
Parciálńı dynamické rovnice
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Abstrakt

Tato disertace prezentuje naše výsledky týkaj́ıćı se parciálńıch dynamických rovnic na oblastech s diskrétńı
prostorovou proměnnou (tzv. mř́ıžkách). Tyto problémy slouž́ı k modelováńı proces̊u prob́ıhaj́ıćıch v
prostorově strukturovaném prostřed́ı (např. buňkách, krystalových mř́ıžkách, elektronických obrázćıch).
Proto studujeme parciálńı rovnice s diskrétńı prostorovou proměnnou a časovou proměnnou uvažujeme
bud’ spojitou, diskrétńı nebo z obecné časové škály.

Práce je rozdělena do dvou část́ı. Prvńı část disertace lze vńımat jako komentář s historickými souvis-
lostmi. Popisujeme zde nejen historii diferenčńıch a diferenciálńıch rovnic, ale i modelováńı proces̊u, které
lze popsat parciálńımi dynamickými rovnicemi na oblastech s diskrétńı prostorovou proměnnou. Odvozu-
jeme zákony zachováńı a následně vysvětlujeme, jak z nich vznikaj́ı transportńı a difúzńı rovnice. Poté
představujeme teoretické výsledky, které se zabývaj́ı transportńı rovnićı. V lineárńım př́ıpadě odvozujeme
explicitńı řešeńı a pro nelineárńı rovnici dokazujeme rozličné vlastnosti (např. principy maxima, globálńı
existenčńı věty). Poté se zabýváme reakčně-difúzńı rovnićı na mř́ıžkách, pro kterou studujeme podobné
teoretické vlastnosti. Diskutujeme také otázky týkaj́ıćı se implicitńı diskretizace reakčně-difúzńı rovnice.
Na závěr, abychom byli schopni studovat stacionárńı řešeńı, dokazujeme existenci pro diskrétńı okrajové
úlohy.

Druhá část práce se skládá ze šesti publikaćı. Tyto články jsou přiloženy v originálńı podobě a obsahuj́ı
všechny technické detaily pro zainteresovaného čtenáře.

Kĺıčová slova

parciálńı dynamické rovnice, mř́ıžky, transportńı rovnice, reakčně-difúzńı rovnice, existence, jednoznačnost,
principy maxima, variačńı metody
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Abstract

The dissertation thesis presents our recent results about the partial dynamic equations on discrete spatial
domains (so-called lattices). These problems arise from the modeling of processes on spatially structured
environment (e.g., cells, crystal lattices, electronic images). Consequently, we study partial equations
with discrete spatial variable and suppose time variable being either continuous, discrete or, generally,
from a time scale.

The thesis is divided into two parts. The first part is a commented overview with historical context.
We summarize the history of difference and differential equations and introduce the modeling of processes
described via partial dynamic equations on discrete spatial domains. We derive conservation laws and
then explain how transport and diffusion equations arise. Next, we present theoretical results for transport
equation. We derive the explicit formula for the solution in the linear case and prove various properties for
the nonlinear equation. Further, we study the reaction-diffusion equations and show similar properties.
We also discuss implicit discretization of the reaction-diffusion equation. Finally, we prove the existence
for discrete boundary value problems for the analysis of stationary solutions.

The second part of the dissertation thesis is composed of six appendices containing the original
publications. There are all technical details for interested readers.

Keywords

partial dynamic equation, lattices, transport equation, reaction-diffusion equation, existence, uniqueness,
maximum principles, variational methods
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Zusammenfassung

Diese Dissertation präsentiert unsere Ergebnisse über partielle dynamische Gleichungen auf Gebieten mit
diskreten Raumvariablen (sog. Gittern). Solche Probleme dienen der Modellierung der Vorgänge, die
auf strukturierten Raumbereiche verlaufen (z.B. Zellen, Kristallgittern oder elektronische Bilddateien).
Deshalb studieren wir die partiellen Gleichungen mit der diskreten Raumvariable und betrachten sowohl
stetige, diskrete als auch zeitskalige Zeitvariablen.

Die Arbeit ist in zwei Teile eingeteilt. Der erste Teil der Doktorarbeit kann man als ein Kom-
mentar mit den historischen Zusammenhänge betrachten. Hier schildert man nicht nur die Geschichte
der Differenz- und Differentialgleichungen aber erklärt auch die Modellierung der Vorgänge, die man
mit partiellen dynamischen Gleichungen auf Gebieten mit diskreten Raumvariablen beschreiben kann.
Man leitet verschiedene Erhaltungsätze ab und zeigt, wie die lineare und nichtlineare Transport- oder
Diffusionsgleichung entsteht. Dann stellen wir theoretische Ergebnisse vor, die sich mit der Transport-
gleichung beschäftigen. Wir berechnen die expliziten Lösungen in dem linearen Fall und beweisen ver-
schiede Eigenschaften in dem nichtlinearen Fall (z.B. Maximumprinzipien, globale Existenzaussagen und
stetige Abhängigkeit). Danach beschäftigen wir uns mit der Reaktionsdiffusionsgleichung auf Gittern.
Wir untersuchen ähnliche theoretische Eigenschaften. Wir diskutieren auch die Fragen der impliziten
Diskretisierung der Reaktionsdiffusionsgleichung. Um die stationären Lösungen studieren zu können,
beweisen wir auch einige Existenzsätze für diskrete Randwertaufgaben.

Der zweite Teil der Arbeit besteht aus sechs Veröffentlichungen. Diese Artikel werden in der Origi-
nalform angehängt und enthalten alle technischen Details für interessierte Leser.

Schlüsselwörter

partielle dynamische Gleichungen, Gittern, Transportgleichung, Reaktionsdiffusionsgleichung, Existenz,
Eindeutigkeit, Maximumprinzipien, Variationsmethoden
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CHAPTER 1

Introduction

Differential equations play one of the most important roles in the theory of mathematical analysis al-
ready from the invention of differential and integral calculus in the end of 17th century by I. Newton
and G. W. Leibnitz. The reason is straightforward, in that times the endeavor to understand and math-
ematically describe the physical laws in the real world culminated. The infinitesimal calculus showed
new ways how to describe physical processes. Firstly, considering time-dependent magnitudes, the no-
tion of derivative gave a method how to mathematically establish their instantaneous changes. Secondly,
differential and integral calculus gave a possibility how to introduce balances, namely, conservation laws
for continua. Consequently, many physical laws have been naturally expressed in the form of differential
equations from that times.

Later, not only physical, but also economic, biological, chemical and social phenomena have been
described via differential models. Therefore, the detailed qualitative analysis of differential equations and
establishing methods for solving them have taken great attention of thousands of mathematicians over
the world. Generally, we can say that differential equations serve for modeling and better understanding
of real world around us. These models could help with hard decisions and prevent some undesirable
effects and damages.

Furthermore, differential equations are important and interesting even from purely mathematical rea-
sons. They serve as a useful tool in other areas of mathematics, e.g., in algebraic and differential geometry,
manifold theory, differential topology, etc. On the other hand, this cooperation among seemingly distinct
fields of mathematics works naturally in both ways and the theory of differential equations often uses
deep results from algebra, topology, functional analysis, etc.

1.1 Difference equations

The history of difference equations is much older than the history of differential equations. The main
reason is straightforward, one does not need any special mathematical instrument to formulate problems
in the form of difference equations. Contrary to the differential equations which had to wait until
17th century when I. Newton and G. W. Leibnitz came with the idea of infinitesimal calculus, difference
equations appeared in the form of recurrence relations already in the ancient history.

One of the most known examples of recurrence relations is from the book Liber Abaci by Leonardo of
Pisa (better known as Fibonacci) from the beginning of 13th century. His example for the reproduction
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2 Jonáš Volek

of rabbits reads as follows. At the beginning one has a pair of rabbits (male and female). When the pair
matures, they have a new pair of immature rabbits. After one reproductive season, the new pair mature
and the old pair has another pair of immature rabbits, etc. The question is how many pairs of rabbits
are there after t-th reproductive season, t = 0, 1, 2, . . . This can be formulated in the recurrence form

Nt+1 = Nt +Nt−1 for t = 2, 3, . . . , N0 = 1, N1 = 1,

where Nt denotes the number of pairs after t-th reproductive season. This recurrence scheme produces
the so-called Fibonacci sequence1

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .} .
Let us emphasize that Fibonacci was not the founder of this interesting sequence. This has been known
since ancient history thanks to Indian mathematicians (see, e.g., P. Singh [71]).

Surprisingly, this sequence occurs in many places in the nature (e.g., the seeds in the floret of sunflower
are placed in spirals which consist of a Fibonacci number of seeds). It is also connected with the famous
golden ratio which has been intensively studied since the times of Euclid in Ancient Greece (and often
appearing in nature, culture, etc.). The limit of ratio of succeeding numbers of Fibonacci sequence

converges to the golden ratio ϕ = 1+
√

5
2 .

Next interesting problem involving recurrence relations which goes to the old history is bearing inter-
ests in money lending. The simplest case is well known. If you lend somebody N0 amount of money and
you make a settlement that after each month the debt increases by r %, then the debt after t months,
t = 0, 1, 2, . . ., is given by the following recurrence relation

Nt =
(

1 +
r

100

)
Nt−1 for t = 1, 2, 3, . . . ,

which has the explicit solution Nt =
(
1 + r

100

)t
N0.

From the numerical mathematics’ point of view, the difference equations have started to play an
important role after the development of infinitesimal calculus and differential equations. Since the math-
ematicians could not solve many differential equations analytically, they wanted to introduce a method
how to find solutions at least approximately. The pioneering work in this field was done by L. Euler in
18th century who established a method for approximation of solution to initial value problem for ordinary
differential equation (ODE)

{
u′(t) = f(t, u(t)), t ≥ 0, f : [0,+∞)× R→ R,
u(0) = u0 ∈ R.

The Euler method is based on discretization of the interval [0,+∞) with the discretization step h > 0
into the set of points {0, h, 2h, . . .} and on the recurrence scheme when the value of the exact solution u
at discretization points are approximated by the values

v(t+ h) = v(t) + hf(t, v(t)), t = h, 2h, . . . , v(0) = u0. (1.1)

Between the discretization points it is approximated by the linear function characterized by the end
points. The problem to establish the values v(t) at the discretizations points (1.1) is in fact an initial value
problem for (generally nonlinear) difference equation of the first order. See, e.g., E. Hairer, S. P. Nørsett,

1The closed formula for the solution of the Fibonacci recurrence relation is

Nt =
1√
5

(1 +
√

5

2

)t+1

−
(

1−
√

5

2

)t+1
 ,

see, e.g., J. D. Murray [60].
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G. Wanner [38] for more information and deep investigation of mathematical properties of the Euler
method.

The detailed analysis of difference equations is very important, since the discrete analogues of contin-
uous problems could exhibit qualitatively different behavior. To illustrate this, consider for example the
initial value problem for linear ODE

{
u′(t) = −u(t), t ≥ 0,
u(0) = 1.

The unique solution is obtained simply as u(t) = e−t which is everywhere positive and satisfies u(t)→ 0+
for t→ +∞. The discrete analogue for this problem obtained via the Euler method is

v(t+ h) = (1− h)v(t), t = h, 2h, . . . , v(0) = 1,

which has the unique solution v(t) = (1−h)
t
h . Let us discuss and compare the solutions of continuous and

discrete problem. Firstly, observe that for discretization steps h > 1 the solution of difference equation
changes sign. Moreover,

• for 1 < h < 2, there is v(t)→ 0 for t→ +∞,

• for h = 2, there is v(t) = (−1)
t
h ,

• for h > 2, there is lim inft→+∞ v(t) = −∞, lim supt→+∞ v(t) = +∞.

If h = 1, there is v(t) = 0 for all t = h, 2h, . . . On the contrary, if h < 1 and t > 0 is fixed, we obtain

v(t) = (1− h)
t
h → e−t = u(t) for h→ 0+,

i.e., we obtain better approximations of the original continuous problem for smaller discretization steps.
Secondly, the solution of the initial value problem for ODE exists for all t ∈ R and is given by u(t) = e−t,
i.e., the backward solution also exists. However, if h = 1 there is no backward solution of the difference
equation.

Let us note that the Euler method has been many times generalized and in the present days it is not
often practically used because it is one of the simplest methods, unstable for many problems. However,
we can say that it still has been one of the fundamental building blocks of numerical mathematics.

Furthermore, one can focus on the analysis of boundary value problems for differential equations. The
method of finite differences (see, e.g., R. J. LeVeque [53]) is one of standard numerical methods for these
problems. This leads to boundary value problems for difference equations which are another main topic
of this thesis. For example, consider the Dirichlet boundary value problem for second-order ODE

{
−u′′(t) = f(t, u(t)), t ∈ (0, 1), f : (0, 1)× R→ R,
u(0) = u(1) = 0.

The method of finite differences is based on the decomposition of the interval [0, 1] similarly as above
into the set {0, h, 2h, . . . , 1− h, 1} with the discretization step h = 1/k, k ∈ N, and an approximation of
the solution u of the continuous problem by the solution of the following discrete problem

{
−∆2

hv(t− h) = f(t, v(t)), t = h, 2h, . . . , 1− h,
v(0) = v(1) = 0,
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where ∆2
hv(t − h) = 1

h2 (u(t− h)− 2u(t) + u(t+ h)).2 Therefore, one could study these two problems
together and for example, establish a general condition for the nonlinearity f such that both problems
has a unique solution. Then, the question of convergence of solutions v to the solution u provided h→ 0+
is very interesting and one of the main topics in numerical mathematics.

Let us note that the reader can found the systematic theory of difference equations, e.g., in the mono-
graphs W. G. Kelley, A. C. Peterson [46] or S. Elaydi [30].

1.2 Population models

As Fibonacci’s example shows, difference (later also differential) equations have been often used for the
prediction of a future state of some biological system. Main problems studied in the thesis have often
the motivation from biological or chemical modeling. Thus, let us briefly introduce basic models of
population dynamics in their continuous and discrete form. The summary is based on the monograph
of J. D. Murray [60].3 Let us start with continuous models.

Example 1.1. At the end of 18th century T. R. Malthus in [58] presented the exponential growth model
of population dynamics. It is based on a simple idea that the birth rate and mortality are proportional
to the size of population linearly. In the continuous setting, denoting by N(t) the population size at time
t, the change of N(t) is given by

N ′(t) = bN(t)− dN(t),

where b > 0 is the parameter describing the birth rate and d > 0 describes the death rate. The solution
of this simple linear ODE is N(t) = N0e(b−d)t, where N0 ≥ 0 is the initial size of population at time
t = 0. Therefore,

• if b < d, then N(t)→ 0+ for t→ +∞ and the population dies out,

• if b = d, then N(t) ≡ N0,

• if b > d, then N(t)→ +∞ exponentially for t→ +∞.

This model seems to be unrealistic, since it is very simple and does not involve the influence the envi-
ronment (e.g., the spatial capacity, the amount of sources, etc.). However, sometimes it can describe the
evolution satisfactory. For example, the world’s population has increased exponentially until now and
thus, one can use this model for a prediction of future progress. If it would be done for immediate future,
this prediction will be plausible. However, it is hard to estimate when the world resources will start to
be deficient.

Example 1.2. Interestingly, in several particular countries (e.g., in the Western Europe) the population
growth rate has started to decrease. This can motivate us for another model which was introduced by
P. F. Verhulst in [83] in the middle of 19th century – the logistic model. It has the following form

2Let us note that in the theory of difference equations, boundary value problems are usually re-scaled, i.e., for example
in the case of homogeneous Dirichlet boundary conditions the following problem is considered{

−∆2w(n− 1) = g(n,w(n)), n = 1, 2, . . . , N − 1,
w(0) = w(N) = 0,

where N = 1/h, w(n) = u(nh), ∆2w(n− 1) = w(n− 1)− 2w(n) + w(n+ 1), g(n,w) = h2f(nh,w).
3We restrict ourselves to models of one population, since we do not study systems of equations further in the thesis (i.e.,

we omit famous models of cooperation, conflict, predator-prey models of Lotka-Volterra type, etc.)
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N ′(t) = rN(t)

(
1− N(t)

K

)
, r > 0, K > 0.

The birth rate per capita in this case is given by r
(

1− N(t)
K

)
and thus, it depends on the population

size. Here, the parameter K > 0 describes the carrying capacity of the environment. If the size N(t)
approaches the capacity K, then the birth rate per capita tends to zero. The explicit solution of this
equation is given by

N(t) =
N0Kert

K +N0 (ert − 1)
.

One can observe that the logistic equation has two stationary (constant in time) solutions N(t) ≡ 0 and
N(t) ≡ K. Solution for any positive initial condition N0 > 0 tends to the value K provided t→ +∞ and

• if N0 <
K
2 , then the solution is strictly increasing to K and has well-known sigmoid shape, which

for small time instances exponentially grows up, then the growth acceleration stops and decreases,

• if K
2 ≤ N0 < K, then the solution is strictly increasing to K, however, it is everywhere concave,

• if N0 > K, then the solution is strictly decreasing to K and it is everywhere convex.

This yields that the stationary solution N(t) ≡ K is globally asymptotically stable and N(t) ≡ 0 is
unstable.

There are many generalizations of logistic model, e.g., spruce budworm model in which the hysteresis
effect occurs, model with harvesting, etc. (see J. D. Murray [60]). Let us mention one of these possible
modifications.

Example 1.3. In 1930’s, W. C. Allee studied the effect in the population dynamics when the population
has better conditions for reproduction provided it is larger (see W. C. Allee [1]). Moreover, there can
exist a positive survival threshold for the population size below which the population dies out. Biological
mechanism evoking these procedures can be, e.g., collective feeding, collective defense against predators,
the frequency of meeting for reproduction, etc. This effect is called after its founder – the Allee effect.
The mathematical model describing the strong Allee effect (with the survival threshold), uses a type of
cubic nonlinearity which arises by the modification of logistic function

N ′(t) = rN(t)

(
1− N(t)

K

)(
N(t)

A
− 1

)
, r > 0, K > A > 0.

It has three stationary solutions N(t) ≡ 0, N(t) ≡ A and N(t) ≡ K. Basically,

• for 0 < N0 < A the solution is strictly decreasing and N(t)→ 0+ for t→ +∞, i.e., the population
dies out,

• for A < N0 < K the solution is strictly increasing and N(t)→ K− for t→ +∞,

• for N0 > K the solution is strictly decreasing and N(t)→ K+ for t→ +∞,

i.e., the stationary solutions N(t) ≡ 0, N(t) ≡ K are locally asymptotically stable, N(t) ≡ A is unstable.4

This yields that the population actually dies out provided the initial size of population is less than the
survival threshold A.

4These cubic nonlinearities are often called bistable nonlinearities.
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Let us focus on discrete population models. It is reasonable to apply difference equations rather
than differential equations, for example, when the population generations do not overlap (e.g., for the
reproduction of one-year plants). We denote the population size at generation t by Nt.

Example 1.4. Let us start with the discrete Malthus’ model

Nt+1 = rNt,

where r > 0 is the rate of reproduction, e.g., the average of descendants which individuals have. The
solution is N(t) = N0r

t where N0 is again the initial size of population for t = 0. It is obvious that it
has similar behavior as the continuous Malthus’ model

• if r < 1, the solution exponentially decreases Nt → 0+ for t→ +∞ and the population dies out,

• if r = 1, the solution is constant Nt ≡ N0,

• if r < 1, the solution exponentially grows up Nt → +∞ for t→ +∞.

Example 1.5. The second and very interesting model is the discrete logistic equation

Nt+1 = rNt (1−Nt) , r > 0,

(we consider the carrying capacity K = 1 for the brevity, the results below can be easily rescaled for
K 6= 1). Let us focus on stationary solutions, i.e., on solutions for which Nt+1 = Nt for all t = 0, 1, 2, . . .
Firstly, observe that Nt ≡ 1 = K is not a solution. After simple calculations, we obtain that there are
two stationary solutions Nt ≡ 0 and Nt ≡ r−1

r . From the discrete stability theory, one could derive that

• Nt ≡ 0 is stable for r ∈ (0, 1),

• Nt ≡ r−1
r is stable for r ∈ (1, 3).

Moreover, for r > 3 there are no stable stationary solutions. However, one can prove that there exist two
2−periodic solutions which are stable for r ∈ (3, r2), where r2 > 3 is a constant. For r > r2 the 2−periodic
solutions become unstable and there appear four stable 4−periodic solutions for r ∈ (r2, r4). One could
continue in this way and analyze the behavior of numbers ri, i = 2, 4, 8, . . . There exists a limiting point
rc > 0 such that ri → rc and for r > rc every 2n−periodic solution becomes unstable. But there exist
odd-periodic solutions. A. N. Sharkovski showed in 1960’s in [70] that for r > rc there exist even chaotic
solution. For more detailed investigation of the discrete logistic equations, see also S. Elaydi [30]. This
shows again that a discrete counterpart of well-posed and often simply solvable continuous problem can
be very hard to analyze and have actually different properties.

As the last example of population models we describe a model involving partial differential equations
(PDEs). Contrary to ODE models where only the time-evolution of the population number is described,
in the PDE model we want to include also spatial movement of the population.

Example 1.6. Let u(x, t) denote the population density at time t and position x in the space. Classical
models assume that the population spreads in space for increasing time and describe it by the diffusion
process.5 Consequently, the models have the form of a reaction-diffusion equation

∂u(x, t)

∂t
= k∆u(x, t) + f(x, t, u(x, t)), x ∈ Ω ⊂ RN , t ≥ 0, k > 0,

where ∆u(x, t) =
∑N
i=1

∂2u(x,t)
∂x2
i

denotes the Laplace operator. This equation is then joined with an

appropriate boundary condition on ∂Ω. The function f models a local reaction which can be biologically
interpreted as a birth rate and it could be, e.g.,

5Let us note that there are also models describing an opposite process – the so-called chemotaxis, which causes that the
population agglomerates and moves to separated places with high density of population.
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• f(x, t, u) = ru, r ∈ R, (exponential growth),

• f(x, t, u) = ru
(
1− u

K

)
, r > 0, K > 0, (logistic nonlinearity),

• f(x, t, u) = ru
(
1− u

K

) (
u
A − 1

)
, r > 0, 0 < A < K, (bistable nonlinearity).

We analyze the discrete-space analogues of these problems, i.e., we assume that the environment is
spatially structured (e.g., biological cells, crystal lattices, qualitatively different areas in nature, cities).
In one spatial dimension, we consider the following problem lying on the borderline of differential and
difference equations

du(x, t)

dt
= k(u(x− 1, t)− 2u(x, t) + u(x+ 1, t)) + f(x, t, u(x, t)), x ∈ Z, t ≥ 0, k > 0. (1.2)

Let us note that we often call the case with discrete spatial variable and continuous time variable as
semidiscrete equation. We study also entirely discrete version

u(x, t+ h)− u(x, t)

h
= k(u(x− 1, t)− 2u(x, t) + u(x+ 1, t)) + f(x, t, u(x, t)), x ∈ Z, t ∈ hN0, (1.3)

where hN0 = {hn, n ∈ N0}, h > 0. These problems are generally called lattice differential equations and
we devote the whole following section to the survey about them.

Since we deal with problems which combine properties of differential and difference equations, we have
to emphasize that there was a big effort to unify continuous and discrete calculus and thus, differential
and difference equations into one setting. In 1988, Stefan Hilger in his dissertation thesis [41] has come
up with the so-called time scale calculus which presents some kind of this unification. By this invention
he has laid the foundations for the so-called dynamic equations on time scales.6

Time scales are a nice mathematical tool. Their beauty and mathematical elegance arise especially
when it is used for emphasizing the differences of discrete and continuous world. If one has a property
that, e.g., simply holds for a continuous problem and it does not for its discrete version, nice question is
when the moment of this change is. In this case, time scales provide a great mathematical way how to
investigate this question. For example, in Subsection 3.2.3 we analyze the validity of strong maximum
principle for lattice reaction-diffusion dynamic equation. We show that in the case of continuous time
variable (1.2) the strong maximum principle holds. However, for the discrete equation (1.3) it does not.
Analyzing the time-scale version

u∆(x, t) = k(u(x− 1, t)− 2u(x, t) + u(x+ 1, t)) + f(x, t, u(x, t)), x ∈ Z, t ∈ T,

where T is a time scale and u∆(x, t) is the delta-derivative with respect to t, we show that the strong
maximum principle holds when the time scale T contains at least one dense point.

1.3 Lattice differential equations

As we mentioned above, lattice differential equations (LDEs) are basically analogues of evolutionary
PDEs which are formulated on discrete spatial domains called lattices. One of the simplest examples
is the equation (1.2) which is formulated for x ∈ Z. However, more complicated lattices (e.g., ZN ) are
also studied and one can consider problems defined even on non-symmetric lattices assumed only to be
graphs. These equations can be understood as discretizations of PDEs, however, the study of LDEs have

6We do not present any introduction into this theory, since it is rather technical and everyone could find it in S. Hilger [40]
or in the survey books M. Bohner, A. C. Peterson [13, 14].
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started not as numerical models of continuous problems but as original models of binary alloys (see, e.g.,
J. W. Cahn [17], H. E. Cook et al. [24]). Besides material engineering, LDEs origin naturally in many
other areas, in biology (see, e.g., J. Bell [6], J. Bell, C. Cosner [7], J. P. Keener [45]), chemistry (e.g.,
T. Erneux, G. Nicolis [31], J. P. Laplante, T. Erneux [50]), image processing (e.g., W. J. Firth [33]), etc.
For detailed information about LDEs and other references, see the monograph S.-N. Chow et al. [20]. In
the following paragraphs we expose only a brief summary about main ideas based on [20].

One of the most known examples is lattice Allen-Cahn equation applied for modeling of motion of the
interface of binary alloy

du(x, t)

dt
= k∆Lu(x, t) + f(u(x, t)), k > 0, (1.4)

where t ≥ 0, x ∈ ZN ,

f(u) = ru(1− u2),

is the symmetric bistable nonlinearity and ∆Lu denotes a lattice/discrete Laplace operator on ZN , e.g.,

• on Z, it is the standard second central spatial difference ∆Lu(x, t) = u(x−1)−2u(x, t)+u(x+1, t),
i.e., (1.4) is in fact the equation (1.2),

• on Z2 it can be (denoting u(x, t) = u(x, y, t), x, y ∈ Z)

∆Lu(x, y, t) = ∆+u(x, y, t) = u(x− 1, y, t) + u(x, y − 1, t)− 4u(x, y, t)

+ u(x+ 1, y, t) + u(x, y + 1, t),

or

∆Lu(x, y, t) = ∆×u(x, y, t) = u(x− 1, y − 1, t) + u(x+ 1, y − 1, t)− 4u(x, y, t)

+ u(x− 1, y + 1, t) + u(x+ 1, y + 1, t),

i.e., ∆Lu is two-dimensional discrete Laplacian based on +-shaped or ×-shaped stencil, respectively.

One can consider the equation (1.4) with general nonlinearity f and distinguish LDEs on finite or
infinite lattices. LDEs on finite lattices (e.g., finite discrete interval [a, b]Z = [a, b] ∩ Z or finite graphs)
can be reformulated as a finite system of ODEs. Equations on infinite lattices (e.g., ZN , infinite graphs)
then correspond to an infinite system of ODEs. In that case, the initial condition u(x, 0) = u0(x) is
classically taken bounded (e.g., {u0(x)}x∈ZN ∈ `∞(ZN )) and we investigate bounded solutions. Denoting
U(t) = {u(x, t)}x∈ZN , the equation (1.4) can be rewritten as a differential equation on the space `∞

{
U ′(t) = F (U(t)), F : `∞(ZN )→ `∞(ZN ),
U(0) = {u0(x)}x∈ZN ,

(1.5)

where U : R+
0 → `∞(ZN ) and F (U) = {k∆Lu(x) + f(u(x))}x∈ZN .

In both cases, under standard continuity assumptions on the function f , one can obtain the existence
and uniqueness of at least one local solution applying contraction principle in the standard way. First
interesting question then arises – the global existence. Maximum principles are one of the possible ways
how to prove the global existence, since they guarantee that the local solution cannot blow up (see
Section 3.2).

Stationary solutions and their stability is another property that is often studied. In [20] there is shown
the application of nonlinear semigroup theory for an analysis of invariant sets and global attractors for
Allen-Cahn LDE. Furthermore, the existence of special type solutions which have been observed in
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numerical experiments, the so-called traveling wave solutions, have taken lot of attention. For example,
for x ∈ Z the traveling wave solution is a solution in the form

u(x, t) = ϕ(x− ct),

where ϕ : R → R is a function and c ∈ R is a speed of wave propagation. There is often additionally
required that ϕ(−∞) = 0 and ϕ(+∞) = 1 (where ϕ(±∞) are limits at ±∞) with a monotonicity
assumption on ϕ. Let us mention the work of H. F. Weinberger [88] in which he established a very
general result about the existence of traveling waves for a wide class of problems including LDEs. Let
us note that in Weinberger’s result a maximum principle appears as a general hypotheses which can
be another motivation for the study of a priory bounds for LDEs that we present in the thesis. The
existence and stability of wavefront solutions for LDEs with x ∈ Z are proved in another pioneering
works B. Zinner [90, 91].

Furthermore, in biology, there have been investigated motionless waves, especially, the property called
propagation failure. J. P. Keener in [45] proved for the equation (1.4) with

f(u) = (u− a)
(
u2 − 1

)
,

that there exists a parameter α ∈ (0, 1) such that for −α ≤ a ≤ α there is a unique wavefront solution ϕ
and it has c = 0. On the contrary, for analogous PDE there is c 6= 0 for all a 6= 0, i.e., any non-symmetric
f causes a non-negative speed of propagation.

Generally speaking, this thesis is concerned with transport and reaction-diffusion type LDEs. We in-
vestigate equations in which the time variable appears continuous, discrete as well as equations in which
the time variable is assumed to be from a general time scale. We call this setting partial dynamic equa-
tions with discrete space or lattice dynamic equations. We are fundamentally focused on local existence
and uniqueness of solutions and on weak and strong maximum principles with their consequences, espe-
cially, the global existence, boundedness and uniform stability. Moreover, we investigate several special
properties of solutions such as sign and integral preservation.

1.4 Interesting moments in history of PDEs

We study modifications of standard continuous PDEs and therefore, we present a short historical overview
about PDEs based on the paper of H. Brézis, F. Browder [15].7 Let us note that an introduction to the
theory of PDEs can be found, e.g., in the monographs P. Drábek, G. Holubová [28] (linear problems),
L. C. Evans [32] (linear and nonlinear problems), J. D. Logan [56] and T. Roub́ıček [69] (nonlinear
problems).

The invention of infinitesimal calculus started the ecstatic boom of the study of differential equations
together with whole mathematical analysis. The studied problems such as mechanics of continua were very
complex and hence, mathematicians came very briefly with an exposition of first PDEs. The pioneering
works go to J. R. d’Alembert, L. Euler, D. Bernoulli and P. S. Laplace into the middle of 18th century.
It started in 1750’s by the work of J. R. d’Alembert who established one-dimensional wave equation
describing a vibrating string. This was followed in 1760’s by L. Euler and D. Bernoulli who generalized
it into two- and three-dimensional case. Then the stationary problem, today known as Laplace equation,
was formulated by P. S. Laplace in 1780’s for the study of gravitational field. The first diffusion model
goes back to J. Fourier who modeled the heat transfer on the beginning of 19th century.

7Let us readily disclose that we present a summary of several interesting and important milestones in the evolution of
PDEs which is substantially simplified. Moreover, the evolution of PDEs has not been so linear as we perform and has gone
in many various ways and directions which have often co-operated. The reader is invited to see the paper of H. Brézis and
F. Browder [15] for better imagination about that.
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Besides these three major linear equations (generalized and classified later as hyperbolic, elliptic and
parabolic linear problems), also nonlinear PDEs arose in 18th century. In 1750’s, L. Euler studied the first
nonlinear model of incompressible fluid dynamics. This was followed later, in the first half of 19th century,
by C. L. Navier and G. G. Stokes who established their famous model for compressible viscous fluid which
was called after them – the Navier-Stokes equations. The analysis of this problem has been one of the
most challenging problems in the theory of PDEs until today.

