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Abstract

Magnetism is an important phenomena that plays a significant role in our daily life

through its numerous technological applications. In this thesis we focus our atten-

tion on features which are important for one specific area of applications, namely,

the memory technology. We investigate these features on the case of FePt — a

layered material with potential applications in next generation ultrahigh-density

perpendicular magnetic recording media.

Two aspects of FePt magnetism have a specific role in its technological appli-

cations. These are (i) magnetocrystalline anisotropy and (ii) influence of disorder

on magnetic properties. Theoretical modelling can provide an insight into related

processes and phenomena that can be used for more efficient targeting of the exper-

imental and technological research aimed at exploiting and amending properties of

this material. For this purpose, we employed quantum-mechanical calculations of

electronic and magnetic properties based on the density functional theory (DFT).

To get accurate and reliable results, we used two different computational meth-

ods: the full-potential linearized augmented plane wave (FLAPW) method and the

full-potential Korringa-Kohn-Rostoker (KKR) Green function method.

Magnetocrystalline anisotropy (MCA) is a crucial property for applications of

magnetic materials in design of computer memories. A good material for data

storage technology (such as read–and–write heads) should possess a large MCA

energy. Evaluating the MCA energy consists in determining the total energies for

two magnetization directions and subtracting them. The mechanism behind the

MCA is the spin-orbit coupling (SOC), i.e., a coupling between the spin of the

electron and its orbital motion. This is a relativistic effect.

Quantum-mechanical MCA energy calculations are very sensitive and challeng-

ing. The reason for this is that the total energy and the MCA energy can differ

by about eight or nine orders of magnitude, which means that one has to achieve

a very high accuracy of the calculations. The values of the MCA energy of FePt

obtained by us via both methods (FLAPW and KKR) are in a good agreement with

each other. As the calculated MCA energy significantly differs from experiment, it

is clear that many-body effects beyond the local density approximation to the DFT

are essential in this regard.

We found that it is not really important whether relativistic effects for FePt are

accounted for by solving the fully relativistic Dirac equation or whether the SOC is

treated as a correction to the solution of the (scalar-relativistic) Schrödinger equa-

tion. From our analysis of the dependence of the MCA energy on the magnetization

angle and on the SOC strength it follows that the main mechanism of the MCA in

FePt can be described by accounting for the SOC within second order perturbation

theory. However, a distinct contribution to the MCA not accountable for by second
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order perturbation theory is present as well.

In real materials there is always some disorder present. This gets important

especially at high temperatures. Presence of disorder influences the properties of

materials — sometimes, very significantly. To gain insight into how the disorder af-

fects especially the magnetic properties of FePt and related systems, we investigated

the local aspects of magnetism of disordered FePt. We employed and compared two

approaches of accounting for disorder in quantum mechanical calculations of ma-

terials properties. The first approach is the supercell technique: the disorder is

simulated by considering a larger (super)cell in which the atoms occur in many dif-

ferent local environments. The second approach we used simulates the disorder by

introducing an effective medium, i.e., it is a mean-field approach. A mean-field tech-

nique widely used in studying substitutionally disordered systems is the coherent

potential approximation (CPA).

The focus of our research on disordered FePt was on the trends of the spin and

orbital magnetic moments with chemical composition of the nearest neighbourhood

and with the bond lengths around the Fe and Pt atoms. Small but distinct difference

between average magnetic moments obtained when using the supercells and when

relying on the the CPA is identified in this thesis. We are able to link this difference

to the neglect of the Madelung potential in the CPA.

One of measures of short range order effects in alloys is disorder-induced broad-

ening of core levels binding energies. A multitude of local environments leads to

coexistence of several core levels of the same type. Corresponding x-ray photoelec-

tron spectroscopy core level widths in alloys are thus larger than in single-element

systems. We evaluated the disorder-induced broadening of core levels and found

that this broadening is practically the same for all deep core levels. This indicates

that the broadening is dominated by local variations of the Madelung potential.
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Abstrakt

Magnetismus je d̊uležitý jev, který hraje v našich životech významnou roli prostřed-

nictv́ım mnoha technologických aplikaćı. V této dizertaci soustřed́ıme pozornost na

vlastnosti, které jsou d̊uležité pro aplikace v jedné konkrétńı oblasti, a to poč́ıtačo-

vých pamět́ı. Tyto vlastnosti budeme zkoumat na př́ıpadě FePt, což je vrstevnatý

materiál s potenciálńımi aplikacemi v oblasti vysokohustotńıho kolmého magnet-

ického zaznamováńı.

V technologických aplikaćıch FePt hraj́ı zvláštńı roli dva aspekty magnetismu.

Jednak je to magnetokrystalická anizotropie, jednak je to neuspořádanost a jej́ı

vliv na magnetické vlastnosti. Teoretické modelováńı může poskytnout vhled do

souvisej́ıćıch proces̊u a jev̊u tak, aby bylo možné lépe zaćılit experimentálńı a tech-

nologický výzkum směřuj́ıćı k využ́ıváńı a ovlivnňováńı vlastnost́ı tohoto materiálu.

Pro tento účel jsme využili kvantově-mechanické výpočty elektronických a magnet-

ických vlastnost́ı oṕıraj́ıćı se o teorii funkcionálu hustoty (DFT). Abychom źıskali

přesné a spolehlivé výsledky, využili jsme dvou výpočetńıch metod: linearizovanou

metodu napojených vln v úplném potenciálu (FLAPW) a metodu Korringy, Kohna

a Rostokera využ́ıvaj́ıćı Greenovy funkce v úplném potenciálu (KKR).

Magnetokrystalická anizotropie (MCA) je kĺıčovou vlastnost́ı z hlediska aplikaćı

v oblasti poč́ıtačových pamět́ı. Materiál vhodný pro technologické použit́ı v oblasti

uchováváńı dat (jako např. pro čtećı a zapisovaćı hlavy) by měl mı́t velkou MCA

energii. Výpočet MCA energie spoč́ıvá ve výpočtu totálńıch energíı pro dva r̊uzné

směry magnetizace a v jejich vzájemném odečteńı. Mechanismem zp̊usobuj́ıćım

MCA je spin-orbitálńı vazba (SOC), jež spoč́ıvá v interakci mezi spinem elektronu

a jeho orbitálńım pohybem. Jedná se o relativistický jev.

Kvantově-mechanické výpočty MCA energie jsou velmi citlivé a náročné. Důvo-

dem pro to je, že totálńı energie a MCA energie se navzájem lǐśı o osm až devět řád̊u,

z čehož vyplývá nutnost provést výpočty skutečně s vysokou přesnost́ı. Hodnoty

MCA energie, které jsme źıskali za použit́ı obou metod (FLAPW a KKR) jsou

navzájem v dobré shodě. Jelikož vypočtená hodnota MCA energie pro FePt se

významně lǐśı od hodnoty experimentálńı, je zřejmé, že významnou roli zde hraj́ı

mnohačásticové jevy, které již nelze v rámci DFT popsat pomoćı aproximace lokálńı

hustoty.

Zjistili jsme, že v př́ıpadě FePt neńı d̊uležité, zda jsou relativistické efekty

započteny řešeńım plně relativistické Diracovy rovnice nebo zda je SOC vazba po-

jata jako korekce k řešeńı (skalárně-relativistické) Schrödingerovy rovnice. Z naš́ı

analýzy závislosti MCA energie na úhlu magnetizace a na śıle SOC vazby vyplývá,

že mechanismus MCA u FePt může být v zásadě popsán t́ım, že se SOC vazba

započtě v rámci druhého řádu poruchové teorie. Nicméně existuje malý leč dobře

identifikovatelný př́ıspěvek k MCA, který t́ımto zp̊usobem popsat nelze.
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Reálné materiály vždy obsahuj́ı určitou neuspořádanost. Jej́ı význam vzr̊ustá

při vysokých teplotách. Př́ıtomnost neuspořádanosti ovlivňuje vlastnosti materiál̊u,

a to někdy velmi podstatně. Abychom źıskali vhled do toho, jak neuspořádanost

ovlivňuje zejména magnetické vlastnosti FePt a př́ıbuzných systémů, studovali jsme

lokálńı aspekty magnetismu neuspořádaného FePt. Použili a porovnali jsme dva

př́ıstupy jak zahrnout neuspořádanost do kvantově-mechanických výpočt̊u vlastnost́ı

materiál̊u. Za prvé je to supercelová metoda: neuspořádanost je simulována pomoćı

velké supercely, v ńıž se atomy vyskytuj́ı v mnoha r̊uzných lokálńıch konfiguraćıch.

Za druhé je to metoda středńıho pole, kdy je zavedeno efektivńı médium. Metodou

tohoto typu, která je hojně využ́ıvaná při studiu substitučńıch slitin, je aproximace

koheretńım potenciálem (CPA).

Při studiu neuspořádaného FePt jsme kladli d̊uraz na to, jak spinové a or-

bitálńı magnetické momenty záviśı na chemickém složeńı nejbližš́ıho okoĺı a na

vzdálenostech mezi Fe a Pt atomy. Zjistili jsme malý leč dobře patrný rozd́ıl mezi

hodnotami pr̊uměrných magnetických moment̊u obdržených pomoćı metody super-

cel a pomoćı CPA. Tento rozd́ıl můžeme přǐradit tomu, že v CPA výpočtech je

ignorován Madelung̊uv př́ıspěvek k potenciálu.

Jedńım ze zp̊usob̊u jak kvantifikovat vliv lokálńıho uspořádáńı na vlastnosti slitin

je analyzovat rozš́ı̌reńı vnitřńıch hladin vlivem neuspořádanosti. Koexistence mnoha

r̊uzných lokálńıch konfiguraćı totiž vede ke koexistenci v́ıcera vnitřńıch hladin. Š́ı̌rka

odpov́ıdaj́ıćıch spektroskopických čar je tud́ıž větš́ı pro atomy ve slitinách než pro

atomy v čistých kovech. Spočetli jsme toto rozš́ı̌reńı spektrálńıch čar pro neuspo-

řádané FePt. Zjistili jsme, že toto rozš́ı̌reńı je prakticky stejné pro všechny vnitřńı

hladiny. To ukazuje, že rozš́ı̌reńı čar vlivem neuspořádanosti je zapř́ıčiněno předevš́ım

lokálńımi fluktuacemi Madelungova potenciálu.
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Chapter 1

Introduction

The theoretical prediction of crystal structure and properties are very important

for getting information on its structure stability, electronic structure, spectroscopic

and magnetic properties. There are many program packages which calculate these

properties via ab initio calculations. Many physical properties of the material are de-

termined from the electronic structure. The electronic structure can be investigated

by ab initio calculations, that means starting from fundamental quantum theory.

The input data in the form of structural information is employed and the calcula-

tions are performed within the framework of the density functional theory in which

the complex many-body interaction of all electrons is replaced by an equivalent but

simpler problem of a single electron moving in an effective potential [1, 2, 3]. These

calculations are typically performed for zero temperature (0 K), but the obtained

results establish the basis for understanding the finite-temperature properties as well

[4].

Magnetism is a very interesting and dynamic field. Current society uses many

applications based on this phenomena. The areas of its application are broad. It

ranges from power generation to communication, transportation, security, informa-

tion storage and many other aspects of our day-to-day life. For example electric

motors and generators are made from the combination of electromagnet and a per-

manent magnet: a generator converts mechanical energy into electric energy by

moving a conductor through a magnetic field. The electromagnet in cathode ray

tube is used to guide electrons to the screen of televisions and computer monitors.

Magnetic strip is also used in credit, debit, and automatic teller machine (ATM)

cards. High field superconducting magnets provide the magnetic field in magnetic

resonance imaging (MRI) devices that are now used extensively in hospitals and

medical centers.

Another area of applications of magnetism include magnetic recording and stor-

age devices in computers, and in audio and video systems. Magnetic storage devices

1
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work on the principle of two stable magnetic states represented by the 0 and 1 in

the binary number system. Floppy disks have dozens of tracks on which data can

be digitally written in or stored by means of a write-head and then accessed or read

by means of a read-head. A write-head provides a strong local magnetic field to the

region through which the storage track of the disk is passed. The read-head senses

stray magnetic flux from the storage track of the disk as it passes over the head.

Another example of digital magnetic storage and reading is the magnetic strip on

the back of plastic debit and credit cards. The magnetic strip contains identification

data which can be accessed through, for example, an ATM. In this thesis we deal

with specific aspects of the memory technology.

In recent years, the growth in the subsequent data storage requirements and

production of digital data have grown considerably (as demonstrated by the graph

in Fig. 1.1). In 2002, up to 92.0 percent of all latest digital information was stored

on magnetic media [5]. New technologies have been introduced by the data storage

industry to meet growing demands for greater than ever data volumes. Record-

able CDs and DVDs, digital video tapes and high volume solid state flash memo-

ries are competent to store digital data of high quality. Hard disks permit novel

data storage techniques that were not obtainable, presenting at the same time new

challenges in research world. The magnetic hard disk drive (HDD) is a keynote

component in computer (PC). Although new technology has made other data stor-

age devices possible, magnetic recording is still dominating among the data storage

devices due to fast speed and high recording density. Today, the HDD industries

ability to increase recording density is important because the requirements of large

storage capacity of HDD continue to grow in the consumer electronics markets.

However, continued growth in recording density not only challenges implementing

new recording techniques to reduce the bit size on the disk surface but also re-

quires application of advanced materials for reading and writing information. Since

the magnetic properties of the recording media are strongly influenced by various

features of their microstructure, optimization of the magnetic properties through un-

derstanding structure-property relations is of importance for developing high-density

recording media.

1.1 Magnetic Materials for Data Storage

1.1.1 Magnetism of solids

Magnetism in solids originates from electrons in atom. The electron exhibits spin and

as well as orbital motion. Electrons in most of the atoms exist in pairs. The magnetic

moment associated with spin and orbital motion of a single electron in Hydrogen
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Figure 1.1: Areal density growth curve of stored informations since the first com-

mercialization [6].

Figure 1.2: Bit areal density progress in magnetic hard disk drives. [7].
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(H) atom is known as Bohr magnetron, which can be considered as standard unit

of magnetic moment of solids. According to Pauli exclusion principle only two

electrons can occupy one orbit, spinning in an opposite direction. So in most of

the cases the magnetic moments due to spin motion cancel the effect of each other

and show no contribution to magnetic moment of a solid. In most of the transition

elements the d-orbitals are not fully occupied. Likewise, in rare earth elements the f-

orbitals are also not fully occupied. According to the Hund’s rule, the spin magnetic

moment is originated from electrons in partially occupied orbitals. Isolated atoms

are usually magnetic due to Hund’s rule. In solids magnetic order appears only for

some systems, typically either containing 3d atoms Fe, Co, Ni or containing rare

earth elements.

