 17th International Symposium, p406, August 1996, ISBN: 0-8031-2016-8, ISSN: 1050-7515