Firstly, the problems involving PDEs were studied via establishing direct methods for finding their
solutions. Major examples of these techniques were separation of variables (which led later to the detailed
study of Fourier series), method of the Green’s function or power series method. In the middle of
19th century, B. Riemann studied the existence of solution for the Laplace equation

{
∆u = 0 on Ω ⊂ R3,
u = ϕ on ∂Ω,

(1.6)

via the Dirichlet principle (discovered by G. Green and G. F. Gauss), i.e., via the minimization of the
Dirichlet (or also energy) integral

∫

Ω

3∑

i=1

(
∂v

∂xi

)2

dx,

by a smooth function over all functions v which satisfy v = ϕ on ∂Ω. However, B. Riemann presented
no mathematically regular proof of existence of such a minimizer. This and others motivated K. Weier-
strass to introduce a program for development of correct and mathematically accurate proofs in the
mathematical analysis and specifically, for rigorous proofs of existence for differential equations.

One of the greatest persons in the solvability theory for PDEs was H. Poincaré. He was the first
mathematician who proved in 1890’s the existence and uniqueness of a solution to Dirichlet boundary
value problem for Laplace equation (1.6) with any continuous boundary data (see H. Poincaré [65]).
He did it using an iterative method, a maximum principle and the Harnack inequality. Poincaré’s work
presented many others deep theoretical results. Let us mention two of them. Firstly, he and E. I. Fredholm
stated the basis and initial fundamental results of spectral theory. Next, following the work of É. Picard,
H. Poincaré in [64] introduced the so-called continuity method which was based on joining the studied
problem with a simpler one via a one-parameter family of problems. Consequently, this idea led later to
the invention of bifurcation theory, to the application of homotopy mappings and topological methods
(e.g., the degree of mapping), etc.

There was another milestone on turn of 19th and 20th century when D. Hilbert presented his list of
challenging open problems, the so-called Hilbert program. Besides others, he recalled the B. Riemann’s
problem of minimizing energy integrals. He presented in [39] an idea of taking a minimizing sequence
and proving that it converges to a minimizer. B. Levy proved few years later in [54] that a general
minimizing sequence is a Cauchy sequence and therefore, it converges in an appropriate completion space
to a generalized function. Consequently, this idea and the development of Lebesgue integral together
with Lebesgue spaces later led to the definition of Sobolev spaces.

In the first half of the 20th century, together with the study of fundamentals of functional analysis,
PDEs were reformulated as abstract operator equations on appropriate function spaces. This brought
a new way of thinking about differential equations. Many famous results are based on the work of
S. Banach and his colleagues. He systematically studied linear functional analysis on which many famous
tools rely (Fredholm alternative, Lax-Milgram theorem, etc.). Importantly, he proved in [4] in 1920’s
the famous contraction principle by generalizing the É. Picard’s idea of successive approximations to a
general complete metric space. This essential result still has been applied for the direct proofs of existence
and uniqueness but also for the proofs of other functional-analytic tools as inverse and implicit function
theorems, bifurcation theorems, etc.
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From another point of view, in the first half of 20th century two main approaches (which naturally
complemented each other) took attention – variational and topological methods. The above mentioned
Dirichlet principle unsuccessfully studied by B. Riemann and recalled by D. Hilbert was a great motivation
for the detailed study of variational methods (i.e., finding conditions under which the energy integrals
have minima or other types of critical points). From this field, besides the problem of minimization, we
point out the work of L. A. Ljusternik and L. G. Schnirelmann who provided in [55] in 1930’s the lower
bound for the number of critical points for a functional defined on finite-dimensional manifold. They used
a minimax technique together with a topological instrument named later the Ljusternik-Schnirelmann
category. M. Morse analyzed before in 1920’s the type of critical points and developed the so-called
Morse theory (see M. Morse [59]). The restriction to finite-dimensional problems (some compactness was
needed) was the big disadvantage of these principles. This was resolved later in the 1960’s by R. Palais
and S. Smale in [63] who, instead of finite dimension, presented a compactness condition on choosing
convergent subsequences which was applicable even in infinite-dimensional spaces and which is now named
after these two great mathematicians. These works were followed later in 1970’s by A. Ambrosetti and
P. Rabinowitz who expanded the minimax technique in the simpler geometrical setting and proved famous
nonlinear tools – the mountain pass theorem in [2], saddle point theorem in [68] and linking theorem
in [67].

In topological methods, the generalization of the Brouwer topological degree and the Brouwer fixed
point theorem (invented by L. E. J. Brouwer on the beginning of 20th century) into infinite-dimensional
spaces was one of the most significant turning points. It was done in 1930’s by J. Leray and J. Schauder
in [52] using the compactness of appropriate operators. These principles provide, compared to the S. Ba-
nach’s contraction principle, only the existence of a solution. Therefore, it can be applied for different class
of problems for which, e.g., the corresponding operators are not contractive. The idea of Leray-Schauder
degree of mapping was also many times generalized. Let us mention the work of I. V. Skrypnik [72]
from the end of 1980’s who established the notion of degree also for operators that does not map a
Banach space into itself, but a Banach space into its dual space. It provides a possible application of this
topological argument for a class of quasilinear equations.

As we mentioned above, the development of Lebesgue integral in 1900’s by H. Lebesgue in [51] and
later introduction of Sobolev spaces in 1930’s were another important moments. Motivated, e.g., by the
convergence of minimizing sequence of Dirichlet integral studied by B. Levy, mathematicians came with
the definition of a solution in a generalized sense – so-called weak solution. This started a new period of
solvability theory. From that moment, standard proofs of existence have consisted of two steps – firstly,
one shows the existence of a weak solution and then a regularity result which analyses the smoothness of
the weak solution, in the best way, if the weak solution is also classical.8

In the theory of initial-boundary value problems for evolutionary PDEs (e.g., wave or diffusion equa-
tion), there is another interesting and useful tool – the semigroup theory. It was established in the middle
of 20th century generally for linear operator initial value problems on Banach spaces independently by
E. Hille in [42] and K. Yosida in [89]. This is a very efficient tool for proving the existence and inter-
esting properties of solutions (e.g., the existence of backward solutions). The semigroup theory was also
generalized for nonlinear problems, usually via the concept of the so-called mild solution.

We conclude this historical survey by the remark about maximum principles and a priori bounds.
We mentioned that a maximum principle was one of the key ingredients in H. Poincaré’s first proof of
existence for the Laplace equation. A maximum principle for these problems was firstly introduced in the
form of the so-called Harnack inequality by A. Harnack in the end of 1880’s.9 This was later followed by
A. Paraf, É. Picard, H. Hopf and others who established the classical notion of maximum principle for

8Interestingly, although the existence of a weak solution for three dimensional Navier-Stokes equations was proved by
J. Leray in 1930’s, the regularity and uniqueness for this problem has been still unsolved and become one of the millennium
open problems.

9Let us mention that a version of the Harnack inequality was applied on the beginning of 21st century by G. Perelman
in the proof of Poincaré’s conjecture, the first and only millennium problem which has been solved.
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elliptic PDEs. These assertions were later applied, e.g., by E. DeGiorgi in [25] in the proof of regularity
for general elliptic problems with measurable data and by J. F. Nash in [61] for parabolic problems.
These principles present one of the fundamental tools in the theory of PDEs.

1.5 Continuous conservation laws, constitutive relations

Conservation laws are a natural way how to derive mathematical models of a real system. These are
equalities describing balances of state and flux magnitudes during the time progress. For example, there
are well-known balance laws in physics – conservation of mass, energy, the first law of thermodynamics,
etc. However, conservation laws appear also in population dynamics since the change of population
size is influenced only by sources (the birth rate, mortality) and by migration. Basically, some version
of conservation law occurs in many other sciences. Let us recall the derivation of standard continuous
conservation law (we refer to P. Drábek, G. Holubová [28] and J. D. Logan [56]).

We start with integral version of balance. We model the motion of fluid in an open region Ω ∈ R3.
Let us denote by u(x, t) the density of fluid at position x = (x, y, z) and time t and consider an arbitrary
open bounded set D ⊂ Ω with a smooth boundary. If we compare the amount of the fluid in D at time
t = t1 and t = t2, t1 < t2, we obtain the difference10

∫

D

u(x, t2)dx−
∫

D

u(x, t1)dx.

This change can be influenced only by the flux of fluid through the boundary ∂D and by internal sources.
Let φ(x, t) denote the density of flux and f(x, t) the density of sources at position x and time t. Total
amount of fluid which passes through the boundary ∂D out of D during the time interval [t1, t2] is given
by the following integral

∫ t2

t1

∫

∂D

φ(x, t) · n(x)dSdt,

where n(x) is the unit vector of outer normal to ∂D. Total contribution of sources in D is given by

∫ t2

t1

∫

D

f(x, t)dxdt.

Consequently, we obtain the above mentioned balance as

∫

D

u(x, t2)dx−
∫

D

u(x, t1)dx = −
∫ t2

t1

∫

∂D

φ(x, t) · n(x)dSdt+

∫ t2

t1

∫

D

f(x, t)dxdt, (1.7)

which is called the integral form of conservation law.
Now we formulate some additional assumptions on the functions u(x, t) and φ(x, t) to obtain the

required differential form of conservation law. Let u(x, t) be continuously differentiable with respect to
the time variable t. Then using the fundamental theorem of calculus we get

u(x, t2)− u(x, t1) =

∫ t2

t1

∂u(x, t)

∂t
dt,

and hence, we rewrite (1.7) as

∫

D

∫ t2

t1

∂u(x, t)

∂t
dtdx = −

∫ t2

t1

∫

∂D

φ(x, t) · n(x)dSdt+

∫ t2

t1

∫

D

f(x, t)dxdt. (1.8)

10We assume in the following that all mathematical formulas make sense, i.e., the appearing functions satisfy all appro-
priate assumptions.
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Applying the Fubini theorem we can interchange the order of integration on the left-hand side of (1.8)
provided the mentioned integral exists,

∫ t2

t1

∫

D

∂u(x, t)

∂t
dxdt = −

∫ t2

t1

∫

∂D

φ(x, t) · n(x)dSdt+

∫ t2

t1

∫

D

f(x, t)dxdt. (1.9)

If we assume moreover that the flux density φ(x, t) is continuously differentiable with respect to the space
variable x, then we can apply the divergence theorem (also known as the Gauss-Ostrogradskii theorem)
for the surface integral

∫

∂D

φ(x, t) · n(x)dS =

∫

D

divφ(x, t)dx,

where divφ(x, t) = ∇ · φ(x, t) = ∂φ1(x,t)
∂x + ∂φ2(x,t)

∂y + ∂φ3(x,t)
∂z is the divergence operator. Therefore, we

can rewrite (1.9) into

∫ t2

t1

∫

D

(
∂u(x, t)

∂t
+ divφ(x, t)− f(x, t)

)
dxdt = 0.

Since this equality has to be satisfied for all time intervals [t1, t2] and all choices of D ⊂ Ω and assuming
that the integrated function is continuous we obtain that the integrand has to vanish everywhere, i.e.,

∂u(x, t)

∂t
+ divφ(x, t) = f(x, t), x ∈ Ω, t ∈ [t1, t2]. (1.10)

This is called the differential form of conservation law and it is the origin of many PDEs. The analogue
of (1.10) in one spatial dimension has the form

∂u(x, t)

∂t
+
∂φ(x, t)

∂x
= f(x, t), x ∈ I ⊂ R, t ∈ [t1, t2], (1.11)

and can be obtained in the same way as (1.10).
Let us note that integral form (1.7) can be satisfied under weaker assumptions on the functions u(x, t),

φ(x, t) and f(x, t) than the equality (1.10) (or (1.11)), since there suffices if they are only integrable, i.e.,
they do not have to be even continuous.

There appear two unknown functions u(x, t) and φ(x, t) in the equation (1.10) (or (1.11)). Hence, we
have to establish an additional coupling relation. First possibility is to add a so-called constitutive law
for u(x, t) and φ(x, t) dependently on the modeled problem. Problems studied in this thesis (transport
equations, diffusion equations, reaction-diffussion equations) arise actually from the constitutive laws.
Second possibility is to add another conservation law for the flux magnitude (e.g., the Navier-Stokes
equations for the fluid dynamics use the conservation of momentum).

Since we proceed via the former way, let us present basic constitutive laws. For the sake of clarity,

we use the index notation for partial derivatives, i.e., ut(x, t) for ∂u(x,t)
∂t , ux(x, t) for ∂u(x,t)

∂x , uxx(x, t) for
∂2u(x,t)
∂x2 , etc.

Example 1.7. Consider the one-dimensional conservation law (1.11) and let the flux φ(x, t) depend
linearly on the density u(x, t), i.e.,

φ(x, t) = ku(x, t), k > 0. (1.12)

Consequently, we get from (1.11) the transport (or advection) equation

ut(x, t) + kux(x, t) = f(x, t), (1.13)

which describes, e.g., transport of chemicals dissolved in a fluid which runs through a tube (neglecting
the diffusion process).
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Example 1.8. The analogy of transport equation in three spatial dimensions (and similarly in two
dimensions) can be obtained assuming

φ(x, t) = vu(x, t),

where v ∈ R3 describes the direction and velocity of motion. Then three dimensional transport equation
follows from (1.10) as

ut(x, t) + v1ux(x, t) + v2uy(x, t) + v3uz(x, t) = f(x, t).

Note that many generalizations can be obtained for transport equations. One can suppose that the
parameter k (or v in three dimensions) also depends on x and t and investigate the equation with variable
coefficients. Furthermore, one can consider that k is dependent on the density u(x, t) or more generally,
that the flux is a nonlinear function density, i.e., φ(x, t) = φ (u(x, t)), φ : R→ R,11 and analyze nonlinear
transport equations (see, e.g., J. D. Logan [56] for more information).

Example 1.9. Let us derive the diffusion equation as an example of equation of second order. Again,
consider the problem in one spatial dimension firstly. The constitutive law coupling u(x, t) with φ(x, t)
in this case is the so-called Fick law

φ(x, t) = −kux(x, t), k > 0, (1.14)

which means that the flux is larger at points where the gradient of density is larger and it is directed
oppositely to the gradient. This occurs, e.g., in the heat transfer, movement of micro-particles into others,
etc. We obtain from (1.11) the one-dimensional diffusion equation

ut(x, t) = kuxx(x, t) + f(x, t). (1.15)

Example 1.10. For the diffusion equation in three dimensions, we use the multi-dimensional version of
the Fick law

φ(x, t) = −k∇u(x, t), k > 0,

and applying the definition of the Laplace operator

∆u(x, t) = uxx(x, t) + uyy(x, t) + uzz(x, t) = div (∇u(x, t)) ,

we obtain from (1.10)

ut(x, t) = k∆u(x, t) + f(x, t),

the diffusion equation in three spatial dimensions.

Let us mention also a possible nonlinear generalization of diffusion equation since it is of our great
interest – the reaction-diffusion equations, regarding the case when the source function f depends also
on the density u(x, t).

Example 1.11. One could verify that the derivation of conservation law works even when the source
function f appearing on the right-hand side of conservation laws (1.10) and (1.11) is also a function of
density u(x, t), i.e., f = f(x, t, u(x, t)) (e.g., the birth rate in population dynamics). Then applying the
Fick law we obtain one-dimensional RDE

11We denote the nonlinear function also by φ as the flux itself, because we use this notation also in Section 2.2 as well
as in Conclusion where we introduce problems involving the so-called φ-Laplacian. However, at this place it is formally
incorrect.
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ut(x, t) = kuxx(x, t) + f(x, t, u(x, t)), (1.16)

or its three-dimensional analogy

ut(x, t) = k∆u(x, t) + f(x, t, u(x, t)),

which are generally nonlinear problems provided f is nonlinear in the third variable.

Let us conclude the section with the stationary counterpart of diffusion equation – the Poisson equation
(nonhomogeneous version of the Laplace equation).

Example 1.12. Suppose for the simplicity that the source function is not a function of time, i.e.,
f = f(x) for the diffusion equation or f = f(x, u(x, t)) for RDE. Further, denote g(x) = 1

kf(x) or
g(x, u(x, t)) = 1

kf(x, u(x, t)). Stationary solutions of the diffusion or reaction-diffusion equation are
constant in time, i.e., have zero partial time derivatives. Therefore, these solutions have to satisfy

−uxx(x) = g(x), or −∆u(x) = g(x),

in the case of diffusion equation which is called the Poisson equation, or

−uxx(x) = g(x, u(x)), or −∆u(x) = g(x, u(x)),

in the case of RDE which is the nonlinear Poisson equation or semilinear elliptic equation.12

1.6 Semidiscrete conservation laws

In this section we present a possible way how to establish a conservation law for equations with discrete
spatial variable x ∈ Z. Hence, we derive the discrete-space counterpart for the equality (1.11).

Note that in future research we want to analyze also problems considered generally on graphs. As a
motivation, we present conservation laws for equations with discrete variable being from a directed graph
in Conclusion (see Section 5.3).

Let us assume that x ∈ Z and t ∈ [t1, t2]. Recall that we call problems with this structure of variables
semidiscrete equations. Denote by u(x, t) the amount of modeled substance at the point x and time t
(for example, [a, b]∩Z models a line segment of cells, e.g., neurons, see J. Bell [6], J. Bell, C. Cosner [7]).

Analogically as in the continuous case, we investigate the total change of amount of u at one fixed
discrete point x ∈ Z during time interval t ∈ [t1, t2] 13

u(x, t2)− u(x, t1).

This change is again influenced only by the total amount of u that passes into and out of x ∈ Z during
t ∈ [t1, t2] and by total supply of internal sources. Let us denote by φ(x, t) the flux quantifying the
amount of u that passes between points x and x+ 1 at time t,14 and by f = f(x, t) the source function
expressing the production of sources at x and at time t.

Therefore, we obtain the following equality establishing the above mentioned balance

u(x, t2)− u(x, t1) =

∫ t2

t1

(φ(x− 1, t)− φ(x, t)) dt+

∫ t2

t1

f(x, t)dt. (1.17)

12In one-spatial dimension, the stationary problems are obviously ODEs.
13Note that the discrete spatial structure allows us to formulate the balance immediately locally at one point x ∈ Z.
14Correctly, we should denote the flux between the point x and its neighbor x+ 1 by φ(x, x+ 1, t) because for a general

graph the flux function acts on the set of edges of the graph. However, in the case of Z, which can be interpreted as a
simple undirected graph (a path), each edge has the form {x, x+ 1}. Therefore, we use the shortened notation φ(x, t) for
the brevity.
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Let us assume that u(x, t) is continuously differentiable with respect to time variable t, then

u(x, t2)− u(x, t1) =

∫ t2

t1

ut(x, t)dt.

Consequently, we get from (1.17) (denoting by ∇xφ(x, t) = φ(x, t)−φ(x− 1, t) the left spatial difference)

∫ t2

t1

(ut(x, t) +∇xφ(x, t)− f(x, t)) dt = 0.

Since [t1, t2] is arbitrary and assuming that the integrand is continuous with respect to the variable t, we
obtain the semidiscrete conservation law

ut(x, t) +∇xφ(x, t) = f(x, t), x ∈ Z, t ∈ [t1, t2]. (1.18)

Finally, we have to add to (1.18) a constitutive law relating the flux φ(x, t) with u(x, t) again. In the
following chapters of the thesis, we investigate two versions of constitutive laws and, consequently, two
arising problems – lattice transport equations and lattice RDEs.



CHAPTER 2

Transport equations

This section is devoted to transport equations on discrete-space domains. Continuous linear homogeneous
transport PDE in one spatial dimension

ut(x, t) + kux(x, t) = 0, k > 0,

arises from the differential form of conservation law (1.11) applying the constitutive relation φ(x, t) =
ku(x, t) and the vanishing source density function f(x, t) = 0 (see Example 1.7). It is well-known (see,
e.g., P. Drábek, G. Holubová [28] or J. D. Logan [56]) that the solution of an initial value problem for
this equation with u(x, 0) = ϕ(x), ϕ ∈ C1(R,R), has the form of the so-called traveling wave

u(x, t) = ϕ(x− kt).

This means that the initial distribution of the density propagates along the characteristic lines x−kt = c,
c ∈ R. Generally, assuming that k is not a constant but a continuous function k = k(x, t), the solution of
the initial value problem has also the form of traveling wave provided it exists. However, the characteristics
become curves in the xt-plane, not the straight lines.

The nonlinear transport PDE follows from the conservation law (1.11) if we suppose that the flux is a
nonlinear function of density φ(x, t) = φ(u(x, t)), φ ∈ C1(R,R).1 These models have essentially different
behavior than the linear ones. They can lead to interesting (but in some sense undesirable) effects like
shocks, etc. (see J. D. Logan [56]).

Importance of transport equations arises from the following facts. Firstly, they are usually applied
for modeling of advection of some fluid in one spatial direction. Secondly, from the theoretical point of
view it is the first step in the study of hyperbolic PDEs since, e.g., the simplest linear wave equation

utt(x, t)− k2uxx(x, t) = 0, k > 0,

can be reformulated as a system of two transport equations (see P. Drábek, G. Holubová [28] or J. D. Lo-
gan [56] again).

1We denote the nonlinear function in the constitutive law formally incorrectly by φ as the flux itself.

17
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Μx Μx

Μt

Μx

Figure 2.1: Examples of various discrete-space and general (continuous, discrete and time scale) time
domains.

2.1 Linear transport equations

In this section we analyze the linear homogeneous transport equation with x ∈ Z and continuous, discrete
or time scale time structure (see Figure 2.1). It is an overview of the results of the paper P. Stehĺık,
J. Volek [79].

The problems with continuous time variable follow from the semidiscrete conservation law (1.18)
assuming that the flux φ(x, t) is directed from the point x to x + 1 and depends linearly on the density
u(x, t) at the point x, i.e.,

φ(x, t) = ku(x, t), k > 0.

Then (1.18) yields the semidiscrete equation

ut(x, t) + k∇xu(x, t) = 0, (2.1)

where ∇xu(x, t) = u(x, t)− u(x− 1, t). The other two considered time structures, discrete time or time
scale time, are obtained interchanging the partial time derivative in (2.1) by partial time difference or
partial time ∆-derivative, respectively.

We firstly find closed formulas of solutions for these problems. Then we show their relationship with
stochastic processes, since we study the sign and integral/sum preservation. Particularly, we prove that
the solutions of transport equations on discrete-space domains form Poisson-Bernoulli-type counting pro-
cesses which are widely applied for modeling of the waiting time for occurence of events (e.g., defects,
phone calls, customers’ arrivals).

Before we start with our analysis let us summarize, for the comparison, the essential properties of the
classical transport PDE

{
ut(x, t) + kux(x, t) = 0, x ∈ R, t ∈ R+, k ∈ R,
u(x, 0) = ϕ(x),

(2.2)

with ϕ ∈ C1(R,R). The properties whose counterparts we study in the following are:

• the unique solution of (2.2) is given by u(x, t) = ϕ(x− kt),

• if ϕ(x) ≥ 0, then u(x, t) ≥ 0 for all x ∈ R, t ∈ R+
0 , i.e., the solution u(x, t) preserves sign,
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Figure 2.2: Solution (2.4) of the transport equation with discrete space and continuous time variable (2.3)
with A = k = 1.

• if
∫∞
−∞ ϕ(x)dx = K, then ∫ ∞

−∞
u(x, t)dx = K for all t ∈ R+

0 ,

i.e., the solution preserves integral in spatial sections,

• for k > 0 and fixed x ∈ Z we get

∫ ∞

0

u(x, t)dt =
1

k

∫ x

−∞
ϕ(s)ds.

and consequently, if ϕ(x) = 0 for x ≥ x0, then the integral along time sections is constant for all
x ≥ x0.

2.1.1 Semidiscrete equation

Consider the linear transport equation with discrete space and continuous time2,3





ut(x, t) + k∇xu(x, t) = 0, x ∈ Z, t ∈ R+, k > 0,

u(x, 0) =

{
A > 0, x = 0,

0, x 6= 0.

(2.3)

Using variation of constants and mathematical induction we could obtain that the unique locally bounded
solution of (2.3) is given by (see P. Stehĺık, J. Volek [79, Lem. 4.1])

u(x, t) =




A
kx

x!
txe−kt, x ∈ Z, x ≥ 0, t ∈ R+

0 ,

0, x ∈ Z, x < 0, t ∈ R+
0 ,

(2.4)

(see Figure 2.2).
Now, applying the explicit formula for the solution u(x, t) one can prove the following statement about

the sign and integral/sum preservation (P. Stehĺık, J. Volek [79, Lem. 4.2]).

2We solve the one-point initial condition at first, since later one can use the superposition principle (see A. Slav́ık,
P. Stehĺık [76, Cor. 3.8]) for a general initial condition.

3For the sake of brevity, we assume that the spatial discretization step µx = 1 but all our results are valid for arbitrary
µx > 0 by considering k̄ = k

µx
instead of k in (2.3).
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Lemma 2.1. Let u(x, t) be the solution of (2.3) given by (2.4). Then:

• u(x, t) ≥ 0 for all x ∈ Z and t ∈ R+
0 ,

•
∫∞

0
u(x, t)dt = A

k for all x ∈ Z,

•
∞∑
x=0

u(x, t) = A for all t ∈ R+
0 .

The following consequences give the first relationship of our problems with the stochastic processes
and follow immediately from the detailed analysis of parameters A and k in Lemma 2.1 (see Figure 2.2
again):

• If A = k, then the time sections u(x, ·) of solution (2.4) generate the probability density functions
of the Erlang distribution which is the special case of the Gamma distribution (for x = 0 we get
the exponential distribution).

• If A = 1, then the spatial sections u(·, t) of solution (2.4) form the probability mass functions of
the Poisson distribution.

• Consequently, if A = k = 1, then the solution u(x, t) describes the Poisson stochastic process.

We conclude with the corollary about the solution of the general initial value problem

{
ut(x, t) + k∇xu(x, t) = 0, x ∈ Z, t ∈ R+, k > 0,

u(x, 0) = ϕ(x),
(2.5)

where ϕ : Z → R is bounded. Using (2.4) and the superposition principle (see A. Slav́ık, P. Stehĺık [76,
Cor. 3.8]) we get the following assertion.

Corollary 2.2. The unique locally bounded solution of (2.5) is given by

u(x, t) =

x∑

i=−∞
ϕ(i)

(kt)x−i

(x− i)!e
−kt. (2.6)

2.1.2 Discrete equation

In this paragraph we study the properties of transport difference equation, i.e., of the problem with
discrete spatial and discrete time variable (for a general survey about partial difference equations see,
e.g., the monograph S. S. Cheng [19]),





∆tu(x, t) + k∇xu(x, t) = 0, x ∈ µxZ, t ∈ µtN0,

u(x, 0) =

{
A, x = 0,

0, x 6= 0,

(2.7)

where µx, µt > 0, µxZ = {mµx : m ∈ Z}, µtN0 = {nµt : n ∈ N0}, A > 0, k > 0 and the partial differences
are defined as

∆tu(x, t) =
u(x, t+ µt)− u(x, t)

µt
and ∇xu(x, t) =

u(x, t)− u(x− µx, t)
µx

. (2.8)

We can easily rewrite the equation in (2.7) into
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Figure 2.3: Solution (2.9) of the transport equation with discrete space and discrete time variable (2.7)
with A = k = 1, µt = 1

4 and µx = 1.

u(x, t+ µt) =

(
1− kµt

µx

)
u(x, t) +

kµt
µx

u(x− µx, t),

and using the mathematical induction and properties of the so-called falling factorials (see, e.g., W. G. Kel-
ley, A. C. Peterson [46]) derive that the unique solution of (2.7) is given by (see P. Stehĺık, J. Volek [79,
Lem. 5.1])

u(mµx, nµt) =




A

(
n

m

)(
1− kµt

µx

)n−m(
kµt
µx

)m
, n ≥ m ≥ 0,

0, 0 ≤ n < m or m < 0,

(2.9)

(see Figure 2.3).

From the explicit formula (2.9) one can prove the following lemma about the sign a sum preservation
(P. Stehĺık, J. Volek [79, Lem. 5.2]).

Lemma 2.3. Assume that

1− kµt
µx

> 0. (2.10)

Then the unique solution u(x, t) of (2.7) satisfies:

• u(x, t) ≥ 0 for all x ∈ µxZ and t ∈ µtN0,

•
∞∑
n=0

u(x, nµt) = Aµx
kµt

for all x ∈ µxZ,

•
∞∑

m=−∞
u(mµx, t) = A for all t ∈ µtN0.

Again, analyzing Lemma 2.3 in detail we deduce conditions under which the solution u(x, t) of (2.7)
forms probability distributions (see P. Stehĺık, J. Volek [79, Cor. 5.4]).

Corollary 2.4. Let u(x, t) be the unique solution of (2.7). Then the spatial and time sections µxu(·, t)
and µtu(x, ·) form probability mass functions if and only if k = 1, µt < µx and A = 1

µx
.



22 Jonáš Volek

u(·, t) u(0, ·) u(x, ·), x ≥ 0 u(x, t)

Z× R+
0 Poisson dist. exponential dist. Erlang (Gamma) dist. Poisson process

Z× pN0 binomial dist. geometric dist. negative binomial dist. Bernoulli process

Table 2.1: Correspondence of time and spatial sections of solution u(x, t) with probability distributions.

Particularly, if we put A = k = µx = 1 and µt = p ∈ (0, 1) then

u(m,np) =

(
n

m

)
(1− p)n−m pm, n ≥ m,

and therefore (see Figure 2.3 again):

• For each fixed n ∈ N0, u(·, np) forms a probability mass function of the binomial distribution.

• For each fixed m ∈ N0, pu(m, ·p) forms a probability mass function of the negative binomial
distribution.

• Consequently, the solution u(x, t) describes the Bernoulli stochastic process.

The relationship of transport equation with discrete spatial and continuous/discrete time variable with
the probability distributions and moreover, with the stochastic processes is summarized in Table 2.1.

2.1.3 Dynamic equation

In this part we generalize the results from the previous Subsections 2.1.1 and 2.1.2 for the time variable
being from a general time scale T (note that for T = R+

0 we get continuous case (2.3) and for T = µtN0

the discrete case(2.7)).
Consider the following problem4





u∆(x, t) + k∇xu(x, t) = 0, x ∈ µxZ, t ∈ [0,∞)T,

u(x, 0) =

{
A, x = 0,

0, x 6= 0,

(2.11)

where T is a time scale such that 0 ∈ T, [0,∞)T = [0,∞) ∩ T, u∆ is the ∆-derivative with respect to the
variable t, ∇xu(x, t) is the backward spatial difference defined in (2.8) and A > 0, k > 0. We rewrite the
equation in (2.11) into

u∆(x, t) = − k

µx
(u(x, t)− u(x− µx, t)) . (2.12)

Let us state the positive regressivity condition

1− kµt(t)

µx
> 0, (2.13)

which is important for the positivity of time scale exponential function e− k
µx

(t, 0).5

4We present results for one-point initial condition again, since for a general initial value problem the superposition
principle A. Slav́ık, P. Stehĺık [76, Cor. 3.8] also holds.

5We denote by ep(t, t0) the time scale exponential function defined as a unique solution of the initial value problem{
v∆(t) = p(t)v(t),

v(t0) = 1,

(see, e.g., M. Bohner, A. C. Peterson [13]).
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Figure 2.4: Solution of the transport equation with discrete spatial variable and time variable being from

a time scale (2.11) with A = k = 1, µx = 1 and T =
∞⋃
i=0

[
i, i+ 1

2

]
.

One can prove that u(x, ·) ≡ 0 is the unique locally bounded solution for all x ∈ Z, x < 0. Assuming
u(−µx, ·) ≡ 0, the equality (2.12) yields that u∆(0, t) = − k

µx
u(0, t). Immediately, we obtain

u(0, t) = Ae− k
µx

(t, 0).

Then we can continue inductively via the time scale variation of constants (see Figure 2.4). Since these
computations depend strongly on particular time scale we cannot derive the closed form of the unique
locally bounded solution at all x ∈ Z, x > 0, on general time scale T. A. Slav́ık and P. Stehĺık later
derived in [75] the abstract infinite series representation of the bounded solution

u(x, t) =

∞∑

i=0

(
i

x

)
(−1)i+xkihi(t, 0),

where hi(t, t0) are the time scale polynomials given recursively

hi+1(t, t0) =

∫ t

t0

hi(τ, t0)∆τ, i ∈ N, h0(t, t0) = 1.

Under the assumption (2.13) we can prove the following statement about the sign/integral/sum preser-
vation (P. Stehĺık, J. Volek [79, Thm. 6.3, 6.5, 6.6]).