As discussed above that magnetism is caused by the spin of electrons and their

orbital motion about their nuclei. Due to different electronic structures, materials

can have different responses to an external applied magnetic field and thereby can

be generally classified as diamagnetic, paramagnetic, ferromagnetic (FM) and anti-

ferromagnetic (AFM) materials. Among these, ferromagnetic materials are the most

important for data storage due to their unique magnetic properties. As compared

to other magnetic materials, ferromagnetic materials have a large positive magnetic

susceptibility. With such large susceptibilities, these materials can be easily mag-

netized. This is because FM materials atomic level show long-range spin ordering,

cause the unpaired electron spins to be lined up parallel with each other in a region

called magnetic domain. Normally, these magnetic domains are randomly oriented

with respect to one another at room temperature, resulting in no magnetism shown

in the bulk materials. However, once exposed to a magnetic field, FM materials

can be easily magnetized by lining up the magnetic domains to the applied field. In

addition, FM materials tend to maintain their initial magnetization to some extent

after the external field is removed. This extraordinary property of maintaining the

magnetic states has enabled a variety of applications of FM materials in magnetic

data storage. Usually, Fe, Co, Ni and some of their alloys are FM materials since

then spins of the unpaired 3d electrons prefer to be aligned in the same direction by

the magnetic exchange effect. Presently most of the magnetic recording components,

such as the writing heads are composed of these materials.

1.2 The magnetocrystalline anisotropy

Many magnetic materials generally show different magnetic properties when an ex-

ternal field is applied in different directions. If the internal energy of the material

depends on the magnetization direction with respect to the crystallographic axis,

the material is said to have magnetic anisotropy. There are many different types
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Figure 1.3: Magnetization curves of a single HCP Co crystal measured in different

directions [8].

of anisotropy which are related to the crystal structure, the residual stress and the

grain shape. Among all these types of anisotropy, only the crystal anisotropy, which

is generally called magnetocrystalline anisotropy (MCA), is intrinsic property of the

material. The MCA is found to be practically important in the design of magnetic

recording media. By measuring the magnetization curves of a material along differ-

ent crystallographic directions, one can easily observe the MCA. For example cobalt

(Co), which is commonly used in magnetic recording media and has a hexagonal

closed packed (HCP) structure, the magnetization curves in Fig. 1.3 shows that the

magnetic saturation can be easily achieved by applying a small field in the [0001]

direction while in the [1010] direction, a large field is required. Therefore, the mag-

netic easy axis of HCP Co is the c-axis, in which less energy is required to line up

the magnetic moments. In the material which has MCA, the magnetization vector

tends to point along the direction of the easy axis when there is no external mag-

netic field. Against the anisotropy force, an applied field must do work to deflect the

magnetization from the easy axis. Therefore, when the magnetization points to a

non-easy direction, there must be energy stored in the crystal [8]. This stored energy

is called MCA energy. MCA energy is much larger for layered and low dimensional

materials than for the bulk systems. One part of the magnetic anisotropy energy

is in its spin-orbit coupling (SOC). Generally one can obtain the SOC induced part

through relativistic ab initio calculations using spin density functional theory.

Another important part of the magnetic anisotropy comes from magnetic dipole-

dipole interaction of the individual magnetic moments and thus depends on the

shape of the magnetic sample as shown in Fig. 1.4. The shape dependent anisotropy

is caused by Breit interaction [9, 10] between individual electrons. The dipolar inter-

action or shape anisotropy can be calculated usually using classical electromagnetic
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Figure 1.4: (a) Magnetic dipole-dipole interaction of the single magnetic moments

(b) Spin-orbit coupling [11].

(Maxwell) theory.

Edip =
1

4π

[
m1.m2

r2
− 3 (m1.r)(m2.r)

r5

]
, (1.1)

where m1 and m2 are dipolar magnetic moments and r is distance between them.

In the present work we don’t deal with it. We will not deal shape anisotropy in this

thesis. It can be treated classically, its analysis does not require quantum mechanical

calculations.



Chapter 2

Materials we are interested in

In recent decade the layered materials got considerable attention on scientific and

technological point of view. These materials play main role in energy conversion

and storage, CO2 capture and conversion, catalysis, biomass, wastewater treatment,

air pollution control, optoelectronic, magneto electronic devices chemical sensors

etc. This class of materials are also used as precursors for novel multifunctional

materials. In the present work we are interested in FePt layered materials.

The FePt system is one of the robust contestant for an efficient material for

recording data. Therefore it is necessary to study this system in detail. In order to

understand the microscopic origin of its magnetic properties, it is necessary to study

the hybridization of 3d-5d states and role of interface in FePt magnetic system.

In 3d-5d systems, the large magnetic moments of the 3d electrons are intermixed

with large spin-orbit interaction (ζ) of the 5d electrons. The spin-orbit interaction of

Pt 5d is about one order of magnitude higher (ζPt = 712 meV) in comparison to Fe

3d element (ζFe = 65 meV) [12]. This leads to increase of the magnetic anisotropy

of the system [11]. The situation concerning the dependence of magnetic anisotropy

on orbital moment of the 3d electrons is also very important and needs to be studied

in more elaborated way.

2.1 Ordered FePt

High anisotropic magnetic materials are in demand in the field of information tech-

nologies. Another important application for this class of materials are permanent

magnet or bias layer for spin electronic devices [13]. The ordered FePt (bulk-L10)

has large MCA energy of 7× 107ergs/cm3. Therefore it is a suitable candidate for

next generation ultrahigh-density perpendicular magnetic recording media [14].

7
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The high-temperature stable phase of FePt are face-centered tetragonal (fct or

L10) ordered phase and face-centered cubic (fcc or A1) disordered phase [15].

2.2 Disordered FePt alloys

The importance of the disordered compounds can’t be ignored in fundamental sci-

ence and technological applications. Many exclusive properties of solid-state mate-

rials appear only in a disordered phase. Some important components the disordered

state of the materials are local atomic impurities, substitutions and vacancies which

are responsible for unique properties in semiconductors, high temperature supercon-

ductors, ceramics, zeolite catalysts, metallic alloys and many other materials that

are technologically important [16]. The crystal structure of ordered FePt fcc (A1)

have lattice parameter of a=3.807 Å[17].



Chapter 3

Computational Methodology

Computational materials science and material engineering based on ab initio (first

principle) calculations has become a substantial partner to experiment. The link

between applied engineering and theoretical research has been made and is now an

important motivation for researchers developing new computational methodologies.

Engineers are using these capabilities to solve technological problems [18]. One

of the most important example of computational methodology is the pioneering

first principles or ab initio calculations. Ab initio methods are based on quantum

mechanics.

For simple single particle systems, the Schrödinger equation can be solved an-

alytically (as for hydrogen atom). However it is not possible to solve Schrödinger

equation analytically for many electron system. To overcome is difficulty certain

finite basis sets are used to represent the electronic wavefunction which transform

the Schrödinger equation into an algebraic equation. Then the algebraic equation

can be solved using numerical methods. This transformation includes two classes of

approximations. First we reduce many body electron system to one-electron system,

then we solve the basis set for a single electron system.

3.1 Many Body Problem

State of the system in quantum mechanics is described by the wave function. The

wave function provides full information about the state of the system. Schrödinger

equation can be solved for single body problem. However this task becomes more

difficult when the number of the particles contained in a system is large and the

problem transforms from a simpler one particle to the many body complex one.

Owing to their large number, the corresponding number of degree of freedom or di-

9
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mensions increase rapidly, and it becomes difficult to describe the related mechanics

of the system by solving the Schrödinger equation for the wave function.

3.2 Density Functional Theory

A remarkable achievement in development of DFT was made by Hohenberg and

Kohn in 1964. Solution of Schrödinger equation for many electron systems and

complex system can be obtained by treating many-electron wave function as func-

tional of electron density containing only three variables, instead of 3N variables

(N stands for number of electrons, each electron has 3 spatial variables). It is eas-

ier to deal with the complex system in this way instead of using large number of

3N variables which is too much difficult. This transformation introduce exchange

correlation potential which is not known exactly and has to be approximated.

3.2.1 Hohenberg and Kohn theorems

Theorem I: For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely, except for a constant, by the ground

state particle density n0(r). Since n0(r) determines the number of electrons in the

system, it follows that n0(r) also determines the ground state wavefunctions and all

other electronic properties.

Theorem II: An Universal functional for energy E[n] in terms of the density

n(r) can be defined, valid for any external potential Vext(r). For any particularVext(r),

the exact ground state energy of the system is the global minimum value of this func-

tional, and the density n(r) that minimizes the functional is the exact ground state

density n0(r).

The first theorem states that the ground state energy is a functional of electron

density. The second theorem states that ground state energy can be obtained to

minimize energy of the system according to the electron density. Both Hohenberg-

Kohn theorems establish the one-to-one mapping between the potential and density.

The potential determines the wave function and there is one to one correspondence

between the density and wave function. However Hohenberg-Kohn theorems don’t

give a practical guide how to do the calculations.

3.2.2 The Kohn-Sham equations

The Kohn-Sham method is a formulation of DFT that introduces a set of eigen

value equation within the framework of DFT. As mentioned above, DFT tries to
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transform problem of finding many body wave function ψ0(r1r2, ..........rN) into a

problem of finding the electron density n(r). In that way we have only 3 variables

instead of 3N variables. This is achieved via the Hohenberg-Kohn theorms [1]. The

total energy E of the system with charge density n(r) can be expressed as:

E(n) = T (n) +

∫
Vext(r)n(r)dr + VH [n] + Exc[n]. (3.1)

VH =
e2

2

∫
n(r)n(r′)

|r − r′|
drdr′, (3.2)

where VH is the Hartree columbic potential energy part and Exc is the exchange

and correlation energy. The straightforward application of this formula has two bar-

riers: First, the exchange-correlation energy Exc is not known precisely and second,

the kinetic term must be expressed in terms of the charge density. As was first

suggested by Kohn and Sham, the charge density n(r) can be written as the sum of

the squares of a set of orthonormal wave functions φi(r):

n(r) =
N∑
i

|φi(r)|2. (3.3)

Equation (3.3) represents the solution to the Schrödinger equation for N non-interacting

electrons moving in an effective potential Veff(r)[
− ~2

2m
∇2

i + Veff(ri)
]
φi(r) = Eiφi(r), (3.4)

where the effective potential is defined as

Veff(r) = Vext(r) + e2

∫
n(r′)

|r − r′|
dr′ +

δExc[n]

δn
. (3.5)

These three equations form the Kohn-Sham equations in their standard form. This

system is then solved iteratively, until self-consistency between Veff(r) and n(r) is

approached. Note that the eigen values Ei have no physical meaning, only the total

sum, which matches the energy of the entire system E through the equation [3]:

E =
N∑
i

Ei − VH [n] + Exc[n]−
∫
δExc[n]

δn(r)
n(r)dr. (3.6)

The equation above portrays the schematic representation of the self consistent

iterative loop for the solution of the Kohn-Sham equations.

Practically, there are several distinct ways in which Kohn-Sham theory can be

applied on the system under examination. In the density functional solid state

computations, local-density approximation to the exchange correlation (XC) energy

is still frequently used. The detail about local-density approximation is found in

Sec 3.2.3.
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Figure 3.1: Scheme for achieving a self-consistent solution of Kohn-Sham equation
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3.2.3 Local-density approximation (LDA)

In this approximation we imagine that the whole interacting and inhomogeneous

particle system is a set of large number of boxes, with each having homogeneous

and interacting electronic gas. In simple words the approximated energy correction

in local-density approximation (LDA) is represented as exchange correlation energy

Exc(r) of the homogeneous electron system. This significantly simplifies the solution,

requiring less computational capabilities in comparison to formal individual electron

wave functions with large number of dimensions. Of course, that is possible only

if the exchange-correlation term can be portrayed as local-density functional. The

mathematical expression may be seen as a sum of the all contribution from each of

the boxes

Exc[n(r)] =

∫
εxc[n(r)]n(r)dr, (3.7)

so that the exchange and correlation potential shapes as

µxc(r) =
δ[n(r)εxc[n(r)]]

δn(r)
. (3.8)

εxc[n(r)] = εhomo
xc [n(r)], (3.9)

where εhomo
xc represents exchange-correlation energy per particle of a homogeneous

electronic system. On theoretical aspect, for useful calculations such data can be

parameterized. For this purpose number of parameterizations exists, where the

Perdew and Zunger [19] approach may be the most commonly used parameteriza-

tion. In this parameterization, Perdew and Zunger use Monte-Carlo calculations

of Ceperley and Alder [20] for various densities of a homogeneous electron system.

This parameterization uses interpolation-schemes to track these precise outcomes

for the exchange-correlation energy functional at various electrons densities. LDA,

although a rough approximation, has proven to be a surprisingly fruitful in a sense

that properties like structure, phase stability, vibrational frequencies and elastic

nature are rendered reliable for many samples.

3.2.4 Local spin density approximation (LSDA)

The spin flavor of the usual local density approximation (LSDA) has been the basis

to the electronic-structure calculations in solid-state physics and chemistry for many

years. For spin polarized calculation equation (3.7) can be written as

ELSD
xc (n↑, n↓) =

∫
d3r n(r)εhomo

xc [n↑(r), n↓(r)], (3.10)
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where n↑(r), n↓(r) are the spin densities of many body system, εhomo
xc (n↑, n↓) rep-

resents the exchange and correlation energy for each entity of the homogeneous

electron system.

In this thesis we used various LSDA for the correlation functionals, including

• Vosko and Wilk and Nusair [21].

• Perdew and Wang [22].

• von Barth and Hedin [23].

• Moruzzi, Janak and Williams [24].

3.2.5 Generalized Gradient Approximations (GGA)

The LSDA was found to be a tool with reasonable accuracy in many of the solid

state targets, it’s level is adequate. However, it fails in many chemical applications

that need high precision in determining the energies with substantial accuracy. This

decreased the interest of quantum-chemist community towards DFT until a new

scheme has been suggested [21]. This new scheme uses also called gradient of density

and expressed the energy functional as

EGGA
xc [n↑, n↓] =

∫
d3r f(n↑(r), n↓(r),∇n↑,∇n↓), (3.11)

These functionals has divided into two categories, functionals that are constructed

from the homogeneous electron gas and semi empirical functionals [25]. The gener-

alized gradient approximation (GGA) has attracted much attention for its abstract

simplicity and moderate computational workloads. At present it is grasping an in-

creasing attention as an improvement of the LDA [26]. The improvement of GGA

over the usual LDA consist mainly the following points:

1. Prediction of more precise binding energies in molecules and solids, correcting

the trend of the LDA to over binding [27].

2. GGA significantly improves the cohesive energies and lattice parameters and

screening properties. On the other hand it decrease the energies of the corresponding

atoms in comparison to LDA [28].

3. The correct equilibrium volume with calculated by GGA significantly improve

the accuracy of the elastic properties [29].

In bulk, the crystal structural qualities don’t get improved by the GGA. Gener-

ally, lattice parameters obtained via GGA are always larger in comparison to LDA.

