Diplomová práce

Odhad délky ruky z kostí ruky anatomickou metodou
Sára Kuncová

Plzeň 2017
Západočeská univerzita v Plzni
Fakulta filozofická
Katedra antropologie
Studijní program Antropologie
Studijní obor Antropologie populací minulosti

Diplomová práce

Odhad délky ruky z kostí ruky anatomickou metodou
Sára Kuncová

Vedoucí práce:
Mgr. Patrik Galeta, Ph.D.
Katedra antropologie
Fakulta filozofická Západočeské univerzity v Plzni

Plzeň 2017
Prohlašuji, že jsem práci zpracovala samostatně a použila jen uvedených pramenů a literatury.

Plzeň, červenec 2017
Poděkování:

Obsah

1 ÚVOD...6

2 CÍL PRÁCE..11

3 TEORETICKÁ VÝCHODISKA...12

3.1 Anatomie ruky ..12

3.2 Variabilita ruky ..16

3.2.1 Ontogenetický vývoj ruky ..16
 3.2.1.1 Vývojové vady ruky ...17

3.2.2 Fylogenetický vývoj ruky ...20
 3.2.2.1 Ruka šimpanze a člověka ...20
 3.2.2.2 Ruka *Ardipithecus ramidus* ...22
 3.2.2.3 Ruka Australopitéků ..23

3.2.3 Vliv klimatu ...25

3.5 Odhad výšky postavy jedince ...26
 3.5.1 Matematická metoda odhadu ..26
 3.5.2 Anatomická metoda odhadu ...26
 3.5.3 Aplikace obou metod na ruku ...26

3.6 Otisky rukou v paleolitickém umění ..26

3.7 Odhad pohlaví z otisků a stop rukou na stěnách jeskyní26

4 MATERIÁL ...26

5 METODY ...28
1 ÚVOD

Během let, tak vzniklo množství prací, které se věnují nejen rozměrům, ale také odhadu různých biologických parametrů z ruky. Kromě evolučního vývoje ruky a srovnání s primáty (Young, 2003) lze z ruky odhadovat mnoho parametrů na základě její délky, šířky, poměrů délky jednotlivých prstů, celkového tvaru a velikosti nebo kostí.

Mezi odhadované biologické parametry patří například pohlaví jedince (Stojanowski, 1999; Barrio et al., 2006; McIntyre et al., 2006). Jako u každého jiného živočišného druhu můžeme u žen a u mužů pozorovat sexuální dimorfismus na více úrovních. Muži a ženy se liší, kromě primárních a sekundárních pohlavních znaků, také ve výšce postavy, v rozložení tělesné váhy nebo ve velikosti mozku či neurální hustotě limbického a paralimbického systému mozku (Goldstein et al., 2001; Wells, 2014).

Sexuální dimorfismus vykazují podle studií i ženské a mužské ruce. Studie pracují především s poměrem mezi délkou druhého a čtvrtého prstu ruky (2D:4D ratio/Manningův index). Muži mají relativně delší čtvrtý prst (D4) než ženy a tím nižší Manningův index. Tento poměr mezi délkou prstů je ovlivněn již in utero působením testosteronu a estrogenu (Manning et al., 1998, 2000, 2001).

Dalším biologickým parametrem, který lze odhadovat z délky ruky či kostí ruky je výška postavy jedince (Agnihotri et al., 2008; Rastogi et al., 2008; Habib a Kamal, 2010, Wilbur, 2008). Výše zmínění autoři
předkládají, že existuje pozitivní korelace mezi rozměry ruky a výškou postavy jedince.

Lidský růst a vývoj je komplexní, longitudinální proces, který mapuje změny v tělesné velikosti a vývoj tkání (obrázek 1). Právě na základě růstu a vývoje můžeme odhadovat výšku postavy jedince, která je ovlivněna genetickými faktory a okolním prostředím (Cameron et al., 2012).