Theorem 2.5. Assume (2.13) and let u(x, t) be the unique locally bounded solution of (2.11). Then:

• u(x, t) ≥ 0 for all x ∈ µxZ and t ∈ T,

•
∫∞

0
u(x, t)∆t = Aµx

k for all x ∈ µxZ,

•
∞∑
m=0

u(mµx, t) = A for all t ∈ T.

2.2 Nonlinear semidiscrete transport equation

In this section we are interested in the nonlinear semidiscrete transport equation which arises from the
conservation law (1.18). We present the results from the paper J. Volek [85]. Namely, we study the



24 Jonáš Volek

following initial-boundary value problem with discrete space and continuous time6





ut(x, t) +∇xφ(x, t, u(x, t)) = 0, x ∈ N, t ∈ R+
0 ,

u(x, 0) = ϕ(x), x ∈ N,
u(0, t) = ξ(t), t ∈ R+

0 ,

(2.14)

where φ : N × R+
0 × R → R, ϕ : N → R is an initial condition, ξ ∈ C1(R+

0 ) is a left boundary condition
at x = 0 and the left spatial difference ∇xφ(x, t, u(x, t)) is given by7

∇xφ(x, t, u(x, t)) = φ(x, t, u(x, t))− φ(x− 1, t, u(x− 1, t)).

2.2.1 Maximum principle, existence and uniqueness

In this subsection we present a maximum principle for (2.14). For a survey about maximum principles
for completely continuous PDEs see, e.g., the monograph M. H. Protter, H. F. Weinberger [66]. These
results are applied as a priori bounds for proving the existence and uniqueness of a global solution.

Let N ∈ N, T ∈ R+
0 and define the following two constants for the brevity,

MN,T = max
x∈[1,N ]N,t∈[0,T ]

{ϕ(x), ξ(t)} , mN,T = min
x∈[1,N ]N,t∈[0,T ]

{ϕ(x), ξ(t)} .

The following maximum principle (see J. Volek [85, Thm. 3.2, 3.3]) is based on the monotonicity
properties of the nonlinear function φ. More precisely, we show a slightly stronger assertion than in [85].
However, the proof based on the so-called stairs method works in the same way even for this more general
case.

Theorem 2.6. Let the function φ be independent on x and strictly increasing in u. Assume that u is a
solution of (2.14) and N ∈ N, T ∈ R+

0 are arbitrary. Then for all x ∈ [0, N ]N0
and t ∈ [0, T ] there is

mN,T ≤ u(x, t) ≤MN,T .

Theorem 2.6 can be used for proving the following global existence and uniqueness result (see J. Volek [85,
Thm. 4.2]) by the application of the Picard-Lindelöf theorem (see, e.g., P. Drábek, J. Milota [29, Theorem
2.3.4]).

Theorem 2.7. Assume that:

• the initial-boundary conditions ϕ, ξ are bounded,

• φ is independent on x and strictly increasing in u,

• φ is a continuous function and locally Lipschitz in u,

6Let us note that besides (2.14), there is also the following initial-boundary value problem with the difference inside the
nonlinearity contained in J. Volek [85]

ut(x, t) + φ(x, t,∇xu(x, t)) = 0, x ∈ N, t ∈ R+
0 ,

u(x, 0) = ϕ(x),

u(0, t) = ξ(t),

with ϕ : N→ R and ξ ∈ C1(R+
0 ). However, this problem does not directly arise from the conservation law (1.18). Therefore,

it is omitted in this summary. The reader can see J. Volek [85, Sec. 6] for details.
7Again, we assume the spatial discretization step µx = 1. However, all our results hold even for general µx > 0 redefining

the nonlinear function φ̄ = 1
µx
φ.
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• there exist r, q > 0 such that for all t ∈ R+
0 and u ∈ R there is

|φ(t, u)| ≤ r|u|+ q.

Then (2.14) possesses a unique solution and it exists for all x ∈ N0 and t ∈ R+
0 .

If we analyze the proof of Theorem 2.7 in [85, Thm. 4.2] in detail we realize that the statement can be
improved. We can omit the assumptions that the initial-boundary conditions are bounded and mainly,
that the nonlinear function φ has a sublinear growth. It is possible, since the maximum principle from
Theorem 2.6 can be applied better. Let us firstly present some preliminary facts from the theory of ODEs
for the initial value problem

{
v′(t) = g(t, v(t)), t ∈ R+

0 ,

v(0) = v0,
(2.15)

where g : R+
0 × R→ RN is continuous and v0 ∈ R. For the following definition and theorem we refer to

W. G. Kelley, A. C. Peterson [47, Def. 8.31, Thm. 8.33].

Definition 2.8. Let g be continuous and v be a solution of (2.15) defined on [0, η). Then we say [0, η)
is a maximal interval of existence for v if there does not exist η1 > η and a solution w defined on [0, η1)
such that v(t) = w(t) for t ∈ [0, η).

Theorem 2.9. Let g be continuous and v be a solution of (2.15) defined on [0, ω). Then v can be
extended to a maximal interval of existence [0, η), 0 < η ≤ +∞. Furthermore, there is

either η = +∞ or |v(t)| t→η−−→ +∞.
Now we can prove the stronger result about the existence and uniqueness of a global solution for (2.14).

Theorem 2.10. Assume that:

• φ is independent on x and strictly increasing in u,

• φ is continuous function and it is locally Lipschitz in u,

Then (2.14) possesses a unique solution and it exists for all x ∈ N0 and t ∈ R+
0 .

Proof. We prove the statement by induction on x ∈ N0.

• For x = 0 we have u(0, t) = ξ(t).

• Assume that x ∈ N0 is fixed and we have the unique solution u(x, ·) which exists for all t ∈ R+
0 .

Then we obtain from (2.14) that the function u(x + 1, ·) has to be the solution of the following
initial value problem

{
ut(x+ 1, t) = −φ(t, u(x+ 1, t)) + φ(t, u(x, t)),

u(x+ 1, 0) = ϕ(x+ 1),
(2.16)

where φ(t, u(x, t)) is a given function of t from the induction hypothesis. Then the assumptions on
φ allow us to apply the Picard-Lindelöf theorem to get a uniquely defined local solution u(x+1, ·) of
(2.16). By Theorem 2.9, the solution u(x+ 1, ·) can be extended to a maximal interval of existence,
i.e., for t ∈ [0, η), and

either η = +∞ or |u(x+ 1, t)| t→η−−→ +∞.
Since we know from the maximum principle in Theorem 2.6 that |u(x+ 1, t)| → +∞ for t → η−
does not occur, there is η = +∞, i.e., the solution u(x+ 1, ·) exists for all t ∈ R+

0 .
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The uniqueness could be proved in a similar way as in [85, Thm. 4.2].

Remark 2.11. If we omit the assumption of local Lipschitz continuity of φ in the variable u in Theo-
rems 2.7 and 2.10, the uniqueness is not guaranteed and one can obtain only the existence result applying
the Cauchy-Peano theorem (see, e.g., P. Drábek, J. Milota [29, Prop. 5.2.7]) instead of the Picard-Lindelöf
theorem.

Examples of nonlinear functions φ that satisfy assumptions in Theorem 2.10 could be:

• φ(t, u) = k(t)u where k(t) > 0 for all t ∈ R+
0 (linear equation),

• φ(t, u) = k(t) arctan (u) where k(t) > 0 for all t ∈ R+
0 ,

• φ(t, u) = |u|p−1u with p ≥ 1.

For the following function φ we have only existence guaranteed (cf. Remark 2.11):

• φ(t, u) = |u|p−1u with p ∈ (0, 1).

Maximum principle from Theorem 2.6 has the following two immediate consequences for boundedness
and sign preservation of the solution of (2.14) (see J. Volek [85, Cor. 5.1, 5.2]).

Corollary 2.12. Assume φ is independent on x and strictly increasing in u and ϕ, ξ are bounded. Let u
be a solution of (2.14). Then u is bounded.

Corollary 2.13. Assume φ is independent on x and strictly increasing in u and ϕ, ξ are nonnegative.
Let u be a solution of (2.14). Then u is nonnegative.

2.2.2 Continuous dependence for linear problems

Another interesting consequence of the maximum principle is the uniform stability for the linear initial-
boundary value problem





ut(x, t) + k∇xu(x, t) = 0, x ∈ N, t ∈ R+
0 , k > 0,

u(x, 0) = ϕ(x),

u(0, t) = ξ(t),

(2.17)

where ϕ : N → R and ξ ∈ C1(R+
0 ). We can apply Theorem 2.6 to prove the following corollary (see

J. Volek [85, Cor. 5.3]).

Corollary 2.14. Let u1, u2 be the unique solutions of (2.17) with initial-boundary conditions ϕ1, ξ1 and
ϕ2, ξ2, respectively. Then

sup
x∈[1,N ]N,t∈[0,T ]

|u1(x, t)− u2(x, t)| ≤ sup
x∈[1,N ]N,t∈[0,T ]

{|ϕ1(x)− ϕ2(x)| , |ξ1(t)− ξ2(t)|} .

Corollary 2.14 immediately implies the continuous dependence on initial-boundary conditions (see J. Volek
[85, Cor. 5.4]).

Corollary 2.15. Let {un}+∞n=1 be a sequence of unique solutions un of (2.17) with the initial-boundary
conditions ϕn, ξn. Let u0 be the unique of (2.17) with the initial-boundary conditions ϕ0, ξ0. Assume
that ϕn ⇒ ϕ0 on N and ξn ⇒ ξ0 on R+

0 . Then

un ⇒ u0 on N0 × R+
0 .



CHAPTER 3

Reaction-diffusion equations

Linear one-dimensional diffusion PDEs follow from the differential conservation law (1.11) employing the
Fick constitutive law φ(x, t) = −kux(x, t). We obtain (see Example 1.9)

ut(x, t) = kuxx(x, t) + f(x, t), k > 0.

Diffusion PDEs are widely applied for the modeling of heat transfer, diffusion of a substance in chemical
reactions, but also population dynamics, etc.

There are many nonlinear generalization of linear diffusion problems, e.g., non-Fickian flux models
such as the Boltzmann equation, nonlinear advection-diffusion problems such as the Burgers equation
and others (see J. D. Logan [56]). We are interested in one of these nonlinear generalizations, namely,
one-dimensional reaction-diffusion equations (RDEs)

ut(x, t) = kuxx(x, t) + f(x, t, u(x, t)),

(see Example 1.11). They arise from the linear diffusion problem assuming that the source density
function depends moreover on the density of modeled substance. It is applied to model a local reaction
of the substance. These problems are studied by many authors for its rich behavior. They exhibit, e.g.,
traveling waves solutions, spatial pattern formation, etc. (see J. D. Logan [56] again or V. Volpert [86]).

In many situations, e.g., in biology, chemistry, material modeling, there are natural to consider the
spatial variable being from a lattice and investigate these discrete-space problems (see, e.g., J. Bell [6],
J. Bell, C. Cosner [7], J. P. Keener [45] or survey monograph S.-N. Chow et. al [20]). Let the discrete
spatial domain can be modeled by integers, i.e., x ∈ Z. We start with the semidiscrete conservation
law (1.18) and assume that the source function depends on the density u as well, i.e.,

ut(x, t) + φ(x, t)− φ(x− 1, t) = f(x, t, u(x, t)), x ∈ Z, t ∈ R+
0 . (3.1)

Suppose that the density u and the flux φ are related with the following discrete analogy of the Fick law

φ(x, t) = −k(u(x+ 1, t)− u(x, t)), k > 0,

(recall that φ(x, t) denotes the flux between points x and x+1). Hence, we obtain from (3.1) the following
semidiscrete RDE

27
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ut(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(x, t, u(x, t)), x ∈ Z, t ∈ R+
0 . (3.2)

Many of above mentioned works deal with this semidiscrete problem, i.e., assuming that the time
variable is continuous. However, there are also papers dealing with completely discrete analogy of (3.2)
(see, e.g., S.-N. Chow, W. Shen [21] or H. Hupkes, E. Van Vleck [44])

u(x, t+ 1)− u(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(x, t, u(x, t)), x ∈ Z, t ∈ N0.

For both discrete-space problems the authors study especially existence of traveling waves (see, e.g.,
S.-N. Chow, J. Mallet-Paret, W. Shen [23], T. Erneux, G. Nicolis [31] or J. P. Keener [45]), pattern
formation (e.g., S.-N. Chow, J. Mallet-Paret [22]) and asymptotic behavior (e.g., T. Caraballo, F. Morillas,
J. Valero [18]). Furthermore, these problems are interesting also from the numerical point of view, since
they arise from continuous reaction-diffusion PDEs via semi- or full-discretization (see, e.g., H. Hupkes,
E. Van Vleck [44]). Particularly, the specific choices of reaction function are studied – the Fisher equation
with the logistic nonlinearity, the Nagumo/Allen-Cahn equation with the bistable nonlinearity, etc.

3.1 Maximum principles for RDEs on finite domains

Let us note that linear diffusion equations on infinite lattices are studied in the works of A. Slav́ık,
P. Stehĺık [75, 76] and M. Friesl, A. Slav́ık and P. Stehĺık [34]. The authors consider x ∈ Z and general
time-scale time structure and study essential properties of linear diffusion-type dynamic initial value
problems such as existence, uniqueness in the set of bounded solutions, maximum principles, explicit
solution formulas and sign- and integral/sum-preservation with consequences to the probability theory.

We study the above mentioned nonlinear modifications of diffusion equations – RDEs. We do not
restrict ourselves to the specific nonlinear reaction functions and consider RDEs on finite discrete-space
domains with general reaction function f in this section. This is based on the results from the paper
P. Stehĺık, J. Volek [80]. We present maximum principles for initial-boundary value problems for either
completely discrete or semidiscrete RDEs. Whereas the maximum principles in the semidiscrete case
exhibit similar features to those of fully continuous reaction-diffusion PDEs, in the discrete case the weak
maximum principle holds for a smaller class of functions and the strong maximum principle is valid only
in a weaker sense. Then applying the maximum principles we obtain the global existence of solutions
which is an essential question for the semidiscrete equation.

Before we focus on the discrete-space problems let us summarize results that are known about the
classical reaction-diffusion PDE





ut(x, t) = kuxx(x, t) + f (x, t, u(x, t)) , x ∈ (a, b), t ∈ R+
0 , k > 0,

u(x, 0) = ϕ(x), x ∈ [a, b],

u(a, t) = ξa(t), t ∈ R+
0 ,

u(b, t) = ξb(t), t ∈ R+
0 ,

(3.3)

where f : (a, b)×R+
0 ×R→ R is a reaction function and ϕ : [a, b]→ R, ξa, ξb : R+

0 → R are initial-boundary
conditions satisfying ϕ(a) = ξa(0) and ϕ(b) = ξb(0).

The following results about existence and weak and strong maximum principles for (3.3) can be found
in H. F. Weinberger [87].

Theorem 3.1. Let T > 0 be arbitrary and f be uniformly Hölder continuous in x and t and Lipschitz
in u for (x, t) ∈ (a, b) × (0, T ]. Then for all Hölder continuous initial-boundary conditions ϕ, ξa, ξb the
problem (3.3) has a unique bounded solution which is defined on [a, b]× [0, T ].
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For the sake of brevity we define the following two numbers

MT = max
x∈[a,b],t∈[0,T ]

{ϕ(x), ξa(t), ξb(t)} , mT = min
x∈[a,b],t∈[0,T ]

{ϕ(x), ξa(t), ξb(t)} .

Theorem 3.2. Let T > 0 be arbitrary and f be uniformly Hölder continuous in x and t and Lipschitz
in u for (x, t) ∈ (a, b)× (0, T ] and assume that

f(x, t,MT ) ≤ 0 ≤ f(x, t,mT ) for all (x, t) ∈ (a, b)× (0, T ]. (3.4)

Let u be a continuous solution of (3.3) with Hölder continuous initial-boundary conditions ϕ, ξa, ξb. Then

mT ≤ u(x, t) ≤MT for all (x, t) ∈ [a, b]× [0, T ].

Moreover, the strong maximum principle also holds.

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied and u be a solution of (3.3) on [a, b] ×
[0, T ]. If u(x0, t0) ∈ {mT ,MT } for some (x0, t0) ∈ (a, b)× (0, T ] then

u(x, t) = u(x0, t0) for all (x, t) ∈ [a, b]× [0, t0].

3.1.1 Discrete RDE

After the short overview about the classical reaction-diffusion PDE (3.3), let us consider the initial-
boundary problem for the discrete RDE





∆tu(x, t) = k∆2
xxu(x− 1, t) + f (x, t, u(x, t)) , x ∈ (a, b) ∩ Z = (a, b)Z, t ∈ hN0, k > 0,

u(x, 0) = ϕ(x), x ∈ (a, b)Z,

u(a, t) = ξa(t), t ∈ hN0,

u(b, t) = ξb(t), t ∈ hN0,

(3.5)

where f : (a, b)Z × hN0 × R → R is a reaction function, ϕ : (a, b)Z → R, ξa, ξb : hN0 → R are initial-

boundary conditions, ∆tu(x, t) = u(x,t+h)−u(x,t)
h , h > 0, and ∆2

xxu(x − 1, t) = u(x − 1, t) − 2u(x, t) +
u(x+ 1, t).1

The existence and uniqueness of a global solution can be easily obtained from (3.5) since u(x, t+ h)
is given by

u(x, t+ h) =





u(x, t) + h
(
k∆2

xxu(x− 1, t) + f (x, t, u(x, t))
)
, x ∈ (a, b)Z,

ξa(t+ h), x = a,
ξb(t+ h), x = b.

(3.6)

Consequently, the problem (3.5) has a unique solution which is defined on [a, b]Z × hN0.
For T ∈ hN0 we define the following two numbers similarly as for the reaction-diffusion PDE (3.3)

MT = max
x∈(a,b)Z,t∈[0,T ]hN0

{ϕ(x), ξa(t), ξb(t)} , mT = min
x∈(a,b)Z,t∈[0,T ]hN0

{ϕ(x), ξa(t), ξb(t)} .

For the brevity of the weak maximum principle we formulate the assumption on the reaction func-
tion f :

1We denote the time discretization step by h > 0 to correspond with P. Stehĺık, J. Volek [80]. Again, we assume the
space discretization step hx = 1, but all our results are easily extendable to an arbitrary step hx > 0 if we use the diffusion
constant k̄ = k

h2
x

instead of k.
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Figure 3.1: Forbidden areas for the function f(x, t, ·) in assumption (D1). The change of these areas as
h→ 0+.

(D1) Let T ∈ hN0 and f satisfy

2hk − 1

h
(u−mT ) ≤ f(x, t, u) ≤ 2hk − 1

h
(u−MT ),

for all x ∈ (a, b)Z, t ∈ [0, T ]hN0 and u ∈ [mT ,MT ].2

The inequalities in (D1) mean that for all fixed x and t the graph of function f(x, t, ·) does not intersect
forbidden areas depicted in Figure 3.1. Moreover, let us notice that for h→ 0+ the slope 2hk−1

h goes to
−∞, i.e., the forbidden areas are smaller in the sense of inclusion (see Figure 3.1 again).

We present now the weak maximum principle which is essentially dependent on the assumption (D1)
(see P. Stehĺık, J. Volek [80, Thm. 9]).3

Theorem 3.4. Let T ∈ hN0 be arbitrary, function f satisfy (D1) and u be the unique solution of (3.5).
Then

mT ≤ u(x, t) ≤MT for all x ∈ [a, b]Z, t ∈ [0, T ]hN0
. (3.7)

As examples of nonlinear reaction functions f that could satisfy (D1) with suitable initial-boundary
conditions, we can mention:

• f(x, t, u) = −|u|p−1u with p > 1,

• the logistic function f(x, t, u) = u(1− u),

2Note that if mT < MT and h >
1

2k
, then (D1) does not hold for any function f since there should be

0 <
2hk − 1

h
(u−mT ) ≤ f(x, t, u) ≤ 2hk − 1

h
(u−MT ) < 0 for u ∈ (mT ,MT ).

3Let us note that we provide in P. Stehĺık, J. Volek [80, Thm. 11] even a more general assertion than in Theorem 3.4
which reads as follows. If the assumption (D1) is not satisfied with mT , MT , but there exist constants rT < mT and
RT > MT such that (D1) holds with them instead of mT , MT respectively, then one can prove in the same way that the
following a priori bound holds,

rT ≤ u(x, t) ≤ RT for all x ∈ [a, b]Z, t ∈ [0, T ]hN0
.
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• the bistable nonlinearity f(x, t, u) = λu(u− a)(1− u), a ∈ (0, 1),

• f(x, t, u) = λu(1− up) where p ∈ N,

• f(x, t, u) = −|x| arctan (t2u).

Theorem 3.4 has the following two immediate consequences (see P. Stehĺık, J. Volek [80, Cor. 13, 14]).

Corollary 3.5. Assume that ξa, ξb are bounded and f satisfies (D1) for all T > 0. Then the unique
solution u of (3.5) is bounded.

Corollary 3.6. Assume that ϕ, ξa, ξb are nonnegative and f satisfies (D1) for all T > 0. Then the
unique solution u of (3.5) is nonnegative.

Since we know that for classical reaction-diffusion PDE (3.3) even the strong maximum principle
holds, we are interested in this important property for discrete RDE (3.5) as well. Unfortunately, the
strong maximum principle does not hold for (3.5) in general, which the following example shows (see
P. Stehĺık, J. Volek [80, Ex. 15])

Example 3.7. Let us consider x ∈ [−2, 2]Z, t ∈ N0, f(x, t, u) ≡ 0 and k = 1
2 (note that h = 1

2k ) and let

ϕ(x) = M > 0, x ∈ {−1, 0, 1} and ξ−2(t) = ξ2(t) ≡ 0, t ∈ N0.

We obtain from (3.6) that u(0, 1) = u(0, 0) + ku(−1, 0) − 2ku(0, 0) + ku(1, 0) + f(0, 0, 0) = M and
analogously, u(−1, 1) = u(1, 1) = M

2 . Hence, the strong maximum principle is not valid.

However, we are able to prove a weaker statement using the domain of dependence and influence
defined as follows respectively

D(x0, t0) =

{
(x, t) ∈ [a, b]Z × hN0 : t ≤ t0, x = x0 ± j, j = 0, 1, . . . ,

t0 − t
h

}
,

I(x0, t0) =

{
(x, t) ∈ [a, b]Z × hN0 : t ≥ t0, x = x0 ± j, j = 0, 1, . . . ,

t− t0
h

}
.

Furthermore, we apply a modified assumption

(D2) Let T ∈ hN0 and f satisfy for all x ∈ (a, b)Z, t ∈ [0, T ]hN0
:

• f(x, t, u) <
2hk − 1

h
(u−MT ) when u ∈ [mT ,MT ),

• f(x, t, u) >
2hk − 1

h
(u−mT ) when u ∈ (mT ,MT ],

• f(x, t,MT ) ≤ 0 ≤ f(x, t,mT ).

Then one can prove the following statement (see P. Stehĺık, J. Volek [80, Thm. 16]).

Theorem 3.8. Assume that the function f satisfies (D2) for all T ∈ hN0. Let u be the unique solution
of (3.5) and (x0, t0) ∈ [a, b]Z × hN0.

1. If u(x0, t0) ∈ {mT ,MT }, then u(x, t) = u(x0, t0) on D(x0, t0).

2. If mT < u(x0, t0) < MT , then mT < u(x, t) < MT on I(x0, t0).
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3.1.2 Semidiscrete RDE

As we mentioned, the discrete RDE (3.5) can be applied, e.g., for modeling of non-overlapping populations.
However, we use the results for discrete RDE theoretically for investigating the following semidiscrete
problem





ut(x, t) = k∆2
xxu(x− 1, t) + f (x, t, u(x, t)) , x ∈ (a, b)Z, t ∈ R+

0 , k > 0,

u(x, 0) = ϕ(x), x ∈ (a, b)Z,

u(a, t) = ξa(t), t ∈ R+
0 ,

u(b, t) = ξb(t), t ∈ R+
0 ,

(3.8)

where f : (a, b)Z × R+
0 × R → R is a reaction function, ϕ : (a, b)Z → R and ξa, ξb ∈ C1(R+

0 ) are
initial-boundary conditions.

We start with the local existence and uniqueness result for (3.8) which holds under the following two
assumptions:

(C1) Let f(x, t, u) be continuous in (t, u) ∈ R+
0 × R for all x ∈ (a, b)Z.

(C2) Let f(x, t, u) be locally Lipschitz with respect to u on (a, b)Z × R+
0 × R.

Since the initial-boundary problem (3.8) can be rewritten as a finite system of ODEs, the local existence
follows immediately from the Picard-Lindelöf theorem (see P. Stehĺık, J. Volek [80, Thm. 18]).

Theorem 3.9. Let f satisfy (C1) and (C2). Then there exists η > 0 such that (3.8) has a unique solution
defined on [a, b]Z × [0, η].

The discrete problem (3.5) arises from (3.8) by the Euler method for discretization of time variable.
Thus, the idea of proving the weak maximum principle for (3.8) is the approximation by solutions of (3.5).
Let us define numbers MT and mT similarly as for the discrete problem

MT = max
x∈(a,b)Z,t∈[0,T ]

{ϕ(x), ξa(t), ξb(t)} , mT = min
x∈(a,b)Z,t∈[0,T ]

{ϕ(x), ξa(t), ξb(t)} .

Consequently, we need the following assumption which is the limit case of (D1) for h→ 0+.

(C3) Let f(x, t, u) satisfy f(x, t,MT ) ≤ 0 ≤ f(x, t,mT ) for all x ∈ (a, b)Z, t ∈ [0, T ].

Therefore applying the convergence of the Euler method one can prove the following statement (see
P. Stehĺık, J. Volek [80, Thm. 24]).4

Theorem 3.10. Let T > 0 be arbitrary, f satisfy (C1), (C2) and (C3) and u be a solution of (3.8)
defined on [a, b]Z × [0, T ]. Then

mT ≤ u(x, t) ≤MT for all x ∈ (a, b)Z, t ∈ [0, T ].

Applying the weak maximum principle as a priori bound we can prove the existence of a unique global
solution (see P. Stehĺık, J. Volek [80, Thm. 31]) similarly as Theorem 2.10.

4Again as for the discrete RDE, we present in P. Stehĺık, J. Volek [80, Thm. 25] a more general statement than in
Theorem 3.10, i.e., if (C3) does not hold with mT , MT , but it is satisfied with rT < mT and RT > MT instead of mT , MT

respectively, then the following holds,

rT ≤ u(x, t) ≤ RT for all x ∈ (a, b)Z, t ∈ [0, T ].
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Figure 3.2: The cubic nonlinearity (3.9) with λ > 0 and the forbidden areas from the assumption (D1).

Theorem 3.11. Let f satisfy (C1), (C2) and (C3) for all T > 0. Then (3.8) has a unique solution
defined on [a, b]Z × R+

0 which satisfies

inf
x∈(a,b)Z,t∈R+

0

{ϕ(x), ξa(t), ξb(t)} ≤ u(x, t) ≤ sup
x∈(a,b)Z,t∈R+

0

{ϕ(x), ξa(t), ξb(t)}

for all x ∈ [a, b]Z and t ∈ R+
0 .

Theorems 3.10 and 3.11 have the following two simple consequences (see P. Stehĺık, J. Volek [80,
Cor. 33, 34]).

Corollary 3.12. Assume that ξa, ξb are bounded and f satisfies (C1), (C2) and (C3) for all T > 0.
Then the unique solution u of (3.8) is bounded.

Corollary 3.13. Assume that ϕ, ξa, ξb are nonnegative and f satisfies (C1), (C2) and (C3) for all
T > 0. Then the unique solution u of (3.8) is nonnegative.

Finally, in contrast to the discrete case, the strong maximum principle holds for the semidiscrete
problem (3.8) similarly as for the classical reaction-diffusion PDE (3.3) (see P. Stehĺık, J. Volek [80,
Thm. 28]). One can prove it using the Gronwall inequality.

Theorem 3.14. Let T > 0 be arbitrary, f satisfy (C1), (C2) and (C3) and u be a solution of (3.8)
defined on [a, b]Z × [0, T ]. If u(x0, t0) ∈ {mT ,MT } for some x0 ∈ (a, b)Z and t0 ∈ (0, T ] then

u(x, t) = u(x0, t0) for all x ∈ [a, b]Z, t ∈ [0, t0].

As we mentioned in Introduction (see Section 1.1), this is the moment when the interesting question
arises – what causes the validity of the strong maximum principle when we pass from the discrete problem
to the semidiscrete one? In the next Section 3.2 focused on generalization of results from this section
for dynamic RDEs on infinite discrete-space domains, we study this phenomena and claim that only one
dense point in the time domain is sufficient for the validity of the strong maximum principle.

3.1.3 Application for Nagumo RDE

In this subsection we apply the previous results to problems involving the cubic nonlinearity

f(x, t, u) = λu(1− u2), λ ∈ R, (3.9)
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Figure 3.3: The dependence of bounds (3.10) for solutions of the discrete Nagumo equation (3.5)+(3.9)
on the values of parameters λ ∈ R and h > 0.

often called the Nagumo equation. Throughout this section we assume that the initial-boundary condi-
tions ϕ, ξa, ξb are such that mT = −1 and MT = 1.

Let us start with the semidiscrete case (3.8). We observe immediately that f is locally Lipschitz con-
tinuous and satisfies f(x, t,−1) = 0 = f(x, t, 1). Consequently, for all λ ∈ R we can apply Theorem 3.11
to get that there exists a unique global solution such that

u(x, t) ∈ [−1, 1] for all x ∈ [a, b]Z, t ∈ R+
0 .

A more interesting case is the discrete Nagumo equation (3.5). Let us distinguish three cases:

• For λ > 0 (the bistable case) we observe that f ′(1) = −2λ. Hence the application of Theorem 3.4 is
restricted to cases for which the slope of the dashed line in the forbidden areas from assumption (D1)
given by 2k − 1

h satisfies 2k − 1
h ≤ −2λ (see Figure 3.2). Consequently, if

h ≤ 1

2(k + λ)
,

we can apply Theorem 3.4 to get u(x, t) ∈ [−1, 1] for all x ∈ [a, b]Z, t ∈ hN0.

Once h > 1
2(k+λ) , Theorem 3.4 is no longer available. We point out that one can use the more

general statement mentioned in Footnote 3 to obtain a weaker a priory bound. We invite the reader
to see P. Stehĺık, J. Volek [80, Sec. 8] for more details.

• For λ = 0 the reaction function vanishes and the problem (3.8) reduces to the linear case and we
can trivially apply Theorem 3.4 whenever h ≤ 1

2k .

• If λ < 0, then the assumption (D1) is satisfied as long as the line
(
2k − 1

h

)
(u−1) does not intersect

for u < 0 or is tangential to f(u) = λu(1 − u2). One can easily compute that the tangential case
occurs if

2k − 1

h
=
λ

4
.
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Let us summarize these results for discrete Nagumo equation depending on values of λ and h. We obtain
the following bound for the solution of (3.5) with the bistable nonlinearity (3.9) (see Figure 3.3)

u(x, t) ∈ [−1, 1] provided λ ≤ 0, h ≤ 1

2k − λ
4

or λ > 0, h ≤ 1

2(k + λ)
. (3.10)

3.2 Dynamic RDEs on infinite domain

In this section, we present a generalization of results about discrete-space RDEs on finite domains from
previous Section 3.1. This is an overview of main results from the paper A. Slav́ık, P. Stehĺık, J. Volek [77].
The generalization goes in three ways. Firstly, we consider problems on infinite spatial domain, namely,
x ∈ Z. Next, we do not restrict ourselves to discrete and semidiscrete cases and assume that the time
set is generally a subset of a time scale. Finally, we focus on problems which are formulated so that it
involves both symmetric or non-symmetric diffusion as well as transport equation, all together.

We study the general nonhomogeneous initial-value problem

{
u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + f(u(x, t), x, t), x ∈ Z, t ∈ [t0, T ]κT,

u(x, t0) = u0
x, x ∈ Z,

(3.11)

where {u0
x}x∈Z is a bounded real sequence, a, b, c ∈ R, T ⊆ R is a time scale, u∆ denotes the ∆-derivative

of u with respect to the variable t and t0, T ∈ T. We use the notation [α, β]T = [α, β] ∩ T, α, β ∈ R, and

[t0, T ]κT =

{
[t0, T ]T if T is left-dense,

[t0, T )T if T is left-scattered.