Improved agreement with experimental measurements is registered in case of alkali-

metals, 3d-metals, and some 4d-metals. However, for 5d-metals along with some

common semiconductors, overestimation of lattice parameters up to some percents
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has been reported by GGA [30], The LDA slightly underestimates the lattice pa-

rameters of the 5d-metals. The smaller binding energy and larger bond length of the

GGA in comparison to LDA is due to the fact that GGA favors inhomogeneity in

density. Finally it is concluded that LDA is better for systems with slowly varying

density and GGA is good for inhomogeneous systems such as isolated atoms and

molecules.

Hence choice of the approximation depends on the nature of the material selected

and the property that needs to be calculated. For metallic system such as FePt one

uses LDA. On the other hand LDA overestimate the magnetocrystalline anisotropy

therefore GGA is also used to check whether one can overcome this difficulty or not.

3.3 The Dirac Kohn-Sham Equations and spin or-

bit interaction

Spin-orbit coupling is the interaction of the electron spin with its own orbital mo-

tion. It manifests itself in lifting the degeneracy of one-electron energy levels in

atoms, molecules, and solids. In solid-state physics, the nonrelativistic Schrödinger

equation is frequently used as a first approximation, e.g. in electron band-structure

calculations. Without relativistic corrections, it leads to doubly-degenerated bands,

spin-up and spin-down, which can be split by a spin-dependent term in the Hamil-

tonian. In this approach, spin-orbit interaction can be included as a relativistic

correction to the Schrödinger equation. For this purpose one has to consider the

Dirac equation, which is the basic equation for electronic systems, including the elec-

tron spin and its relativistic behavior. One obtains the Dirac equation by linearizing

the relativistic generalization of the Schrödinger equation. It is Lorentz-invariant

and describes the electron spin and spin-orbit coupling from first principles.

It is essential for heavy atoms to include the relativistic effect. Instead of the

ordinary Schrödinger equation, the Dirac Kohn-Sham equations are used for the

appropriate description of relativistic effects in the materials possessing the heavy

ions. Here we illustrate different approximations to the full Dirac KS scheme, its

consequences and eliminating a few of the approximations. In several books, we can

find the Dirac equation applications for electronic structure of atoms. We will follow

the analysis of J. Kubler and V. Eyert [31, 32].

Dirac Hamiltonian can be written as (energies are measured relative to the rest

energy):

HD = cαp+ (β − 1)mc2 + V (r), (3.12)

where α and β are the 4x4 matrices:
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α =

0 σ

σ 0

 , β =

I 0

0 −I

 , I =

1 0

0 1

 , (3.13)

,

where σ denotes the Pauli-spin matrices. Eigenvectors of (3.12) are four-component

functions which are written in terms of two-component functions as φ and χ:

ψn =


ψ1

ψ2

ψ3

ψ4

 =

φ
χ

 , (3.14)

,

Here the time independent two component spinors φ and χ describe the Spatial

and spin degrees of freedom, leads to set of couple of equations

c(αp)χ = (E − V )φ. (3.15)

c(αp)φ = (E − V + 2mc2)χ. (3.16)

These equations lead to differential equation for φ which resolve the relativistic

effects in an approximative way:

[
(1− E−V

2mc2
) p2

2m
+ V

]
φ− ~2

4m2c2
(∇V∇φ) +

~2

4m2c2
(σ[∇V × p]φ = Eφ. (3.17)

Radial equations promptly illustrate the difference in the relativistic treatments.

Presuming the spherically symmetric potential, the Eq. (3.17) becomes[
p2

2m
+ V − p4

8m2c2
− p2

8m2c2
dV
dr

∂
∂r

+ 1
2m2c2

1
r
dV (r)
dr

(ls)
]
φ = Eφ. (3.18)

In the above Eq. (3.18) the first two terms on the left side are represent non

relativistic Schrödinger equation, the third and forth terms on the left sides are

called the mass and Darwin correction while, the fifth term shows the spin-orbit

coupling. One can write the last term in elaborated way

HSO =
1

r

dV (r)

dr
(σ.(r × p) =

1

r

dV (r)

dr
(σ.L) = ζ(r)(σ.L). (3.19)
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Figure 3.2: Left figure: Partitioning of unit cell into two parts; spherical atomic

region with gist of (I) and the space among atoms called interstitial region shown

as (II). Right figure: Actual self-consistent effective potential as obtained from an

FLAPW calculation[33].

3.4 The Full-Potential Linearized Augmented-Plane

Wave Technique

The full potential linearized augmented-plane wave (FLAPW) technique is now

accepted as a tool that allows us to do the most precise ab initio calculation. The

FLAPW method is an all-electron algorithm which is universally appropriate to

all atoms of the periodic table, in particular to rare-earths, transition metals and

multi-atomic systems with compact as well as open structures. Because of all-

electron nature of this method, magnetism is included carefully and one can calculate

electronic-structure and magnetic character of variety of bulk crystals, surfaces and

nanosystems more accurately.

The FLAPW technique is a process for solving the Kohn Sham equations. It

provides the total energy and energy bands of the system, using a basis set that is

tailored according to the problem.

The choice of the basis is done so that the crystal is divided in two regions;

region (I) containing non-overlapping atomic spheres and the interstitial region (II)

as shown in Fig. 3.2. The mathematical treatment of the wave function inside the

two regions is given in the following way:

• Inside the atomic sphere (I) of radius RIa, linear combinations of the radial



18 CHAPTER 3. COMPUTATIONAL METHODOLOGY

function times the spherical harmonics Y m
l (r̂′) are used;

φk
K(r) =

∑
l,m

[AK+k
l,m ul(r

′, E1,l) +BK+k
l,m u̇l(r

′, E1,l)]Y
m
l (r̂′). (3.20)

ul(r
′, E1,l) is the solution of radial part of the Schrödinger wave equation for the

energy eigenvalue in first term while u̇l(r
′, E1,l) is the energy derivative of ul(r

′, E1,l).

A linear mixture of these two functions include the linearizion of the radial function

inside the sphere.

• In second region (II) called interstitial zone, a plane wave basis of the Bloch

function is applied;

φk
K(r) =

1√
V
e(K+k).r, (3.21)

whereK and k are the reciprocal lattice vector and wave vector inside the irreducible

first Brillouin zone. The accuracy of a plane wave basis set was determined by Kmax.

In order to determine AK+k
l,m and BK+k

l,m it is necessary that the function in the sphere

matches the plane wave both in value and in slope at the sphere boundary.

The FLAPW is all electron method, which is more accurate and flexible as

compared to the pseudopotential methods. It can be applied to many kind of systems

(bulk, surfaces and organic crystals etc). However this method is relatively slow

and the code (WIEN2k) is complicated in which it is implemented. For structure

relaxation the other approaches (plane waves) are more convenient.

3.4.1 WIEN2k code

The WIEN2k code [34] is frequently used computer code for various ground state

properties calculations based on full potential linearized-augmented-plane-wave (FL-

APW) method [35] within density functional theory (DFT). Parallel calculations

can also be performed in this code. wien2k is portable requiring the use of FOR-

TRAN90, MPI, BLAS, SCALAPACK etc. Friendliness use of WIEN2k is carried

out by a web based graphical user interface (GUI), called w2web. Additionally,

an automatic choice of default option is included in this package and may also be

complemented by an extensive User’s Guide.

The WIEN2K package provides the possibility to perform both non-relativistic,

scalar relativistic and relativistic calculations. When running the relativistic calcula-

tions, the way in which relativity is included differs for core and valence states. The

core states are assumed to be fully occupied and fully relativistic calculation is em-

ployed via solving the Dirac equation. This discussion concerns therefore the valence

orbitals only. These orbitals are treated in the scalar relativistic approximation. To

obtain fully relativistic calculation for the valence electrons, the SOC is included in
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atomic spheres via an approximative scheme that introduces an additional term

HSOC = ξ(r) L · S (3.22)

to the spin-polarized Schrödinger-like scalar relativistic equation. Technically, the

influence of the term (3.22) is included by starting with a scalar-relativistic FLAPW

calculation without SOC. The eigenfunctions thus obtained are then used as a basis

in which another diagonalization is done and this time also the SOC term Eq. (3.22)

is taken into account. This procedure is often called second variational step [36].

3.5 The Green function method of Korringa, Kohn

and Rostoker

The multiple-scattering or Korringa, Kohn and Rostoker (KKR) method for elec-

tronic structure calculation was introduced by Korringa in 1947 [37] and then by

Kohn and Rostoker in 1954 [38]. For solution of Schrödinger equation, first the

scattering properties of each scattering atom are determined. These properties are

described by a scattering matrix. In the second step, the multiple-scattering by

all atoms in the lattice is determined in such a manner that at each center the

incident wave is the sum of the outgoing waves from all other centers. In KKR

method one can obtain the separation between the potential and geometric proper-

ties. Further it was developed when reformulated as a KKR Green function method

[39, 40, 41, 42]. The KKR method successfully calculated the electronic structure,

spectroscopic properties, transport properties and magnetic properties of solids in-

cluding bulk and low dimension materials [33]. The Dirac equation can be incorpo-

rated in KKR scheme, whenever relativistic effects become important [43] and were

also applied to treat non-collinear magnetism [44]. The important features of KKR

Green function formulation are:

• Green function provide information about the chemical identity of the atom

(structure) from the scattering.

• Green function locally describe electronic properties that can be applied to

discorded systems and alloys.

In density functional calculations we solve the Kohn-Sham equations for the

single particle wave functions φn to find the energy eigenvalues of the single particle.

The basic equation is:

Hφn = Eφn. (3.23)
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In Green function method the wavefunction φn is replaced by single particle

Green function G(r, r′) that carry all the information about the ground state. The

local density of states and charge density can be directly calculated from the Green

function, which is the solution of the Schrödinger equation for an energy E with a

source at position r′ :

[H − E]G(r, r′;E) = −δ(r − r′). (3.24)

Using the identity
1

x+ iε
= P

1

x
− iπσ(x), (3.25)

one can write the spectral representation for Green function

G(r, r′;E) =
∑
n

φn(r)φ∗n(r′)

E + iε− En

(3.26)

as

G(r, r′;E) = P
∑
n

φn(r)φ∗n(r′)

E − En

− iπ
∑
n

δ(E − En)φn(r)φ∗n(r′). (3.27)

One can express the energy resolved charge density ρ(r, E) using the imaginary part

of the Green function:

ρ(r, E) =
∑
n

δ(E − En)φn(r)φ∗n(r′) = − 1

π
ImG(r, r;E) (3.28)

Now one can express the charge density via one electron Green function

n(r) =
∑
n

|φn(r)|2. (3.29)

n(r) =

∫ Ef

−∞
ρ(r, E)dE. (3.30)

n(r) = − 1

π

∫ Ef

−∞
ImG(r, r;E)dE. (3.31)

Since G(z) is analytical in the whole complex plane except the real axis, it contains

poles as shown in Fig. 3.3. In order to numerically simplify our calculations one can

replace the equation (3.31) by contour integral in complex energy plane

n(r) = − 1

π

∫
A

ImG(r, r; z)dz. (3.32)

n(r) = − 1

π

∫
C

ImG(r, r; z)dz. (3.33)

The contour integral in complex plane (see Fig. 3.3) goes along regions where G(z)

is smooth function of z [45].
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Figure 3.3: Contour integration of the Green function [45].

3.5.1 sprkkr -package

This package has been developed by H. Ebert and his collaborators. This package

is based on the KKR-Green function formalism using multiple scattering approx-

imation. According to this formalism the electronic structure of a system is not

expressed in terms of Bloch wave functions and eigenvalues but in term of the cor-

responding Green function which makes this method flexible.

In this package the electronic structure calculation of arbitrary three-dimensional

(3D) periodic systems, as well as chemically disordered system can be done. The

two dimensional (2D) periodic systems such as surfaces can be treated without the

need for auxiliary system of 3D periodicity. One can deal with finite clusters by

employing the impurity Green function formalism. The electronic structure of the

system can be calculated in non-relativistic, scalar relativistic and fully relativistic

mode. Atomic sphere approximation (ASA) and full potential calculation can be

done in this code.

The sprkkr code works fully relativistically, it solves a four-component Dirac

equation by default [46, 47, 48, 49]. SOC is therefore implicitly fully included for

all states. Nevertheless, the bare effect of the SOC can be investigated via sprkkr

if one employes an approximate two-component scheme [50] where the SOC-related

term is identified by relying on a set of approximate radial Dirac equations. This

scheme was used recently to investigate how the MCA energy of adatoms and mono-

layers on noble metals varies if SOC is selectively switched on only at some sites

[51]. We employed it here for the same purpose.

Based on electronic structure calculation, a variety of properties (density of

states, x-ray spectroscopy, x-ray magneto-optics and conductivity) of the ordered

and disordered structures can be explored with sprkkr package. On the other

hand it is not convenient to do structure relaxation in sprkkr code.
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3.6 Treatment of disordered system in supercell

approach

The substitutional alloys are used as a prototype where the chemical components

(elements) are randomly placed on the sites of a regular lattice. More clearly the

positions of the atoms are fixed, only the chemical occupation of the sites is random.

The chemical disorder of substitutional alloys destroys the Bloch symmetry of the

perfectly periodic lattice. In standard band structure method we can handle this

situation by using the super cell. The greater the size of the supercell, the more

reasonable representation of the disordered system is obtained. However increasing

the size of the supercell becomes computationally very expensive. To overcome

this difficulty, one can choose small size of the supercell and make the chemical

occupation of all the sites as random as possible. This special case of the supercell

is known as special quasi random structure (SQS).

Special quasi random structure (SQS) for the first time was proposed by Zunger

et al. [52]. Principally, a SQS is an ordered supercell having few atoms (e.g., 4-32)

that mimic the most relevant pair and multi-site correlation functions of the disor-

dered phase. In this approximation the random alloys were described by periodic

structures that clearly introduce specious correlations beyond a certain distance that

cause periodicity errors [53]. On the other hand, many physical properties of solids

can be described by microscopic length scales that can be ordered according to size

to form a hierarchy [52]. For example, interactions between distant neighboring ele-

ment typically show small contribution to the total energy as compared to the close

neighbors.

3.7 Treatment of disordered system in effective

medium approach

Another way to model disordered systems is to use effective medium, created so that

the disorder is simulated. This is the basis of so-called mean field approach. Some

approximations of the mean field approach are:



23 CHAPTER 3. COMPUTATIONAL METHODOLOGY

3.7.1 Virtual crystal approximation

In random substitutional alloys all the sites are randomly occupied by either atomic

species. The corresponding concentration of such atomic species in a crystal governs

the probability of finding a given type of atoms in a lattice. Lets make an assump-

tion that the site occupancies are incoherent i.e. the existence of any short range

correlations or long-range correlations is overlooked. In weak scattering case the

alloy potential may be considered periodic with the potential related with each site

defined as averaged over different atomic types with concentrations ci and individual

potentials Vi:

VC(r) =
∑
i

ciVi(r). (3.34)

This superposition set up the virtual crystal approximation (VCA).