Obrázek 1. Růstové křivky ukazující vývoj lymfatické tkáně (lymphoid), mozku a hlavy (brain and head), reprodukčních orgánů (reproductive) a ostatních orgánových soustav (general) (Cameron et al., 2012).
V posledních letech se ke zmíněným odhadům přidal zájem o paleolitické umění na stěnách jeskyní. Na nichž můžeme najít otisky (handprints) a stopy (hand stencils) rukou v různých částech světa – Španělsku (Garcia-Diez et al., 2015), Francii (Snow, 2006), Indonésii (Aubert et al., 2014), Africe (Manhire, 1998) nebo Severní Americe (Ellis a Hammack, 1968). Rozdíl mezi otiskem ruky a stopou ruky spočívá v tom, že otisk vzniká jako pozitiv namočením ruky do barviva a otisknutím na zeď. Zatímco stopa vzniká nanesením barvy kolem přitisknuté ruky jako negativ (Snow, 2006). Pomocí snímání délky ruky, délky prstů nebo šířky ruky z takovýchto otisků se mnoho autorů zabývá vytvořením metody pro odhad pohlaví jejich tvůrců. Z recentních studií jsou to například Wang a kolektiv (Wang et al., 2010), Pettit (Pettit et al., 2014), Mackie (Mackie, 2015) nebo Nelsonová s kolektivem (Nelson et al., 2016).

Snow (2006) představil metodu odhadu pohlaví u tří stop rukou z francouzské paleolitické jeskyně Pech Merle a dalších tří stop z Abri du Poisson, Les Combarelles a Font de Gaume. Na základě vytvoření dvou diskriminačních funkcí z referenčního souboru 111 jedinců ze současné americké populace v Pennsylvánii. Stejnou metodu použil v roce 2013, kdy měl k dispozici soubor 32 stop z devíti evropských jeskyní (Snow, 2013). Došel k závěru, že více než polovinu stop zanechaly na stěně jeskyně ženy (v případě první studie to bylo 67 % žen, v případě druhé studie bylo 75 % stop přisouzeno ženám). Spolehlivost jeho metody vyvrací Galeta s kolektivem (Galeta et al., 2014) na souboru ze současné francouzské populace. Při aplikaci Snowem vytvořené diskriminační funkce zjistili, že vykazuje u současné francouzské populace nižší spolehlivost, než u populace americké. Ti hodnotí míru správné klasifikace na 79 % u přímého rozměru ruky a jen 50 % s využitím Manningova indexu. U přímého rozměru ruky byly ženy nevěrohodně správně klasifikovány ze 100 % a muži z 58 %. Při využití rozměrů druhého a čtvrtého prstu byli všichni jedinci „správně“ ohodnoceni jako muži.

Problém při odhadování délky ruky a všech ostatních charakteristik spočívá v tom, že na výslednou morfologii ruky působí více faktorů – geneticá podmíněnost jedince nebo klima (Holliday, 1997a; b; Holliday a Ruff, 2001; Loehlin et al., 2006). Na tomto základě můžeme očekávat, že ve tvaru a velikosti ruky existují mezipopulační rozdíly a ruka je jako anatomický útvar populačně specifická, tj. liší se mezi populacemi. Veškeré studie zabývající se těmito odhady pracují s klasifikačními funkcemi, které jsou právě populačně specifické (Snow, 2006, 2013; Wang et al., 2010; Mackie, 2015) a jsou aplikovatelné pouze na populaci, na které byly vytvořeny.

Mik s kolektivem (Mik et al., 2016) navrhují metodologicky vhodnější postupy, které by mohly být aplikovatelné na otisky rukou a stop nezávisle na tom v jaké části světa tento druh umění vznikl. Navrhují vytvořit referenční soubor paleolitických otisků rukou známého pohlaví, který v současnosti neexistuje. Prvním krokem je rekonstrukce délky ruky a jiných rozměrů z kostí ruky, druhý krok spočívá v odhadu pohlaví z pánevní kosti dospělých jedinců z období mladého paleolitu a třetím krokem je vytvoření klasifikačních funkcí a odhad samotného pohlaví na základě otisků rukou na stěnách jeskyní (Mik et al., 2016).

Rekonstrukci otisku z kostí ruky lze provést dvěma metodami. Matematickou metodou pomocí regresní rovnice vytvořené z délky některé záprstní kosti. Podmínkou je silný korelační vztah mezi délkou
otisku a délku záprstní kosti. Případně anatomickou metodou, ze součtu délek kostí středního paprsku ruky a následnou korekcí na měkké tkáně.