Particularly, if a = c > 0 and b = −2a then (3.11) becomes the symmetric reaction-diffusion equation
analogical to (3.5) and (3.8). The nonsymmetric case a 6= c, b = −(a + c) corresponds to the lattice
reaction-advection-diffusion equation. Next, if a = 0 and c = −b > 0 then (3.11) reduces to the lattice
reaction-transport equation. For more details and other special cases see A. Slav́ık, P. Stehĺık [76].

3.2.1 Existence and uniqueness

In this subsection we show existence and uniqueness results for (3.11). We impose the following conditions
on the function f : R× Z× [t0, T ]T → R:

(H1) f is bounded on each set B × Z× [t0, T ]T, where B ⊂ R is bounded.

(H2) f is Lipschitz-continuous in the first variable on each set B×Z× [t0, T ]T, where B ⊂ R is bounded.

(H3) For each bounded set B ⊂ R and each choice of ε > 0 and t ∈ [t0, T ]T, there exists a δ > 0 such
that if s ∈ (t− δ, t+ δ) ∩ [t0, T ]T, then |f(u, x, t)− f(u, x, s)| < ε for all u ∈ B, x ∈ Z.

Firstly, we present the statement guaranteeing the existence of a local solution to (3.11). Given a
function U : T → `∞(Z), the symbol U(t)x denotes the x-th component of the sequence U(t).5 The
following theorem (see A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 2.1]) can be proved applying the abstract
local existence result M. Bohner, A. C. Peterson [13, Thm. 8.14].

5The notation U(t)x should not be confused with the index notation of the derivative of U with respect to x (which
never appears in this section).
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Figure 3.4: Piecewise constant extension x∗ (gray) of a function x (black); see (3.14).

Theorem 3.15. Assume that f : R× Z× [t0, T ]T → R satisfies (H1)–(H3). Then for each u0 ∈ `∞(Z),
the initial-value problem (3.11) has a bounded local solution defined on Z× [t0, t0 + δ]T, where δ > 0 and
δ ≥ µ(t0). The solution is obtained by letting u(x, t) = U(t)x, where U : [t0, t0 +δ]T → `∞(Z) is a solution
of the abstract dynamic equation

U∆(t) = Φ(U(t), t), U(t0) = u0, (3.12)

with Φ : `∞(Z)× [t0, T ]T → `∞(Z) being given by

Φ({ux}x∈Z, t) = {aux+1 + bux + cux−1 + f(ux, x, t)}x∈Z.

Note that even in the linear case f ≡ 0 the solutions of (3.11) are not unique in general (see A. Slav́ık,
P. Stehĺık [76]) and the uniqueness can be expected only in the class of bounded solutions. Uniqueness
of bounded solutions to the initial-value problem (3.11) follows from the next theorem (see A. Slav́ık,
P. Stehĺık, J. Volek [77, Thm. 2.3]).

Theorem 3.16. Assume that f : R×Z×[t0, T ]T → R satisfies (H1) and (H2). Then for each u0 ∈ `∞(Z),
the initial-value problem (3.11) has at most one bounded solution u : Z× [t0, T ]T → R.

3.2.2 Continuous dependence

This subsection is devoted to the study of continuous dependence of solutions to abstract dynamic
equations with respect to the choice of the time scale. These results are applicable to (3.11) whose
bounded solutions are obtained as solutions to the abstract dynamic equation (3.12) (see Theorem 3.15).
Moreover, we use these results as an essential tool for proving the weak maximum principle for (3.11).

Since we need to compare solutions defined on different time scales (whose intersection might be even
empty), we introduce the following definitions.

Consider an interval [t0, T ] ⊂ R and a time scale T with t0 ∈ T, supT ≥ T . Let gT : [t0, T ] → R be
given by

gT(t) = inf{s ∈ [t0, T ]T; s ≥ t}, t ∈ [t0, T ]. (3.13)

Each function x : [t0, T ]T → X can be extended to a function x∗ : [t0, T ]→ X by letting

x∗(t) = x(gT(t)), t ∈ [t0, T ]. (3.14)

Note that x∗ coincides with x on [t0, T ]T, and is constant on each interval (u, v] where (u, v)∩T = ∅. We
refer to x∗ as the piecewise constant extension of x, see Figure 3.4.

One can use now the relation between dynamic equations and the so-called measure differential equa-
tions (see A. Slav́ık [74]) to prove an abstract continuous dependence result for measure differential
equations (A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 3.1]). From that we obtain the following result about
continuous dependence of solutions to abstract dynamic equations with respect to the choice of the time
scale and initial condition (see A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 3.2]).



Partial dynamic equations on discrete spatial domains 37

Theorem 3.17. Let X be a Banach space, B ⊆ X. Consider an interval [t0, T ] ⊂ R and a sequence
of time scales {Tn}∞n=0 such that t0 ∈ Tn and supTn ≥ T for each n ∈ N0, T ∈ T0, and gTn ⇒ gT0

on [t0, T ]. Denote T =
⋃∞
n=0 Tn. Suppose that Φ : B × [t0, T ]T → X is continuous on its domain and

Lipschitz-continuous with respect to the first variable. Let xn : [t0, T ]Tn → B, n ∈ N0, be a sequence of
functions satisfying

x∆
n (t) = Φ(xn(t), t), t ∈ [t0, T ]κTn , n ∈ N0,

and xn(t0)→ x0(t0). Then the sequence of piecewise constant extensions {x∗n}∞n=1 is uniformly convergent
to the piecewise constant extension x∗0 on [t0, T ]. In particular, for every ε > 0, there exists an n0 ∈ N
such that ‖xn(t)− x0(t)‖ < ε for all n ≥ n0, t ∈ [t0, T ]Tn ∩ [t0, T ]T0

.

Furthermore, for the proof of maximum principle for (3.11) we need an assertion guaranteeing that
for each time scale T0 there exists an approximating sequence {Tn}∞n=1 of discrete time scales (in the
sense gTn ⇒ gT0). We introduce the following notation

µT = max
t∈[t0,T )T

µ(t).

The following statement provides the desired approximation result (see A. Slav́ık, P. Stehĺık, J. Volek [77,
Thm. 3.4]).

Theorem 3.18. If T0 ⊂ R is a time scale with t0, T ∈ T0, there exists a sequence of discrete time scales
{Tn}∞n=1 with Tn ⊆ T0, minTn = t0, maxTn = T , and such that gTn ⇒ gT0

on [t0, T ].
Moreover, if µT0

= 0, then limn→∞ µTn = 0; otherwise, if µT0
> 0, then the sequence {Tn}∞n=1 can be

chosen so that µTn = µT0
for all n ∈ N.

Let us recall that in Subsection 2.2.2 there is shown continuous dependence on initial-boundary
condition for the linear transport equation which follows from the maximum principle. On the contrary,
in this subsection we introduce continuous dependence on initial condition as well as on the choice of
underlying time scale for nonlinear abstract dynamic initial value problems on Banach spaces. Moreover,
we use continuous dependence on the choice of time scale as fundamental tool in the proof of weak
maximum principle for (3.11).

3.2.3 Maximum principles and global existence

We present weak a strong maximum principles for (3.11). For an initial condition u0 ∈ `∞(Z) we denote

m = inf
x∈Z

u0
x, M = sup

x∈Z
u0
x.

Further, we need the following assumptions:

(H4) a, b, c ∈ R are such that a, c ≥ 0, b < 0, and a+ b+ c = 0.

(H5) b < 0 and µT ≤ −1/b.

(H6) One of the following statements holds:

• µT = 0 and f(M,x, t) ≤ 0 ≤ f(m,x, t) for all x ∈ Z, t ∈ [t0, T ]T.

• µT > 0 and
1 + µTb

µT
(m − u) ≤ f(u, x, t) ≤ 1 + µTb

µT
(M − u) for all u ∈ [m,M ], x ∈ Z,

t ∈ [t0, T ]T.
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Let us note that if (H4)–(H6) are not satisfied, the maximum principle also does not hold in general
(see A. Slav́ık, P. Stehĺık [76] and P. Stehĺık, J. Volek [80]). The assumption (H6) defines forbidden areas
which the nonlinearity f cannot intersect, similarly as in Figure 3.1.

If (H6) holds for a nonlinear function f in the continuous case µT = 0, the following lemma shows
that (H6) is also satisfied for all sufficiently fine time scales (specifically, for almost all of the discrete
approximating time scales Tn from Theorem 3.18), (see A. Slav́ık, P. Stehĺık, J. Volek [77, Lem. 4.2]).

Lemma 3.19. Assume that µT = 0 and (H2), (H6) hold. Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0] the following inequalities hold

1 + εb

ε
(m− u) ≤ f(u, x, t) ≤ 1 + εb

ε
(M − u) for all u ∈ [m,M ], x ∈ Z, t ∈ [t0, T ].

Applying Theorem 3.17 (continuous dependence of solutions on the choice of time scale), Theorem 3.18
(existence of approximating sequence of discrete time scales) and previous Lemma 3.19 one can prove the
weak maximum principle (see A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 4.4]).6

Theorem 3.20. Assume that (H1)–(H6) hold. If u : Z × [t0, T ]T → R is a bounded solution of (3.11),
then

m ≤ u(x, t) ≤M for all x ∈ Z, t ∈ [t0, T ]T.

The weak maximum principle usually provides wanted a priory bound needed for the proof of the
global existence (see A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 4.6]).

Theorem 3.21. If u0 ∈ `∞(Z) and (H1)–(H6) hold, then (3.11) has a unique bounded solution u :
Z× [t0, T ]T → R.

Moreover, the solution depends continuously on u0 in the following sense – for every ε > 0, there
exists a δ > 0 such that if v0 ∈ `∞(Z), m ≤ v0

x ≤ M for all x ∈ Z, and ‖u0 − v0‖∞ < δ, then the
unique bounded solution v : Z× [t0, T ]T → R of (3.11) corresponding to the initial condition v0 satisfies
|u(x, t)− v(x, t)| < ε for all x ∈ Z, t ∈ [t0, T ]T.

Let us illustrate the application of Theorems 3.20 and 3.21 on (3.11) where f is a nonautonomous
logistic function (see A. Slav́ık, P. Stehĺık, J. Volek [77, Ex. 4.9]).

Example 3.22. Consider the initial value problem (3.11) where the nonlinear function f is given by

f(u, x, t) = λu(d(x, t)− u), u ∈ R, x ∈ Z, t ∈ [t0, T ]T, (3.15)

where λ > 0 and d : Z× [t0, T ]T → R. The equation can be interpreted as the logistic population model
where the carrying capacity d depends on position and time. Assume that d has the following properties:

• There exists D ≥ 0 such that |d(x, t)| ≤ D for all x ∈ Z and t ∈ [t0, T ]T, i.e., d is bounded.

• For each choice of ε > 0 and t ∈ [t0, T ]T, there exists a δ > 0 such that if s ∈ (t− δ, t+ δ)∩ [t0, T ]T,
then |d(x, t)− d(x, s)| < ε for all x ∈ Z.

6Note that again we show in A. Slav́ık, P. Stehĺık, J. Volek [77] a more general assertion than in Theorem 3.20. If the
assumption (H6) does not hold with m, M , but there are r < m and R > M such that (H6) is satisfied with them, then

r ≤ u(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]T.
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Then the function f satisfies (H1)–(H3). Indeed, if B ⊂ R is bounded, it is contained in a ball of radius
ρ centered at the origin. Consequently, for all u, v ∈ B, x ∈ Z, t, s ∈ [t0, T ]T, we get the estimates

|f(u, x, t)| ≤ λ|u|(|d(x, t)|+ |u|) ≤ λρ(D + ρ),

|f(u, x, t)− f(v, x, t)| = λ|(u− v)(d(x, t)− u− v)| ≤ λ|u− v|(D + 2ρ),

|f(u, x, t)− f(u, x, s)| = λ|u(d(x, t)− d(x, s))| ≤ λρ|d(x, t)− d(x, s)|,

which imply that (H1)–(H3) hold.

As concrete examples of d we can point out:

• d(x, t) = e(x − γt) with γ > 0 and e : R → R being continuous, nondecreasing and bounded (e.g.,
population model with a shifting habitat, see C. Hu, B. Li [43]),

• d(x, t) = e(t) with e : R→ R being continuous and periodic (e.g., population model with periodically
changing habitat).

Suppose now that a, c ≥ 0, b < 0, a+ b+ c = 0, and µT ≤ −1
b , i.e., (H4) and (H5) hold. Consider an

arbitrary nonnegative initial condition u0 ∈ `∞(Z), i.e., m ≥ 0, and assume that m ≤ d(x, t) ≤M for all
x ∈ Z and t ∈ [t0, T ]T. Then

f(m,x, t) ≥ 0 and f(M,x, t) ≤ 0 for all x ∈ Z, t ∈ [t0, T ]T.

This means that (H6) holds if µT = 0. Applying Lemma 3.19 we obtain that (H6) holds also for µT
positive and sufficiently small. In these cases, the problem (3.11) with f being defined by (3.15) possesses
a unique global solution u and

m ≤ u(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]T.

We conclude this section with the strong maximum principle. We need the following stronger versions
of (H4)–(H6):

(H7) a, b, c ∈ R are such that a, c > 0, b < 0, and a+ b+ c = 0.

(H8) b < 0 and µT < −1/b.

(H9) The following statements hold for all x ∈ Z and t ∈ [t0, T ]T:

• f(M,x, t) ≤ 0 ≤ f(m,x, t).

• If µT > 0, then f(u, x, t) >
1 + µTb

µT
(m− u) for all u ∈ (m,M ].

• If µT > 0, then f(u, x, t) <
1 + µTb

µT
(M − u) for all u ∈ [m,M).

The following theorem establishes the strong maximum principle for the initial value problem (3.11)
(see A. Slav́ık, P. Stehĺık, J. Volek [77, Thm. 5.3]). It is an example which shows the beauty of time scale
calculus because using the language of time scales it finds a moment when (3.11) qualitatively changes
its behavior with respect to the underlying structure of time domain (cf. Theorems 3.8 and 3.14).

Theorem 3.23. Assume that (H1)–(H3), (H7)–(H9) hold and u : Z× [t0, T ]T → R is a bounded solution
of (3.11). If u(x̄, t̄) ∈ {m,M} for some x̄ ∈ Z and t̄ ∈ (t0, T ]T, then the following statements hold:
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• If [t0, t̄]T contains only isolated points, i.e., t0 = ρkT(t̄) for some k ∈ N, and

D(x̄, t̄) =
{

(x, t) ∈ Z× [t0, t̄]T : t = ρjT(t̄), j = 0, . . . , k, and x = x̄± i, i = 0, . . . , j
}
,

then u(x, t) = u(x̄, t̄) for all (x, t) ∈ D(x̄, t̄).

• Otherwise, if [t0, t̄]T contains a point which is not isolated, then m = M and u(x, t) = M for all
x ∈ Z and t ∈ [t0, T ]T.

We emphasize that the fact whether a point is isolated or not is considered with respect to the time
scale interval [t0, t̄]T, not the entire time scale T. In other words, Theorem 3.23 distinguishes between
the cases in which the interval [t0, t̄]T is a finite set (former case) or at least countable (latter case).

The strong maximum principle has the following immediate consequence (see A. Slav́ık, P. Stehĺık,
J. Volek [77, Cor. 5.5]).

Corollary 3.24. Assume that (H1)–(H3), (H7)–(H9) hold and u : Z× [t0, T ]T → R is a bounded solution
of (3.11). If there is a point td ∈ [t0, T )T that is not isolated and if the initial condition u0 is not constant,
then

m < u(x, t) < M for all x ∈ Z, t ∈ (td, T ]T.

Let us conclude the overview about strong maximum principle with a remark that the strong maximum
principle does not hold under the weaker assumptions (H4)–(H6). The stronger versions (H7)–(H9) are
actually needed. The reader can see A. Slav́ık, P. Stehĺık, J. Volek [77, Rem. 5.6, 5.7, 5.8]) where we
provide a counterexample to each of (H4)–(H6).

3.3 Implicit discrete Nagumo equation

In this section which is an overview about results from the paper P. Stehĺık, J. Volek [81], we study
a completely discrete RDE on infinite discrete-space domain. Particularly, we focus on the specific
problem involving the cubic nonlinearity, the so-called Nagumo equation. Motivated by the numerical
mathematics, we consider a fully implicit discretization of this problem.

Numerical methods for RDEs usually consist of two processes. First, a space discretization reduces
a partial differential equation into a system of ordinary differential equations. Then a certain time
discretization technique is applied (see, e.g., V. Thomée [82]). In the case of RDEs, implicit methods are
often used from the stiffness reasons (see, e.g., A. Madzvamuse, A. H. W. Chung [57]).

Many studies considered preservation of various characteristics of RDEs through discretization pro-
cesses. In contrast to the problem on a finite domain (see, e.g., O. A. Ladyzhenskaya [48]), the problem
on an infinite domain is infinite-dimensional and the corresponding dynamics is more complex (see, e.g.,
A. V. Babin, M. I. Vishik [3], W. J. Beyn, S. Y. Pilyugin [12], H. J. Hupkes, E. S. Van Vleck [44]).

We study the following initial value problem

{
∆tv(x, t) = k∆2

xxv(x− 1, t+ h) + λv(x, t+ h)
(
1− v2(x, t+ h)

)
, λ ∈ R,

v(x, 0) = ϕ(x),
(3.16)

where x ∈ Z, t ∈ hN0 = {0, h, 2h, . . .}, k > 0, h > 0 and the partial differences are defined by ∆tv(x, t) =
v(x,t+h)−v(x,t)

h , ∆2
xxv(x− 1, t+ h) = v(x− 1, t+ h)− 2v(x, t+ h) + v(x+ 1, t+ h).7

We use variational methods to get existence (and uniqueness for λ ≥ 0) of solutions u(x, t) to the
implicit problem (3.16) whose spatial sections u(·, t) lie in `2 = `2(Z) for each time instance t ∈ hN0 (note

7As in the previous sections, we assume for the sake of brevity, that the space discretization step hx = 1. However, all
our results are valid for arbitrary hx > 0 by considering k̄ = k

h2
x

instead of k in (3.16).
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that A. V. Babin, M. I. Vishik in [3] and W. J. Beyn, S. Y. Pilyugin in [12] study (3.16) in weighted
sequence spaces). Our technique provides results for solutions in `2 in certain cases which have not been
studied so far (e.g., when the dissipativity condition used in W. J. Beyn, S. Y. Pilyugin [12] is violated).

3.3.1 Abstract formulation

Since we study the existence and uniqueness of solutions to (3.16) whose spatial sections v(·, t) =
{v(x, t)}x∈Z lies in `2 for each time step t ∈ hN0, we assume that ϕ = {ϕ(x)}x∈Z ∈ `2. Moreover,
let us define the following two operators for u = {ui}x∈Z that we use later in an operator reformulation
of (3.16),

L : `2 → `2, (Lu)i = kui−1 − 2kui + kui+1, i ∈ Z, (3.17)

N : `2 → `2, (N(u))i = ui
(
1− u2

i

)
, i ∈ Z. (3.18)

Therefore, the problem (3.16) is equivalent to the abstract difference equation on the Hilbert space `2

{
∆tv(·, t) = L(v(·, t+ h)) + λN(v(·, t+ h)), λ ∈ R,
v(·, 0) = ϕ,

(3.19)

where ∆tv(·, t) = 1
h (v(·, t+ h)− v(·, t)).

First, we consider the following problem – for a fixed t ∈ hN0 and a given v(·, t) ∈ `2 (e.g., for t = 0
there is v(·, 0) = ϕ an initial condition) we look for a solution v(·, t + h) ∈ `2 of (3.19). We call this a
local problem which is later applied in the mathematical induction to prove the global existence.

One can rewrite the equation in (3.19) into

v(·, t+ h) = v(·, t) + hL(v(·, t+ h)) + hλN(v(·, t+ h)), λ ∈ R.

If we denote the fixed known element b = v(·, t) ∈ `2, and the unknown one u = v(·, t+ h) ∈ `2, then the
problem (3.19) for a fixed t ∈ hN0 is equivalent to the fixed-point problem on `2

u = b+ hLu+ hλN(u), λ ∈ R. (3.20)

Let us note that the operator L defined by (3.17) is linear bounded, self-adjoint, negative and
‖L‖L(`2) = 4k (see P. Stehĺık, J. Volek [81, Lem. 2.1, 2.2]). The nonlinear superposition (Nemyckii)
operator N given by (3.18) is continuous and Dom(N) = `2 (see P. Stehĺık, J. Volek [81, Lem. 2.3]).

Let us introduce the variational setting for (3.20). The fixed point problem (3.20) is equivalent to the
operator equation

F (u) = u− b− hLu− hλN(u) = o. (3.21)

The operator F : `2 → `2 has a potential F : Dom(F) = `2 → R given by

F(u) =
1

2

∑

i∈Z
u2
i −

∑

i∈Z
biui −

h

2

∑

i∈Z
(Lu)iui −

hλ

2

∑

i∈Z
u2
i +

hλ

4

∑

i∈Z
u4
i

=
1− hλ

2
‖u‖22 − (b, u)2 −

h

2
(Lu, u)2 +

hλ

4
‖u‖44.

(3.22)

There is F ∈ C1(`2,R) and its critical points correspond equivalently to solutions of (3.21) (see
P. Stehĺık, J. Volek [81, Lem. 3.1, 3.5]).
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global ex. and uniq.

global ex.

local ex.

λ

h

Figure 3.5: Graphical illustration of existence and uniqueness results for implicit Nagumo RDE (3.16).
See Table 3.1 for more details.

3.3.2 Existence results

Let us firstly consider the Nagumo equation (3.16) with the bistable setting, i.e., for λ ≥ 0. Since the
potential F has strictly convex and weakly coercive geometry for a certain setting of parameters, one
can use the statement about the existence and uniqueness of global minimizer of F (see, e.g., P. Drábek,
J. Milota [29, Thm. 7.2.12, Prop. 7.1.8]) to prove the following lemma.

Lemma 3.25. Let λ ≥ 0 and h(λ+ 4k) < 1. Then the functional F given by (3.22) has a unique global
minimizer ũ ∈ `2 which is the unique critical point of F .

Immediately from Lemma 3.25, we can prove via mathematical induction the following result about
the global existence and uniqueness (on the set of all functions having spatial sections in the space `2)
result (see P. Stehĺık, J. Volek [81, Thm. 4.1]).

Theorem 3.26. Let λ ≥ 0, h(λ + 4k) < 1 and assume ϕ ∈ `2. Then the problem (3.16) has a unique
solution v(x, t) that exists for all x ∈ Z, t ∈ hN0 and satisfies

(∑

x∈Z
|v(x, t)|2

) 1
2

<∞ for all t ∈ hN0.

We note that for given λ ≥ 0 and k > 0 there always exist sufficiently small values of time discretiza-
tion step h > 0 which satisfy h(λ + 4k) < 1, see Figure 3.5. Obviously, the stronger reaction or the
stronger diffusion, the smaller h > 0 is required.

For negative values of λ in (3.16) (the monostable case) we lose the globally convex and weakly
coercive geometry of the potential F . However, F is at least locally convex in this case and we can apply
the statement about the existence of a local minimizer for F (see P. Drábek, J. Milota [29, Thm. 7.2.11,
Prop. 7.1.8]).

For the sake of brevity, we define the auxiliary real valued function ξ : R→ R by

ξ(s) =
1− hλ− 4hk

2
s+

hλ

4
s3 (3.23)

and the positive constant (assuming that λ < 0 and h(λ+ 4k) < 1)

R = min

{(
hλ− 1

3hλ

) 1
2

,

(
2(4hk + hλ− 1)

3hλ

) 1
2

}
. (3.24)
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The following lemma provides the existence of at least one critical point of F (see P. Stehĺık,
J. Volek [81, Lem. 5.1]).

Lemma 3.27. Let λ < 0, h(λ+ 4k) < 1 and

‖b‖2 < ξ(R). (3.25)

Then the potential F given by (3.22) has a local minimizer ũ ∈ `2 which is the unique critical point of F
with the property

‖ũ‖2 < R. (3.26)

Applying Lemma 3.27 one can use the correspondence of critical points of F to local `2-solutions to (3.16)
to show immediately the following local existence result for (3.16) (see P. Stehĺık, J. Volek [81, Thm. 5.2]).

Theorem 3.28. Let λ < 0, h(λ + 4k) < 1 and assume v(x, t) is a solution of (3.16) at a fixed time
t ∈ hN0 such that

(∑

x∈Z
|v(x, t)|2

) 1
2

< ξ(R).

Then there exists a solution v(x, t+ h) of the problem (3.16) at time t+ h such that

(∑

x∈Z
|v(x, t+ h)|2

) 1
2

< R.

However, we cannot apply Lemma 3.27 directly in mathematical induction because we do not know if
the solution at next time step v(·, t+h) satisfies the assumption (3.25) as well as v(·, t). Combining (3.25)
and (3.26) together, there has to be satisfied

R ≤ ξ(R).

This leads to the stronger assumption on parameters and one can prove the following global existence
result via mathematical induction (see P. Stehĺık, J. Volek [81, Thm. 5.3]).

Theorem 3.29. Let λ < 0, h(λ+ 4k) ≤ −2 and assume that ϕ ∈ `2 satisfies

‖ϕ‖2 < ξ(R).

Then the problem (3.16) has a solution v(x, t) that exists for all x ∈ Z, t ∈ hN0 and is unique with the
property

(∑

x∈Z
|v(x, t)|2

) 1
2

< R for all t ∈ hN.

For the illustration of admissible values of h > 0 and λ < 0 in Theorems 3.28 and 3.29 see Figure 3.5
again.
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λ λ < 0 λ ≥ 0(
−∞,− 2

h − 4k
] (

− 2
h − 4k, 1

h − 4k
) [

0, 1
h − 4k

) [
1
h − 4k,∞

)

Geometry of F mountain pass mountain pass convex, w. coerc. ?
Existence global (Thm. 3.29) local (Thm. 3.28) global (Thm. 3.26) ?

Uniqueness (v(·, t) ∈ `2) ? (Conj. 3.32) ? (Conj. 3.32) yes (Thm. 3.26) ?

Table 3.1: Summary of results for implicit Nagumo RDE (3.16), see also Figure 3.5.

3.3.3 Conjectures about multiplicity

In Subsection 3.3.2 we claim that the potential is locally convex in the case λ < 0. Actually, the functional
F given by (3.22) has the mountain pass geometry provided λ < 0 (see P. Stehĺık, J. Volek [81, Lem. 6.3]).

Lemma 3.30. Let λ < 0, h(λ + 4k) < 1 and assume that b ∈ `2 satisfy (3.25). Then there exist e ∈ `2
and ρ > 0 such that ‖e‖2 > ρ and the functional F given by (3.22) satisfies

inf
‖u‖2=ρ

F(u) > F(o) ≥ F(e).

Consequently, there is a natural question if we can apply the mountain pass theorem (see A. Am-
brosetti, P. H. Rabinowitz [2] or P. H. Rabinowitz [67]) to prove the existence of another critical point.
Unfortunately, we are not able to verify the Palais-Smale compactness condition. The difficulty arises
from the consideration of infinite spatial domain x ∈ Z. It causes in the abstract formulation that the
underlying function space (`2 in our case) is infinite-dimensional. If we solved the initial-boundary value
problem assuming x ∈ [a, b] ∩ Z involving boundary conditions at points x = a and x = b, the abstract
problem would be finite-dimensional and the verification of the Palais–Smale compactness condition would
be restricted to the proof of boundedness of the Palais-Smale sequence (which we are able to show, see
P. Stehĺık, J. Volek [81, Lem. 6.4]). We list the initial-boundary value problem on finite domain as one
of our future works (see Section 5.2).

Therefore, the following conjectures has remained still open (see P. Stehĺık, J. Volek [81, Conj. 6.2,
6.3]).

Conjecture 3.31. Let λ < 0, h(λ+ 4k) < 1 and assume that b ∈ `2 satisfy (3.25). Then the functional
F given by (3.22) has at least two critical points.

Conjecture 3.32. Let λ < 0, h(λ + 4k) < 1 and v(x, t) be a solution of (3.16) at a fixed time t ∈ hN0

such that

(∑

x∈Z
|v(x, t)|2

) 1
2

< ξ(R).

Then the problem (3.16) has at least two solutions v1(x, t+ h), v2(x, t+ h) at time t+ h such that

(∑

x∈Z
|vj(x, t+ h)|2

) 1
2

<∞, j = 1, 2.

We sum up all results and conjectures in Table 3.1.



CHAPTER 4

Stationary problems

We study boundary value problems for nonlinear difference equations of second order in this section.
Firstly, these problems can be interpreted as stationary counterparts of the previous evolutionary prob-
lems on finite domains. From another point of view, an analysis of stationary difference equations can
be important also from numerical reasons, since they arise from differential equations (both ODEs and
PDEs) via the finite difference method (see, e.g., B. L. Buzbee, G. H. Golub, C. W. Nielson [16] or
R. J. LeVeque [53]).

4.1 Landesman-Lazer conditions for discrete Neumann and pe-
riodic BVPs

C. Bereanu and J. Mawhin in [9, 10] use the Brouwer degree and the theory of lower and upper solutions
(see, e.g., C. De Coster, P. Habets [26] for a survey about the lower and upper solutions for differential
equations) for the proof of existence and uniqueness/multiplicity results to discrete boundary value prob-
lems. Besides, e.g., interesting Ambrosetti-Prodi type results they establish Landesman-Lazer conditions
for the studied problems (these type of conditions were firstly studied by E. M. Landesman, A. C. Lazer
in [49] for elliptic PDEs).

We present a summary of main results from the paper J. Volek [84]. We also study Landesman-Lazer
type conditions, namely, for discrete Neumann and periodic problems. Our approach is based on the
reformulation of such type of equations into an algebraic system

Au = G(u), u ∈ RN , (4.1)

where A ∈ RN×N is a matrix satisfying common fundamental properties for all considered problems.
This allows us to investigate Neumann and periodic problems as well as ordinary and partial difference
equations at once and obtain general existence and uniqueness results for all these alternatives.

Generally speaking, Dirichlet problems correspond to (4.1) with regular and positive definite matrices
A (see, e.g., M. Galewski, J. Smejda [35]). On the contrary, Neumann and periodic problems can be
rewriten as (4.1) with singular and only positive semi-definite matrices A (see, e.g., P. Stehĺık [78]).
Precisely, the matrices corresponding to Neumann and periodic problems satisfy the following essential
properties:

45
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(A1) A is a symmetric and positive semi-definite matrix.

(A2) λ1 = 0 is an eigenvalue of A with the multiplicity one.

(A3) ϕ1 = [1, 1, . . . , 1]
T ∈ RN is the eigenvector of A corresponding to the eigenvalue λ1 = 0.

In the following examples we show the mentioned reformulation of Neumann and periodic problems
for ordinary difference equations onto (4.1) (see J. Volek [84, Ex. 2.1, 2.2]).

Example 4.1. Consider the discrete Neumann problem

{
−∆2u(t− 1) = g(t, u(t)), t = 1, 2, . . . , N,

∆u(0) = ∆u(N) = 0,
(4.2)

where u : {0, 1, . . . , N,N + 1} → R, ∆2u(t−1) = u(t−1)−2u(t)+u(t+1) is the second central difference
of u, ∆u(t) = u(t+ 1)− u(t) is the first forward difference of u and g̃ : {1, 2, . . . , N} × R→ R is a given
function.1

We use the values u(t) for t = 1, 2, . . . , N to define a vector

u = [u(1), u(2), . . . , u(N)]
T ∈ RN . (4.3)

If we write the equation in (4.2) for each t = 1, . . . , N and employing the boundary conditions, we
find out that (4.2) is equivalent to the algebraic problem (4.1) with the vector u defined by (4.3) and

A =




1 −1 0 0 0
−1 2 −1 . . . 0 0

0 −1 2 0 0
...

. . .
...

0 0 0 2 −1
0 0 0 . . . −1 1



, G(u) =




g(1, u(1))
g(2, u(2))
g(3, u(3))

...
g(N − 1, u(N − 1))

g(N, u(N))



. (4.4)

The matrix A in (4.4) satisfies (A1)–(A3).

Example 4.2. Consider the discrete periodic problem





−∆2u(t− 1) = g(t, u(t)), t = 1, 2, . . . , N,

u(0) = u(N),

∆u(0) = ∆u(N).