3.7.2 Average t-matrix approximation

Average t-matrix approximation can be consider as the next level approximation.

Suppose we have a system having localized electronic states causing large atomic

potentials and hence VCA is not able to explain electronic properties of alloy. The

inter-site scattering can be neglected for small concentrations and only the scattering

of individual scattering centers is permitted. The scattering center described by a

single-scattering t-matrix is averaged over individual single-site scattering t-matrices

placed on every site of the effective ordered lattice and is given as:

tATA(E) =
∑
i

citi(E). (3.35)

This is called average t-matrix approximation (ATA). As at low concentrations,

the small inter-site correlations are observed, the ATA leads to relatively accurate

results for very diluted alloys. However, the ATA accuracy decreases with further

increase in concentration, when inter-site scattering becomes more significant. The

average t-matrix approximation can be considered as a non-self-consistent version

of the coherent potential approximation (see below).

3.7.3 Coherent potential approximation

Scattering phenomena in disordered system can be described by coherent potential

approximation (CPA). By applying this approximation, impurities are implanted

into a specific medium having a coherent t-matrix tC in each scattering spot.

Suppose a random alloy which contains n components {Ai}ni=1 with concentra-

tions {xi}ni=1. Consider atom Ai is in the effective medium. The Green function for

this system is given as
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Figure 3.4: Schematic digram of the CPA condition for a binary alloy. The label

”A” and ”B” are occupied by impurity potentials.

Gi
LL′ =

∑
LL′′

G̃LL′′ [1− (ti − t̃)G̃]−1
L′′L′ , (3.36)

where Gi
LL′ is Green function of a single impurity atom in an the effective medium.

Ai and ti is the is the single site scattering t matrix of the atom Ai. G̃LL′′ is the

Green function and t̃i is the single site scattering t matrix of the effective medium.

The self consistent equation relates the Green function of the constituent atoms with

the Green function of the effective (coherent) medium

n∑
i=1

xiG
i
LL′ = G̃LL′ . (3.37)

Equation (3.37) assumes that by taking weighted average of the Green function one

can calculate the Green function of the medium. Fig. 3.4 shows schematically how

the component atom is placed at the center in the effective medium.

In CPA, the disorder itself is treated very well. However, as it is a single-site

method, it cannot describe the fluctuations in the local environment which exist in

real alloys [54, 55]. Comparison between theory and experiment shows, nevertheless,

that the CPA approach is often appropriate to describe trends of physical properties

with elements concentration [56, 57, 58, 59, 60, 61, 62].

3.8 Calculation of magnetocrystalline anisotropy

energy

3.8.1 Calculation of MCA energy

Magnetocrystalline anisotropy (MCA) is manifested by the fact that the energy of a

magnetically ordered material depends on the direction of the magnetization M with

respect to the crystal lattice. It is an interesting phenomenon both for fundamental
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and technological reasons, as the MCA is important among others for the design

of magnetic recording media [63, 64]. In order to calculate the magnetocrystalline

contribution or the MCA energy one has to determine the total electronic energy

for two magnetization directions ( for example [001] and [100]) using equation (3.38)

and then take the difference.

EKS = 2

N/2∑
i=1

εi −
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ −

∫
Vxc(r)n(r)dr + Exc[n], (3.38)

The first term of equation 3.38 represents summation of one-electron band en-

ergies, second term is Hartree columbic potential energy, third term is exchange-

correlation potential and the fourth term is exchange-correlation energy.

The calculation of MCA energy is very sensitive and challenging. The total ener-

gies and MAE can differ by about eight or nine orders of magnitude, which requires

an accurate calculation. These calculations are computationally very expensive.

In order to avoid the need for fully self-consistent calculations for the two magne-

tization directions and thus reduce the computational effort, one can use magnetic

force theorem. In this approximation the MCA energy can be calculated by using

a “frozen spin” dependent potential which does not depend on the direction of the

magnetization [65], and the difference of the two energies is thus replaced by differ-

ence of band energies, i.e. only first term of equation (3.38) is considered for two

magnetization directions and rest of the terms in EKS are ignored.



Chapter 4

Motivation, earlier works, aim of

this thesis

FePt is one of the important alloy system among the transition metals having large

MCA energy and high Kerr rotation. These properties have been made FePt a

hot contestant for next generation ultrahigh density magnetic and magneto-optical

recording media [66]. Due to this FePt got much attention both experimentally and

theoretically. In this thesis we investigate the two aspects of FePt that have specific

role in technological applications. These are (i) magnetocrystalline anisotropy and

(ii) influence of disorder on magnetic properties. For this purpose, we used ab-initio

calculations to get accurate and reliable results.

The various ab-initio electronic structure codes use different approaches to solve

the Schrödinger equation for a solid. Usually different codes and/or methods yield

results that are similar but show sometimes important differences in the details.

These details start to matter if one aims at high-precision calculations with pre-

dictive power. Therefore an effort has lately intensified to standardize ab-initio

calculations and to find the conditions that have to be met so that reliable “true”

quantitative values are obtained. So far the attention has been paid mostly to total

energies, equilibrium lattice parameters and bulk moduli [67, 68, 69, 70]. We want

to extend this effort to another numerically sensitive area, namely, to the magneto-

crystalline anisotropy (MCA).

26
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4.1 Ordered FePt: MCA energy

Getting an accurate value of the MCA energy EMCA is quite difficult as one has

to, at least in principle, subtract two very large numbers (total energies for two

orientations of magnetization) to get a very small number, namely, EMCA. Several

conditions for getting accurate well-converged results were explored in the past.

In particular, the importance of a sufficiently dense mesh in the Brillouin zone

(BZ) for the k-space integration was recognized [71, 72, 73]. When dealing with

supported systems such as adatoms or monolayers, the semi-infinite substrate has

to be properly accounted for [74, 51]. Despite all the efforts, getting accurate and

reliable theoretical predictions of the MCA energy is still a problem.

We focus on MCA of bulk FePt. This compound has the largest MCA energy

of all bulk materials formed by transition metals and its crystal structure is quite

simple, so it is a good candidate for a reliable calculation. At the same time, the

presence of Pt — a heavy element — suggests that relativistic effects should be

significant, offering thus an interesting possibility to check how different methods of

dealing with relativistic effects, in particular with the spin-orbit coupling, influence

the results.

Previous theoretical studies on FePt based on the LDA give a large spread of the

results — from 1.8 meV to 4.3 meV [75, 76, 77, 78, 79, 72, 80, 81, 66]. If one restricts

to full potential methods only, one still gets a relatively large difference between var-

ious studies: EMCA of FePt was determined as 2.7 meV by FP-LMTO calculation

of Ravindran et al.[72] and FLAPW calculation of Shick and Mryasov,[80] 3.1 meV

by plane-waves calculation of Kosugi et al.[82] and 3.9 meV by FP-LMTO calcula-

tion of Galanakis et al.[79]. The differences between various LDA calculations are

comparable to the differences between LDA results and the experimental value of

1.3 meV [83]. Even though part of the spread of the LDA results can be attributed

to the use of different LDA exchange-correlation functionals, the differences are still

too large to be acceptable. Besides, they occur also for studies which use the same

exchange-correlation functional (e.g., both Ravindran et al.[72] and Galanakis et

al.[79] use von Barth and Hedin functional) [23]. This suggests that the accuracy of

ab-initio MCA energy calculations may not be sufficient to answer a simple question

such as whether the LDA itself is able to reproduce the experimental MCA energy

of FePt or not.

Deciding which method gives better MCA results than the other is quite difficult,

among others because different computational approaches used by different codes are

intertwined with different ways of implementing relativistic effects. Recall that as

the MCA is intimately related to the spin orbit coupling (SOC), which is a relativistic

effect, the way the relativity is included can be an important factor. Reckoning all

of this, reliable MCA energy can only be obtained if one uses two different methods
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and each of them yields the same value after being properly converged. Then one

can be sure that the MCA energy thus obtained is indeed “method independent”

and represents the correct quantum-mechanical result.

The aim of this thesis is to perform a robust and accurate LDA calculation of the

MCA energy of FePt to get a definite answer to the question whether the MCA of

FePt can be described within the LDA scheme or not and to establish a benchmark

against which other LDA calculations could be checked. The first computational

method we employ is the full potential linearized augmented plane wave (FLAPW)

method as implemented in the wien2k code [34]. This method was used as a

reference in the recent study of the accuracy of total energies and related quantities

[67, 68, 69]. As the second method we opted for a fully relativistic multiple scattering

KKR (Korringa-Kohn-Rostoker) Green function formalism as implemented in the

sprkkr code [84, 85]. We will show that if both methods are properly converged,

they yield same values for the MCA energy (3.4 meV). This is significantly larger

than the experimental value (1.3 meV), implying conclusively that the LDA cannot

properly describe the MCA of FePt.

Many aspects of the MCA of FePt were theoretically investigated in the past

already. Daalderop et al. [75] and Ravindran et al. [72] studied the influence of the

band-filling on EMCA of FePt. Many groups studied the influence of the temperature

on the MCA of FePt [86, 87]. The dependence of the Curie temperature on the

FePt grain size was investigated via model Hamiltonian calculations [88]. Burkert

et al.,[66] Lukashev et al.[89] and Kosugi et al.[82] studied how EMCA depends on

the strain (i.e., the c/a ratio). Cuadrado et al.[90] gradually substituted the Fe atom

by Cr, Mn, Co, Ni, or Cu to find that the MCA energy of Fe1−yXyPt alloys can be

tuned by adjusting the content of the substituting element.

To facilitate the understanding of the MCA of FePt further, we focus on some as-

pects that have not been paid attention so far. In particular, we assess how different

ways of dealing with relativistic effects influence magnetic moments and densities of

states. We also analyze how the total energy varies with the magnetization angle

and how MCA energy scales with spin-orbit coupling. Based on this we assess to

what degree the mechanism leading to the MCA in FePt can be described within

second order perturbation theory.

4.2 Disordered FePt: local environment effect

Disordered compounds are essentially important in fundamental science and as well

as industrial side. In real material there is always disorder at high temperature.

Several interesting properties of the solid state materials appear only in a disordered

phase.
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Theoretical investigation of electronic structure of disordered FePt alloys has

mostly dealt with issues such as phase stability [91] and formation energies [92, 53]

or with systematic dependence of properties on the concentration [93, 94]. We

want to investigate magnetic properties and specifically, how magnetic moments are

affected by the local environment. To get a comprehensive view, we employ both

the CPA and supercell techniques.

We focus on Fe0.5Pt0.5 substitutional alloy. This system attracted considerable

attention in the past. Perlov et al. [95] performed a systematic study and investi-

gated the electronic structure and the magneto-optical properties of disordered FePt

alloys. Kharoubi et al. [96] investigated the electronic structure and the complex

Kerr angle and the magnetic moments in ordered and disordered FePt multilayers

and perform a complete analysis of the strong Kerr rotation with respect to photon

energy.

Paudyal et al. [97] theoretically investigated the electronic structure and mag-

netic properties of FePt, CoPt and NiPt ordered and disordered alloys. They also

studied the effect of short-range order in disordered phase of these alloys on magnetic

moments.

Sun et al. [98] explored the magnetic moments and magnetic circular dichroism

(MCD) of ordered and disordered Fe50Pt50 films with full relativistic KKR code.

They confirmed that the spin magnetic moment of Fe is similar for ordered and

disordered films. However the orbital magnetic moments measured with MCD is

greater than the calculated value.

Despite the research done so far, there are still open issues in magnetism of dis-

ordered alloys such as variation in electronic structure and magnetism of individual

site with respect to local environment.

Specific aim of this thesis in this respect is to complement earlier research on

FePt and other alloys by investigating local variations of electronic and magnetic

structure. Specifically, we want to focus on effect of the chemical composition of

the first coordination shell and on the effects of local structure relaxations. As we

are interested in local effects, we will use the supercell approach and specifically the

SQS’s. We will also perform CPA calculations. By comparing the CPA results with

results obtained via the supercell approach, we can check whether the choice of our

supercells is representative enough to simulate the substitional disorder.

The rest of thesis is arranged as follows. In chapter 5, we present the com-

putational details. In chapter 6.1 we present magnetic moments, density of states

and MCA of chemically ordered L10 FePt. Special attention is paid to MCA. In

chapter 6.2 we turn our attention to disordered FePt and present our results regard-

ing the dependence of local magnetic moments on chemical composition of nearest

neighbors. We also discuss the dependence of local magnetic moments on bonding

lengths variation due to structure relaxation. Additionally we monitor broadening
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of core levels by disorder and investigate how this broadening varies from one core

level to another. We finally summarise our thesis in chapter 7. In Appendix A we

show the convergence tests of some sensitive parameters which show the accuracy

of our results.



Chapter 5

Computational details

We used two different computational methods, namely, the FLAPW method as im-

plemented in the wien2k code [34] and the multiple scattering KKR Green function

method as implemented in the sprkkr code [84, 85]. Our calculations are based

on the LDA. The values presented in chapter 6.1 were obtained using the Vosko,

Wilk and Nusair (VWN) exchange-correlation functional [21]. Use of different LDA

functionals leads to small but identifiable changes in EMCA, as explored in Sec. 6.1.5.

The KKR Green function calculations were done mostly in the full-potential

(FP) mode; sometimes the atomic spheres approximation (ASA) was employed

(Sec. 6.1.4). The energy integrals were evaluated by contour integration on a semi-

circular path within the complex energy plane, using a Gaussian mesh of 40 points.

An important convergence parameter is the maximum angular momentum `
(KKR)
max

used for the multipole expansion of the Green function (see Appendix A.1). To

get accurate results for MCA energy, we mostly use `
(KKR)
max =7. However, if a lot

of calculations with different settings has to be done (Secs. 6.1.3 and 6.1.4) we use

`
(KKR)
max =3, which is sufficient if the focus is on how EMCA varies with the magneti-

zation angle or with the SOC strength and not on particular values. For disordered

FePt we use `
(KKR)
max =3, which is sufficient for calculation of magnetic moments and

density of states.

The convergence of FLAPW calculations is determined by the size of the basis.

We treated Fe 3p, 3d, 4s and Pt 5p, 5d, 6s states as valence states and Fe 1s, 2s, 2p,

3s and Pt 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f , 5s states as core states. The expansion

of the wave functions into plane waves is controlled by the plane wave cutoff in the

interstitial region. This cutoff is specified via the product RMTKmax, where RMT

is the smallest muffin-tin (“atomic”) sphere radius and Kmax is the magnitude of

the largest wave vector. We use RMTKmax=8 in this study. The convergence of

EMCA with RMTKmax is investigated in Appendix A.2. The expansion of the wave

functions into atomic-like functions inside the spheres is controlled by the angular-

31
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momentum cutoff `
(APW)
max . We use `

(APW)
max =10 throughout this thesis. Note that the

cutoff’s `
(APW)
max and `

(KKR)
max have different roles in FLAPW and KKR-Green function

methods, so their values cannot be directly compared.