Referenční soubor lze získat ze současné populace, získáním potřebných rozměrů z RTG nebo CT snímků (Mik et al., 2016). Obě navržené metody mají oporu v literatuře věnující se odhadu výšky postavy jedince (Fully, 1956; Raxter et al., 2006; Ruff, 2012).

Pro matematickou metodu odhadu existuje již předběžná studie věnující se vztahu mezi záprstními kostmi a délkou ruky (Mik, 2014). Přesnost odhadu délky ruky touto metodou je srovnatelná se známými odhady výšky postavy (Ruff et al., 2012), u které lze najít nejnižší hodnotu relativní chyby odhadu 1,66 % a nejvyšší 2,73 %. Zatímco u odhadu délky ruky podle Mika (2014) se hodnoty relativní chyby odhadu pohybují od 2,8 do 3,1 %.

V této práci se budeme zabývat odhadem délky ruky z kostí ruky anatomickou metodou z rentgenových snímků, kterou navrhují Mik s kolektivem (2016). Předpokládáme, že stejně jako metody odhadu výšky postavy anatomickou metodou (Fully 1956, Raxter et al., 2006) bude tato metoda populačně nespecifická a za příznivých okolností bychom ji mohli využít u otisků rukou různých populací, s jinými proporcemi než je referenční soubor.
2 CÍL PRÁCE

Cílem práce je odhadnout délku ruky z kostí ruky anatomickou metodou. Z rentgenových snímků změříme délku ruky a délku kostry ruky. Délku kostry ruky spočítáme jako součet délek kostí středního parsku ruky – kosti poloměsíčité (*os lunatum*), kosti hlavaté (*os capitatum*), třetí záprstní kosti (*os metacarpi, MC 3*), a článků prstů (*phalanges*).
3 TEORETICKÁ VÝCHODISKA

3.1 Anatomie ruky

Lidskou ruku (*manus*) (obrázek 2) tvoří celkem 27 kostí. Kosti ruky (*ossa manus*) zahrnují kosti zápěstí (*ossa carpi*), kosti záprstní (*ossa metacarpi*), články prstů (*ossa digitorum manus* neboli *phalanges*) a v některých případech i sesamské kůstky (*ossa sesamoidea*), jež se nacházejí uložené ve šlachách, u ruky při metakarpofalangovém kloubu palce (Čihák, 2011).

Kosti zápěstí jsou uspořádány do dvou řad po čtyřech nepravidelných kostech, celkem zápěstí (*carpus*) tvoří osm kostí. Proximální řada se skládá z kosti loďkovité (*os scaphoideum*), kosti poloměsíčité (*os lunatum*), kosti trojhranné (*os triquetrum*) a kosti hráškové (*os pisiforme*). Distální řadu tvoří kost mnohohranná větší (*os trapezium*), kost mnohohranná menší (*os trapezoideum*), kost hlavatá (*os capitatum*) a kost hákovitá (*os hamatum*) (Čihák, 2011).

Zápěstí je dorsální konvexní oblast kostry ruky, která je zvýrazněna dvěma vyvýšeninami na radiálním a ulnárním okraji. *Eminentia carpi radialis* složená z *tuberculum ossis scapoidei* a *tuberculum ossis trapezii*. A *eminentia carpi ulnaris* složená z *os pisiforme* a *hamulus ossis hamati*. Vyvýšeniny jsou spojeny vazem, načež vzniká karpální tunel (*canalis carpi*). Tunelem prochází šlachy svalů a nervy (Čihák, 2011).

Kosti prstů *ossa digitorum manus* čili *phalanges*. Články prstů jsou dva pro palec a tři pro ostatní čtyři prsty, jsou uspořádány ve třech řadách jako *phalanx proximalis, media a distalis* (Čihák, 2011).