(4.5)

Analogously as in Example 4.1, the problem (4.5) can be rewritten as the algebraic problem (4.1) with
A defined by

1We can consider even the nonhomogeneous problem
−∆2u(t− 1) = g(t, u(t)), t = 1, 2, . . . , N,

∆u(0) = c1,

∆u(N) = c2,

with c1, c2 ∈ R, since it can be reformulated as the homogeneous problem (4.2) involving the modified function

g̃(t, u) =

 g(1, u)− c1, t = 1,
g(t, u), t = 2, 3, . . . , N − 1,
g(N, u) + c2, t = N.

instead of g. It can be done also for the following Examples 4.2 – 4.4 similarly.
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A =




2 −1 0 0 −1
−1 2 −1 . . . 0 0

0 −1 2 0 0
...

. . .
...

0 0 0 2 −1
−1 0 0 . . . −1 2




and G being a superposition vector function defined in the same way as in (4.4). The matrix A also
satisfies (A1)–(A3).

In the following two examples we show that also partial difference equations with Neumann or periodic
boundary conditions can be considered (see J. Volek [84, Ex. 2.3, 2.4]).

Example 4.3. Consider the Neumann problem for the difference Poisson equation





−∆2
su(s− 1, t)−∆2

tu(s, t− 1) = g(s, t, u(s, t)), s = 1, 2, . . . ,M, t = 1, 2, . . . , N,

∆su(0, t) = 0 and ∆su(M, t) = 0 for all t = 1, 2, . . . , N,

∆tu(s, 0) = 0 and ∆tu(s,N) = 0 for all s = 1, 2, . . . ,M,

(4.6)

where u : {0, 1, . . . ,M,M + 1} × {0, 1, . . . , N,N + 1} → R, ∆2
su(s − 1, t), ∆2

tu(s, t − 1) are the second
partial central differences of u, ∆su(s, t), ∆tu(s, t) are the first partial forward differences of u with
respect to s and t and g : {1, 2, . . . ,M} × {1, 2, . . . , N} × R→ R.

Following the approach, e.g., from B. L. Buzbee, G. H. Golub, C. W. Nielson [16] or J. Otta,
P. Stehĺık [62], we define a vector

u = [u(1, 1), . . . u(1, N), u(2, 1), . . . , u(2, N), . . . , u(M, 1), . . . , u(M,N)]
T ∈ RMN . (4.7)

Consequently, we obtain that (4.6) is equivalent to the algebraic problem (4.1) on RMN with the vector
u defined by (4.7) and with a block matrix A ∈ RMN×MN given by

A =




B1 −I 0 0 0
−I B2 −I . . . 0 0

0 −I B2 0 0
...

. . .
...

0 0 0 B2 −I
0 0 0 . . . −I B1



,

where I ∈ RN×N is the identity matrix and B1, B2 ∈ RN×N are given by

B1 =




2 −1 0 0 0
−1 3 −1 . . . 0 0

0 −1 3 0 0
...

. . .
...

0 0 0 3 −1
0 0 0 . . . −1 2



, B2 =




3 −1 0 0 0
−1 4 −1 . . . 0 0

0 −1 4 0 0
...

. . .
...

0 0 0 4 −1
0 0 0 . . . −1 3



.

The nonlinear function G can be established analogously as in Example 4.1. The matrix A satisfies
(A1)–(A3).



48 Jonáš Volek

Example 4.4. Consider the periodic problem for the difference Poisson equation





−∆2
su(s− 1, t)−∆2

tu(s, t− 1) = g(s, t, u(s, t)), s = 1, 2, . . . ,M, t = 1, 2, . . . , N,

u(0, t) = u(M, t) and ∆su(0, t) = ∆su(M, t) for all t = 1, 2, . . . , N,

u(s, 0) = u(s,N) and ∆tu(s, 0) = ∆tu(s,N) for all s = 1, 2, . . . ,M.

(4.8)

Analogously as in Example 4.3, we find out that (4.8) is equivalent to the algebraic problem (4.1) on
RMN with a block matrix A ∈ RMN×MN given by

A =




B −I 0 0 −I
−I B −I . . . 0 0

0 −I B 0 0
...

. . .
...

0 0 0 B −I
−I 0 0 . . . −I B



,

where B ∈ RN×N is defined by

B =




4 −1 0 0 −1
−1 4 −1 . . . 0 0

0 −1 4 0 0
...

. . .
...

0 0 0 4 −1
−1 0 0 . . . −1 4



.

The matrix A satisfies (A1)–(A3).

The last example shows the possible application of our results to general difference equations on
undirected graphs (see J. Volek [84, Ex. 2.5]).

Example 4.5. Let G = (V,E) be an undirected graph with a set of vertices V = {1, 2, . . . , N} and a
set of edges E ⊂ {{s, t} : s, t ∈ V, s 6= t}. The set N (t) = {i ∈ V : {i, t} ∈ E} is the neighborhood of
the vertex t ∈ V and the number dG(t) = |N (t)| is the degree of vertex t ∈ V (see, e.g., C. Godsil,
G. Royle [37] for details about the graph theory).

Let u : V → R be a function defined on the set of vertices V and define a difference operator on the
graph G by

∆Gu(t) = dG(t)u(t)−
∑

i∈N (t)

u(i) =
∑

i∈N (t)

(u(t)− u(i)). (4.9)

Consequently, we consider the nonlinear difference equation on the graph G

∆Gu(t) = g(t, u(t)), t ∈ V, (4.10)

with g : V × R → R. The problem (4.10) is equivalent to the algebraic system (4.1) with A being the
so-called Laplace matrix of G with the entries of A given by

A(s, t) =





dG(t), s = t,
−1, s 6= t and {s, t} ∈ E,
0, s 6= t and {s, t} /∈ E.
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(a) (b) (c) (d)

Figure 4.1: The graphs G from Example 4.5 that are related with Neumann and periodic discrete boundary
value problems (4.2), (4.5), (4.6) and (4.8).

If G is a connected graph then A satisfies (A1)–(A3) (see C. Godsil, G. Royle [37] again).
Let us conclude the example with an interesting relationship of difference equations on graphs with

Neumann and periodic boundary value problems for difference equations from Examples 4.1 – 4.4. One
can show that:

• the algebraic formulation of the Neumann problem for ordinary difference equation (4.2) is equiva-
lent to the algebraic formulation of (4.10) with G being a path (see Figure 4.1(a)),

• the algebraic formulation of the periodic boundary value problem for ordinary difference equation
(4.5) corresponds to the algebraic formulation of (4.10) with G being a cycle (see Figure 4.1(b)),

• the algebraic formulation of the Neumann problem for the difference Poisson equation (4.6) (for
the sake of simplicity let N = 3) corresponds to the algebraic formulation of (4.10) with G given in
Figure 4.1(c),

• the algebraic formulation of the periodic problem for the difference Poisson equation (4.8) (again
let N = 3) is equivalent to the algebraic formulation of (4.10) with G given in Figure 4.1(d).

One can observe that we do not have to restrict ourselves to discrete problems of second order. The
reformulation into (4.1) also works for problems of 2n-th order (n ∈ N), see P. Stehĺık [78].

Therefore, we study the general algebraic problem for u ∈ RN , N ≥ 2,

Au = G(u), (4.11)

where A ∈ RN×N is an N×N matrix satisfying (A1)–(A3) and G : RN → RN is a nonlinear superposition
vector function given by

G(u) = [g(1, u(1)), g(2, u(2)), . . . , g(N, u(N))]
T
,

where g : {1, 2, . . . , N} × R→ R.
From (A1)–(A2), there is λ1 = 0 the minimal eigenvalue of A. Thus, the problem (4.11) is a problem at

resonance. This motivates us to find a Landesman-Lazer type condition for a class of nonlinear functions
G to prove the existence. The function G : RN → RN is defined via the function g : {1, 2, . . . , N}×R→ R
and hence, we formulate essential needed conditions on G via the function g as well:

(G1) The functions g(t, ·) are continuous on R for each t = 1, 2, . . . , N .

(G2) There exist α, β ∈ [0, 1) such that for each t = 1, 2, . . . , N there exist limits

g−∞(t) = lim
u→−∞

g(t, u)

|u|α and g+∞(t) = lim
u→+∞

g(t, u)

|u|β
.
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(LL) The function g satisfies
N∑

t=1

g−∞(t) < 0 <

N∑

t=1

g+∞(t).

The condition (LL) represents the above mentioned Landesman-Lazer type condition. It is a type of
an orthogonality relation, since the inequalities in (LL) are equivalent to

(g−∞, ϕ1) < 0 < (g+∞, ϕ1),

where the vectors g±∞ ∈ RN are defined by g±∞ = [g±∞(1), g±∞(2), . . . , g±∞(N)]
T

and the symbol

(u, v) =

N∑

t=1

u(t)v(t)

denotes the scalar product on RN .

4.1.1 Existence results

We apply variational methods to obtain a sufficient existence condition for (4.11). The associated potential
F : RN → R to (4.11) is given by

F(u) =
1

2
(Au, u)−

N∑

t=1

∫ u(t)

0

g(t, s)ds.

One can show that F ∈ C1(RN ,R) and satisfies the assumptions of the saddle point theorem (see
P. H. Rabinowitz [67, 68]) provided (A1)–(A3), (G1)–(G2) and (LL) are satisfied. Therefore, the following
existence result holds (see J. Volek [84, Thm. 4.9]).

Theorem 4.6. Let A satisfy (A1)–(A3) and g satisfy (G1)–(G2) and (LL). Then there exists a solution
of (4.11).

Considering the boundary value problems (4.2), (4.5), (4.6), (4.8) or (4.10), one can apply Theorem 4.6
for example for the following nonlinear functions:

• g(t, u) =





|u|p−2
u+ f(t), u < 0, p ∈ (1, 2),

f(t), u = 0, f : {1, 2, . . . , N} → R arbitrary,

|u|q−2
u+ f(t), u > 0, q ∈ (1, 2),

• g(t, u) =





|u|p−2
u+ f(t), u ≤ −1, p ∈ (1, 2),

− sin
(

3π
2 u
)

+ f(t), u ∈ (−1, 1), f : {1, 2, . . . , N} → R arbitrary,

|u|q−2
u+ f(t), u ≥ 1, q ∈ (1, 2),

• g(t, u) =




|u− t|p−2

(u− t) +
sin (u− t)
u− t , u 6= t, p ∈ (1, 2),

1, u = t.

We can also consider bounded nonlinearities, e.g.:
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• g(t, u) = e−u
2

+ tanh (u) + f(t) with −1 < 1
N

N∑
t=1

f(t) < 1,

• g(t, u) = (t− 2) arctan (u− log(t)) with N ≥ 4.

Furthermore, Theorem 4.6 has the following two immediate consequences for problems involving
special class of nonlinearities in a separated form (see J. Volek [84, Cor. 4.11, 4.12]).

Corollary 4.7. Let A satisfy (A1)–(A3) and g be defined by

g(t, u) = h(u) + f(t),

where f : {1, 2, . . . , N} → R is arbitrary and h : R→ R satisfies (G1)–(G2) and (LL) with α, β ∈ (0, 1).
Then there exists a solution of (4.11).

Corollary 4.8. Let A satisfy (A1)–(A3) and g be defined by

g(t, u) = h(u) + f(t),

where f : {1, 2, . . . , N} → R and h : R → R satisfies (G1)–(G2) and (LL) with α = β = 0 and
h±∞ = limu→±∞ h(u). If f satisfies

− h+∞ <
1

N

N∑

t=1

f(t) < −h−∞, (4.12)

then there exists a solution of (4.11).

Note that, the inequalities in (4.12) are equivalent to −h+∞ < 1
N (f, ϕ1) < −h−∞ with f ∈ RN being

defined by f = [f(1), f(2), . . . , f(N)]
T

.
Analyzing (4.11) with bounded nonlinear functions g into detail, we find out that the Landesman-

Lazer type condition (LL) is also necessary under the following additional hypotheses:

(G3) The function g satisfies

g−∞(t) < g(t, u) < g+∞(t) for all t = 1, 2, . . . , N and u ∈ R.

Let us emphasize that if (G1) and (G3) hold together, the functions g(t, ·) are necessarily bounded for
each t = 1, 2, . . . , N . This yields that (G2) is satisfied for all α, β ∈ [0, 1). However, the strict inequalities
in (G3) implies that g(t, ·) have to be bounded by the limits

g−∞(t) = lim
u→−∞

g(t, u) and g+∞(t) = lim
u→+∞

g(t, u).

Consequently, we can show the following necessary and sufficient condition for the exstence of a solu-
tion of (4.11) (see J. Volek [84, Thm. 5.2]).

Theorem 4.9. Let A satisfy (A1)–(A3) and g satisfy (G1)–(G3). Then (4.11) has a solution if and only
if (LL) holds.

Again, for the class of separated nonlinear functions, the following consequence related to Corollary 4.8
holds (see J. Volek [84, Cor. 5.4]).
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Corollary 4.10. Let A satisfy (A1)–(A3) and g be defined as

g(t, u) = h(u) + f(t),

where f : {1, 2, . . . , N} → R and h : R → R satisfies (G1)–(G3). Then (4.11) has a solution if and only
if (4.12) holds.

Example 4.11. Consider the boundary value problems (4.2), (4.5), (4.6), (4.8) or (4.10) with the non-
linear function g defined by

g(t, u) = a arctan(u) + f(t), a > 0,

with a given f : {1, 2, . . . , N} → R. The function g satisfies (G1)–(G3) with α = β = 0 and g±∞(t) =
±aπ2 + f(t). Therefore, (4.12) is satisfied if and only if

−aπ
2
<

1

N

N∑

t=1

f(t) <
aπ

2
.

Consequently, Corollary 4.10 yields that:

• for a > 2
πN

∣∣∣∣
N∑
t=1

f(t)

∣∣∣∣ there exists a solution of considered problems,

• for a ≤ 2
πN

∣∣∣∣
N∑
t=1

f(t)

∣∣∣∣ there does not exist any solution.

As we claimed on the beginning of this section, the Landesman-Lazer type conditions for difference
equations have already been studied (among other things), e.g., by C. Bereanu and J. Mawhin in [9, 10].
Our findings complement these results in the following way:

• Our approach via the algebraic formulation (4.11) is general in the sense that Neumann/periodic
problems, ordinary/partial difference equations are considered at once, whereas in [9, 10] specific
boundary value problems are studied. On the other hand, in [9] more general problems involving
discrete φ-Laplacian are investigated.

• The Landesman-Lazer conditions in [9, 10] are assumed to be sufficient. We show that for a certain
class of bounded nonlinearities (LL) is even necessary and therefore, we obtain the nonexistence
result as well.

• Both papers [9, 10] formulate the Landesman-Lazer conditions for nonlinear functions in separated
form g(t, u) = h(u) + f(t). We also study functions in general nonseparated form g(t, u).

4.1.2 Uniqueness results

In the paper J. Volek [84] we investigate also the uniqueness for (4.11). We need again additional
assumptions:

(G4) The functions g(t, ·) are continuously differentiable on R for each t = 1, 2, . . . , N .

(G5) Let A ∈ RN×N and λs(A), s = 1, 2, . . . , N , be eigenvalues of A. The function g satisfies

gu(t, u) 6= λs(A) for all t = 1, 2, . . . , N, u ∈ R, and s = 1, 2, . . . , N.
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Involving (G4)–(G5) we can prove the following statement by the application of the mean value theorem
together with a special spectral result for commuting matrices (see J. Volek [84, Thm. 6.2]).

Theorem 4.12. Let A be arbitrary and g satisfy (G4)–(G5). Then (4.11) has at most one solution.

Putting Theorems 4.6 or 4.9 together with Theorem 4.12 we obtain the following two consequences
(see J. Volek [84, Thm. 6.4, 6.5]).

Theorem 4.13. Let A satisfy (A1)–(A3) and g satisfy (G2), (G4)–(G5) and (LL). Then there exists a
unique solution of (4.11).

Theorem 4.14. Let A satisfy (A1)–(A3) and g satisfy (G2)–(G5). Then (4.11) has a solution if and
only if (LL) holds. Moreover, the solution has to be unique provided it exists.

The following example shows the applications of Theorems 4.13 and 4.14 (see J. Volek [84, Ex. 6.6]).

Example 4.15. Consider the Neumann problem (4.2) from Example 4.1 with N = 3. There is λ1(A) = 0,
λ2(A) = 1 and λ3(A) = 3. Let the function g be given by

g(t, u) =

(
t

3
− a
)

arctan(u) + bt, a > 0, b ∈ R.

Investigating the assumptions of Theorems 4.14 or 4.13 into detail we can show that:

• For a ∈
(
0, 1

3

)
the problem (4.2) with N = 3 has a solution if and only if b satisfies

|b| < π

(
1

6
− a

4

)
. (4.13)

Moreover, the solution is unique provided it exists.

• For a ∈
(

1
3 ,

2
3

)
the problem (4.2) with N = 3 has a unique solution at least for b satisfying (4.13).





CHAPTER 5

Conclusion and future study

The submitted work is our initial step into the analysis of equations with discrete spatial domains.
Generally, we have considered problems on the simplest types of lattices (finite and infinite discrete
intervals), studied primary questions for these problems as existence, uniqueness and focused on the
maximum principles. We point out that there are many open questions, possible generalizations or
unsolved problems. Such a situation offers many directions of future research work.

Although there exist many of possible future ways, we present in detail several of them in which we
are interested. We subdivide them into sections for the lucidity.

5.1 Equations with discrete φ-Laplacian

First possibility how to generalize problems studied in this thesis is to stay, for now, with equations
on finite/infinite discrete spatial intervals and consider equations arising from more complicated and
nonlinear constitutive laws. We have something done for transport equations (see Section 2.2). However,
for diffusion equations we assume solely the discrete version of the Fick law and from that arising problems
with linear spatial diffusion.

Let us consider semidiscrete conservation law (1.18) for problems with x ∈ Z and the source function
depending also on the density u as in the introduction to Chapter 3

ut(x, t) +∇xφ(x, t) = f(x, t, u(x, t)), x ∈ Z, t ∈ R+
0 ,

where φ(x, t) denotes the flux between the points x and x + 1 and ∇xφ(x, t) = φ(x, t) − φ(x − 1, t).
Moreover, let us assume that u and φ are related by the nonlinear constitutive law1

φ(x, t) = −kφ(∆xu(x, t)), φ : R→ R, k > 0,

where ∆xu(x, t) = u(x+ 1, t)−u(x, t). Therefore the conservation law provides the following generalized
RDE

1We denote the nonlinear function in the constitutive law incorrectly by φ as the flux itself (as in Section 1.5 and
Section 2.2), because we are interested in problems involving the so-called φ-Laplacian. Hence, we use this incorrect
notation to correspond with the literature.

55
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ut(x, t)− k∇xφ(∆xu(x, t)) = f(x, t, u(x, t)), x ∈ Z, t ∈ R+
0 , (5.1)

which involves the so-called discrete φ-Laplacian ∇xφ(∆xu(x, t)).
The standard choice of the function φ is an odd homeomorphism such that φ : (−a, a) → (−b, b),

0 < a, b ≤ ∞, (see, e.g., C. Bereanu, P. Jebelean, J. Mawhin [8]). There are three qualitatively different
choices of the parameters a, b which are studied and we present them in the following examples.

Example 5.1. Let a = ∞ and b = ∞. Then the function φ and also its inverse is everywhere defined.
Well-known example of such situation is

φ(s) = |s|p−2
s, p > 1,

which yields together with (5.1) the discrete-space RDE involving the discrete p-Laplacian operator

ut(x, t) +∇x
(
|∆xu(x, t)|p−2

∆xu(x, t)
)

= f(x, t, u(x, t)), x ∈ Z, t ∈ R+
0 . (5.2)

The stationary counterpart of (5.2) is studied, e.g., in J. Otta, P. Stehĺık [62].

Example 5.2. Let a = ∞ and b < ∞. Then the function φ is defined everywhere but bounded (i.e.,
its inverse has bounded domain). This situation is in fully continuous case connected with the mean
curvature operator in Euclidian spaces taking (see, e.g., D. Gilbarg, N. S. Trudinger [36]),

φ(s) =
s√

1 + |s|2
.

In the discrete-space situation, we get from (5.1) the following problem

ut(x, t) +∇x


 ∆xu(x, t)√

1 + |∆xu(x, t)|2


 = f(x, t, u(x, t)), x ∈ Z, t ∈ R+

0 . (5.3)

Again, the stationary counterpart of (5.3) is studied, e.g., in C. Bereanu, H. B. Thompson [11].

Example 5.3. Let a < ∞ and b = ∞. Then the function φ has a bounded domain but it takes all
real values. The corresponding φ-Laplacian is then called singular. In completely continuous case this
situation is related to the so-called mean extrinsic curvature operators in Minkowski spaces taking (see,
e.g., C. Bereanu, P. Jebelean, J. Mawhin [8] or R. Bartnik, L. Simon [5]),

φ(s) =
s√

1− |s|2
.

In the discrete-space case, we obtain from (5.1)

ut(x, t) +∇x


 ∆xu(x, t)√

1− |∆xu(x, t)|2


 = f(x, t, u(x, t)), x ∈ Z, t ∈ R+

0 . (5.4)

The stationary counterpart of (5.4) is studied, e.g., in C. Bereanu, J. Mawhin [9].

Consequently, we want to study in the future the evolutionary RDEs (5.2), (5.3) and (5.4) involving
nonlinear discrete φ-Laplacian operators. More generally, we can suppose only the general odd homeo-
morphism φ and corresponding problems.
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5.2 Implicit discrete equations on finite domains

We present in Section 3.3 results about the fully implicit discretization of the Nagumo equation (3.16).
We show that in the bistable case and for small time discretization steps there exists a global solution
which is unique in the set of functions having spatial sections in the space `2(Z). Further, we investigate
the monostable case and show the global existence as well. However, we conclude Section 3.3 with several
conjectures about multiplicity of these solutions, since the associated potential has the mountain pass
geometry.

We come into troubles in the application of the Ambrosetti-Rabinowitz mountain pass theorem while
we want to verify the Palais-Smale compactness condition on infinite dimensional sequence space `2(Z).

Therefore, one can ask what happens if we consider a similar implicit problem with the spatial
variable being from a finite discrete interval and with boundary conditions at the end points. Since the
underlying function space is then finite-dimensional, the Palais-Smale condition is restricted to the proof
of boundedness of an appropriate sequence which could be done similarly as in P. Stehĺık, J. Volek [81,
Lem. 6.4].

Consequently, if we consider the homogeneous Dirichlet boundary conditions for a start, we study the
following analogue to (3.16) for λ < 0 (the monostable case)





u(x,t+h)−u(x,t)
h = k (u(x− 1, t+ h)− 2u(x, t+ h) + u(x+ 1, t+ h)) + λu(x, t+ h)

(
1− u2(x, t+ h)

)
,

u(x, 0) = ϕ(x),

u(0, t) = 0,

u(N + 1, t) = 0,

(5.5)
where x ∈ [1, N ] ∩ Z = [1, N ]Z, t ∈ hN0, h > 0 and ϕ : [1, N ]Z → R.

Assume that we know the solution at time t. Similarly as in Subsection 3.3.1 we denote

u = [u(1, t+ h), u(2, t+ h), . . . , u(N, t+ h)]T ∈ RN ,

b = [u(1, t), u(2, t), . . . , u(N, t)]T ∈ RN .

Then the problem of finding a solution at time t + h is equivalent to the following fixed point problem
for u ∈ RN

u = b+ hLu+ hλN(u), (5.6)

where (applying the boundary conditions) L ∈ RN×N and N : RN → RN are given by

L =




−2 1 0 0 0
1 −2 1 . . . 0 0
0 1 −2 0 0

...
. . .

...
0 0 0 −2 1
0 0 0 . . . 1 −2



, N(u) =




u1

(
1− u2

1

)

u2

(
1− u2

2

)

u3

(
1− u2

3

)
...

uN−1

(
1− u2

N−1

)

uN
(
1− u2

N

)



.

The matrix L is symmetric, negatively definite and the mapping N is continuous.
Consequently, using the symmetry of the matrix L we obtain that the associated potential F : RN → R

is defined by

F(u) =
1− hλ

2
‖u‖22 − (b, u)RN −

h

2
(Lu, u)RN + hλ‖u‖44. (5.7)
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One can immediately observe that the potential given by (5.7) has the same form as the one in (3.22),
however, it is defined on the finite-dimensional RN . Therefore, we expect that F given by (5.7) would
have the mountain pass geometry as in Section 3.3. Moreover, in the finite dimension it could be easier to
prove the Palais-Smale condition, which we have not proved in the infinite dimension. Then one can show
the existence of at least two solutions to the fixed point problem (5.6). This would yield a mutiplicity
result for (5.5).

We still have not done this simpler case in detail and thus, it remains open as one of possible future
works.

5.3 Equations on graphs

As we mentioned, we consider only problems on finite and infinite discrete intervals, beside the results
of Section 4.1 which hold also for equations on undirected graphs. However, motivated exactly by Exam-
ple 4.5 in Section 4.1, let us formulate problems on more complicated spatial structures such as graphs.

Since our problems arise from conservation laws, let us try to formulate conservation laws on graphs.
Let us generally assume a directed graph, because (as we know from the continuous conservation laws)
the flux is a directional magnitude.2 This setting provides a possibility to model problems on discrete
spatial structures where the flux of investigated substance between two adjacent places can flow only in
one direction for a natural reason.

For example, consider the migration of animals between two adjacent areas in nature. If the borderline
between these places is formed, e.g., by a steep cliff, then it is permeable only in one direction. Hence,
the flux of animals is directed also in this permeable way only.

Therefore, let ~G = (V,E) be a directed graph with a set of vertices V (which could be generally finite
or infinite) and a set of oriented edges E ⊂ {(x, y) ∈ V × V : x 6= y}. Denote by

N+(x) = {y ∈ V : (x, y) ∈ E} the out-neighborhood of the vertex x,

N−(x) = {y ∈ V : (y, x) ∈ E} the in-neighborhood of the vertex x,

and
d+(x) = |N+(x)| the out-degree of the vertex x,

d−(x) = |N−(x)| the in-degree of the vertex x.

For the details about the directed graphs we refer, e.g., to a general book about the graph theory
R. Diestel [27].

Let u : V ×R+
0 → R where u(x, t) represents the amount of a modeled substance at vertex x and time

t. Moreover, consider the flux φ : E × R+
0 → R+

0 where φ(x, y, t) represents the flux through the edge
(x, y) at time t. Note that it takes only nonnegative values, since the flux in opposite direction from y to

x is realized through the edge (y, x) (provided it appears in the graph ~G). Next, let f : V × R+
0 → R be

the function that describes the contribution of sources.
Let us proceed immediately to the derivation of the balance at an arbitrary vertex x ∈ V . The change

of u(x, t) during any time interval [t1, t2] is caused only by the flux in and out of x and by the sources at
x, i.e.,

u(x, t2)− u(x, t1) =
∑

y∈N−(x)

∫ t2

t1

φ(y, x, t)dt−
∑

y∈N+(x)

∫ t2

t1

φ(x, y, t)dt+

∫ t2

t1

f(x, t)dt.

2Recall that in the continuous multi-dimensional conservation law (1.10) the flux density φ is a vector-valued function.
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Therefore, if we assume for the simplicity that u(x, ·) ∈ C1(R+
0 ,R), then using the fundamental theorem

of calculus and the fact that the sums are finite we obtain

∫ t2

t1


ut(x, t) +

∑

y∈N+(x)

φ(x, y, t)−
∑

y∈N−(x)

φ(y, x, t)− f(x, t)


dt = 0.

Since it holds for all time intervals [t1, t2] and we assume that all appearing functions are continuous,
there has to be

ut(x, t) +
∑

y∈N+(x)

φ(x, y, t)−
∑

y∈N−(x)

φ(y, x, t) = f(x, t), x ∈ V, t ∈ R+
0 , (5.8)

which we call the graph conservation law.
Again, we have to add an constitutive law that relates the function u with the flux φ. Let us firstly

assume that the following relation holds for the flux

φ(x, y, t) = ku+(x, t), k > 0, (x, y) ∈ E, (5.9)

where u+(x, t) = max {u(x, t), 0} is the positive part of u (recall that the flux is nonnegative). Then (5.8)
yields that the following equality has to be satisfied

ut(x, t) + k


d+(x)u+(x, t)−

∑

y∈N−(x)

u+(y, t)


 = f(x, t), x ∈ V, t ∈ R+

0 . (5.10)

We prove the following statement about the preservation of sign for solutions of (5.10).

Lemma 5.4. Assume that f is nonnegative. Let u be a solution of (5.10) such that u(x, 0) ≥ 0 for all
x ∈ V . Then

u(x, t) ≥ 0 for all x ∈ V, t ∈ R+
0 .

Proof. It is obvious that 0 ≤ d+(x) ≤ |V | − 1 for all x ∈ V . Let x ∈ V be arbitrary and fixed, then

ut(x, t) = −kd+(x)u+(x, t) + k
∑

y∈N−(x)

u+(y, t) + f(x, t) ≥ −k (|V | − 1)u+(x, t). (5.11)

Assume now by contradiction that there exists t1 > 0 such that u(x, t1) < 0. Let us define

t0 = inf {s ∈ [0, t1] : u(x, ·) < 0 on [s, t1]} . (5.12)

Since u is a solution of (5.10), there is u(x, ·) ∈ C(R+
0 ,R) and thus, t0 < t1. Indeed, u(x, t1) < 0 and

u(x, ·) ∈ C(R+
0 ,R) yield together that u(x, ·) < 0 on [t1−δ1, t1] at least for small δ1 > 0. Furthermore, we

claim that u(x, t0) = 0. Assume that u(x, t0) > 0, then the continuity of u(x, ·) implies that u(x, ·) > 0
on [t0, t0 + δ0] for small δ0 > 0, a contradiction with the definition of t0 in (5.12). On the contrary, if
u(x, t0) < 0, then t0 > 0 from the assumption on initial condition. Again, u(x, ·) ∈ C(R+

0 ,R) yields that
u(x, ·) < 0 on [t0 − δ′0, t0] for a small δ′0 > 0, a contradiction with (5.12).

Consequently, there is u(x, t0) = 0, u(x, ·) < 0 on (t0, t1] and thus, ut(x, t) ≥ 0 on [t0, t1] from (5.11).
Applying the Gronwall inequality to the problem

{
ut(x, t) ≥ 0, t ∈ [t0, t1],

u(x, t0) = 0,
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we obtain u(x, t1) ≥ 0, a contradiction.3

Consequently, if we consider a nonnegative initial condition for u and nonnegative sources f (e.g.,
a source-free model), we obtain applying Lemma 5.4 that u+(x, t) = u(x, t) for all x ∈ V and t ∈ R+

0 .
Thus, a solution of (5.10) is nonnegative and actually a solution of

ut(x, t) + k


d+(x)u(x, t)−

∑

y∈N−(x)

u(y, t)


 = f(x, t), x ∈ V, t ∈ R+

0 . (5.13)

Let us note that the converse is not true, since (5.13) can have the sign-changing solutions even with
the vanishing initial condition (see, e.g., A. Slav́ık, P. Stehĺık [76]). However, the nonnegative solutions
of (5.13) are also solutions of (5.10).

Example 5.5. Let ~G = (V,E) where

V = Z, E = {(x, x+ 1) : x ∈ V } ,
(i.e., one-sided oriented integers). Then for all x ∈ V there is

d+(x) = 1, N−(x) = {x− 1} .
Therefore, the problem (5.13) becomes

ut(x, t) + k (u(x, t)− u(x− 1, t)) = f(x, t), x ∈ V, t ∈ R+
0 ,

i.e., the linear transport equation with x ∈ Z, which is actually studied in Section 2.1.

Example 5.6. Let ~G = (V,E) where

V = Z, E = {(x, x+ 1), (x, x− 1) : x ∈ V } ,
(i.e., two-sided oriented integers, or equivalently, undirected integers). Hence, we get for all x ∈ V that

d+(x) = 2, N−(x) = {x− 1, x+ 1} .
Thus, the problem (5.13) is equivalent to

ut(x, t) = k (u(x− 1, t)− 2u(x, t) + u(x+ 1, t)) + f(x, t), x ∈ V, t ∈ R+
0 ,

i.e., the linear diffusion equation with x ∈ Z, which is investigated in A. Slav́ık, P. Stehĺık [75, 76] and
M. Friesl, A. Slav́ık, P. Stehĺık [34].

As another example of the constitutive law we can mention more complicated relation

φ(x, y, t) = k (u(x, t)− u(y, t))
+
, k > 0, (x, y) ∈ E. (5.14)

This combined with the graph conservation law (5.8) yields the following problem

3The Gronwall inequality reads as follows. Let α ∈ C([a, b],R), u ∈ C([a, b],R) be differentiable on (a, b) and satisfy

u′(t) ≤ α(t)u(t) for t ∈ (a, b).