As concerns the muffin-tin radii in wien2k calculations, the atomic spheres are

chosen so that they are smaller than the touching spheres for the MCA energy

calculations (R
(Fe)
MT =2.2 a.u., R

(Pt)
MT =2.3 a.u., R

(touch)
MT =2.527 a.u.) because in this

way the basis avoids the linearization error. On the other hand, for analyzing

site-related magnetic moments we use touching muffin-tin spheres because in this

way we minimize the moments associated to the interstitial region. In this way

we are in a better position to compare the wien2k results with the sprkkr data,

where the site-related magnetic moments are determined as moments within Voronoi

polyhedra. The stability of EMCA with respect to RMT’s variation is demonstrated

in Appendix A.3.

Once the Green function components or the wave functions have been deter-

mined, the charge density is obtained via the k-space integration over the BZ. The

integration mesh is another important convergence parameter, common to both

methods. All results presented for calculations EMCA were obtained using 800000 k-

points in the full BZ. The convergence of EMCA with respect to the the number of

k-points is explored in Appendix A.4. Considering the convergence tests as a whole,

we argue that that the numerical accuracy of our EMCA values is about 0.1 meV for

wien2k calculations and about 0.2 meV for sprkkr calculations.

For disordered structure we only calculated the magnetic moments and density

of states (see chapter 6.2) using an integration mesh of 1000 k-points for SQS-4

structure, 500 k-points for SQS-8 structure, 250 k-points for SQS-16 structure and

125 k-points for SQS-32 structure (all numbers relate to the full BZ).

Relativistic effects are implemented in the wien2k code in an approximative

way, accounting for the SOC by a separate term (see Eq. (3.22)) which is added

to the scalar-relativistic Hamiltonian. Most codes rely on this approach when they

deal with SOC. The sprkkr scheme, on the other hand, solves the Dirac equation

so it does not use approximations when dealing with relativistic effects. Usually

this second variational step is applied only to a subset of FLAPW eigenstates to

gain a substantial speed-up. This subset is defined so that it includes all scalar-

relativistic eigenstates up to energy Emax above the Fermi level. The Emax parameter

thus plays an analogous role as RMTKmax. Moreover, relativistic local orbitals (p1/2

wavefunctions) were added to the basis [99]. To achieve the highest accuracy, we

set Emax as large as needed to include all FLAPW eigenfunctions in the second step

(this can be achieved by setting Emax of 100 Ry or higher). More details can be

found in the Appendix A.5. As concerns the interstitial region, valence electrons are

treated in a non-relativistic way. In this thesis “fully relativistic calculation” implies

use of the Dirac equation for sprkkr and Schrödinger equation plus separate SOC
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term (3.22) in the Hamiltonian for wien2k, unless it is explicitly said otherwise.



Chapter 6

Results and discussion

6.1 Magnetocrystalline anisotropy of FePt

FePt is a hard magnetic alloy. Due to its high MCA energy, it is potential candidate

for hard-disk drives with ultrahigh recording density.

The crystal structure of ordered FePt L10 is layered having tP2 unit cell (L10,

tP2, P4/mmm) with Fe atom at the 0, 0, 0, position and Pt atom at the 1/2, 1/2, 1/2

position. Lattice parameters for the tP2 unit cell are a=2.722 Åand c=3.714 Åfor

L10 FePt as shown in Fig. 6.1. Usually the large unit cell with lattice parameters

a=3.849 Åand c=3.714 Å, based on tP4 unit cell with 2 Fe atoms at 0, 0, 0 and 1/2,

1/2, 1/2 positions, and Pt atoms at 1/2, 0, 1/2, and 0, 1/2, 1/2 positions, derived

from the high temperature FCC (A1, cF4, Fm3m) phase as shown in Fig. 6.1, is

used for expediency.

Figure 6.1: Relation between tP2 cell and tP4 cell for the L10-phases

34
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Table 6.1: Spin magnetic moments (in µB) related either to a FePt unit cell or just

to the Fe site, for different ways of including the relativistic effects.

sprkkr wien2k

µ
(cell)
spin µ

(Fe)
spin µ

(cell)
spin µ

(Fe)
spin

non relativistic 3.17 2.86 3.15 2.86

scalar relativistic 3.21 2.86 3.21 2.87

fully relativistic 3.17 2.83 3.17 2.84

Table 6.2: Orbital magnetic moments (in µB) related to the Fe and Pt atoms in

FePt for magnetization either parallel to the z axis (µ
(M‖z)
orb ) or perpendicular to the

z axis (µ
(M‖x)
orb ).

Fe Pt

sprkkr wien2k sprkkr wien2k

µ
(M‖z)
orb 0.065 0.065 0.044 0.042

µ
(M‖x)
orb 0.062 0.062 0.060 0.054

6.1.1 Influence of relativity on magnetic moments and den-

sity of states

The presence of Pt in FePt suggests that the way relativistic effects are treated

could be important. Therefore, we calculated magnetic moments in FePt using a

non-relativistic Schrödinger equation, using a scalar-relativistic approach, and using

a relativistic scheme. Spin magnetic moments related either to the unit cell or

only to the Fe site are shown in table 6.1. We can see that relativity has only a

marginal effect on the spin magnetic moments in FePt. Orbital magnetic moments

are more interesting in this respect — they would be zero in the absence of SOC.

Our results in table 6.2 give the orbital magnetic moment at the Fe and Pt sites for

two orientations of the magnetization.

One can see that both codes lead to very similar values for µspin and µorb. In
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particular, the anisotropy of µorb at Fe and at Pt sites is nearly the same. Small

differences between the codes in the local magnetic moments may be due to the

fact that they are defined in different regions: Wigner-Seitz cells (or more precisely

Voronoi polyhedra) in sprkkr and touching muffin-tin spheres in wien2k. The

difference would be larger if we used “standard” setting of muffin-tin radii in wien2k

(R
(Fe)
MT =2.2 a.u. and R

(Pt)
MT =2.3 a.u. instead of R

(Fe)
MT =R

(Pt)
MT =2.527 a.u.): in that case,

the local spin moments obtained via wien2k would be smaller by about 3 % and

orbital moments by about 10 %.

Fig. 6.2 shows how relativity affects the density of states (DOS) resolved in

angular momentum components respective to Fe and Pt sites. The data presented

here were obtained using the sprkkr code (in the FP mode); data obtained using

the wien2k code look practically the same. Generally, there is a significant change

in the DOS when going from non-relativistic to scalar-relativistic case and only a

minor change when going from scalar-relativistic to the fully relativistic case. The

largest difference between non-relativistic and relativistic case is for the s states.

This may be due to the fact that s electrons have a large probability density near

the nucleus where relativistic effects (mass-velocity and Darwin term) are stronger

than at larger distances. Largest difference between scalar relativistic and fully

relativistic calculations are for the Pt d states, where also the SOC is expected to

be stronger than for the other cases.

For Pt s and d states one can make an interesting comparison with atomic results

for Au (Ref. [100]) which are often quoted when relativistic effects in solids are

discussed. It follows from Fig. 6.2 that relativistic effects shift valence Pt 6s states to

lower energies due to the orthogonality constrains to the more localized 1s state and

Pt 5d states to higher energies due to a better screening of the nucleus by innermost

electrons. The same happens for 6s and 5d atomic states of Au, respectively. So we

can infer that the mechanism through which relativity affects Pt states is essentially

atomic-like and common to all 5d noble metals.

6.1.2 MCA energy evaluated by different ways

Calculating the MCA energy by subtracting total energies for two orientations of

the magnetization as

EMCA ≡ E(M‖x) − E(M‖z) (6.1)

is very challenging, because the total energies and the MCA energy differ by about

eight or nine orders of magnitude. We paid a lot of attention to the issues of

convergence to get accurate numbers. The details can be found in the Appendix A.

Here we only mention two issues which have to be given special attention.

For full-potential sprkkr calculations, attention has to be paid to the multipole

expansion of the Green function governed by the cutoff `
(KKR)
max . KKR calculations
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Figure 6.2: Partial spin-resolved density of states for Fe and Pt sites calculated

within a non-relativistic, a scalar-relativistic and a fully-relativistic framework.
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Table 6.3: MCA energy Emax of FePt (in meV) calculated by three different ap-

proaches.

sprkkr wien2k

subtracting total energies 3.04 2.99

magnetic force theorem 3.12 2.85

have known behavior concerning the `
(KKR)
max convergence which play role if one aims

at high-accuracy total energy calculations [101, 102]. Part of the problem are numer-

ical difficulties connected with the evaluation of the Madelung contribution to the

full potential for high angular momenta [103, 104]. Note that to obtain the Green

function components up to `
(KKR)
max , one needs potential components up to 2`

(KKR)
max

and shape functions components up to 4`
(KKR)
max . Another difficulty is an efficient

treatment of the so-called near-field corrections [103, 105]. Various ways to deal

with these issues have been suggested [106, 102, 105, 107]. We performed a test of

the `
(KKR)
max convergence (Appendix A) which indicate if that the `

(KKR)
max =7 cutoff is

used, that the numerical accuracy of the MCA energy is about 0.2 meV.

For accurate MCA energy calculations using the wien2k code, one has to pay

special attention so that the energy parameters E` used for calculating radial wave

functions u`(r, E`) are determined very precisely and consistently. This applies, in

particular, also for the relativistic local orbitals. In wien2k this is done by searching

for the energies where u`(RMT , E) changes the sign to determine Etop, and where it

has zero slope to determine Ebottom. The arithmetic mean of these two energies gives

E`. For the calculations presented here these energies had to be determined with

an accuracy better than 0.1 mRy. A parameter specific for relativistic calculations

via wien2k is Emax, which controls how many scalar-relativistic eigen-states are

considered when SOC is included (Appendix A.5). We used Emax=100 Ry, meaning

that all eigen-states were included.

The MCA energy obtained by subtracting the total energies is shown in the first

line of table 6.3. Values obtained via sprkkr and wien2k show good agreement.

Considering the convergence analysis we performed, this allows us to state that the

magnetic easy axis of FePt is out-of-plane and the MCA energy is 3.0 meV within

the LDA framework (for the VWN exchange-correlation functional).

Obtaining the MCA energy by subtracting the total energies is computationally

very costly. The need for self-consistent calculations for two magnetization directions

can be avoided if one relies on the magnetic force theorem. In this approach the MCA

energy is calculated using a frozen spin-dependent potential [65, 108]. The MCA
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energy is then obtained either by subtracting the band-energies or by evaluating the

torque at magnetization tilt angle of 45◦ [109, 51]. As the magnetic force theorem is

frequently employed, we applied it here as well. The results are shown in the second

line of table 6.3. We can see that the magnetic force theorem yields very similar

values as if total energies are subtracted.

Our aim was to get reliable quantitative information on the MCA of FePt, which

we take as an archetypal layered system of magnetic and non-magnetic transition

metals. We employed two quite different computational procedures. Both of them

yield similar values for the MCA energy. Numerical stability of results is well doc-

umented by convergence tests presented in the Appendix A. Therefore the results

can be trusted to represent the true LDA value of the MCA energy. Our data can

be used as a benchmark for LDA calculations.

Good agreement between MCA energies obtained via the wien2k code and via

the sprkkr code shows that dealing with relativity by invoking the separate term

Eq. (3.22) is justified in our case. As we are studying FePt, i.e., a compound

containing an element with a strong SOC, it is likely that the approximative scheme

associated with Eq. (3.22) is sufficiently accurate for most common situations and/or

systems. One should only make sure that a sufficiently large basis for the second

variation step is taken (Appendix A.5). We calculated EMCA both via subtracting

total energies and via the magnetic force theorem. Using the magnetic force theorem

is technically much more convenient than subtracting total energies. Knowing limits

of its reliability it thus vital. For pure Fe monolayers the magnetic force theorem

was shown to be valid to a high accuracy [110, 111]. However, there are indications

that this may no longer be true for systems with normally non-magnetic atoms

with large induced moments and strong SOC [112, 113]. For such atoms one would

expect rather large changes of the spin-polarized electron density upon rotation of

the magnetization. This applies also for the Pt atoms in FePt. Our results indicate,

nevertheless, that the magnetic force theorem yields quite accurate values for EMCA

for FePt (table 6.3). One can conjecture that this would be the case for similar

layered systems as well.

Relation between EMCA and anisotropy of µorb

For the sake of completeness we checked also the Bruno formula [114], which links

the MCA energy to the anisotropy of orbital magnetic moment. The Bruno formula

[114] (as well as the slightly more sophisticated van der Laan formula [115]) can

be derived from second order perturbation theory if some additional assumptions

are made. It is often employed in the context of x-ray magnetic circular dichroism

experiments that give access to the anisotropy of orbital magnetic moment via the

so-called sum rules.
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Even though the formula was originally derived for systems with only one atomic

type, the relation between the MCA energy and the anisotropy of orbital magnetic

moments has been frequently applied also for multicomponent systems [72, 116,

117, 118, 119, 120]. In such a case an estimate of EMCA can be made by evaluating

(cf. Ravindran et al. [72] and Andersson et al. [121])

EMCA =
∑
i

ξi
4

(
µ

(i,M‖z)
orb − µ(i,M‖x)

orb

)
, (6.2)

where i labels the constituting atoms. This equation is valid only if off-site spin-flip

terms are neglected [72, 121, 122].

We evaluated Eq. (6.2) using SOC parameters ξ(Fe)=65 meV and ξ(Pt)=712 meV,

as obtained from ab-initio calculations for FePt relying on the method described by

Davenport et al. [123]. We obtained EMCA = −2.62 meV using sprkkr results

and EMCA = −2.09 meV using wien2k results. The sign of EMCA evaluated from

Eq. (6.2) is wrong, indicating that this formula does not provide a suitable framework

for studying the MCA of FePt. Technically, the reversal of the sign of EMCA obtained

via Eq. (6.2) is due to µorb at Pt (see table 6.2): we have µ
(M‖z)
orb > µ

(M‖x)
orb at the

Fe site and µ
(M‖x)
orb > µ

(M‖z)
orb at the Pt site. As ξ(Pt) is much larger than ξ(Fe), the

Pt-related term dominates in Eq. (6.2).

The Bruno formula, derived originally for single-component systems only, has

recently been employed also for systems where there is more than one magnetic

element [72, 116, 117, 119]. In our case the Bruno formula suggests a wrong mag-

netic easy axis, hence it not a suitable tool for understanding the MCA of FePt.

Similar observations were made earlier for other compounds containing 3d and 5d

elements [121, 124, 122], so we suggest that intuition based on analysis of orbital

moments should not be used for these systems — despite its appeal and success in

monoelemental systems.

The failure of the Bruno formula (6.2) does not automatically imply that second

order perturbation theory cannot be used for describing the MCA of FePt. Namely,

it is likely that additional assumptions employed in the derivation of Eq. (6.2) are

not fulfilled; in particular, for Pt atoms, the exchange splitting and SOC will be

of the same order of magnitude. Two more indicative tests whether second order

perturbation theory itself provides a good framework for understanding the MCA

of FePt are presented below.