Dále musíme zmínit svalové skupiny ruky (obrázek 4), protože svaly mají vliv nejen na morfologii ruky jako celku, ale také působí na tvar kostí. Na dorzální straně ruky nejsou upnuty žádné specifické svaly, za to na palmární straně, najdeme svaly, které tvoří dlaň. Tyto svaly (musculi manus) můžeme rozdělit do tří hlavní skupin: skupina palcová neboli

thenar. Do této skupiny patří *musculus abductor pollicis brevis, musculus flexor pollicis brevis, musculus opponens pollicis, musculus adductor pollicis*. Další skupinou je malíková skupina neboli *hypotenar*. Do této skupiny paří *musculus palmaris brevis, musculus abductor digiti minimi, musculus flexor digiti minimi brevis, musculus opponens digiti minimi*. Třetí hlavní skupinu tvoří svaly středního prostoru – *musculi lumbiricales manus a musculi interossei manus*, které dělíme na svaly palmární (*musculi interossei palmares I-III a musculi interossei dorsales I-IV*).
3.2 Variabilita ruky

Variabilitu ruky můžeme pozorovat mezi různými populacemi, ale také uvnitř jedné populace (Králík et al., 2014). Velikost a tvar ruky se bude odlišovat u mužů a u žen (Stojanowski, 1999; Barrio et al., 2006; McIntyre et al., 2006), mezi obyvateli Evropy, Afriky i Asie (El Morsi a Al Hawary, 2013) a mezi leváky a praváky (Polak a Trivers, 1994). Tvar a velikost ruky se také mění v prostoru a čase během lidské evoluce (Young, 2003).

Morfologie ruky je ovlivněna zejména genetickými faktory a vlivem vnějšího prostředí, případně stresem během vývoje a růstu jedince.

3.2.1 Ontogenetický vývoj ruky

Ontogeneze neboli vývoj jedince je proces, který začíná splynutím dvou pohlavních buněk (gamet). Oplozené vajíčko se postupně dělí, rýhuje a proměňuje. Během třetího týdne vývoje zárodku se utváří primitivní proužek, vyvíjí se notochord a diferencují se tři zárodečné listy (ektoderm – kůže a její deriváty, centrální nervová soustava, periferní nervová soustava, sítnice, endoderm – dýchací soustava, trávicí soustava kromě ústní dutiny a řitního otvoru, mesoderm – pojiva, svaly, oběhový a lymfatický systém, pohlavní a vylučovací soustava, kosti) (Moore a Persaud, 2002). Kostra horní končetiny se začne utvářet 26. – 27. den gestačního období (Malas et al., 2006), u embrya velkého 3 mm jako končetinový pupen ploutvovitého tvaru. Diferenciace je regulována HOX geny a vývoj probíhá kraniokaudálním směrem (Vacek, 2006).

V pátém týdnu vývoje lze u ruky rozlišit autopodium, o týden později rozeznáváme stylopodium a zeugopodium. U autopodia je již naznačeno pět prstů, které zůstávají spojené kožní řasou. Začátkem druhého vývoje dítěte se vytvoří chrupavčité základy pletence horní končetiny, v druhé polovině tohoto měsíce se také vytvoří centra pro zápěstí, záprstí a prsty.
Plně diferenciovaná horní i dolní končetina je rozeznatelná u embrya velkého 25 mm (Vacek, 2006).

3.2.1.1 Vývojové vady ruky

Vrozené vady končetin se mohou vyskytnout v různém stupni rozsahu a s různou četností výskytu. 90 % vrozených defektů má genetický původ ve zbylých 10 % jsou příčinou biologické, fyzické nebo chemické teratogeny (viry, bakterie, jiné choroby matky, antibiotika a chemické látky nebo ionizující záření) (Šípek et al., 2010).

Vývojové vady se týkají celých končetin nebo jejich částí. Amelie je vývojová vada při, které se končetiny nevyvinou vůbec, v případě fokomelie se diferencuje pouze autopodium a vzniknou tak ruce (nohy, v případě dolní končetiny) připojené přímo k trupu. Jako meromelie se označuje vada, kdy se vyvinou jen některé oddíly končetiny (Vacek, 2006).