Then
u(b) ≤ u(a)e

∫ b
a α(t)dt.
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ut(x, t) + k


 ∑

y∈N+(x)

(u(x, t)− u(y, t))+ −
∑

y∈N−(x)

(u(y, t)− u(x, t))+


 = f(x, t), x ∈ V, t ∈ R+

0 .

(5.15)

Primarily, let us assume for the simplicity that ~G is such that each edge (x, y) ∈ E has its opposite, i.e.,
(y, x) ∈ E (actually, this is equivalent to undirected graphs). Thus, for every fixed x ∈ V and for all
y ∈ N+(x) = N−(x) there is

either u(x, t) ≥ u(y, t) or u(x, t) ≤ u(y, t),

i.e.,

either φ(x, y, t) = k(u(x, t)− u(y, t)), φ(y, x, t) = 0 or φ(x, y, t) = 0, φ(y, x, t) = k(u(y, t)− u(x, t)).

Hence, the equation (5.15) becomes

ut(x, t) + k


d+(x)u(x, t)−

∑

y∈N−(x)

u(y, t)


 = f(x, t), x ∈ V, t ∈ R+

0 , (5.16)

which is again the linear diffusion equation, at this moment on symmetric (or undirected) graph spatial
structure. Let us note that we have studied the stationary counterpart of (5.16) in Example 4.5.

Consequently, there are several possible ways of future work. We are going to study problems (5.10)
or (5.15):

• either for more complicated specific choices of graphs ~G,

• or for special classes of graphs,

• or for general graphs if it is possible.
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In this paper, we consider a scalar transport equation with constant coefficients on
domains with discrete space and continuous, discrete or general time.We show that on all
these underlying domains, solutions of the transport equation can conserve sign and
integrals both in time and space. Detailed analysis reveals that, under some initial
conditions, the solutions correspond to counting stochastic processes and related
probability distributions. Consequently, the transport equation could generate various
modifications of these processes and distributions and provide some insights into
corresponding convergence questions. Possible applications are suggested and discussed.
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1. Introduction

Scalar transport equation with constant coefficients ut þ kux ¼ 0 belongs among the

simplest partial differential equations. Its importance is based on the following facts.

Firstly, it describes advective transport of fluids, as well as one-way wave propagation.

Secondly, it serves as a base for a study of hyperbolic partial differential equations

(and is consequently analysed also in numerical analysis). Thirdly, its nonlinear

modifications model complex transport of fluids, heat or mass. Finally, its study is closely

connected to conservation laws (see [9] or [13]).

Properties and solutions of partial difference equations have been studied mainly from

numerical (e.g. [13]) and also from analytical point of view (e.g. [5]). Meanwhile, in one

dimension, there has been a wide interest in the problems with mixed timing, which has

recently been clustered around the time scales calculus and the so-called dynamic

equations (see [4,11]). Nevertheless, there is only limited literature on partial equations on

time scales (see [1,3,18]). These papers indicate the complexity of such settings and the

necessity to analyse basic problems such as transport equation. Our analysis is also closely

related to numerical semidiscrete methods (e.g. [13], Section 10.4) or analytical Rothe

method (e.g. [17]).

In this paper, we consider a transport equation on domains with discrete space and

general (continuous, discrete and time scale) time (see Figure 1). We show that the

solutions of transport equation does not propagate along characteristics lines as in the
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classical case and feature behaviour close to the classical diffusion equation. Our analysis

of sign and integral conservation discloses interesting relationship between the solutions

on such domains and probability distributions related to Poisson and Bernoulli stochastic

processes. These counting processes are used to model waiting times for occurrence of

certain events (defects, phone calls, customers’ arrivals, etc.), see [2,10] or [15] for more

details. Consequently, considering domains with general time, we are able not only to

generalize these standard processes but also to generate transitional processes of Poisson–

Bernoulli type and corresponding distributions. Moreover, our analysis provides a

different perspective on some numerical questions (numerical diffusion) and relate it to

analytical problems (relationship between the Courant-Friedrich-Lewy (CFL) condition

and regressivity). Finally, it also establishes relationship between the time scales calculus

and heterogeneous and mixed probability distributions in the probability theory.

In Section 3, we summarize well-known features of the classical transport equation.

In Section 4, we consider a transport equation with discrete space and continuous time.

In Section 5, we solve the problem on domains with discrete time. In Section 6, we

generalize those results to domains with a general time and prove the necessary and

sufficient conditions which ensure that the sign and both time and space integrals are

conserved (Theorem 6.9). Finally, in Section 7, we discuss convergence issues, applications

to probability distributions and stochastic processes and provide two examples.

2. Preliminaries and notation

The sets R, Z, N denote real, integer and natural numbers. Furthermore, let us introduce

N0 ¼ N< {0} and Rþ
0 ¼ ½0;1Þ. Finally, we use multiples of discrete number sets, e.g.

a-multiple of integers is denoted by aZ and defined by aZ ¼ . . . ;22a;2a; 0; a; 2a; . . .f g.

Partial derivatives are denoted by utðx; tÞ and uxðx; tÞ and partial differences by

Dtuðx; tÞ ¼
uðx; t þ mtÞ2 uðx; tÞ

mt

and 7xuðx; tÞ ¼
uðx; tÞ2 uðx2 mx; tÞ

mx

; ð1Þ

where mt and mx denote step sizes in time and space.

In Section 6, we consider time to be a general time scale T, i.e. an arbitrary closed

subset of R. Time step could be variable, described by a graininess function mt : T! Rþ
0 .

We use the partial delta derivative uDt which reduces to ut in points in which mtðtÞ ¼ 0 or

to Dtu in those t in which mðtÞ . 0. Similarly, we work with the so-called delta integral

which corresponds to standard integration if T ¼ R or to summation if T ¼ Z. Finally, the

dynamic exponential function epðx; x0Þ is defined as a solution of the initial value problem

mx

(a)

mx

mt

(b)

mx

(c)

Figure 1. Examples of various domains considered in this paper. We study domains with discrete
space and continuous (Section 4), discrete (Section 5) and general time (Section 6).
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(under the regressivity condition 1þ pðtÞmðtÞ – 0)

xDðtÞ ¼ pðtÞxðtÞ;

xð0Þ ¼ 1:

(

For more details concerning the time scale calculus, we refer the interested reader to the

survey monograph [4].

Given function uðx; tÞ, by uðx;�Þ we mean functions of one variable having the form

uð0; tÞ, uð1; tÞ, etc. Similarly, by uð�; tÞ we understand one-dimensional sections of uðx; tÞ
having the form uðx; 0Þ, uðx; 1Þ, etc.

3. Classical transport equation

Let us briefly summarize essential properties of the classical transport equation

utðx; tÞ þ kuxðx; tÞ ¼ 0; t [ Rþ
0 ; x [ R;

uðx; 0Þ ¼ fðxÞ; x [ R;

(
ð2Þ

with f [ C 1. Typical features whose counterparts are studied in this paper include:

. the unique solution uðx; tÞ ¼ fðx2 ktÞ could be obtained via the method of

characteristics, the solution is constant on the characteristic lines where

x2 kt ¼ C,

. consequently, the solution conserves sign, i.e. if fðxÞ $ 0 then uðx; tÞ $ 0,

. moreover, the solution conserves integral in space sections, i.e. if
Ð1
21

fðxÞdx ¼ K,

then ð1
21

uðx; tÞdx ¼ K for all t $ 0;

. finally, the solution conserves integral in time sections in the following sense.

For k . 0, we have that ð1
0

uðx; tÞdt ¼
1

k

ðx
21

fðsÞds:

Consequently, if fðxÞ ¼ 0 for x $ x0, then the integral along time sections is constant

for all x $ x0.

4. Discrete space and continuous time

In contrast to the classical problem (2), we consider a domain with discrete space and

the problem

utðx; tÞ þ k7xuðx; tÞ ¼ 0; t [ Rþ
0 ; x [ Z;

uðx; 0Þ ¼
A; x ¼ 0;

0; x – 0;

(
8>>><
>>>:

ð3Þ

where A . 0, k . 0 and 7xu reduces to1

7xuðx; tÞ ¼ uðx; tÞ2 uðx2 1; tÞ:
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One could rewrite the equation in (3) into

utðx; tÞ ¼ 2kuðx; tÞ þ kuðx2 1; tÞ;

which implies that problem (3) could be viewed as an infinite system of differential

equations.

Lemma 4.1. The unique solution of problem (3) has the form:

uðx; tÞ ¼
A k x

x!
t x e2kt; t [ Rþ

0 ; x [ N0;

0; t [ Rþ
0 ; x [ Z; x , 0:

8<
: ð4Þ

Proof. First, let us observe that uðx; tÞ ¼ 0 for all t [ Rþ
0 , x , 0. The uniqueness of the

trivial solution for x , 0 follows, e.g. from [16] (Corollary 1) or more generally from [6]

(Theorem 3.1.3). Let us prove the rest (i.e. x $ 0 by mathematical induction). Obviously,

we have that uð0; tÞ ¼ A e2kt, since utð0; tÞ ¼ 2kuð0; tÞ þ kuð21; tÞ ¼ 2kuð0; tÞ and

uð0; 0Þ ¼ A.

Moreover, if we assume that x [ N0 and uðx; tÞ ¼ Aðk x=x!Þt x e2kt, then uðxþ 1; tÞ
satisfies

utðxþ 1; tÞ ¼ 2kuðxþ 1; tÞ þ A k x

x!
t x e2kt; t [ Rþ

0 ;

uðx; 0Þ ¼ 0:

(

One could use the variation of parameters to show that the unique solution is

uðxþ 1; tÞ ¼ Aðk xþ1=ðxþ 1Þ!Þt xþ1 e2kt, which proves the inductive step and consequently

finishes the proof. A

Let us analyse the sign and integral preservation of (3).

Lemma 4.2. The solution of problem (3) conserves the sign, the integral in time and the

sum in the space variable.

Proof. The sign preservation follows from the positivity of all terms in (4). Next, we could

use integration by parts to obtain (we skip the details since we prove this result in more

general settings in Theorem 6.5) ð1
0

uðx; tÞdt ¼
A

k
: ð5Þ

Similarly, summing over x we get

X1
x¼0

A
kx

x!
t x e2kt ¼ A e2kt

X1
x¼0

ðktÞx

x!
¼ A e2kt ekt ¼ A: ð6Þ

A

If we go deeper and analyse values obtained in (5) and (6), we get the first indication of

the relationship of the semidiscrete transport equation with stochastic processes.
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Remark 1. If A ¼ k then time sections of solution (4) generate the probability density

function of Erlang distributions (note that for x ¼ 0 we get the exponential distribution and

that Erlang distributions are special cases of Gamma distributions).

Similarly, if A ¼ 1 the space sections of (4) form the probability mass functions of

Poisson distributions (see Figure 2).

Consequently, if A ¼ k ¼ 1 the solution uðx; tÞ describes Poisson process. All these

facts are further discussed in Section 7.

We conclude this section with two natural extensions. Firstly, we mention possible

generalizations to other discrete space structures.

Remark 2. If we consider problem (3) on a domain with a discrete space having the constant

step mx . 0, not necessarily mx ¼ 1, we obtain qualitatively equivalent problem, since

utðx; tÞ þ k
uðx; tÞ2 uðx2 mx; tÞ

mx

¼ utðx; tÞ þ
k

mx

uðx; tÞ2 uðx2 mx; tÞ
� �

¼ utðx; tÞ þ k̂7xuðx; tÞ:

In contrast to the rest of this paper, the value of mx does not play essential role here.

Therefore, for presentation purposes, we restricted our attention to mx ¼ 1.

Finally, we discuss more general initial condition and show that the solution is the sum

of point initial conditions which justifies their use not only in this section but also in the

remainder of this paper.

Corollary 4.3. The unique solution of

utðx; tÞ þ k7xuðx; tÞ ¼ 0; t [ Rþ
0 ; x [ Z;

uðx; 0Þ ¼ Cx;

(
ð7Þ

is given by

uðx; tÞ ¼
Xx
i¼21

Ci

ðktÞx2i

ðx2 iÞ!
e2kt: ð8Þ

Proof. One could split (7) into problems with point initial conditions, use Lemma 4.1 to

solve them and then employ linearity of the equation to get (8). A

x
t

u (x,t)

(a)

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0(b)

x

u (x,1)
u (x,4)
u (x,8)
u (x,12)

(c)

u 
(*

,t)

u 
(x

,*
)

Figure 2. Solution of the transport equation with discrete space and continuous time (3) with A ¼ 1
and k ¼ 1.
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5. Discrete space and discrete time

In this section, we assume that both time and space are homogeneously discrete with steps

mt . 0 and mx . 0, respectively. In other words, we consider a discrete domain

V ¼ ðx; tÞ ¼ mmx; nmt

� �
; with m [ Z; n [ N0

� �
:

The transport equation and the corresponding problem then have the form

Dtuðx; tÞ þ k7xuðx; tÞ ¼ 0; ðx; tÞ [ V;

uðx; 0Þ ¼
A; x ¼ 0;

0; x – 0;

(
8>>><
>>>:

ð9Þ

where A . 0, k . 0. Using the definition of partial differences in (1), we can easily rewrite

the equation in (9) into

uðx; t þ mtÞ ¼ 12
kmt

mx

� �
uðx; tÞ þ

kmt

mx

uðx2 mx; tÞ ð10Þ

and derive the unique solution.

Lemma 5.1. Let m [ Z and n [ N0. The unique solution of (9) has the form:

uðmmx; nmtÞ ¼
A

n

m

 !
12 kmt

mx

� �n2m
kmt

mx

� �m
; n $ m $ 0;

0; 0 # n , m; or m , 0:

8>><
>>: ð11Þ

Proof. First, let us show that the solution vanishes uniquely for uð2mmx; nmxÞ ¼ 0 for all

m; n [ N. Consulting (10), we observe that the value of uð2mmx; nmxÞ is obtained as a

linear combination of initial conditions uð2mmx; 0Þ, uð2ðmþ 1Þmx; 0Þ, . . . ,
uð2ðmþ nÞmx; 0Þ, i.e. a linear combination of nþ 1 zeros.

We prove the rest of the statement by induction. Apparently,

uð0; nmtÞ ¼ 12
kmt

mx

� �n

uð0; 0Þ ¼ A 12
kmt

mx

� �n

:

Next, let us assume that uðmmx; nmtÞ satisfies (11), then

u ðmþ 1Þmx; nmt

� �
¼ 12

kmt

mx

� �n

uððmþ 1Þmx; 0Þ

þ
Xn21

rmþ1¼0

12
kmt

mx

� �n212rmþ1

A 12
kmt

mx

� �rmþ12m
kmt

mx

� �mþ1 Xrmþ121

rm¼0

· · ·
Xr321

r2¼0

Xr221

r1¼0

1

¼ A 12
kmt

mx

� �n2ðmþ1Þ
kmt

mx

� �mþ1 Xn21

rmþ1¼0

· · ·
Xr321

r2¼0

Xr221

r1¼0

1:
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At this stage, let us observe the properties of the falling factorials (see, e.g. [8], Section

2.1 or [12], Section 2.1) to get that

Xn21

rmþ1¼0

· · ·
Xr321

r2¼0

Xr221

r1¼0

1 ¼
nmþ1

ðmþ 1Þ!
¼

n

mþ 1

 !
;

which finishes the proof. A

The closed-form solution enables us to analyse sign and integral conservation.

Lemma 5.2. If the inequality

12
kmt

mx

. 0 ðD1Þ

holds then the solution of (9) satisfies

(i) uðx; tÞ $ 0,

(ii)
P1

m¼21uðmmx; tÞ is constant for all t ¼ {0;mt; 2mt; . . . },
(iii)

P1
n¼0uðx; nmtÞ is constant for all x ¼ {0;mx; 2mx; . . . }.

Proof.

(i) The inequality follows immediately from Lemma 5.1.

(ii) If we fix t and sum up equation (10) over x we get

X1
m¼21

uðmmx; t þ mtÞ ¼ 12
kmt

mx

� � X1
m¼21

uðmmx; tÞ þ
kmt

mx

X1
m¼21

uððm2 1Þmx; tÞ:

The assumption (D1) implies that the sum on the left-hand side is a linear combination

of two sums on the right-hand side. Since these sums are equal, we get that

X1
m¼21

uðmmx; t þ mtÞ ¼
X1

m¼21

uðmmx; tÞ:

(iii) Similarly, one could sum up equation (10) over t to get for a fixed x . 0

X1
n¼1

uðx; nmtÞ ¼ 12
kmt

mx

� �X1
n¼0

uðx; nmtÞ þ
kmt

mx

X1
n¼0

uðx2 mx; nmtÞ:

Since uðx; 0Þ ¼ 0 for x . 0 we have that

X1
n¼0

uðx; nmtÞ ¼
X1
n¼0

uðx2 mx; nmtÞ:

A

Once again, we could study the solutions’ relationship to probability distributions.

Theorem 5.3. Let uðx; tÞ be a solution of (9). Then the space and time sections mxuðx;�Þ
and mtuð�; tÞ form probability mass functions if and only if the assumptions (D1)

Amx

k
¼ 1 ðD2Þ
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and

Amx ¼ 1 ðD3Þ

hold.

Proof. Lemma 5.2 yields that the solutions are non-negative and conserve sums. It suffices

to include step lengths mx and mt and identify conditions under which mx

P
x uðx; 0Þ ¼ 1

and mt

P
t uð0; tÞ ¼ 1. Given the initial condition, the former sum is equal to Amx. Hence

the assumption (D3). Finally, since uð2mx; tÞ ¼ 0, equation (10) implies that

uð0; nmtÞ ¼ A 12 ðkmt=mxÞ
� �n

. Consequently,

1 ¼ Amt

X1
n¼0

12
kmt

mx

� �n

¼
Amx

k
:

A

Corollary 5.4. Let uðx; tÞ be a solution of (9). Then the space and time sections mxuðx;�Þ
and mtuð�; tÞ form probability mass functions if and only if k ¼ 1, mt , mx and A ¼ 1=mx.

Proof. (D2) and (D3) hold if and only if k ¼ 1. Consequently, (D1) could be satisfied if and

only if mt , mx. A

Closer examination again reveals that the sections form probability mass functions of

discrete probability distributions related to Bernoulli counting processes (see Figure 3).

Remark 3. Let us consider solution (11). If we put A ¼ k ¼ mx ¼ 1 and mt ¼ p, we get

uðn;m�pÞ ¼
n

m

 !
12 p
� �n2m

pm; n $ m;

which forms, for each fixed n [ N0, a probability mass function of the binomial

distribution. Similarly, for each fixed m [ N0, p ¼ mt-multiple forms a probability mass

function of a version of the negative binomial distribution (the value p�uðn;m�pÞ
describes a probability that for m failures we need n trials). Consequently, the solution of

(9) describes a counting Bernoulli stochastic process (see [2]).

x
t

u (x,t)

(a)

t

u 
(x

, *
)

u 
(x

, *
)

u (1,t)
u (2,t)
u (3,t)
u (4,t)

(b)

t

(c)
u (1,t)
u (2,t)
u (3,t)
u (4,t)

Figure 3. Solution of the transport equation with discrete space and discrete time (9) with A ¼ 1,
k ¼ 1, mt ¼ 0:25 and mx ¼ 1.
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6. Discrete space and general time

Let us extend the results from the last two sections by considering more general time

structures. Let T be a time scale such that minT ¼ 0 and supT ¼ þ1. In this paragraph

we consider domains

V ¼ ðx; tÞ : x [ mxZ; t [ Tf g;

and the problem:

uDt ðx; tÞ þ k7xuðx; tÞ ¼ 0; ðx; tÞ [ V;

uðx; 0Þ ¼
A; x ¼ 0;

0; x – 0;

(
8>>><
>>>:

ð12Þ

where A . 0, k . 0 and 7xuðx; tÞ is the backward difference defined in (1) and uDt is the

delta derivative in time variable. Since the space is discrete, we could again rewrite

equation (12) into

uDt ðx; tÞ ¼ 2
k

mx

uðx; tÞ2 uðx2 mx; tÞ
� �

: ð13Þ

In order to conserve the sign of solutions, we assume that

12
kmtðtÞ

mx

. 0; ðTS1Þ

i.e. the condition which is similar to the positive regressivity in the time scale theory

(e.g. [4], Section 2.2) or the so-called CFL condition in the discretization of the transport

equation (e.g. [13], Section 4.4).

Let u be a solution of (12). One could use [14] (Proposition 5.2) to show that uðx; tÞ ¼ 0

for all x , 0 is the unique solution there. Since uð2mx; tÞ ¼ 0, we could see that

uDt ð0; tÞ ¼ 2ðk=mxÞuð0; tÞ. Given the initial condition and assumption (TS1), we get

uð0; tÞ ¼ A e2k=mx
ðt; 0Þ, where e2k=mx

ðt; 0Þ is a time scale exponential function (see [4],

Section 2).

Lemma 6.1. The solution of (12) satisfies

(i) limt!1uð0; tÞ ¼ 0,

(ii)
Ð1
0
uð0; tÞDt ¼ Aðmx=kÞ.

Proof.

(i) Follows directly from assumption (TS1) and the properties of the exponential

functions [4] (Section 2.2),

(ii) ð1
0

uð0; tÞDt ¼ A

ð1
0

e2 k
mx
ðt; 0ÞDt ¼ lim

t!1
2 A

mx

k
e2ðk=mxÞðt; 0Þ2 1
� �

¼ A
mx

k
:

A

Unique solutions of uðmmx; tÞ could be found using the variation of constants (see, e.g.
[4], Theorem 2.77). However, these computations depend critically on a particular time
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scale and cannot be performed in general. For example, one could compute that the second

branch of the solution has the form

uðmx; tÞ ¼ A
k

mx

e2 k
mx
ðt; 0Þ

ðt
0

Dt

12 ðkmtðtÞ=mxÞ
:

This implies that we cannot derive closed-form solutions as in previous sections. Formally,

these solutions can be expressed as Taylor-like series with generalized polynomials whose

form depends on particular time scale (see [14] and [4] (Section 1.6)). We determine these

solutions in special cases (see Lemmata 4.1, 5.1 and 7.1). Therefore, we are forced to use

another means to show the properties of solutions we are interested in.

Lemma 6.2. Let x [ mxN. If (TS1) is satisfied and uðx2 mx; tÞ $ 0 and for all t [ T and

uðx2 mx; tÞ . 0 at least for one t [ T, then uðx; tÞ $ 0 for all t [ T.

Proof. First, note that uðx; 0Þ ¼ 0 for all x . 0. Consequently, (13) implies that uDt ðx; tÞ .
0 at the beginning of the support of uðx2 mx; tÞ and uðx; tÞ is strictly increasing there.

. If t is right-scattered then we can rewrite equation (13) into

uðx; t þ mtÞ ¼ 12
kmt

mx

� �
uðx; tÞ þ

kmt

mx

uðx2 mx; tÞ:

If uðx; tÞ $ 0, then this is the weighted average of two non-negative values and thus

non-negative as well.

. If t is right-dense then equation (16) has the form

utðx; tÞ ¼ 2
k

mx

uðx; tÞ þ
k

mx

uðx2 mx; tÞ:

Since both uðx2 mx; tÞ $ 0 and uðx; tÞ $ 0, we have that utðx; tÞ $ 2ðk=mxÞuðx; tÞ
and thus uðx; tÞ cannot become negative.

Following the induction principle (e.g. [4], Theorem 1.7), we could see that uðx; tÞ $ 0 for

all t [ T. A

Lemma 6.2 serves as the inductive step in the proof of the sign conservation.

Theorem 6.3. If (TS1) holds then uðx; tÞ $ 0 for all ðx; tÞ [ V.

Proof. We prove the statement by mathematical induction. Firstly, uð0; tÞ ¼
A e2k=mx

ðt; 0Þ . 0. Secondly, if uðx; tÞ $ 0 then Lemma 6.2 implies that uðxþ mx; tÞ $ 0

which finishes the proof. A

The following auxiliary lemma shows that the variation of constant formula which

generates further branches of solutions conserve zero-limits at infinity.

Lemma 6.4. Let us consider a time scaleT, a constantK such that 12 mK . 0 anda function

f : T! ½0;1Þ such that the integral
Ð1
0
f ðtÞDt is finite. If we define g : T! ½0;1Þ by

gðtÞ ¼

ðt
0

e2Kðt;sðtÞÞf ðtÞDt;

then limt!1gðtÞ ¼ 0.
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Proof. Since
Ð1
0
f ðtÞDðtÞ is finite we know that for each 1 . 0 there exists T . 0 such that

for all t [ T, t . T the inequality ð1
t

f ðtÞDt ,
1

2
; ð14Þ

holds. Similarly, properties of time scale exponential function imply that for each 1 . 0

and T . 0 there exists R . T such that for all t [ T, t . R the following inequality is

satisfied ðT
0

e2Kðt;sðtÞÞDt ,
1

2F
; ð15Þ

with F ¼ maxt[Tf ðtÞ. Consequently, inequalities (14) and (15) imply that for each for

each 1 . 0 there exists T . 0 and R . T such that for all t . R

gðtÞ ¼

ðt
0

e2Kðt;sðtÞÞf ðtÞDt

¼

ðT
0

e2Kðt;sðtÞÞf ðtÞDtþ

ðt
T

e2Kðt;sðtÞÞf ðtÞDt

# F

ðT
0

e2Kðt;sðtÞÞDtþ

ðt
T

f ðtÞDt

, F
1

2F
þ

1

2

¼ 1;

which implies that limt!1gðtÞ ¼ 0. A

Consequently, we are able to show that the integrals are constant for each fixed x $ 0.

Theorem 6.5. If (TS1) holds and uðx; tÞ is a solution of (12), thenð1
0

uðx; tÞDt ¼

ð1
0

uð0; tÞDt ¼ A
mx

k

for all x [ mxN0.

Proof. We proceed by mathematical induction.

. For x ¼ 0 the convergence of the integral to Aðmx=kÞ follows from Lemma 6.1(ii).

. Let us fix x [ mxN and assume that the statement holds for a function uðx2 mx; tÞ.
If we integrate (13) we get

ð1
0

uDt ðx; tÞDt ¼ 2
k

mx

ð1
0

uðx; tÞDt2

ð1
0

uðx2 mx; tÞDt

� �
: ð16Þ

Let us concentrate on the left-hand side term. The variation of constants formula [4]

(Theorem 2.77) implies that

uðx; tÞ ¼

ðt
0

e2ðk=mxÞðt;sðtÞÞuðx2 mx; tÞDt:

Consequently, Lemma 6.4 implies that limt!1uðx; tÞ ¼ 0. Using the initial condition
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uðx; 0Þ ¼ 0, we could rewrite the left-hand side of (16) into

ð1
0

uDt ðx; tÞDt ¼ lim
t!1

uðx; tÞ2 uðx; 0Þ ¼ 0:

This implies that (16) could be rewritten into

0 ¼ 2
k

mx

ð1
0

uðx; tÞDt2

ð1
0

uðx2 mx; tÞDt

� �
;

or equivalently into

ð1
0

uðx; tÞDt ¼

ð1
0

uðx2 mx; tÞDt;

which finishes the proof. A

Finally, we show that the integrals (sums in this case) remains constant in time as well.

Theorem 6.6. If (TS1) holds and uðx; tÞ is a solution of (12), then

ð1
0

uðx; tÞDx ¼ mx

X1
m¼0

uðmmx; tÞ ¼ Amx

for all t [ T.

Proof. Let uðx; tÞ be a solution of (12). We define a function S : T! R by

SðtÞ :¼

ð1
0

uðx; tÞDx ¼ mx

X1
m¼0

uðmmx; tÞ;

and show that SDt ðtÞ ¼ 0 for all t [ T.

We can rewrite equation (12) into

uDt ðx; tÞ ¼ 2
k

mx

uðx; tÞ þ
k

mx

uðx2 mx; tÞ:

Consequently,

SDt ðtÞ ¼ mx

X1
m¼0

uDt ðmmx; tÞ ð17Þ

¼ 2k
X1
m¼0

uðmmx; tÞ þ k
X1
m¼0

uððm2 1Þmx; tÞ ð18Þ

¼ 0: ð19Þ

We have to justify the first equality (17), i.e. the interchangeability of the delta derivative

and summation at each t0 [ T. If t0 is right-scattered, the non-negativity of the solution
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implies

SDt ðt0Þ ¼

mx

X1
m¼0

uðmmx; t0 þ mtðt0ÞÞ2 mx

X1
m¼0

uðmmx; t0Þ

mtðt0Þ

¼ mx

X1
m¼0

uðmmx; t0 þ mtðt0ÞÞ2 uðmmx; t0Þ

mtðt0Þ
¼ mx

X1
m¼0

uDt ðmmx; t0Þ:

If t0 is right-dense and there is a continuous interval ½t0; s�, s . t0, we show that the sumP1
m¼0u

Dt ðmmx; tÞ converge uniformly on ½t0; s�. First, let us note that (18) yields that this is
implied by the uniform convergence of

P1
m¼0uðmmx; tÞ. One could use Corollary 4.3 to get

(k ¼ k=mx):

X1
m¼0

uðmmx; tÞ ¼
X1
m¼0

e2kðt2t0Þ
Xm
i¼0

Ci

ðkðt2 t0ÞÞ
m2i

ðm2 iÞ!

 !

¼ e2kðt2t0Þ
X1
m¼0

ðkðt2 t0ÞÞ
m

m!
�
X1
i¼0

Ci:

If
P1

i¼0Ci is finite (i.e. Sðt0Þ is finite), then this sum converge uniformly on an arbitrary

closed interval. Finally, if t0 is right-dense and there is no continuous interval ½t0; s�,
s . t0, we consider a function vðx; tÞ with vðmmx; t0Þ ¼ uðmmx; t0Þ for all m such that v is a

solution on a domain with a continuous interval ½t0; s�, s . t0. Obviously, equation (15)

implies that vtðmmx; t0Þ ¼ uDt ðmmx; t0Þ for all m. Moreover for each d . 0, there is u . 0

such that for all t [ ½t0; t0 þ u�T:

ð12 dÞ
X1
m¼0

vðmmx; tÞ #
X1
m¼0

uðmmx; tÞ # ð1þ dÞ
X1
m¼0

vðmmx; tÞ:

Consequently,

0 ¼
X1
m¼0

uDt ðmmx; t0Þ ¼
X1
m¼0

vtðmmx; t0Þ

¼
X1
m¼0

vðmmx; t0Þ

 !
t

¼
X1
m¼0

uðmmx; t0Þ

 !Dt

:

Taking into account the fact that uðx; 0Þ is given by the initial condition in (12), we see that
Sð0Þ ¼ Amx. Consequently, (17)–(19) imply that SðtÞ ¼ Amx. A

We could now study the relationship with probability distributions and we begin by

generalizing probability density and mass functions.

Definition 6.7. We say that a function f : T! Rþ
0 is a dynamic probability density

function if ð1
21

f ðtÞDt ¼ 1:

Journal of Difference Equations and Applications 13
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Note that if T ¼ R then f is a probability density function. If T ¼ mtZ then mtf is a

probability mass functions (see Theorem 5.3).

Combining Theorems 6.5 and 6.6, we get the necessary and sufficient condition for

sections to generate probability distributions.

Lemma 6.8. Let uðx; tÞ be a solution of (12).

(1) uð�; tÞ is a dynamic probability density function for all x [ mxN0 if and only if

Amx=k ¼ 1 and mtðtÞ , mx for all t [ T.

(2) uðx;�Þ is a dynamic probability density function for all t [ T if and only if

Amx ¼ 1 and (TS1) holds.

Proof. The proof is a direct application of Theorems 6.5 and 6.6. A

Finally, we provide the necessary and sufficient condition for both sections.

Theorem 6.9. Let uðx; tÞ be a solution of (12). Then both uðx;�Þ and uð�; tÞ are dynamic
probability density functions for all t [ T and x [ mxN0 if and only if k ¼ 1, Amx ¼ 1 and

mtðtÞ , mx for each t [ T.

Proof. The proof follows from Lemma 6.8. A

7. Applications

As suggested in Remarks 1 and 3, the time and space sections of solutions of the transport

equation on various domains generate important probability distributions (cf. Table 1).

In other words, the solutions correspond to the so-called counting stochastic processes

describing number of occurrences of certain random events (arrival of customers in a

queue, device failures, phone calls, scored goals, etc.) (e.g. [15] (Chapters 4 and 5), [10]).