6.1.3 Dependence of the total energy on the orientation of

the magnetization axis

Accurate calculations can provide information on the full form of the dependence

of the total energy on the angle θ between the magnetization direction and the z
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Figure 6.3: Dependence of the total energy on the magnetization angle θ (circles)

and its fit either as K1 sin2 θ (dashed line) or as K1 sin2 θ +K2 sin4 θ (dash-dotted

line). An overall view is in the left panel, a detailed view on the region close to

θ=90◦ is in the right panel.

axis. For tetragonal systems the first two terms in the directional cosines expansion

of the total energy are

E(θ) − E0 = K1 sin2 θ + K2 sin4 θ . (6.3)

Here we omit the azimuthal dependence, keeping φ=0◦. If the influence of SOC

is included via the explicit term Eq. (3.22), then application of second order per-

turbation theory leads to a simple dependence of the total energy on the angle θ

as

E(θ) − E0 = K1 sin2 θ ,

meaning that only the first term survives in Eq. (6.3) [114, 125]. Inspecting the full

E(θ) dependence as obtained via fully-relativistic ab-initio calculations thus provides

the possibility to estimate to what degree a treatment of MCA based on second order

perturbation theory is adequate: large K2 coefficient implies large deviations from

second order perturbation theory.



42 CHAPTER 6. RESULTS AND DISCUSSION

We performed a series of calculations for different magnetization tilt angle θ,

using the sprkkr code. The MCA energy was evaluated as a difference of total

energies. The results are shown via circles in Fig. 6.3. Because we wanted to have a

fine θ-mesh, we had to perform a lot of calculations; therefore, we used `
(KKR)
max =3 in

this section. The numerical value for θ=90◦ thus differs a bit from table 6.3, where

the `
(KKR)
max =7 cutoff was used.

The ab-initio data were fitted via Eq. (6.3). If only the K1 sin2 θ term is employed

(taking K2=0), we obtain K1=3.085 meV. If both terms in Eq. (6.3) are employed,

we obtain K1=3.008 meV and K2=0.092 meV. Even though both fits look nearly

the same in the overall view, a detailed analysis shows that the fit with both terms

is significantly better (cf. the right panel in Fig. 6.3). Using even higher order terms

in the fit did not lead to a significant improvement.

To summarize, our calculations show that the dependence of the total energy on

the magnetization angle is fully described by Eq. (6.3). The ratio of the coefficients

K2/K1 is 0.03, thus we deduce that the MCA of FePt is dominated by the second

order perturbation theory but there is also a small but identifiable contribution

which cannot be described by it.

The implication coming from our analysis of the full angular dependence of the

total energy is that one can indeed use the torque implementation of the magnetic

force theorem: replacing the difference of energies E(90◦)− E(0◦) by the torque at

45◦ can be done only if Eq. (6.3) is valid [109, 51]. It follows from the results shown

in Fig. 6.3 that this indeed is the case.

6.1.4 Scaling of the MCA energy with spin orbit coupling

strength

For a deeper understanding we want to investigate how EMCA depends on the SOC.

More specifically, we are interested in how EMCA varies if the SOC strength is varied

at the Fe and Pt sites separately, i.e., we assume that the Hamiltonian Eq. (3.22)

can be symbolically rewritten as

HSOC =
∑
i

λi ξi(r) Li · Si , (6.4)

where λi is the scaling factor for site i. Such calculations were done via the sprkkr

code, using the approximate scheme [50] mentioned in the beginning of Sec 3.4.1.

If the magnetocrystalline anisotropy is described within second order perturba-

tion theory, it scales with the square of the SOC-scaling parameter λ, EMCA ∼ λ2

[114, 115, 125]. Inspecting the EMCA(λ) dependence thus provides another criterion

to what degree second order perturbation theory is sufficient to describe magne-

tocrystalline anisotropy of FePt. To get type-specific information, one should scale
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Figure 6.4: Dependence of EMCA on the SOC scaling factor λ.

λFe and λPt separately. In that case, however, the scaling of EMCA with SOC takes

a somewhat more complicated form [121]

EMCA(λFe, λPt) = Aλ2
Fe + B λFe λPt + C λ2

Pt . (6.5)

The scaling of EMCA with SOC will thus retain a quadratic form only if the scaling

is uniform (λFe=λPt) or if SOC for one of the atomic types is zero (recovering thus

the case of a single-component system [114, 115, 125]).

We start by calculating EMCA for a uniform SOC scaling, i.e., λFe=λPt. We vary

λ from 0 to 1.5 to cover the non-relativistic as well as the relativistic regime: if λ

is zero, there is no spin orbit coupling, if λ is 1, we recover the standard relativistic

case. The calculations were done with the sprkkr code, employing the scheme

described in Sec. 6.1.4 and evaluating EMCA by subtracting total energies. To reduce

the computer requirements, we performed all the calculations in this section with

`
(KKR)
max =3 in the ASA mode; this enables us to use a fine λ mesh so that the curve

fitting is reliable. The results are shown by points in Fig. 6.4. Employment of

the ASA obviously leads to less acurate results than for full-potential calculations:

EMCA obtained within the ASA is by about 1 eV larger than EMCA obtained for full

potential. However, this does not affect our conclusions concerning the scaling of

EMCA with strength of the SOC.

To verify the predictions of the perturbation theory, we fit calculated EMCA(λ)

with the quadratic function,

EMCA(λ) = a λ2 . (6.6)

Perturbation theory should work well for small values of λ while it can be less

appropriate for large values of λ. So the fit to the function (6.6) is performed in

such a way that the a coefficient is sought only for λ in the range between zero
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Figure 6.5: Dependence of EMCA on the SOC scaling factor at the Fe sites λ(Fe).

and 0.4 (the upper value was arbitrarily chosen just for convenience). One can see

from Fig. 6.4 that while the fit describes the ab-initio data very well within the

λ ∈ [0; 0.4] range, there are small but clear deviations for larger λ. This suggests

that while second order perturbation theory accounts for the dominant mechanism

of magnetocrystalline anisotropy of FePt, some effects beyond it are also present.

To learn more about atom-specific contributions to MCA, let us scale the SOC

at the Fe and Pt sites separately. When varying λFe or λPt we further distinguish

two cases — either the SOC at the remaining species is totally suppressed (λ=0)

or it is kept at its “normal” value (λ=1). Results for scaling SOC at the Fe sites

are shown in Fig. 6.5, results for scaling SOC at the Pt sites are shown in Fig. 6.6.

Fits to the quadratic dependence of EMCA on λFe or on λPt were done only in case

that SOC at the other site is suppressed. Namely, if λ at the other atomic type is

non-zero, the functional dependence is more complicated — see Eq. (6.5) — and

fitting EMCA(λ) with the simple Eq. (6.6) would not make sense. Similarly as in the

case of the uniform scaling, the fits were attempted for λ in the [0;0.4] interval.

Concerning the case when SOC is varied at the Fe sites, one can see that if

λPt=0, the dependence of EMCA on λFe is perfectly accounted for by second order

perturbation theory: the quadratic fit describes the EMCA(λFe) dependence very well

also outside the [0;0.4] interval in which the a coefficient was sought (left graph in

Fig. 6.5). This suggests that it must be the strong SOC at Pt sites which makes the

EMCA(λ) curve in Fig. 6.4 to deviate from a perfect parabola. Indeed, if SOC at Pt

sites is switched on (right graph in Fig. 6.5), the EMCA(λ) functional dependence

changes completely.

Let us turn now to the case of varying λPt. If there is no SOC at the Fe sites,

the EMCA(λPt) dependence is described by the fitted parabola only for low values
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Figure 6.6: Dependence of EMCA on the SOC scaling factor at the Pt sites λ(Pt).

of λPt (left graph in Fig. 6.6). If λPt increases beyond the fitting interval of [0;0.4],

deviations of ab-initio data points from the fit by Eq. (6.6) are similar as for uniform

SOC fit presented in Fig. 6.4. So it follows from our analysis that the effect of SOC

at the Fe sites can be accounted for by second order perturbation theory while the

effect of SOC at the Pt sites goes beyond it.

Concerning a more detailed view on the mechanism of MCA, we found that

even though MCA of FePt is dominated by a second order perturbation theory

mechanism (as found earlier by Kosugi et al. [82] by analyzing the dependence of

EMCA of FePt on c/a), effects beyond it are clearly present as well. These effects

could be identified (i) by analyzing the full angular dependence of the total energy

and (ii) by inspecting how the MCA energy depends on the SOC strength. Separate

scaling of SOC at Fe and Pt sites allows us to deduce that the deviations from a pure

second order perturbation theory mechanism have their origin at the Pt sites. One

possible mechanism that is beyond the standard second order perturbation theory

is reoccupation of states close to the Fermi level [75, 126].

6.1.5 Dependence of the MCA energy on the LDA exchange-

correlation functional

Usually the calculated properties of solids do not crucially depend on which form of

the LDA exchange-correlation functional is used. However, as the MCA energy is

a very sensitive quantity, it is useful to investigate how the EMCA varies if different

LDA exchange-correlation functionals are used. Apart from the VWN exchange-

correlation functional used throughout this work we include in the comparison the
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Table 6.4: The MCA energy of FePt (in meV) calculated by subtracting total ener-

gies for different exchange and correlation functionals.

sprkkr wien2k

Vosko and Wilk and Nusaira 3.04 2.99

Perdew and Wangb - 3.02

von Barth and Hedinc 3.29 3.18

Moruzzi, Janak and Williamsd 2.97 -

a=Ref.[21], b=Ref.[22], c=Ref.[23], d=Ref.[24]

Perdew and Wang exchange-correlation functional [22] (the default for wien2k)

and functionals suggested by von Barth and Hedin [23] and by Moruzzi, Janak and

Williams [24].

We evaluated EMCA by subtracting total energies for this test. The results are

summarized in table 6.4. One can see that different LDA functionals lead to MCA

energies that differ from each other by 0.1–0.2 meV.

When comparing our EMCA with experiment (1.3–1.4 meV) [83], it is evident that

the LDA result does not quite agree with it. Clearly one has to go beyond LDA

for a quantitative description of MCA of FePt. It does not matter in this respect

which specific form of the LDA functional is used. Nevertheless, as different LDA

functionals lead to similar but still visibly different values of EMCA (cf. table 6.4),

each calculation of the MCA energy should be always accompanied by information

which parametrization of the LDA functional was employed.

Employing the generalized gradient approximation (GGA) does not lead to sub-

stantial improvement with respect to the LDA. We obtained EMCA = 2.73 meV for

the frequently used PBE-GGA form [127] (using the wien2k code and evaluating

the MCA energy as a difference of total energies). It is worth to note in this respect

that Shick and Mryasov were able to obtain the MCA energy of FePt as 1.3 meV

by using the LDA+U approach and searching for suitable site-related values of the

U parameter [80]. Interestingly, if many-body effects are described via the orbital

polarization term of Brooks [128], calculated EMCA is not significantly improved in

comparison with the LDA [80, 72, 77, 78] — despite the fact that this approach

proved to be useful when calculating orbital magnetic moments of transition metals

[129, 130].



47 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.7: Packing structure of SQS-N .

6.2 Disordered FePt: Local environment effects

The crystal structure of ordered FePt FCC (A1) have lattice parameter of a=3.807 Å[17].

Substitutional FePt alloy (i.e., 50:50 concentration) is modeled by fcc SQS’s with

N = 4, 8, 16 atoms per unit cell. L10 structure with c/a=1 is used for comparison.

Crystallographic data for SQS-4 are taken from Zhenxing et al. [92], data for SQS-

8 and SQS-16 are taken from Shang et al. [94]. Note that the present SQS-8 is

equivalent to the SQS-8b structure of Lu et al. [131]. The structural diagrams for

the SQS-N systems are shown in figure 6.7.

Now we focus on the influence of coordination and nearest-neighbor distance on

local magnetic moments in FePt alloy.



48 CHAPTER 6. RESULTS AND DISCUSSION

6.2.1 Average magnetic moments: comparison between su-

percell and CPA approach

Table 6.5 shows the average spin and orbital magnetic moments 〈µspin〉 and 〈µorb〉 for

Fe and Pt atoms obtained by assuming SQS supercell geometries and by employing

the CPA. No structural relaxation was performed at this stage. The magnetization

is oriented along the [001] direction of the parental fcc lattice. The calculations were

performed using the sprkkr code, so a direct comparison between SQS and CPA

results can be made. The data shown in table 6.5 were obtained for a full potential

but we checked that using it was actually not necessary: when the atomic spheres

approximation (ASA) was applied instead, the spin magnetic moments increased

typically by 1 % and the orbital magnetic moments by 2-10 %.

The observed variation in 〈µspin〉 between different SQS’s is quite small when

going stepwise from N = 4 to N = 32. This is especially true for the Fe atoms.

For the Pt atoms, the relative deviations are a bit larger but still small. On the

other hand, the variation in 〈µorb〉 is relatively large for the same sequence of SQS’s.

Again, this variation is larger for Pt atoms than for Fe atoms. Remarkably, even for

the largest SQS we explore there remains a small but distinct difference in magnetic

moments between the supercell and the CPA approaches. The same applies to the

avarage taken over all SQS’s.

6.2.2 Dependence of local magnetic moments on the chem-

ical composition of nearest neighbourhood

In this section we focus on how local magnetic moments depend on the chemical

composition of the nearest neighbourhood. All values presented here were obtained

for non-relaxed structures via the sprkkr code (as in section 6.2.1).

Table 6.6 and 6.7 show the local µspin and µorb for inequivalent sites in each of

the SQS we explore. For each site we show also the number of nearest Fe atoms

(the total number of nearest neighbors is always 12) and the multiplicity of the site

in the corresponding SQS structures. Data for CPA are shown for comparison; here

we “define” that there is an equal number of Fe and Pt neighbors for each atom as

this corresponds to random occupation.

A better view can be obtained if local magnetic moments are plotted as a function

of the number of nearest Fe atoms NFe. This is done in Fig. 6.8 for Fe sites and in

Fig. 6.9) for Pt sites.

Figure 6.8 shows the local spin and orbital magnetic moments, µspin and µorb,

respectively, for Fe sites in each of the SQS’s as a function of the number of Fe
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Table 6.5: Average spin and orbital magnetic moments (in µB per formula unit)

for Fe and Pt atoms in two ordered FePt systens and in four SQS’s simulating

disordered FePt alloy. Average values over all sites in all SQS’s are also shown. The

CPA results are presented at the bottom. The data were obtained using the sprkkr

code.

type 〈µspin〉 〈µorb〉

L10 (c/a = 0.965) Fe 2.829 0.065

Pt 0.337 0.044

L10 (c/a = 1) Fe 2.794 0.048

Pt 0.322 0.044

SQS-4 Fe 2.840 0.051

Pt 0.250 0.020

SQS-8 Fe 2.821 0.065

Pt 0.284 0.055

SQS-16 Fe 2.828 0.072

Pt 0.261 0.035

SQS-32 Fe 2.816 0.073

Pt 0.264 0.043

SQS-〈4, 8, 16, 32〉 Fe 2.821 0.070

Pt 0.265 0.041

CPA Fe 2.903 0.070

Pt 0.239 0.039
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Figure 6.8: Spin and orbital magnetic moments for Fe sites in various SQS’s shown

as functions of the number of Fe atoms in their first coordination spehres. The CPA

results are shown for comparison. The data were obtained via the sprkkr code.
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Figure 6.9: As Fig. 6.8 but for Pt sites.

atoms in their first coordinations spheres, NFe. As in the previous section, the

magnetization is always parallel to the [001] direction of the parental fcc lattice.