Pokud během ontogenetického vývoje dojde k poruše apoptózy (programované buněčné smrti) vzniknou chyby v diferenciaci a separaci rukou a nohou. Může dojít ke spojení a pozdějšímu srůstu prstů tzv. syndaktylie, jenž je nejčastější vrozenou vadou končetin (výskyt 1:2000). Syndaktylie se vyskytuje ve dvou formách. Pokud jsou prsty spojeny v celé své délce, jedná se o kompletní syndaktylii, jestliže jsou prsty spojeny jen v proximální nebo distální části, jde o syndaktylii nekompletní. Podle charakteru srůstu prstů oddělujeme syndaktylii jednoduchou a komplexní. Jednoduchá syndaktylie se projevuje pouze srůstem měkké
tkáně, zatímco u komplexního srůstu dochází ke kostěnému spojení (Dungl, 2005). U srostlých prstů může také dojít k jejich zkrácení, hovoříme tedy o brachysyndaktylii.

Brachydaktylii nazýváme vadu, u které dochází ke zkrácení jednotlivých článků prstů, metakarpů nebo obojího. Brachydaktylie se vyskytuje v několika formách (označována jako brachydaktylie A1 až A5, B, C, D, E, brachymetakarpalie IV, Sugarmanova brachydaktylie nebo Kirnerova deformita), viz obrázek 5. Různé typy brachydaktylie se objevují ve spojení s jinými deformacemi nebo syndromy – Robinowův syndrom, Rubinstein-Taybi syndrom nebo Panův syndrom (Temtamy a Aglan, 2008).
Obrázek 5. Různé typy brachydaktylie. Černě vyznačené postižené části (Temtamy a Aglan, 2008).

Obrázek 6. Typy komplexní polydaktylie, a) polydaktylie „zrcadlového odrazu“ b) polydaktylie středová c) polydaktylie Haasova typu d) polydaktylie vycházející z palmární nebo dorzální strany ruky a nohy (Malik, 2013).
Opakem polydaktylie je oligodaktylie, též parciální adaktylie, což je vada, která je typická sníženým počtem prstů, případně jsou založeny jenom jejich rudimenty. Rozdělit ji můžeme na preaxiální – chybí palec a druhý prst a na postaxiální – chybí čtvrtý prst a malík. Bývá také spojena s rozštěpem ruky, kdy vzniká tzv. „račí klepeto“, v tomto případě chybí centrální prsty a zbytek je zachován (obrázek 7) (Dungl, 2005).

3.2.2 Fylogenetický vývoj ruky

Fylogenetický vývoj ruky se v mnoha studiích pojí s fosilními nálezy homininů, šimpanzy a otázkami spojenými s vývojem úchopu, precizního gripu nebo schopností házet předměty (Napier, 1960; Marzke a Marzke, 2000; Young, 2003; Almécija et al., 2015).

3.2.2.1 Ruka šimpanze a člověka

Ruka šimpanze nebo jakéhokoliv jiného primáta je typická svými dlouhými zakřivenými prsty a relativně krátkým palcem. Lidská ruka je naproti tomu více svalnatá, celkově větší s relativně delším palcem
V opozici, ostatní prsty jsou kratší a rovnější než u primátů (obrázek 8) (Young, 2003).

Obrázek 8. Nalevo ruka šimpanze, napravo lidská ruka (Young, 2003).

stisku (Young, 2003). Mezi specifické pohyby palce a ostatních prstů patří dotek mezi palcem a všemi ostatními prsty, dále možnost uchopit předmět a odhodit ho, případně bezpečně a rychle vzít a držet zbraň. Fosilní nálezy ukazují, že právě výše uvedené možnosti měly vliv na morfologii a anatomii ruky (Marzke a Marzke, 2000; Young, 2003).

3.2.2.2 Ruka *Ardipithecus ramidus*

U nejstarších zástupců homininů jako *Sahalenthropus tchadensis* nebo *Orrorin tugenensis* byly nalezeny části lebky nebo postkraniálního skeletu, ale u těchto dvou zmíněných zástupců nedošlo k zachování kostry ruky (Senut et al., 2001; Brunet et al., 2002, 2004; Pickford et al., 2002; Sawada et al., 2002; Brunet, 2009, 2010). Naproti tomu u *Ardipithecus ramidus* se dochovaly jak kosti dolní, tak horní končetiny, včetně kostí ruky a nohy, což vedlo mnohé autory k analýze lokomočních vzorců a možnosti využívání bipední chůze u *A. ramidus* (White et al., 1994; Lovejoy et al., 2009a; b; c; d; Suwa et al., 2009).