They have following properties:

(1) Probability of number of events (occurrences) at time t is given by uð�; tÞ (Poisson
distribution, binomial distribution).

(2) Probability distribution of the time of the first occurrence is given by uð0; tÞ
(exponential or geometric distribution).

(3) Probability distributions that at least x events have happened until time t are given

by uðx2 1;�Þ (Erlang or negative binomial distributions).

(4) Probability distribution of the waiting time until the next occurrence is given by

uð0; tÞ (exponential or geometric distribution).

Our analysis in Section 6, summarized in Theorem 6.9, suggests that properties

(1)–(3) are conserved on general domains Z £ T. Properties (2) and (3) are conserved in

Table 1. Correspondence of time and space sections with probability distributions.

uð�; tÞ uð0;�Þ uðx;�Þ; x $ 0

Z £ R Poisson dist. Exponential dist. Erlang (Gamma) dist.
Z £ pZ Binomial dist. Geometric dist. Negative binomial dist.

P. Stehlı́k and J. Volek14
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the sense of Definition 6.7 (see Examples 7.2 and 7.3 below). Property (4) does not apply

because of the underlying inhomogeneous time structure.

The convergence relationship between the distributions from Table 1 is well known

[10]. Our analysis strengthens this relationship since the convergence is based on the

solution of the same partial equation with changing underlying structures.

We conclude this section by suggesting two applications which emphasize the time

scale choice. First, let us consider Bernoulli trials with non-constant probability of

successes. For example, Ref. [7] shows that the probability that a goal is scored in each

minute of the association football match is not constant but increases throughout the game,

especially in the last minutes of each half-time. Let us derive an explicit solution on

arbitrary heterogeneous discrete structure.

Lemma 7.1. Let us consider a heterogeneous discrete time scale T ¼ {0;m1;m1 þ m2; . . . ;Pn
i¼1mi; . . . }. Then the solution of (12) has the form

u mmx;
Xn
i¼1

mi

 !
¼ A

X
p[Pn2m

m

Yn
i¼1

Kpi

i L
12pi

i ; ð20Þ

where Ki ¼ 12 kðmi=mxÞ, Li ¼ kðmi=mxÞ and Pq
r denote a set of all permutation vectors

containing q ones and r zeros.

Proof. We base our proof on the relationship

u mmx;
Xn
i¼1

mi

 !
¼ 12

kmn

mx

� �
uðx; tÞ þ

kmn

mx

uðx2 mx; tÞ

and proceed by induction. First, the initial condition implies that the statement holds for

n ¼ 0. Next, let us assume that the statement holds for n [ N0, i.e. (20) is satisfied. Then

we have u mmx;
Pnþ1

i¼1 mn

� �
¼ 0 for m � 0; 1; . . . ; nþ 1. Furthermore, for m ¼ 0

u 0;
Xnþ1

i¼1

mi

 !
¼ Knþ1 AK1K2· · ·Knð Þ þ 0 ¼ AK1K2· · ·KnKnþ1:

Next, for m [ 1; 2; . . . ; n
� �

:

u mmx;
Xnþ1

i¼1

mi

 !
¼ Knþ1A

X
p[Pn2m

m

Yn
i¼1

Kpi

i L
12pi

i þ Lnþ1A
X

p[Pn2mþ1
m21

Yn
i¼1

Kpi

i L
12pi

i

¼ A
X

p[Pnþ12m
m

Ynþ1

i¼1

Kpi

i L
12pi

i :

Finally, for m ¼ nþ 1 we have

u ðnþ 1Þmx;
Xnþ1

i¼1

mi

 !
¼ 0þ Lnþ1 AL1L2· · ·Lnð Þ ¼ AL1L2· · ·LnLnþ1:

A
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We could immediately apply this result to obtain generalizations of standard Bernoulli

processes.

Example 7.2. (Heterogeneous Bernoulli process) Let us consider a repeated sequence of

trials and assume that the probability of success pi in ith trial is non-constant, in contrast to

standard Bernoulli process discussed in Section 5. If we construct a discrete time scale

T ¼ 0; p1; p1 þ p2; . . . ;
Xn
i¼1

pi; . . .

( )
;

then the solution uðx; tÞ of (12) generates the probability distributions discussed above. Let
us choose, for example, A ¼ mx ¼ k ¼ 1. Then, uð�;

Pn21
i¼1 piÞ is the probability mass

function describing number of successes in the first n trials. Moreover, piuðx;�Þ is the

probability mass function of the number of trials needed to get xþ 1 successes.

To illustrate, let us choose

T ¼ 0;
1

2
;
1

2
þ

1

3
; . . . ;

Xn
i¼1

1

iþ 1
; . . .

( )

to study a process in which the probability of successful trial decreases harmonically.

We could use Lemma 7.1 to determine that

u m;
Xn
i¼1

pi

 !
¼

X
p[Pn2m

m

Yn
i¼1

1

iþ 1

� �pi i

iþ 1

� �12pi

; 0 # m # n:

For example, the probability mass function for the first successful trial appearing in

kth trial, i.e. piuð0;�Þ, has the form

f ðkÞ ¼
1

kðk þ 1Þ
; k [ N:

Finally, we consider a mixed time scale, which, coupled with the transport equation,

generates mixed processes and distributions.

Example 7.3. (Stop–start Bernoulli–Poisson process) Let us assume that a device is

regularly used throughout a constant period and then switched off for another one. Let us

assume that the probability of failure when the device is in use is determined by a

continuous process, whereas the probability of failure in the rest mode is given by a

discrete process. This leads to mixed probability distributions which could be generated,

for example, by

T ¼ <
1

i¼0
i; iþ

1

2

	 

:

Again uðx;�Þ describes the mixed probability distribution of xþ 1 failures, in the sense of

Definition 6.7. Similarly, uð�; tÞ is the probability mass function describing the number of

failures at time t. Note that the probability of failure in the rest mode is given by the length

of the discrete gap (cf. Definition 6.7). As in the previous example, we are not able to find
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the closed-form solutions but one could tediously solve the separate equations to get that:

uð0; tÞ ¼
1

2n
eðn=2Þ2t;

uð1; tÞ ¼
2t þ n

2nþ1
eðn=2Þ2t;

uð2; tÞ ¼
4t 2 þ 4nt þ ðn2 2 4nÞ

2!�2nþ2
eðn=2Þ2t;

uð3; tÞ ¼
8t 3 þ 12nt 2 þ 6ðn2 2 4nÞt þ ðn3 2 12n2 þ 16nÞ

3!�2nþ3
eðn=2Þ2t;

. . .

uðx; tÞ ¼
polynomial of order x

x!�2nþx
eðn=2Þ2t;

for n [ N0 (nth continuous part) and t [ n; nþ ð1=2Þ
� �

. See Figure 4 for illustration.

8. Conclusion and future directions

There are a number of open questions related to the analysis presented in this paper.

In Section 6, we were unable to provide a general closed-form solution of problem (12).

With the connection to probability distributions, is it possible to provide one for further

special choices of T (see e.g. Examples 7.2 and 7.3)?

In the classical case, the solution is propagated along characteristics. Obviously, our

analysis in Sections 4 and 5 implies that this is not the case on semidiscrete domains.

However, one could show that at least the maxima are propagated along characteristics on

discrete–continuous or discrete–discrete domains (computing directly or using modes of

probability distributions). Having no closed-form solutions on time scales, could we prove

this property for an arbitrary time scale? This question is closely related to modes of the

corresponding probability distributions and the question could be therefore formulated in

more general way. Can we, at least in special cases, determine the descriptive statistics

related to the generated probability distributions?

From the theoretical point of view, there is also a natural extension to consider a

transport equation with continuous space and general time, or general space and time.

The applicability of these settings is limited by the fact that such problems do not conserve

sign in general (cf. assumption mtðtÞ , mx in Theorem 6.9).

x
t

u (x,t)

(a)

t

u 
(x

, *
)

u 
( *

,t)

(b)

x

u (x,1)
u (x,4)
u (x,8)
u (x,12)

(c)

Figure 4. Solution of the transport equation with discrete space and general time (12) with A ¼ 1,
mx ¼ 1, k ¼ 1 and T ¼ <1

i¼0½i; iþ ð1=2Þ�.
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Note
1. We assume that k . 0 so that the solution is bounded and does not vanish. Moreover, we use the

nabla difference instead of delta difference. The single reason is the simpler form of the solution
(4). If we used the delta difference, we would consider k , 0 and the solution would propagate to
the quadrant with t . 0 and x , 0. This applies also to the problems which we study in the
following sections.
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MAXIMUM AND MINIMUM PRINCIPLES FOR NONLINEAR

TRANSPORT EQUATIONS ON DISCRETE-SPACE DOMAINS

JONÁŠ VOLEK

Abstract. We consider nonlinear scalar transport equations on the domain

with discrete space and continuous time. As a motivation we derive a conserva-
tion law on these domains. In the main part of the paper we prove maximum

and minimum principles that are later applied to obtain an a priori bound

which is applied in the proof of existence of solution and its uniqueness. Fur-
ther, we study several consequences of these principles such as boundedness of

solutions, sign preservation, uniform stability and comparison theorem which

deals with lower and upper solutions.

1. Introduction

The transport equation is one of the simplest nonlinear partial differential equa-
tions. Its importance follows from the fact that it describes traveling waves and
that it forms the basis for study of hyperbolic equations of second order. The reader
can see, e.g., [11] for details about transport PDE.

We study transport equations on the domain with discrete space and continuous
time. This is a combination of difference and differential equations. As an appli-
cation of these models we can mention semidiscrete numerical methods of Rothe
or Galerkin (see [10, 16]). We consider nonlinear equations that arise from con-
servation laws. Linear equations that combine continuous, discrete and time-scale
variables are studied in [20]. In that paper authors present some interesting rela-
tions between equations of this type and stochastic processes of Poisson–Bernoulli
type.

In recent years so called dynamical systems on lattices have been studied exten-
sively. In [6, 7, 12] authors deal with these related problems and focus on PDEs of
reaction–diffusion type on finite space lattices. Their results can be helpful, e.g., in
the modelling of binary alloys (see [7]).

Moreover, in the last few years the analysis of equations on infinite lattices has
attracted some researchers. We can refer to [2, 3, 4, 21] for the introduction to these
problems. These papers are concerned mainly with existence of traveling waves in
discrete reaction–diffusion equations and their properties. The reader is invited to

2000 Mathematics Subject Classification. 82C70, 34A33, 35B50.
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maximum principles; existence; uniqueness; sign preservation; uniform stability;

nonlinear comparison theorem.
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see [21] where the main ideas and principles of this field are presented. Problems
in [2, 3, 4, 21] are solved often by topological methods using fixed point theorems,
degree theory, comparison principles and lower and upper solutions.

Our analysis can contribute to this mathematical area. Our problem can be
understood as an equation on infinite lattice. With the help of maximum and
minimum principles we derive new comparison theorem that deals with ordering of
lower and upper solutions.

In general, we study simpler problems than reaction-diffusion equations but on
the other hand, our work can be interesting for another reason as well. It can be
useful just from the point of view of maximum and minimum principles. These
principles are strong tools in the theory of differential equations. They have many
applications and important consequences. We can mention, e.g., a priori bounds
that can be applied in proofs of existence and uniqueness of solution, oscillation
results. For the review about these topics in ODEs and PDEs see [14] or more
recent book [15]. In discrete problems these principles have rich behavior. The
reader is invited to see papers [13, 17, 18, 19] or survey book about partial difference
equations [5] for further details. Consequently, we want to explore if the transport
equation where we combine continuous and discrete approach has some fruitful
properties as in these works.

The structure of our paper is as follows. First, we motivate our study, derive a
conservation law in discrete space and formulate our main problem in Section 2. In
Section 3 we prove maximum and minimum principles for the nonlinear equation by
the so-called stairs method. Then we deal with existence and uniqueness of solution
in Section 4 and with other consequences in Section 5. In Section 6, we study a
related nonlinear problem. At the end of the paper, in Section 7, we present some
open problems and directions of future research.

We denote the intervals [0,+∞) and (0,+∞) by R+
0 and R+ respectively. Partial

derivative of u(x, t) w.r.t. t is denoted by ut(x, t) and partial difference w.r.t. x by

∇xu(x, t) = u(x, t)− u(x− 1, t).

2. Conservation law and nonlinear transport equation

As a motivation we derive the conservation law in discrete space. It leads to
partial equations on discrete-space domain. Corresponding continuous conservation
laws are presented, e.g., in [11].

We consider one dimensional discrete space. We simulate it by integers. Further,
we suppose the density u = u(x, t) which changes continuously in time and which is
distributed in discrete space. The magnitude u can express, e.g., the concentration
of mass or population, energy etc.

We denote by ϕ the flux of u. The flux ϕ(i, t), i ∈ Z, t ∈ R+
0 , quantifies the

amount of u that passes between positions x = i and x = i+ 1 in time t. Further,
f = f(x, t) is the source function.

Therefore, consider an arbitrary space segment between x = i and x = j when
i < j. The time change of total amount in that space segment between x = i and
x = j is given by

d

dt

j∑

x=i

u(x, t) = ϕ(i− 1, t)− ϕ(j, t) +

j∑

x=i

f(x, t). (2.1)
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We call (2.1) the conservation law in global form. Let us modify (2.1) as follows

d

dt

j∑

x=i

u(x, t) = −
[
ϕ(j, t)− ϕ(j − 1, t) + ϕ(j − 1, t)− · · · − ϕ(i, t) + ϕ(i, t)

− ϕ(i− 1, t)
]

+

j∑

x=i

f(x, t),

and finally, we obtain

j∑

x=i

[
ut(x, t) +∇xϕ(x, t)− f(x, t)

]
= 0.

The space segment is arbitrary and thus, the following conservation law in local
form has to hold necessarily

ut(x, t) +∇xϕ(x, t) = f(x, t). (2.2)

We study the case of

ϕ(x, t) = F (x, t, u(x, t)) when F : Z× R+
0 × R→ R.

This leads to the nonlinear transport equation with discrete space. Therefore, we
deal with the following initial-boundary value problem (I-BVP):

ut(x, t) +∇xF (x, t, u(x, t)) = f(x, t), x ∈ Z, x > a ∈ Z, t ∈ R+,

u(x, 0) = φ(x), φ : Z→ R,
u(a, t) = ξ(t), ξ ∈ C(R+

0 ) ∩ C1(R+),

(2.3)

where F : Z×R+
0 ×R→ R and f : Z×R+

0 → R. We prove maximum and minimum
principles for lower and upper solutions.

Definition 2.1. The function v(x, t) is called a lower solution of (2.3) if

vt(x, t) +∇xF (x, t, v(x, t)) ≤ f(x, t), x ∈ Z, x > a ∈ Z, t ∈ R+,

v(x, 0) ≤ φ(x), x ∈ Z, x > a ∈ Z,
v(a, t) ≤ ξ(t), t ∈ R+

0 .

The function w(x, t) is an upper solution of (2.3) if

wt(x, t) +∇xF (x, t, w(x, t)) ≥ f(x, t), x ∈ Z, x > a ∈ Z, t ∈ R+,

w(x, 0) ≥ φ(x), x ∈ Z, x > a ∈ Z,
w(a, t) ≥ ξ(t), t ∈ R+

0 .

3. Maximum and minimum principles

In this section we derive main tools of our study, the maximum and minimum
principles. Let us mention that if we consider problem (2.3) with more general
difference

∇(µ)
x u(x, t) =

u(x, t)− u(x− µ, t)
µ

with arbitrary step µ > 0 we can prove following results in the similar way. Hence,
for the sake of simplicity we suppose only difference with unitary step ∇xu(x, t).
Next technical lemma helps us in the proof of maximum principle.
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Lemma 3.1. Let F : Z× R+
0 × R→ R satisfy

(A1) F (χ, τ, ω) is increasing in χ, i.e., for all χ1 < χ2 there is

F (χ1, τ, ω) ≤ F (χ2, τ, ω),

(A2) F (χ, τ, ω) is strictly increasing in ω, i.e., for all ω1 < ω2 there is

F (χ, τ, ω1) < F (χ, τ, ω2).

Then the following holds:

if F (χ1, τ, ω1) ≤ F (χ2, τ, ω2) then χ1 ≤ χ2 or ω1 ≤ ω2, (3.1)

if F (χ1, τ, ω1) < F (χ2, τ, ω2) then χ1 < χ2 or ω1 < ω2. (3.2)

Proof. We show only (3.1). The proof of (3.2) is similar. Let us suppose by
contradiction that χ1 > χ2 and ω1 > ω2. Then we have

F (χ2, τ, ω2)
(A1)

≤ F (χ1, τ, ω2)
(A2)
< F (χ1, τ, ω1),

a contradiction with the assumption of F (χ1, τ, ω1) ≤ F (χ2, τ, ω2). �

Theorem 3.2 (Maximum principle). Assume that F (χ, τ, ω) satisfies (A1) and
(A2) and f(χ, τ) ≤ 0 for all χ ∈ Z, χ > a, τ ∈ R+. Let u(x, t) be a lower solution
of (2.3). Then

u(x, t) ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{φ(x), ξ(t)}

holds for all x ∈ Z, x ≥ a, and for all t ∈ R+
0 .

Proof. We prove the statement by the so-called stairs method. The idea of our
proof is shown on Figure 1. First, we denote

M := sup
x ∈ Z, x ≥ a
t ∈ R+

0

{φ(x), ξ(t)}.

Assume by contradiction that there exist x0 ∈ Z, x0 > a, and t0 ∈ R+ such that

u(x0, t0) > M. (3.3)

Now from assumptions (A2), (3.3) and from the fact that u(x, t) is a lower solution
we obtain

ut(x0, t0) ≤ F (x0 − 1, t0, u(x0 − 1, t0))− F (x0, t0, u(x0, t0)), (3.4)

ut(x0, t0) < F (x0 − 1, t0, u(x0 − 1, t0))− F (x0, t0,M). (3.5)

Now there are two possibilities.
(1) If F (x0 − 1, t0, u(x0 − 1, t0)) > F (x0, t0,M) then from (3.2) in Lemma 3.1

we get u(x0 − 1, t0) > M . Hence, in this case we define

x1 = x0 − 1 and t1 = t0.

(2) The second possibility is that F (x0 − 1, t0, u(x0 − 1, t0)) ≤ F (x0, t0,M)
holds. From (3.5) there is ut(x0, t0) < 0. Therefore, the function u(x0, t) is strictly
decreasing in t = t0 and we can define

t0 = inf{τ = [0, t0] : u(x0, t) is strictly decreasing on the interval (τ, t0)}.
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If t0 = 0 then we have a contradiction with the definition of M via the initial
condition φ(x). If t0 > 0 then there is necessarily ut(x0, t0) = 0 and from (3.4) we
obtain

F (x0, t0, u(x0, t0)) ≤ F (x0 − 1, t0, u(x0 − 1, t0)).

Then (3.1) in Lemma 3.1 implies u(x0, t0) ≤ u(x0 − 1, t0) which gives

M < u(x0, t0) < u(x0, t0) ≤ u(x0 − 1, t0).

Consequently, in this case we define

x1 = x0 − 1 and t1 = t0.

Finally, we have u(x1, t1) > M . If we continue iteratively then after at most
x0 − a steps we get a contradiction with definition of M . �

Figure 1. The idea of the stairs method. The dotted line shows
the situation when only possibility (1) occurs which yields a con-
tradiction via the boundary condition ξ(t). The bold line shows
the combination of possibilities (1) and (2) and a contradiction via
the boundary condition ξ(t) again. The dashed line shows the sit-
uation when we get a contradiction via the initial condition φ(x)
in possibility (2).

Next we have the minimum principle which can be proved by a stairs method
similarly to the one in Theorem 3.2.

Theorem 3.3 (Minimum principle). Assume that F (χ, τ, ω) satisfies (A2) and

(A3) F (χ, τ, ω) is decreasing in χ,

and f(χ, τ) ≥ 0 for all χ ∈ Z, χ > a, τ ∈ R+. Let u(x, t) be an upper solution of
(2.3). Then

inf
x ∈ Z, x ≥ a
t ∈ R+

0

{φ(x), ξ(t)} ≤ u(x, t)

holds for all x ∈ Z, x ≥ a, and for all t ∈ R+
0 .
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4. Existence and uniqueness of solution

In this section we use maximum and minimum principles as a priori bounds to
prove the existence and uniqueness of solution of (2.3). The proof is based on
induction and further, we use the following lemma about global solution of IVP for
ordinary differential equation.

Lemma 4.1 ([9, Corollary 8.64] ). Consider the following IVP for ordinary differ-
ential equation

u′(t) = g(t, u(t)), g : I × Rn → Rn,
u(t0) = u0, u0 ∈ Rn,

(4.1)

when I ⊂ R is an interval. Assume that h : R+
0 → R+ is continuous and there is a

v0 ∈ R+
0 such that ∫ +∞

v0

ds

h(s)
= +∞.

Let the function g : [t0,+∞)× Rn → Rn be continuous and let

‖g(τ, ω)‖ ≤ h(‖ω‖)
hold for all (τ, ω) ∈ [t0,+∞) × Rn. Then for all u0 ∈ Rn with ‖u0‖ ≤ v0 all
solutions of (4.1) exist on [t0,+∞).

Theorem 4.2 (Existence and uniqueness). Suppose that:

(A4) φ(x), ξ(t) are bounded; i.e., there exist K > 0 such that for all x ∈ Z, x ≥ a,
and for all t ∈ R+

0 |φ(x)| ≤ K and |ξ(t)| ≤ K hold,
(A5) f(χ, τ) = 0 identically,

the function F = F (τ, ω) is independent of χ, satisfies (A2) and

(A6) F (τ, ω) is continuous w.r.t. τ on R+
0 ,

(A7) F (τ, ω) is locally Lipschitz continuous w.r.t. ω on R+
0 × R, i.e., for all

τ0 ∈ R+
0 and for all ω0 ∈ R there exists a rectangle

R(τ0, ω0) =
{

(τ, ω) ∈ R+
0 × R : 0 ≤ τ − τ0 ≤ a, |ω − ω0| ≤ b

}

and L = L(τ0, ω0) > 0 such that for all (τ, ω1), (τ, ω2) ∈ R(τ0, ω0) there is

|F (τ, ω1)− F (τ, ω2)| ≤ L|ω1 − ω2|,
(A8) F (τ, ω) is sublinear w.r.t. ω, i.e., there exist A,B > 0 such that for all

τ ∈ R+
0 and for all ω ∈ R there is

|F (τ, ω)| ≤ A|ω|+B.

Then (2.3) possesses a unique solution u(x, t) which is defined for all x ∈ Z, x ≥ a,
and t ∈ R+

0 .

Proof. We prove the statement by induction on x ∈ Z, x ≥ a.
(1) For x = a we put u(a, t) = ξ(t).
(2) Let us have a solution u(x, t) which is unique and defined for all x ∈ Z,

a ≤ x < x, on R+
0 . Then for fixed x we get from (2.3) the following IVP for

ordinary differential equation

ut(x, t) = F (x− 1, t, u(x− 1, t))− F (x, t, u(x, t)),

u(x, 0) = φ(x), φ(x) ∈ R,
(4.2)

where F (x− 1, t, u(x− 1, t)) is a given function of t from the induction hypothesis.
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• Assumptions (A6), (A7) and Picard-Lindelöf’s theorem (see [9, Theorem 8.13])
imply the existence and uniqueness of a local solution u(x, t) of (4.2) on some small
interval [0, δ], δ > 0.
• We can make the estimate

|F (x− 1, t, u(x− 1, t))− F (x, t, u(x, t))|
≤ |F (x− 1, t, u(x− 1, t))|+ |F (x, t, u(x, t))|
(A8)

≤ A|u(x− 1, t)|+A|u(x, t)|+ 2B

Th. 3.2+Th. 3.3+(A4)

≤ A|u(x, t)|+AK + 2B.

If we define g(t, u) = F (x − 1, t, u(x − 1, t)) − F (x, t, u), h(s) = As + AK + 2B
and v0 = |φ(x)| then assumptions of Lemma 4.1 are satisfied. Therefore, the local
solution u(x, t) can be extended to the whole R+

0 .
• Finally, we have to check if there is no other solution from some time t0 > 0

which disjoins from u(x, t) in t0. Hence, suppose by contradiction that there is
a t0 > 0 such that there exist two solutions u1(x, t) and u2(x, t) of (4.2) with
u1(x, t) = u2(x, t) on [0, t0] and u1(x, t) 6= u2(x, t) on (t0, t0 + ε), ε > 0. Let us
denote ut0 = u1(x, t0) and investigate the solvability of the IVP

ut(x, t) = F (x− 1, t, u(x− 1, t))− F (x, t, u(x, t)), t > t0,

u(x, t0) = ut0 .
(4.3)

The right-hand side of equation in (4.3) is unique by induction hypotheses. Func-
tions u1(x, t), u2(x, t) solve (4.3) on [t0, t0+ε). But assumptions of Picard–Lindelf’s
theorem are also satisfied for (4.3) thanks to (A6), (A7) and consequently, there can-
not be two distinct solutions. This is a contradiction which finishes the proof. �

Remark 4.3. If we omit the assumption (A7) of local Lipschitz continuity of
F (τ, ω) in Theorem 4.2 then the uniqueness is not guaranteed and we get only the
existence result by the same procedure with the help of Cauchy–Peano’s theorem
(see [9, Theorem 8.27]) instead of Picard–Lindelöf’s theorem.

We present the following example for an illustration what functions F (χ, τ, ω)
can be considered in Theorem 4.2.

Example 4.4. Assumptions of Theorem 4.2 are satisfied, e.g., for following func-
tions F (τ, ω):

• F (τ, ω) = k(τ)ω when k(τ) > 0 (linear equation),
• F (τ, ω) = k(τ) arctanω when k(τ) > 0.

For the following function F we have only existence guaranteed (cf. Remark 4.3):

• F (τ, ω) =

{
− 3
√−ω, for ω < 0,

3
√
ω, for ω ≥ 0.

5. Consequences of maximum and minimum principles

In this section we study well-known consequences of maximum and minimum
principles. Corresponding results for classical differential equations can be found
in [14]. The next two corollaries follow immediately from Theorems 3.2 and 3.3.
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Corollary 5.1 (Boundedness of solutions). Let F = F (τ, ω) satisfy Assumption
(A2), f(χ, τ) = 0 identically, φ(x) and ξ(t) be bounded and u(x, t) be a solution of
(2.3). Then u(x, t) is bounded.

Corollary 5.2 (Sign preservation). Let F = F (χ, τ, ω) satisfy (A2) and (A3),
f(χ, τ) be nonnegative, φ(x) and ξ(t) be nonnegative and u(x, t) be a solution of
(2.3). Then u(x, t) is nonnegative.

Last application of maximum and minimum principles from Theorems 3.2 and
3.3 is the uniform stability of solutions of the linear problem and its consequences.
Thus, let us consider the linear problem

ut(x, t) +∇x [k(t)u(x, t)] = 0, x ∈ Z, x > a ∈ Z, t ∈ R+,

u(x, 0) = φ(x), φ : Z→ R,
u(a, t) = ξ(t), ξ ∈ C(R+

0 ) ∩ C1(R+),

(5.1)

where k(t) > 0.

Corollary 5.3 (Uniform stability). Let u1(x, t) be a solution of (5.1) with initial-
boundary conditions φ1(x) and ξ1(x). Let u2(x, t) be a solution of (5.1) with initial-
boundary conditions φ2(x) and ξ2(x). Then

sup
x ∈ Z, x ≥ a
t ∈ R+

0

|u1(x, t)−u2(x, t)| ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)−φ2(x)|, |ξ1(t)− ξ2(t)|}

(5.2)
holds.

Proof. Define function v(x, t) = u1(x, t)− u2(x, t). Then v(x, t) solves I-BVP (5.1)
with the initial-boundary conditions φ1(x)− φ2(x) and ξ1(t)− ξ2(t). Assumptions
of the maximum principle in Theorem 3.2 are satisfied and hence, we obtain

u1(x, t)− u2(x, t) = v(x, t) ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|}.

(5.3)
Similarly, assumptions of the minimum principle in Theorem 3.3 are satisfied

and therefore, there is

u1(x, t)− u2(x, t) = v(x, t) ≥ inf
x ∈ Z, x ≥ a
t ∈ R+

0

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≥ − sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|}.

(5.4)
Finally, inequalities in (5.3) and (5.4) yield (5.2). �

Corollary 5.3 directly implies the following claim.
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Corollary 5.4. Let {un}+∞
n=1 be a sequence of solutions un(x, t) of (5.1) with the

initial-boundary conditions φn(x) and ξn(t) such that

φn(x) ⇒ φ(x) for x ∈ Z, x ≥ a, and ξn(t) ⇒ ξ(t) for t ∈ R+
0 .

Assume that u(x, t) is a solution of (5.1) with the initial-boundary conditions φ(x)
and ξ(t). Then

un(x, t) ⇒ u(x, t) for x ∈ Z, x ≥ a, and t ∈ R+
0 .

6. Similar problem with space difference inside nonlinearity

In this section we analyze a similar problem as (2.3). We consider the following
I-BVP where the nonlinear function F depends on difference of u(x, t):

ut(x, t) + F (x, t,∇xu(x, t)) = f(x, t), x ∈ Z, x > a ∈ Z, t ∈ R+,

u(x, 0) = φ(x), φ : Z→ R,
u(a, t) = ξ(t), ξ ∈ C(R+

0 ) ∩ C1(R+).

(6.1)

Remark 6.1. We define lower and upper solutions of (6.1) similarly as in Definition
2.1.

The following two theorems are the maximum and minimum principles for (6.1).
We let proofs to the reader because we can prove them by stairs method again.

Theorem 6.2 (Maximum principle). Assume that F (χ, τ, ω) satisfies

(A9) for all χ ∈ Z, χ > a, and for all τ ∈ R+, there is

F (χ, τ, ω)





> 0, for ω > 0,

< 0, for ω < 0,

= 0, for ω = 0,

and f(χ, τ) ≤ 0 for all χ ∈ Z, χ > a, τ ∈ R+. Let u(x, t) be a lower solution of
(6.1). Then

u(x, t) ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{φ(x), ξ(t)}

holds for all χ ∈ Z, χ ≥ a, and for all τ ∈ R+.

Theorem 6.3 (Minimum principle). Assume that F (χ, τ, ω) satisfies (A9) and
f(χ, τ) ≥ 0 for all x ∈ Z, x > a, and for all t ∈ R+

0 . Let u(x, t) be an upper solution
of (6.1). Then

inf
x ∈ Z, x ≥ a
t ∈ R+

0

{φ(x), ξ(t)} ≤ u(x, t)

holds for all x ∈ Z, x ≥ a, and for all t ∈ R+
0 .

Now, we introduce analogue results for (6.1) as in Sections 4 and 5. We omit
proofs again because they are also similar as for (2.3).

Theorem 6.4 (Existence and uniqueness). Suppose that (A4), (A5) hold, function
F (χ, τ, ω) satisfies (A6)–(A9). Then (6.1) possesses a unique solution u(x, t) which
is defined for all x ∈ Z, x ≥ a, and t ∈ R+

0 .
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Corollary 6.5 (Boundedness of solutions). Let F (χ, τ, ω) satisfy Assumption (A9),
f(χ, τ) = 0 identically, φ(x) and ξ(t) be bounded and u(x, t) be a solution of (6.1).
Then u(x, t) is bounded.

Corollary 6.6 (Sign preservation). Let F (χ, τ, ω) satisfy (A9), f(χ, τ) be nonneg-
ative, φ(x) and ξ(t) be nonnegative and u(x, t) be a solution of (6.1). Then u(x, t)
is nonnegative.

Finally, in contrast to previous sections about the problem (2.3), we are able to
prove following assertions about nonlinear problem (6.1).

Corollary 6.7 (Uniform stability). Consider a function F (χ, τ, ω) for which the
partial derivative Fω(χ, τ, ω) is a continuous and positive function. Let u1(x, t) be
a solution of (6.1) with initial-boundary conditions φ1(x) and ξ1(t). Let u2(x, t) be
a solution of (6.1) with initial-boundary conditions φ2(x) and ξ2(t). Then

sup
x ∈ Z, x ≥ a
t ∈ R+

0

|u1(x, t)− u2(x, t)| ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|}

holds.