The values of µspin for the Fe sites are all very similar — they do not differ from

each other by more than 1 %. There is a much larger spread for the local µorb values

(around 30 %). No apparent systematic trends in the dependence of µspin or µorb on

NFe can be found in Fig. 6.8. Note that µspin at any Fe site is always larger than

µspin for a pure Fe with the same fcc structure as the SQS’s we employ (2.69 µB).

Our results can be compared with earlier work of Šipr et al. [132] for CoPt. We

found the same trend for µspin and as well as µorb. The Fe µspin is decreasing with

NFe as shown in figure 6.8. This is due to the hybridization of Fe d-states. Usually

in elemental Fe the µorb show the same trend as that of µspin, however the increasing

trend the µorb with NFe is due to the large spin orbit coupling (SOC) at the Pt atoms

that effect the µorb of Fe atoms via hybridization and induce on them an antiparallel

contribution to the µorb.
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Figure 6.10: Electronic charge for Fe sites in various SQS’s shown as a function of

the number of Fe atoms in their first coordination spheres. The CPA result is shown

for comparison. The data were obtained via the sprkkr code.

The situation is different concerning µspin and µorb for Pt sites. Corresponding

local and µspin and µorb as a function of NFe is shown in figure 6.9. One can see

that when the number of Fe atoms near a Pt atom increases, µspin and µorb for

this Pt atom increase as well. This is consistent with the fact that the magnetic

moments for the Pt atoms are induced by the magnetic moments of the neighboring

Fe atoms. If the number of neighboring Fe atoms increases, the induced magnetic

moment increases as well.

The CPA leads to different µspin than what is obtained for the supercells (fig-

ure 6.8). To find out more, we look at the dependence of the electronic charge at

the Fe site (QFe) on NFe, again for various SQS’s. The corresponding graph is given

in figure 6.10. Here, a convincing quasi-linear relation between QFe and NFe can be

seen. The case of pure Fe with geometry of disordered FePt fits fairly well into the

trend (QFe = 8, NFe = 12). An analogous plot could be drawn also for electronic

charge at the Pt sites (just with an opposite trend).

Let us note that figure 6.10 implies that the Fe atoms gain electrons when they

are alloyed with Pt. Of course, this depends on the way the atomic regions are

defined; in our case, we use Voronoi polyhedra, meaning that Fe and Pt atoms

occupy identical volumes.

For a complete view we explore also the dependence of the magnetic moments at

the Fe sites on the charge QFe (figure 6.11). There is no convincing systematic trend

in the data — similarly as in the case of the dependence of the magnetic moments

on NFe.
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Table 6.6: Local µspin and µorb for inequivalent sites in SQS-(4,8,16) systems. The

number of nearest Fe atoms and the multiplicity (how many times the site occurs

in appropriate SQS) are also shown for each site. These results were obtained for

non-relaxed structures using sprkkr . L10 structure with the c/a ratio modified so

that an fcc geometry is obtained.

type multiplicity NFe µspin(µB) µorb(µB)

L10 (c/a = 1) Fe 1 4 2.794 0.072

Pt 1 8 0.322 0.048

SQS-4 Fe 2 6 2.840 0.051

Pt 2 6 0.250 0.020

SQS-8 Fe 2 7 2.801 0.070

Fe 2 5 2.841 0.060

Pt 2 5 0.279 0.046

Pt 1 4 0.216 0.027

Pt 1 10 0.358 0.091

SQS-16 Fe 2 7 2.812 0.070

Fe 2 7 2.812 0.080

Fe 2 7 2.829 0.085

Fe 2 3 2.844 0.054

Pt 2 5 0.240 0.015

Pt 2 5 0.231 0.020

Pt 2 5 0.238 0.026

Pt 2 9 0.336 0.078

CPA Fe 1 6 2.903 0.070

Pt 1 6 0.239 0.039
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Table 6.7: As table 6.6 but in SQS-32 system.

type multiplicity NFe µspin(µB) µorb(µB)

SQS-32 Fe 1 6 2.802 0.077

Fe 1 5 2.807 0.073

Fe 1 7 2.789 0.085

Fe 1 4 2.887 0.061

Fe 1 6 2.795 0.072

Fe 1 4 2.887 0.071

Fe 1 2 2.902 0.061

Fe 1 5 2.818 0.075

Fe 1 7 2.786 0.087

Fe 1 9 2.792 0.073

Fe 1 8 2.741 0.083

Fe 1 7 2.814 0.075

Fe 1 6 2.805 0.071

Fe 1 8 2.806 0.070

Fe 1 7 2.805 0.076

Fe 1 5 2.837 0.065

Pt 1 6 0.269 0.044

Pt 1 5 0.283 0.032

Pt 1 5 0.236 0.038

Pt 1 7 0.286 0.047

Pt 1 10 0.295 0.062

Pt 1 5 0.266 0.037

Pt 1 7 0.267 0.041

Pt 1 8 0.291 0.044

Pt 1 8 0.283 0.061

Pt 1 5 0.219 0.037

Pt 1 4 0.225 0.029

Pt 1 7 0.280 0.046

Pt 1 3 0.210 0.0298

Pt 1 4 0.264 0.042

Pt 1 6 0.289 0.045

Pt 1 6 0.257 0.047

CPA Fe 1 6 2.903 0.070

Pt 1 6 0.239 0.039
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Figure 6.11: Spin magnetic moment for Fe sites in various SQS’s shown as functions

of the charge. The CPA result is shown for comparison. The data were obtained

via the sprkkr code.

6.2.3 Influence of the Madelung potential

The CPA leads to significantly different magnetic moment and charge than what

would correspond to a Fe atom in a supercell with NFe = 6 (Figs. 6.8 and 6.10). It

appears thus that there is a small but distinct difference between the way magnetism

in disordered FePt alloy is described via the CPA and via the supercell approach.

Possible reason for this difference is the single-site nature of the CPA. In par-

ticular, the standard CPA cannot account for the Madelung contribution to the

potential. Therefore, we investigate how the electronic structure of the SQS’s varies

depending on whether the the Madelung potential is included or not. The influence

of the Madelung potential on the charges at Fe sites is shown in Fig. 6.12. These

calculations were done within the full potential mode. One can see immediately

that neglecting the Madelung potential practically suppresses the dependence of the

charge on the coordination number. The CPA result corresponds to the case when

the Madelung potential is neglected. For the Pt sites the plot is analogous as for

the Fe sites.

A similar comparison for the spin magnetic moments is presented in Fig. 6.14.

Even though the difference between the situation with the Madelung potential and

without it is not so striking as at Fig. 6.12, again we see that the data points split

into two groups. Neglecting the Madelung potential increases µspin by 0.05–0.10 µB,

which is about the same as the difference between µspin for Fe obtained by averaging

over all SQS’s and by the CPA (table 6.5). Interestingly, spin magnetic moments at
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obtained within the CPA is also shown. These calculations were done by sprkkr

within the full potential mode.
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Figure 6.13: As figure 6.12 but within the ASA.
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Table 6.8: Comparison of spin magnetic moment (in µB) and charge Q (in electron)

obtain by averaging over supercell with CPA result. The upper part of the table

contains ASA and lower part contains full potential results.

Fe Pt

〈SQS〉 µspin QFe µspin QPt

ASA incl. Madelung 2.864 8.150 0.247 9.850

ASA without Madelung 2.929 8.083 0.240 9.917

ASA CPA 2.928 8.083 0.232 9.917

FP incl. Madelung 2.821 8.174 0.266 9.825

FP without Madelung 2.907 8.088 0.245 9.912

FP CPA 2.903 8.087 0.239 9.913

the Pt sites are not significantly affected by the presence or absence of the Madelung

potential — the plot in Fig. 6.9 would look practically the same no matter whether

the Madelung potential is included or not (also see table 6.8). This is probably

linked to the fact that magnetic moments at Pt sites are induced by moments at Fe

sites, so the effect of the Madelung potential is felt not only directly at the Pt sites

themselves but also indirectly through change of the moments at the Fe sites.

Table 6.8 summaries the influence of the Madelung potential on average quanti-

ties, spin magnetic moment and charge in Voronoi polyhedra. There is systematic

comparison between the ASA and full potential calculation. Figs. (6.12, 6.13, 6.14

and 6.15) also show the systematic comparison between ASA and full potential cal-

culation of individual spin magnetic moment and charge in Voronoi polyhedra with

respect to NFe. It seems that ASA calculations are consistent with full potential

calculation.

Several modifications of the CPA method were proposed to account for the effect

of the Madelung potential. A survey of these approaches would be beyond our scope

but to make yet another assessment of the influence of the Madelung potential, we

employ the screened impurity model for the Madelung contribution within the CPA

(SIM-CPA) [133]. This model assumes that the Madelung potential can be modeled

as the potential due to a screening charge which is spherically distributed at the

nearest-neighbor distance. Using this approach, we obtain 2.853 µB for µspin at Fe

atom and 0.244 µB for µspin at Pt atom. Comparing these values with table 6.5
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Figure 6.16: Optimized interatomic distances for the first coordination shell in SQS-

4, 8, 16, and 32. Average values are shown by horizontal lines. Results were obtained

via wien2k with the exchange-correlation potential parametrized within the LDA

(left panel) and within the GGA (right panel).

we see that the SIM-CPA method pushes the standard CPA results in the desired

direction. By optimizing model parameters of the SIM-CPA method [134] these

values could be brought even closer to the values obtained by averaging over all

SQS’s. However, this would not bring any new insight for us. We conclude by

summarizing that neglecting the Madelung potential by the CPA leads to small but

distinct changes in magnetic moments in FePt alloy.

6.2.4 Dependence of local magnetic moments on bond lengths

By optimising the positions of the atoms in the SQS, a variety of bond lengths is

obtained. Here we study how variations in bond lengths affect magnetic moments.

Respective calculations were performed via the wien2k code.

Generally, two different types of structural relaxations could be made for an

SQS: relaxation of internal degrees of freedom and relaxation of external degrees of

freedom. Relaxation of internal degrees of freedom means that atoms are allowed

to move in the direction of a force while the lattice vectors are kept unchanged.

Relaxation of external degrees of freedom means that the lengths of the lattice

vectors and the angles between them are optimized. External degrees of freedom

reflect whole manifold of possible configurations, it is thus reasonable to keep them

fixed when using the supercell to model an alloy. To study local environment effects,

we relax atomic positions only.
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Figure 6.17: Change of the spin magnetic moment ∆µspin for an Fe atom (left graph)

and for a Pt atom (right graph) plotted as a function of change of the average bond

length ∆d̄Fe-Fe or ∆d̄Pt-Fe. The calculations were done by wien2k.

Bond-lengths dFe–Fe, dFe–Pt and dPt–Pt resulting from the geometry optimization

are shown in Fig. 6.16, both for the LDA and for the GGA. For a non-relaxed

structure, all the lengths are 2.69 Å. One can see that dFe–Fe and dFe–Pt are on the

average close to 2.69 Å, with dFe–Fe a bit smaller than dFe–Pt. The dPt–Pt distances

are on the average larger than dFe–Fe or dFe–Pt distances. This is consistent with

the fact that the interatomic distances in elemental Pt (2.77 Å) are significantly

larger than the interatomic distances in elemental Fe (2.48 Å). The overall pictures

provided by the LDA and by the GGA are similar. In the following only results for

the LDA will be presented.

Changes in the interatomic distances cause corresponding changes in the mag-

netic moments. It is instructive to inspect how the change in the local spin moment

µspin is related to the change in the average distance of nearest Fe neighbours from

the considered site (∆d̄X-Fe). This is shown in Fig. 6.17. One can see that if Fe neigh-

bours around a Fe site are pushed away (i.e., ∆d̄Fe-Fe increases), µspin for that site

increases as well. This is plausible, because increasing ∆d̄Fe-Fe means that hybridiza-

tion between states related to Fe atoms decreases, which leads to an enhancement

of the magnetic moment. On the other hand, if Fe neighbors around a Pt site are

pushed away (i.e., ∆d̄Pt-Fe increases), µspin for this Pt atom decreases. This re-

flects the fact that magnetic moments at Pt atoms are induced by neighboring Fe

atoms; with increasing Pt–Fe distance the effectiveness of this mechanism obviously

decreases.

6.2.5 Density of states

Sections 6.2.1–6.2.2 contain a careful comparison between the CPA and the supercell

approach as concerns integral quantities — charges and magnetic moments. Here
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Figure 6.18: Spin-polarised density of states for Fe and Pt sites. The DOS for

supercells was averaged over all sites of the SQS-4, over all sites of the SQS-4 and

SQS-8, over all sites of the SQS-4, SQS-8 and SQS-16 and over all sites of the SQS-

4, SQS-8, SQS-16 and SQS-32. The CPA results are shown for comparison. The

calculations were performed by the sprkkr.

we will investigate the average DOS at Fe and Pt sites as provided by the two

approaches. In particular, we want to monitor how the DOS averaged over all sites

of given chemical type develops if more and more inequivalent sites are included.

We present in Fig. 6.18 a sequence of the DOS curves so that we start with

the DOS for the SQS-4 structure (separately for Fe and Pt atoms), then comes the

DOS averaged over all sites of the SQS-4 and SQS-8 structures together, then over

all sites of the SQS-4, SQS-8, SQS-16 and SQS-32 structures and finally comes the

DOS averaged over all sites of the SQS-〈4, 8, 16〉 and SQS-〈4, 8, 16, 32〉 structures.

These DOS curves are compared to the CPA results. All these calculations were

performed by the sprkkr code for non-relaxed structures.

One can see that the CPA limit is approach quite quickly. The DOS for Fe

atoms approaches the CPA data more quickly than for the Pt atoms. The dif-

ferences in magnetic moments between the CPA and the supercell descriptions

(cf. sections 6.2.1–6.2.2) are too small to give rise to visible effects at this scale.

The supercell and CPA results for the DOS become practically equivalent for SQS-

〈4, 8, 16, 32〉. One can interpret this as indication that at this stage the supercell

approach already presents a very good description of the disorder.