Ruka *A. ramidus* byla odkryta téměř kompletně (obrázek 9) Chybí pouze kost hrášková a čtyři distální články prstů. První paprsek ruky je popisován jako robustní oproti jiným primátům, také se od ostatních primátů liší distálním článkem prstu prvního paprsku ruky, který disponuje místem pro úpon *flexor pollicis longus*. Pokud srovnáme druhý až pátý metakarp s ostatními primáty, zjistíme, že *A. ramidus* měl všechny záprstní kosti kratší. Dalším zajímavým znakem je celková stavba palmy ruky. Ta je rovná s dominující poloměšičitou kostí. Výše zmíněné a ostatní znaky nám říkají, že ruka *A. ramidus* je anatomicky specializovaná jako u jiných afrických lidoopů a zároveň u něj došlo k jemným změnám pro lepší arboreální lokomoci, zatímco jeho chodilo vykazuje menší změny pro chůzi po zemi (Lovejoy et al., 2009b).
3.2.2.3 Ruka Australopitéků

Funkční morfologie ruky je předmětem bádání nejen u homininů podobných primátů. Rekonstrukce ruky proběhla i u zástupců z rodu Australopithecus. U A. afarensis se autoři Alba, Moyá-Solá a Köhler (
zajímali především o proporce ruky a délku palce v souvislosti s precizním gripem a možným využíváním nástrojů. Výsledky morfometrické analýzy ukazují na proporce ruky podobné člověku, ačkoliv jsou v analýze použity kosti ruky více jedinců (Alba et al., 2003).

Dalším ze zástupců je A. africanus, jehož anatomie ruky je stále předmětem zájmu, jak ukazuje nejnovější článek od Skinnera a kolektivu z roku 2015 (Skinner et al., 2015). Ti se odkazují na analýzu vnitřní struktury metakarpů u A. africanus a dle jejich výsledků je spongióza záprstních kostí podobná svou hustotou kostem šimpanzů a ruce jsou stále uzpůsobené pro arboreální lokomoci, naproti tomu rozložení trámců v kostech se podobá modernímu člověku a Neandertálům (obrázek 10). Ti se odkazují na analýzu vnitřní struktury metakarpů u A. africanus a dle jejich výsledků je spongióza záprstních kostí podobná svou hustotou kostem šimpanzů a ruce jsou stále uzpůsobené pro arboreální lokomoci, naproti tomu rozložení trámců v kostech se podobá modernímu člověku a Neandertálům (obrázek 10). Pro schopnost precizního gripu a výrobu nástrojů, však hovoří nejvíce asymetrické rozložení trámců u hlavice třetího a pátého metakarpu a zároveň fakt, že takovéto rozložení trámců spongiózní kosti zcela chybí u šimpanzů (Skinner et al., 2015). Výsledky studie tak na základě morfologie kostí ruky ukazují, že A. africanus mohl používat své ruce k manipulaci s kamennými nástroji. Podobné výsledy na základě jiných metod jsou představeny i u staršího A. afarensis nebo u mladšího A. sediba (Ricklan, 1987; Tocheri et al., 2008; Kivell et al., 2011; Almécija, 2014; Almécija et al., 2015).

Obrazek 10. Řez v sagitální rovině skrze první metakarp šimpanze, A. africanus, A. robustus, H. neanderthaensis, časného a recentního moderního člověka. Barevně je
3.2.3 Vliv klimatu

Už od 19. století jsou nám známa dvě základní ekogeografická pravidla, která popisují vliv klimatu na morfologii těla teplokrevných živočichů. Těmito rozdíly v morfologii se zabývali vědci Carl Bergmann, podle nějž je pojmenováno Bregmannovo pravidlo (1847) a Joel Asaph Allen, po kterém nese název Allenovo pravidlo (1877). Tyto pravidla nám říkají, že teplokrevní živočichové mají menší a štíhlejší tělo a delší končetiny, pokud obývají teplé oblasti a naopak, pokud žijí v chladnějším pásu, tak disponují větším, zavalitějším tělem a kratšími končetinami.
3.5 Odhad výšky postavy jedince