Our focus is on effects of local environment, therefore we present in Fig. 6.19 local

DOS for each inequivalent site in SQS-4, 8, and 16 systems. For sake of simplicity

we don’t show the local DOS of SQS-32. The multiplicities of the sites as well as

numbers of Fe atoms in the first coordination shells were given in table 6.6. It

follows from Fig. 6.19 and table 6.6 that the most important factor is the chemical
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Figure 6.19: Local spin-resolved DOS for inequivalent Fe and Pt sites in SQS-4, 8,

and 16. More detailed specification of the inequivalent sites is given in table 6.6.
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composition of the nearest neighbourhood, i.e., NFe. For example, Fig. 6.19b reveals

that DOS at Pt sites in SQS-8 splits into two groups: Pt1 (NFe=5) and Pt2 (NFe=4)

on the one side, Pt3 (NFe=10) on the other side. For DOS at Fe sites in SQS-16

explored in Fig. 6.19c, one observes that data for Fe4 (NFe=3) differs from data

for Fe1, Fe2, and Fe3 (NFe=7 for all of them). Likewise, DOS at Pt sites in SQS-

16 explored in Fig. 6.19d shows that data for Pt1, Pt2, and Pt3 sites (NFe=5) are

similar while data for Pt4 (NFe=9) are significantly different. Naturally, DOS curves

for sites with the same NFe may also differ but in that case the differences are much

smaller.

As a whole, it follows from Figs. 6.18–6.19 that deviations of local DOS from the

average are smaller for Fe than for Pt. This may again be connected with the fact

that states around Fe atom (a 3d elements) are more localized than states around

Pt atom (a 5d elements).

6.2.6 Broadening of the core level energies due to disorder

Disorder-induced broadening of core levels cannot be investigated within the CPA

because all atoms of a given type are equivalent there. However, this broadening can

be studied within the supercell approach. An easy way to achieve it is inspecting

ground state core level energies for inequivalent sites in the SQS’s. In this way the

core hole is ignored so one accounts only for initial-state effects [135].

The procedure we employ to determine the core level broadening is simpler than

which was used in some earlier dedicated studies [136, 137, 138, 139, 135]. In par-

ticular, as we deal only with small supercells, we do not have enough different

environments to deduce for each level a true full width at half maximum (FWHM)

by a statistical analysis of the deviations of individual core levels from the average.

We report just the maximum span of the core levels we obtain. Values presented

below should thus be taken as estimates rather than true FWHM calculations. Nev-

ertheless interesting information still can be obtained in this way.

We deal only with the SQS-8, SQS-16 and SQS-32 systems in this section (smaller

SQS’s have only one inequivalent site for each chemical type). The values presented

here were obtained for non-relaxed structures, using the sprkkr code. The core

level widths (i.e., ranges of core level energies) were evaluated by analyzing core

level energies for SQS-8, SQS-16 and SQS-32 systems together.

Our estimates of the broadening of core levels due to disorder are shown in

table 6.9 and table 6.10. All core levels are covered by this study. For core levels

split by the spin-orbit coupling (such as 2p1/2 and 2p3/2) the results are practically

the same, so we only show the data for the level with larger total angular momentum.

For comparison we show in table 6.9 and table 6.10 also natural core level widths

due to finite core hole lifetime [136].
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Table 6.9: Core level widths (in eV) of Fe SQS-N in K-M3 Levels.

disorder broadening life time broadening[136]

Fe 1s1/2 0.233 1.19

Fe 2s1/2 0.237 7.0

Fe 2p3/2 0.237 0.41

Fe 3s1/2 0.276 2.4

Fe 3p1/2 0.280 1.23

Fe 3p3/2 0.281 1.23

One can see from table 6.9 and table 6.10 that for most of the core levels related

to given atomic type, the disorder-induced broadening is the same. This indicates

that the dominant mechanism for the broadening is fluctuation in the Madelung

(Coulombic) potential due to nearest neighbours [140, 139, 137]. However, for the

least bound core levels, the disorder-induced broadening is larger than for the rest.

This indicates that respective core level shifts are additionally affected also by other

factors such as hybridization with states of neighbouring atoms.
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Table 6.10: Core level widths (in eV) of Pt SQS-N in K-M3 Levels.

disorder broadening life time broadening[136]

Pt 1s1/2 0.191 49.5

Pt 2s1/2 0.201 8.8

Pt 2p3/2 0.203 5.39

Pt 3s1/2 0.211 14.9

Pt 3p3/2 0.218 8.3

Pt 3d5/2 0.216 2.08

Pt 4s1/2 0.229 8.25

Pt 4p3/2 0.230 4.9

Pt 4d5/2 0.231 3.95

Pt 4f7/2 0.237 0.31

Pt 5s1/2 0.285 -

Pt 5p1/2 0.303 -

Pt 5p3/2 0.326 -



Chapter 7

Conclusions

A detailed study involving more codes and methods yields new and reliable informa-

tion about the electronic structure and magnetism of ordered and disordered FePt.

In particular we found that if electronic structure calculations performed by means

of FLAPW and KKR methods are properly converged, they yield the same results

even for such sensitive quantities as the magnetocrystalline anisotropy energy. The

proper LDA value of the MCA energy for FePt (3.0 meV for the VWN exchange-

correlation functional) is significantly larger than in experiment (1.3 meV), meaning

that the MCA of FePt can be described properly only if many-body effects beyond

the LDA are included. As our value of EMCA was obtained by two different methods

and the convergence of both of them was carefully checked, it can be used as a

benchmark in future calculations.

It is not really important whether relativistic effects for FePt are accounted for

by solving the full Dirac equation or whether the spin-orbit coupling is treated as a

correction to the scalar-relativistic Hamiltonian. The main mechanism of MCA in

FePt can be described within the framework of second order perturbation theory .

However, a small yet distant contribution not accountable for by the second order

perturbation theory is present as well.

Our calculations for disordered FePt systems show that by increasing the number

of atoms N in special quasirandom structures SQS-N , the results for the magnetic

moments and for the DOS approach the results obtained via the CPA. However,

a small “residual difference” remains between magnetic moments obtained by both

approaches. This is due to the neglect of the Madelung potential in the CPA.

The local magnetic moments associated with Fe atoms are more robust with

respect to variations of the local environment than the magnetic moments associated

with the Pt atoms. This reflects the fact that magnetism at Pt sites is induced by

neighboring Fe atoms and that electronic states derived from the Pt atoms are

more delocalized than states derived from the Fe atoms. If structural relaxation
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is performed, the distances between the Pt atoms dPt–Pt are larger on the average

than distances between the Fe atoms dFe–Fe or distances between the Fe and Pt

atoms dFe–Pt. The magnetic moments at the Fe sites increase if the average dFe–Fe

distance increases. The magnetic moments at the Pt sites decrease if the average

dFe–Pt distance increases, in accordance with intuition.

Disorder induces broadening of core levels due to fluctuations in the chemical

composition around atoms. This broadening is practically the same for all deep core

levels associated with given chemical element, emphasizing that the mechanism of

this broadening comes from fluctuations of the Madelung potential. Broadening of

the least bound core levels differs from broadening of deep levels, suggesting that

for these levels other factors (such as hybridization) also contribute.



Appendix A

Convergence tests

As we discussed in Sec. 6.1.2, the total energies and the MCA energy can differ by

about eight or nine orders of magnitude. Therefore very well converged calculations

are required for precise values of the MCA energy. In the following we check the

influence of different technical parameters on the MCA energy if the wien2k or

sprkkr codes are used.

The EMCA values presented in this appendix sometimes differ from the values

presented in the Results section of this thesis. This is because in order to save

computer resources, when studying the dependence of EMCA on a particular con-

vergence parameter, the other parameters were sometimes set to lower values than

what would lead to the most accurate results. These circumstances do not influence

the outcome of the convergence tests.

Unless explicitly stated otherwise, the setting of technical parameters in this Ap-

pendix is the following (cf. 5): `
(KKR)
max =3 (for sprkkr), R

(Fe)
MT =2.2 a.u., R

(Pt)
MT =2.3 a.u.,

RMTKmax=8, `
(APW)
max =10, Emax=100 Ry (for wien2k). Reciprocal space integrals

were evaluated using a mesh of 100000 k-points in the full BZ (both codes). Based

on the results presented below, we argue that the numerical accuracy of our EMCA

calculation is about 0.1 meV.

These convergence tests are source of strict and very helpful. Based on these

convergence tests, we can make sure that our result for the disordered systems are

also reliable.
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Table A.1: Convergence of EMCA obtained via the sprkkr code with the angular

momentum cutoff `
(KKR)
max . EMCA was evaluated by subtracting total energies.

`
(KKR)
max EMCA (meV)

2 1.289

3 3.101

4 3.437

5 3.423

6 3.217

7 3.039

A.1 Convergence of sprkkr calculations with `
(KKR)
max

KKR calculations of total energies are quite sensitive to the `
(KKR)
max cutoff. Therefore,

we explore the dependence of our results on this parameter. The results are shown in

table A.1. It follows from the table that cutting the angular momentum expansion at

`
(KKR)
max =3 (as it is commonly done for transition metals) yields qualitatively correct

value for the MCA energy.

One can see from table A.1 that even for `
(KKR)
max = 7, a full convergence still has

not been reached. However, increasing `
(KKR)
max further would be computationally very

demanding and, moreover, the issue of `
(KKR)
max convergence would get intertwinned

with numerical problems in evaluating the Madelung potential and near-field cor-

rections, so the real benefit of it would be dubious. We conclude that this limits the

numerical accuracy of EMCA calculations to about 0.2 meV.
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Table A.2: Convergence of EMCA obtained via the wien2k code with RMTKmax.

EMCAwas evaluated by means of the magnetic force theorem.

RMTKmax EMCA (meV)

6.0 2.851

7.0 3.046

8.0 3.051

9.0 3.081

10.0 2.993

11.0 3.013

A.2 Convergence of wien2k calculations with RMTKmax

An important parameter for the FLAPW calculations is the size of the basis set. It

can be controlled by the RMTKmax product. The value RMTKmax = 7.0 is set by

default in wien2k. We increased the product RMTKmax step by step from 6.0 up

to 11.0 and calculated the MCA energy. The results are shown in table A.2. It is

clear from this that reliable values for the MCA energy can be obtained for a basis

set determined by the RMTKmax=8.0 condition.

A.3 Stability of wien2k calculations with respect

to RMT variations

Recently the stability of the results with respect to varying the muffin-tin radii was

adopted as an informative test whether the FLAPW basis set is sufficient or not.

Namely, in this way one changes the regions where the wave functions are expanded

in terms of plane waves and where they are expanded in terms of atomic-like func-

tions. Only if both expansions are appropriate the result will be stable against this

variation. We adopted this test in our study, the results are summarized in ta-
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Table A.3: Dependence of EMCA obtained via the wien2k code on muffin-tin radii

RMT. EMCAwas evaluated by subtracting total energies.

R
(Fe)
MT (a.u.) R

(Pt)
MT (a.u.) EMCA (meV)

2.100 2.200 3.012

2.180 2.280 3.083

2.185 2.285 3.009

2.190 2.290 3.044

2.195 2.295 3.074

2.200 2.300 3.051

2.210 2.310 3.042

2.215 2.315 3.012

2.220 2.320 3.004

2.250 2.350 3.027

2.300 2.400 3.021

ble A.3. We can see from a good agreement between the MCA energies obtained for

different muffin-tin radii settings that the basis we used for our wien2k calculations

is appropriate for our purpose.

A.4 Convergence of sprkkr and wien2k calcula-

tions with the number of k-points

A very important parameter is the number of k-points used in evaluating the inte-

grals in the reciprocal space. We performed corresponding tests for both codes. The

dependence of EMCA on the number of k-points in the full BZ is shown in table A.4.

One can see that using about 100000 k-points in the full Brillouin zone is sufficient

to get reliable results.
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Table A.4: Convergence of EMCA calculated by the sprkkr and wien2k codes with

the number of k-points in the full BZ. EMCA (in meV) was evaluated by subtracting

total energies.

no. of k-points EMCA(sprkkr) EMCA(wien2k)

1000 2.894 2.996

10000 3.174 3.052

60000 3.129 3.009

100000 3.061 3.051

140000 3.091 3.024

180000 3.092 2.944

220000 3.099 3.090

260000 3.103 3.001

500000 3.099 2.997

800000 3.096 2.989
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Table A.5: Convergence of EMCA obtained via the wien2k code with Emax. EMCA

was evaluated either by subtracting total energies (the second column) or by means

of the magnetic force theorem (the third column).

Emax (Ry) EMCA (meV) EMCA (meV)

via Etot via force th.

2 3.117 2.955

5 3.071 2.961

10 3.064 2.965

100 (all states) 3.051 2.967

A.5 Convergence of wien2k calculations with Emax

When including the SOC within the second variation step, the size of the new basis

set is determined by the Emax parameter (see chapter 5 of the thesis). If Emax

is sufficiently large, all scalar-relativistic eigenstates are involved. The effect of

varying Emax on the MCA energy in shown in table A.5. One can see that if EMCA

is evaluated by means of the magnetic force theorem, it converges more quickly with

Emax than if EMCA is evaluated via subtracting the total energies. In both cases,

nevertheless, the convergence is quite good.
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[51] O. Šipr, S. Bornemann, H. Ebert, and J. Minár. Magnetocrystalline anisotropy

energy for adatoms and monolayers on non-magnetic substrates: where does

it come from? J. Phys.: Condens. Matter, 26(19):196002, 2014.

[52] A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard. Special quasirandom

structures. Phys. Rev. Lett., 65:353, 1990.

[53] S.-H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger. Electronic properties

of random alloys: Special quasirandom structures. Phys. Rev. B, 42:9622,

1990.



77 BIBLIOGRAPHY

[54] P. Soven. Coherent-potential model of substitutional disordered alloys. Phys.

Rev., 156:809, 1967.

[55] D. W. Taylor. Vibrational properties of imperfect crystals with large defect

concentrations. Phys. Rev., 156:1017, 1967.

[56] T. Rauch, J. Henk S. Achilles, and I. Mertig. Spin Chirality Tuning and

Topological Semimetals in Strained HgTexS1−x. Phys. Rev. Lett., 114:236805,

2015.

[57] R. Masrour and E. K. Hlil. Correlation of electronic structure and magnetic

moment in Ga1−xMnxN : First-principles, mean field and high temperature

series expansions calculations. Physica A: Statistical Mechanics and its Appli-

cations, 456:215, 2016.

[58] H. Akai, P. H. Dederichs, and J. Kanamori. Magnetic properties of ni- and

co-alloys calculated by kkr-cpa-lsd method. J. Physique. Coll., 49:C8–23, 1988.

[59] A. E. Kissavos, S. I. Simak, P. Olsson, L. Vitos, and I. A. Abrikosov. Total

energy calculations for systems with magnetic and chemical disorder. Comp.

Mater. Science, 35:1, 2006.
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of FePt: a detailed view. http://arxiv.org/abs/1604.00176.

8. S. A. Khan, P. Blaha, H. Ebert, J. Minár, O. Šipr: Local environment ef-
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