3.5.1 Matematická metoda odhadu

3.5.2 Anatomická metoda odhadu

3.5.3 Aplikace obou metod na ruku

3.6 Otisky rukou v paleolitickém umění

3.7 Odhad pohlaví z otisků a stop rukou na stěnách jeskyní

4 MATERIÁL

Pro měření délky ruky a kostí ruky jsme využili rentgenové snímky ruky. Snímky pochází z roku 2013 ze tří radiologických pracovišť v Plzni. Snímky jsme použili se souhlasem Mgr. Patrika Mika, který snímky zpracovával pro svou diplomovou práci v roce 2013 a se svolením MUDr. Tomáše Kunce, který rentgenové snímky převedl do formátu JPEG.

Snímky byly pořízeny v rámci běžného lékařského vyšetření a nebyly pořízeny za účelem této studie. Vybrali jsme snímky mužů i žen s minimální dukcí ruky, s dobře viditelnými kostmi ruky, bez patologií a v anteroposteriorní projekci.

Zkoumali jsme 50 vybraných rentgenových snímků u žen a 50 vybraných projekcí ruky u mužů. Věk žen se pohyboval od 18 do 72 let věku, jejich průměr byl 42,7 let. Věk mužů se pohyboval od 18 do 70 let věku, s průměrným věkem 38,4 let (Graf 1, Tabulka 1).
Tabulka 1. Věk žen a mužů.

<table>
<thead>
<tr>
<th></th>
<th>Ženy</th>
<th>Muži</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Průměr</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>Sm. odchylka</td>
<td>15,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Medián</td>
<td>44,5</td>
<td>37</td>
</tr>
</tbody>
</table>
5 METODY

6 VÝSLEDKY

7 DISKUZE

8 ZÁVĚR
9 LITERATURA

Holliday TW, Ruff CB. 2001. Relative variation in human proximal and

Manning JT, Barley L, Walton J, Lewis-jones DI, Trivers RL. 2000. The 2nd: 4th digit ratio, sexual dimorphism, population differences, and reproductive success: evidence for sexually antagonistic genes?

Tocheri MW, Orr CM, Jacofsky MC, Marzke MW. 2008. The evolutionary history of the hominin hand since the last common ancestor of Pan

10 SEZNAM OBRÁZKŮ

Obrázek 1. Růstové křivky ukazující vývoj lymfatické tkáně (lymphoid), mozku a hlavy (brain and head), reprodukčních orgánů (reproductive) a ostatních orgánových soustav (general) (Cameron et al., 2012). 7

Obrázek 3. Klouby ruky. Zdroj: https://twitter.com/AnatomyZone (upraveno)... 14

Obrázek 5. Různé typy brachyaktylie. Černě vyznačené postižené části (Temtamy a Aglan, 2008). ... 19

Obrázek 6. Typy komplexní polydaktylie, a) polydaktylie „zrcadlového odrazu“ b) polydaktylie středová c) polydaktylie Haasova typu d) polydaktylie vycházející z palmární nebo dorzální strany ruky a nohy (Malik, 2013). ... 19

Obrázek 8. Nalevo ruka šimpanze, napravo lidská ruka (Young, 2003). 21

Obrázek 9. Digitální rekonstrukce ruky Ardipithecus ramidus ARA-VP-500/6 (Lovejoy et al., 2009b) ... 23
Obrázek 10. Řez v sagitální rovině skrze první metakarp šimpanze, A. africanus, A. robustus, H. neanderthaensis, časného a recentního moderního člověka. Barevně je vyznačena hustota spongiózní kosti na škále od 0 % (tmavě modrá barva) do 45 % (tmavě červená až černá barva), Skinner et al., 2015 (upraveno).

11 SEZNAM TABULEK
Tabulka 1. Věk žen a mužů

12 SEZNAM GRAFŮ
Graf 1. Věk žen a mužů

13 RESUMÉ