Proof. We prove the statement with the help of maximum and minimum principles
from Theorems 6.2 and 6.3. Thanks to the assumption that u1(x, t) and u2(x, t)
are solutions we get the equality

(u1)t(x, t) + F (x, t,∇xu1(x, t))− (u2)t(x, t)− F (x, t,∇xu2(x, t)) = 0.

Applying the mean value theorem we can rewrite it to the form

(u1)t(x, t)− (u2)t(x, t) + Fω(x, t, θ(x, t))∇x(u1(x, t)− u2(x, t)) = 0,

where θ(x, t) = α∇xu1(x, t)+(1−α)∇xu2(x, t), α ∈ [0, 1]. Let us define an auxiliary
function v(x, t) = u1(x, t)− u2(x, t). Consequently, v(x, t) solves

vt(x, t) + Fω(x, t, θ(x, t))∇xv(x, t) = 0,

v(x, 0) = φ1(x)− φ2(x),

v(a, t) = ξ1(t)− ξ2(t),

when the assumptions of Theorems 6.2 and 6.3 are satisfied. Thus, from Theorem
6.2 we obtain

u1(x, t)− u2(x, t) = v(x, t) ≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≤ sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|}.
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Similarly, from Theorem 6.3, there is

u1(x, t)− u2(x, t) = v(x, t) ≥ inf
x ∈ Z, x ≥ a
t ∈ R+

0

{φ1(x)− φ2(x), ξ1(t)− ξ2(t)}

≥ − sup
x ∈ Z, x ≥ a
t ∈ R+

0

{|φ1(x)− φ2(x)|, |ξ1(t)− ξ2(t)|}

which completes the proof. �

Corollary 6.8. Consider a function F (χ, τ, ω) for which the partial derivative
Fω(χ, τ, ω) is a continuous and positive function. Let {un}+∞

n=1 be a sequence of
solutions un(x, t) of (6.1) with the initial-boundary conditions φn(x) and ξn(t) for
that

φn(x) ⇒ φ(x) for x ∈ Z, x ≥ a, and ξn(t) ⇒ ξ(t) for t ∈ R+
0 .

Assume that u(x, t) is a solution of (6.1) with the initial-boundary conditions φ(x)
and ξ(t). Then

un(x, t) ⇒ u(x, t) for x ∈ Z, x ≥ a, t ∈ R+
0 .

Corollary 6.9 (Comparison theorem). Consider a function F (χ, τ, ω) for which
the partial derivative Fω(χ, τ, ω) is continuous and positive function. Suppose, there
exists a solution u(x, t) of (6.1). Moreover, let v(x, t) be a lower solution and w(x, t)
be an upper solution of (6.1). Then

v(x, t) ≤ u(x, t) ≤ w(x, t)

is necessarily satisfied for all x ∈ Z, x ≥ a, and for all t ∈ R+
0 .

Proof. We define two auxiliary functions v(x, t) = u(x, t) − v(x, t) and w(x, t) =
w(x, t)− u(x, t) and investigate their sign.

(1) First, we study the function v(x, t). Because v(x, t) is a lower solution we
get

0 ≤ ut(x, t) + F (x, t,∇xu(x, t))− vt(x, t)− F (x, t,∇xv(x, t)).

Thanks to assumptions on F we can use the mean value theorem and we can
continue with our estimate,

0 ≤ ut(x, t) + F (x, t,∇xu(x, t))− vt(x, t)− F (x, t,∇xv(x, t))

= [u(x, t)− v(x, t)]t + Fω(x, t, θ(x, t)) [∇xu(x, t)−∇xv(x, t)]

= vt(x, t) + Fω(x, t, θ(x, t))∇xv(x, t).

for some θ(x, t) = α∇xu(x, t)+(1−α)∇xv(x, t), α ∈ [0, 1]. For initial and boundary
conditions we have

v(x, 0) = u(x, 0)− v(x, 0) ≥ 0,

v(a, t) = u(a, t)− v(a, t) ≥ 0.

Thus, assumptions of Theorem 6.3 are satisfied for v(x, t) which implies

v(x, t) ≥ 0, i.e., v(x, t) ≤ u(x, t).

(2) For the function w(x, t) it is similar. By the same procedure we get

w(x, t) ≥ 0, i.e., u(x, t) ≤ w(x, t).
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�

Remark 6.10. If we would like to prove the similar assertions for (2.3) by the
same procedure then proofs would fail after using the mean value theorem. In that
case, the backward difference operator ∇x would be applied on the partial derivative
Fω(x, t, θ(x, t)). Hence, we would not be able to satisfy assumptions of Theorems
3.2 and 3.3 because we would not know the behavior of the function θ(x, t).

7. Concluding remarks

In this paper we present some maximum and minimum principles for transport
equations with discrete space and continuous time and derive several applications.
But there are still many open questions left.

First, we can try to find another maximum principles with distinct or weaker
assumptions or we can try to derive another properties of solutions of (2.3) and
(6.1). Next, we should say that, although, we consider nonlinear function F as a
function F (χ, τ, ω) in our problems, in many cases we have to assume that F is not
a function of χ. Therefore, we can try to improve it and find better conditions.

We study only initial–boundary value problems as well. We can ask what will
change if we consider an initial value problem on the whole Z. One can show that
in that case we cannot prove maximum or minimum principles in the same way by
stairs method as Theorem 3.2. Moreover, we cannot use mathematical induction
to prove the existence of solution of IVP because we have not where to start.

Further, we could try to generalize our results for more general time and space
structures as in [17, 18, 19] (in these papers dynamic equations on time-scales are
studied, for more information about time-scale calculus see [1, 8]).

In this paper we analyze equations with one space variable and hence, we can
state the question what happens if we consider more space variables as on finite-
dimensional lattice dynamical systems in [6, 7, 12].

Another natural generalization is to study evolutionary equations of higher order,
e.g., diffusion or wave-type equations on discrete-space domains as in [2, 3, 4, 21].
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Jonáš Volek

Department of Mathematics and NTIS, New Technologies for the Information Society
- European Centre of Excellence, Faculty of Applied Sciences, University of West
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We study reaction-diffusion equations with a general reaction function 𝑓 on one-dimensional lattices with continuous or discrete
time 𝑢󸀠

𝑥
(or Δ

𝑡
𝑢
𝑥
) = 𝑘(𝑢

𝑥−1
− 2𝑢

𝑥
+ 𝑢

𝑥+1
) + 𝑓(𝑢

𝑥
), 𝑥 ∈ Z. We prove weak and strong maximum and minimum principles for

corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time)
exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle
holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the
validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation
with the bistable nonlinearity.

1. Introduction

Reaction-diffusion equation 𝜕
𝑡
𝑢 = 𝑘𝜕

𝑥𝑥
𝑢 + 𝑓(𝑢) (sometimes

called FKPP equation, which abbreviates Fisher, Kolmogorov,
Petrovsky, Piskounov) serves as a nonlinearmodel to describe
a class of (biological, chemical, economic, and so forth)
phenomena in which two factors are combined. Firstly, the
diffusion process causes the concentration of a substance
(animals, wealth, and so forth) to spread in space. Secondly, a
local reaction leads to dynamics based on the concentration
values.

For the sake of applications and correctness of numerical
procedures it makes sense to consider partially or fully
discretized reaction-diffusion equation. In certain situations
(e.g., spatially structured environment) it is natural to study
reaction-diffusion equations with discretized space variable
and continuous time (we refer to it as a semidiscrete problem
and use 𝑢

𝑥
(𝑡) = 𝑢(𝑥, 𝑡)):

𝑢󸀠
𝑥
(𝑡) = 𝑘 (𝑢

𝑥−1 (𝑡) − 2𝑢
𝑥
(𝑡) + 𝑢

𝑥+1 (𝑡)) +𝑓 (𝑢
𝑥
(𝑡)) ,

𝑥 ∈ Z, 𝑡 ∈ [0, +∞) ,
(1)

or, for example, if nonoverlapping populations are consid-
ered, with both time and space variables being discrete (a
discrete problem, 𝑢

𝑥,𝑡
:= 𝑢(𝑥, 𝑡)):

𝑢
𝑥,𝑡+ℎ

− 𝑢
𝑥,𝑡

ℎ
= 𝑘 (𝑢

𝑥−1,𝑡 − 2𝑢
𝑥,𝑡

+𝑢
𝑥+1,𝑡) +𝑓 (𝑢

𝑥,𝑡
) ,

𝑥 ∈ Z, 𝑡 ∈ {0, ℎ, 2ℎ, . . .} .
(2)

Examples of such phenomena are chemical reactions related
to crystal formation, see Cahn [1], or myelinated nerve
axons, see Bell and Cosner [2] and Keener [3]. Existence and
nonexistence of travelling waves in those models have been
recently studied in Chow [4], Chow et al. [5], and Zinner [6]
mostly with the cubic (or bistable, double-well) nonlinearities
of the form 𝑓(𝑢) = 𝜆𝑢(𝑢−𝑎)(1−𝑢), with 𝜆 > 0 and 𝑎 ∈ (0, 1)
(this special case of FKPP equation is being referred to as
Nagumo equation). In contrast, various reaction functions
have been proposed inmodels without spatial interaction, for
example, Xu et al. [7].

Motivated by these facts, we allow for a general form of
the reaction function 𝑓 in this paper (i.e., we do not restrict
ourselves to cubic nonlinearities).We prove a priori estimates

Hindawi Publishing Corporation
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for discrete reaction-diffusion equation (2) and then use
Eulermethod to show their validity for semidiscrete reaction-
diffusion equation (1). Whereas the maximum principles in
the semidiscrete case exhibit similar features to those of
continuous reaction-diffusion model (i.e., they hold under
similar assumptions), in the discrete case the weakmaximum
principle holds for a smaller class of functions and the strong
maximum principle is only valid in a weaker sense involving
the domain of dependence. Finally, we use the maximum
principles to get the global existence of solutions of the
initial-boundary problem for the semidiscrete case (1). All
our results are illustrated in detail in Nagumo equations
with a symmetric bistable nonlinearity; that is, we consider
problems (1)-(2) with 𝑓(𝑢) = 𝜆𝑢(1 − 𝑢2).

Our motivation is twofold. First, maximum principles
could be used to obtain comparison principles (Protter and
Weinberger [8]), which in turn could serve as a valuable tool
in the study of traveling waves, for example, Bell and Cosner
[2]. Moreover, similarly as in the case of (non)existence of
traveling wave solutions for Nagumo equations, it has been
shown that discrete and semidiscrete structures influence the
validity of maximum principles in a significant way. Even the
simplest one-dimensional linear problems require additional
assumptions on the step size; seeMawhin et al. [9] and Stehĺık
and Thompson [10]. In the case of partial difference and
semidiscrete equations, the strong influence of the underlying
structure on maximum principles has been described in the
linear case for transport equation in Stehĺık and Volek [11]
and for diffusion-type equations in Slavı́k and Stehĺık [12]
and Friesl et al. [13] (interestingly, the proofs of maximum
principles in this case are based on product integration; see
Slavı́k [14]). Finally, simple maximum principles for nonlin-
ear transport equations on semidiscrete domains have been
presented in Volek [15].

In the classical case, maximum principles for diffusion
(and parabolic) equations go back to Picone [16] and Levi
[17]. Strong maximum principles were later established by
Nirenberg [18] and a survey of various versions and appli-
cations could be found in a classical monograph Protter and
Weinberger [8].

This paper is segmented in the following way. In Sec-
tion 2, we briefly summarize results for the classical reaction-
diffusion equation. Next, we prove weak and strong maxi-
mum principles for the discrete case (2) (Sections 3 and 4).
In the case of the initial-boundary value problem for the
semidiscrete equation (1) we provide local existence results
(Section 5) and maximum principles (Section 6) which we
consequently apply to get global existence of solutions in
Section 7. Our results are then applied to the Nagumo
equation with a symmetric bistable nonlinearity, that is,
problems (1)-(2) with 𝑓(𝑢) = 𝜆𝑢(1 − 𝑢2), in Section 8.

2. Reaction-Diffusion Partial
Differential Equation

In order tomotivate and compare our results for the reaction-
diffusionequationsondiscrete-spacedomainswith the classical

reaction-diffusion equation we briefly summarize few basic
results for the following initial-boundary problem:

𝜕
𝑡
𝑢 (𝑥, 𝑡) = 𝑘𝜕

𝑥𝑥
𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) ,

𝑥 ∈ (𝑎, 𝑏) , 𝑡 ∈ R
+, 𝑘 > 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

𝑢 (𝑎, 𝑡) = 𝜉
𝑎
(𝑡) , 𝑡 ∈ R

+

0 ,

𝑢 (𝑏, 𝑡) = 𝜉
𝑏
(𝑡) , 𝑡 ∈ R

+

0 ,

(3)

where 𝑓 : (𝑎, 𝑏) × R+ × R → R is a reaction function and
𝜑 : [𝑎, 𝑏] → R, 𝜉

𝑎
, 𝜉

𝑏
: R+

0 → R are initial-boundary
conditions satisfying 𝜑(𝑎) = 𝜉

𝑎
(0) and 𝜑(𝑏) = 𝜉

𝑏
(0).

The following existence and uniqueness result for (3) can
be found, for example, in [19, page 298].

Theorem 1. Let 𝑇 > 0 be arbitrary and let 𝑓 be uniformly
Hölder continuous in 𝑥 and 𝑡 and Lipschitz in 𝑢 for (𝑥, 𝑡) ∈
(𝑎, 𝑏) × (0, 𝑇]. Then for all Hölder continuous initial-boundary
conditions 𝜑, 𝜉

𝑎
, 𝜉

𝑏
problem (3) has a unique bounded solution

which is defined on [𝑎, 𝑏] × [0, 𝑇].

We define the following two numbers for the brevity:

𝑀
𝑇

:= max
𝑥∈[𝑎,𝑏],𝑡∈[0,𝑇]

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} ,

𝑚
𝑇

:= min
𝑥∈[𝑎,𝑏],𝑡∈[0,𝑇]

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} .

(4)

For the linear diffusion equation (i.e., (3) with𝑓(𝑥, 𝑡, 𝑢) ≡
0) the maximum principle is proved, for example, in [8,
Chapter 3.1]. For the nonlinear problem (3) (i.e., 𝑓(𝑥, 𝑡, 𝑢) ̸=
0) the following weak maximum principle holds (see [19,
Theorem 1]).

Theorem 2. Let 𝑇 > 0 be arbitrary and let 𝑓 be uniformly
Hölder continuous in 𝑥 and 𝑡 and Lipschitz in 𝑢 for (𝑥, 𝑡) ∈
(𝑎, 𝑏) × (0, 𝑇] and assume that

𝑓 (𝑥, 𝑡,𝑀
𝑇
) ≤ 0 ≤ 𝑓 (𝑥, 𝑡, 𝑚

𝑇
)

∀ (𝑥, 𝑡) ∈ (𝑎, 𝑏) × (0, 𝑇] .
(5)

Let 𝑢 be a continuous solution of (3) with Hölder continuous
initial-boundary conditions 𝜑, 𝜉

𝑎
, 𝜉

𝑏
. Then

𝑚
𝑇

≤ 𝑢 (𝑥, 𝑡) ≤ 𝑀
𝑇

(6)

holds for all (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇].

Moreover, the strong maximum principle also holds (see
[19, Theorem 2]).

Theorem 3. Let the assumptions ofTheorem 2 be satisfied and
let 𝑢 be a solution of (3) on [𝑎, 𝑏] × [0, 𝑇]. If 𝑢(𝑥0, 𝑡0) = 𝑀

𝑇
(or

𝑢(𝑥0, 𝑡0) = 𝑚
𝑇
) for some (𝑥0, 𝑡0) ∈ (𝑎, 𝑏) × (0, 𝑇] then

𝑢 (𝑥, 𝑡) = 𝑀
𝑇

(𝑜𝑟 𝑢 (𝑥, 𝑡) =𝑚
𝑇
)

∀ (𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑡0] .

(7)
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3. Discrete Reaction-Diffusion Equation:
Weak Maximum Principles

Let us consider the initial-boundary value problem for
the discrete reaction-diffusion equation (which could be
obtained, e.g., by Euler discretization of (3)):

𝑢 (𝑥, 𝑡 + ℎ) − 𝑢 (𝑥, 𝑡)

ℎ
= 𝑘Δ2

𝑥𝑥
𝑢 (𝑥 − 1, 𝑡)

+ 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) ,

𝑥 ∈ (𝑎, 𝑏)Z , 𝑡 ∈ ℎN0, ℎ > 0, 𝑘 > 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (𝑎, 𝑏)Z ,

𝑢 (𝑎, 𝑡) = 𝜉
𝑎
(𝑡) , 𝑡 ∈ ℎN0,

𝑢 (𝑏, 𝑡) = 𝜉
𝑏
(𝑡) , 𝑡 ∈ ℎN0,

(8)

where 𝑓 : (𝑎, 𝑏)Z × ℎN0 × R → R is a reaction function,
𝜑 : (𝑎, 𝑏)Z → R, 𝜉

𝑎
, 𝜉

𝑏
: ℎN0 → R are initial-boundary

conditions, ℎN0 := {ℎ𝑛, 𝑛 ∈ N0}, (𝑎, 𝑏)Z := (𝑎, 𝑏) ∩ Z, and
Δ2
𝑥𝑥

𝑢(𝑥−1, 𝑡) := 𝑢(𝑥−1, 𝑡)−2𝑢(𝑥, 𝑡)+𝑢(𝑥+1, 𝑡) (for brevity,
we assume the space discretization step ℎ

𝑥
= 1, but all our

results are easily extendable to an arbitrary step ℎ
𝑥

> 0 if we
use the diffusion constant 𝑘̃ = 𝑘/ℎ2

𝑥
instead of 𝑘; we discuss

this in detail in a specific example at the end of Section 8).
Straightforwardly, problem (8) has a unique solution

which is defined in [𝑎, 𝑏]Z × ℎN0, since 𝑢(𝑥, 𝑡 + ℎ) is uniquely
given by

𝑢 (𝑥, 𝑡 + ℎ)

=

{{{{
{{{{
{

𝑢 (𝑥, 𝑡) + ℎ (𝑘Δ2
𝑥𝑥

𝑢 (𝑥 − 1, 𝑡) + 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))) , 𝑥 ∈ (𝑎, 𝑏)Z ,

𝜉
𝑎
(𝑡 + ℎ) , 𝑥 = 𝑎,

𝜉
𝑏
(𝑡 + ℎ) , 𝑥 = 𝑏.

(9)

For 𝑇 ∈ ℎN0, we define the following two numbers:

𝑀
𝑇

:= max
𝑥∈(𝑎,𝑏)Z ,𝑡∈[0,𝑇]ℎN0

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} , (10)

𝑚
𝑇

:= min
𝑥∈(𝑎,𝑏)Z ,𝑡∈[0,𝑇]ℎN0

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} . (11)

For brevity of the following assertions we formulate the
assumption in the reaction function 𝑓:

(D) Let 𝑇 ∈ ℎN
0
and let 𝑓 satisfy

2ℎ𝑘 − 1
ℎ

(𝑢 −𝑚
𝑇
) ≤ 𝑓 (𝑥, 𝑡, 𝑢) ≤

2ℎ𝑘 − 1
ℎ

(𝑢 −𝑀
𝑇
) , (12)

for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇]
ℎN0

and 𝑢 ∈ [𝑚
𝑇
,𝑀

𝑇
].

Remark 4. The inequalities (12) imply that for all fixed 𝑥
and 𝑡 the graph of function 𝑓(𝑥, 𝑡, ⋅) does not intersect the
forbidden area depicted in Figure 1.

Remark 5. Let us notice that for ℎ → 0+ the slope (2ℎ𝑘 −
1)/ℎ goes to −∞; that is, the forbidden area from Remark 4
is smaller in the sense of inclusion and it is easier to satisfy
assumption (𝐷) if we decrease the time discretization step ℎ.
We illustrate this fact in Figure 1.

MT

mT

h 󳨀→ 0+ f

h 󳨀→ 0+

u

f(x, t, ·)

Figure 1:The forbidden area for the function𝑓(𝑥, 𝑡, ⋅) in assumption
(𝐷). The change of this area if ℎ → 0+. The slope of the dashed line
is given by 2𝑘 − 1/ℎ; see assumption (𝐷).

Proposition 6. Assume that 𝑚
𝑇

< 𝑀
𝑇
. If ℎ > 1/2𝑘 then (𝐷)

does not hold for any function 𝑓.

Note that the inequality ℎ ≤ 1/2𝑘 is the necessary
condition for the validity of maximum principles even in the
linear case; see, for example, [13, Theorem 2.4].

Proof. If ℎ > 1/2𝑘 (i.e., 2ℎ𝑘 − 1 > 0) then from (12) there
should be

0 <
2ℎ𝑘 − 1

ℎ
(𝑢 −𝑚

𝑇
) ≤ 𝑓 (𝑥, 𝑡, 𝑢)

≤
2ℎ𝑘 − 1

ℎ
(𝑢 −𝑀

𝑇
) < 0 for 𝑢 ∈ (𝑚

𝑇
,𝑀

𝑇
) ,

(13)

a contradiction.

Remark 7. Notice that if 𝑚
𝑇

= 𝑀
𝑇
then (𝐷) implies that

𝑓(𝑥, 𝑡, 𝑚
𝑇
) = 𝑓(𝑥, 𝑡,𝑀

𝑇
) = 0 for all 𝑥 ∈ (𝑎, 𝑏)Z and

𝑡 ∈ [0, 𝑇]
ℎN0

. This situation corresponds to the case of the
constant initial-boundary conditions 𝜑(𝑥) ≡ 𝑀

𝑇
and 𝜉

𝑎
(𝑡) ≡

𝜉
𝑏
(𝑡) ≡ 𝑀

𝑇
. From 𝑓(𝑥, 𝑡,𝑀

𝑇
) = 0 and from (9) there is

𝑢 (𝑥, 𝑡) = 𝜑 (𝑥) = 𝑀
𝑇

for 𝑡 ∈ [0, 𝑇]
ℎN0

. (14)

Now we state an auxiliary lemma which is crucial in the
proof of the maximum principle.

Lemma 8. Let 𝑇 ∈ ℎN0, let function 𝑓 satisfy (𝐷), and let 𝑢
be the unique solution of (8). Then for all 𝑥 ∈ [𝑎, 𝑏]Z and for
all 𝑡 ∈ [0, 𝑇)

ℎN0

𝑚
𝑇

≤ 𝑢 (𝑥, 𝑡) ≤ 𝑀
𝑇

implies that 𝑚
𝑇

≤ 𝑢 (𝑥, 𝑡 + ℎ) ≤ 𝑀
𝑇
.

(15)

Proof. For the sake of brevity, we only show that 𝑢(𝑥, 𝑡 + ℎ) ≤
𝑀

𝑇
.The inequality𝑚

𝑇
≤ 𝑢(𝑥, 𝑡+ℎ) can be proved in the same

way.
Let 𝑡 ∈ ℎN0, 𝑡 < 𝑇, be arbitrary. Then 𝑢(𝑎, 𝑡 + ℎ) = 𝜉

𝑎
(𝑡 +

ℎ) ≤ 𝑀
𝑇
and 𝑢(𝑏, 𝑡 + ℎ) = 𝜉

𝑏
(𝑡 + ℎ) ≤ 𝑀

𝑇
trivially from
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the definition of 𝑀
𝑇
(10) (recall that 𝑡 < 𝑇, i.e., 𝑡 + ℎ ≤ 𝑇). If

𝑥 ∈ (𝑎, 𝑏)Z then we can estimate

𝑢 (𝑥, 𝑡 + ℎ) = 𝑢 (𝑥, 𝑡) + ℎ (𝑘𝑢 (𝑥 − 1, 𝑡) − 2𝑘𝑢 (𝑥, 𝑡)

+ 𝑘𝑢 (𝑥 + 1, 𝑡) + 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))) ≤ 2ℎ𝑘𝑀
𝑇
+ (1

− 2ℎ𝑘) 𝑢 (𝑥, 𝑡) + ℎ𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) .

(16)

Thanks to the assumptions (12) and 𝑚
𝑇

≤ 𝑢(𝑥, 𝑡) ≤ 𝑀
𝑇
we

get

ℎ𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) ≤ (2ℎ𝑘 − 1) (𝑢 (𝑥, 𝑡) −𝑀
𝑇
) . (17)

Therefore,

𝑢 (𝑥, 𝑡 + ℎ) ≤ 2ℎ𝑘𝑀
𝑇
+ (1− 2ℎ𝑘) 𝑢 (𝑥, 𝑡)

+ ℎ𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡))

≤ 2ℎ𝑘𝑀
𝑇
+ (1− 2ℎ𝑘) 𝑢 (𝑥, 𝑡)

+ (2ℎ𝑘 − 1) (𝑢 (𝑥, 𝑡) −𝑀
𝑇
) = 𝑀

𝑇
.

(18)

The weak maximum principle follows immediately.

Theorem 9. Let 𝑇 ∈ ℎN0 be arbitrary, let function 𝑓 satisfy
(𝐷), and let 𝑢 be the unique solution of (8). Then

𝑚
𝑇

≤ 𝑢 (𝑥, 𝑡) ≤ 𝑀
𝑇

(19)

holds for all 𝑥 ∈ [𝑎, 𝑏]Z and 𝑡 ∈ [0, 𝑇]
ℎN0

.

Proof. From (10) to (11) we get 𝑚
𝑇

≤ 𝑢(𝑥, 0) ≤ 𝑀
𝑇
for all

𝑥 ∈ [𝑎, 𝑏]Z. Immediately, Lemma 8 yields that (19) holds for
all 𝑥 ∈ [𝑎, 𝑏]Z and 𝑡 ∈ [0, 𝑇]

ℎN0
.

Remark 10. If the reaction function 𝑓 does not satisfy the
inequalities (12) we can find a counterexample that the
maximum principle does not hold in general. For example,
let us consider (8) with 𝑎 = −1, 𝑏 = 1, 𝑡 ∈ N0, and 𝜑(𝑥) ≡ 0,
𝜉
𝑎
(𝑡) ≡ 𝜉

𝑏
(𝑡) ≡ 0. Let us assume that, for example, the latter

inequality in (12) does not hold; that is,

𝑓 (0, 𝑡, 0) >
2ℎ𝑘 − 1

ℎ
(0−𝑀

𝑇
) = 0, (20)

for some 𝑡 ∈ N0. Assuming without loss of generality that 𝑡 =
0, then the maximum principle is straightforwardly violated
since

𝑢 (0, 1) = 𝑘𝑢 (−1, 0) + (1− 2𝑘) 𝑢 (0, 0) + 𝑘𝑢 (1, 0)

+ 𝑓 (0, 0, 0) = 𝑓 (0, 0, 0) > 0 = 𝑀
𝑇
.

(21)

In certain cases, the function 𝑓 could fail to satisfy (𝐷)
but could still provide a priori bounds for solutions of (8) if
the following inequalities hold.

(𝐷󸀠) Let 𝑇 ∈ ℎN
0
and let there exist 𝑆 ≥ 𝑀

𝑇
and 𝑅 ≤ 𝑚

𝑇

such that
2ℎ𝑘 − 1

ℎ
(𝑢 −𝑅) ≤ 𝑓 (𝑥, 𝑡, 𝑢) ≤

2ℎ𝑘 − 1
ℎ

(𝑢 − 𝑠) , (22)

S

R

MT

mT

f

u

f(x, t, ·)

Figure 2: The example of the function 𝑓 that does not satisfy
(𝐷) but satisfies (𝐷󸀠) for some constants 𝑅, 𝑆. Such a function
consequently provides a priori bounds for solutions of (8) in the
sense of Theorem 11.

for all 𝑥 ∈ (𝑎, 𝑏)Z and 𝑡 ∈ ℎN
0
such that 0 ≤ 𝑡 ≤ 𝑇 and

𝑢 ∈ [𝑅, 𝑆].

In that case, we obtain a general version of the weak
maximum principle (for the illustration of (𝐷󸀠) see Figure 2).

Theorem 11. Let 𝑇 ∈ ℎN0 be arbitrary, let function 𝑓 satisfy
(𝐷󸀠), and let 𝑢 be the unique solution of (8). Then

𝑅 ≤ 𝑢 (𝑥, 𝑡) ≤ 𝑆 (23)

holds for all 𝑥 ∈ (𝑎, 𝑏)Z and 𝑡 ∈ ℎN0 such that 0 ≤ 𝑡 ≤ 𝑇.

Proof. For 𝑡 = 0 we have

𝑅 ≤ 𝑚
𝑇

≤ 𝑢 (𝑥, 0) ≤ 𝑀
𝑇

≤ 𝑆, ∀𝑥 ∈ (𝑎, 𝑏)Z . (24)

Nowwe can proceed analogously as in the proofs of Lemma 8
andTheorem 9where we use (𝐷󸀠) instead of (𝐷).We omit the
details.

Example 12. The set of nonlinear reaction functions 𝑓 that
could be considered inTheorem 9 or 11 includes, for example,
(for the detailed analysis with 𝑓(𝑥, 𝑡, 𝑢) = 𝜆𝑢(1 − 𝑢2) see
Section 8)

(i) 𝑓(𝑥, 𝑡, 𝑢) = −|𝑢|𝑝−1𝑢 with 𝑝 > 1,
(ii) the logistic function 𝑓(𝑥, 𝑡, 𝑢) = 𝑢(1 − 𝑢),
(iii) the bistable nonlinearity 𝑓(𝑥, 𝑡, 𝑢) = 𝜆𝑢(𝑢−𝑎)(1−𝑢),

𝑎 ∈ (0, 1),
(iv) 𝑓(𝑥, 𝑡, 𝑢) = 𝜆𝑢(1 − 𝑢𝑝) where 𝑝 ∈ N,
(v) 𝑓(𝑥, 𝑡, 𝑢) = −|𝑥| arctan(𝑡2𝑢).

We state the following two claims that are direct corollar-
ies of Theorem 9.

Corollary 13. Assume that 𝜉
𝑎
, 𝜉

𝑏
are bounded. Let 𝑓 satisfy

(𝐷) for all 𝑇 > 0. Then the unique solution 𝑢 of (8) is bounded.

Corollary 14. Assume that 𝜑, 𝜉
𝑎
, 𝜉

𝑏
are nonnegative. Let 𝑓

satisfy (𝐷) for all 𝑇 > 0. Then the unique solution 𝑢 of (8)
is nonnegative.
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4. Discrete Reaction-Diffusion Equation:
Strong Maximum Principle

As in the case of classical reaction-diffusion equation (3)
(Theorem 3) we naturally turn our attention to strong max-
imum principles. Straightforwardly, the strong maximum
principle does not hold in the discrete case in the sense of
Theorem 3.

Example 15. Let us consider problem (8) with 𝑥 ∈ [−2, 2]Z,
𝑡 ∈ N0, 𝑓(𝑥, 𝑡, 𝑢) ≡ 0, and 𝑘 = 1/2 (note that ℎ = 1/2𝑘) and
let

𝜑 (𝑥) ≡ 𝑀 > 0, 𝑥 ∈ {−1, 0, 1} ,

𝜉
−2 (𝑡) ≡ 𝜉2 (𝑡) ≡ 0, 𝑡 ∈ N0.

(25)

Then from (9) we get

𝑢 (0, 1) = 𝑢 (0, 0) + 𝑘𝑢 (−1, 0) − 2𝑘𝑢 (0, 0) + 𝑘𝑢 (1, 0)

+ 𝑓 (0, 0, 0) = 𝑀.
(26)

Analogously, we can deduce that

𝑢 (−2, 1) = 𝑢 (2, 1) = 0,

𝑢 (−1, 1) = 𝑢 (1, 1) =
𝑀

2
.

(27)

Consequently, the strong maximum principle does not hold.

Nonetheless, given the fact that the values of 𝑢(𝑥, 𝑡)
are given by (9), we can easily construct the domain of
dependence of (𝑥0, 𝑡0):

D (𝑥0, 𝑡0) := {(𝑥, 𝑡) ∈ [𝑎, 𝑏]Z × ℎN0 : 𝑡 ≤ 𝑡0, 𝑥 = 𝑥0

± 𝑗, 𝑗 = 0, 1, . . . ,
𝑡0 − 𝑡

ℎ
}

(28)

and the domain of influence of (𝑥0, 𝑡0):

I (𝑥0, 𝑡0) := {(𝑥, 𝑡) ∈ [𝑎, 𝑏]Z × ℎN0 : 𝑡 ≥ 𝑡0, 𝑥 = 𝑥0

± 𝑗, 𝑗 = 0, 1, . . . ,
𝑡 − 𝑡0

ℎ
} .

(29)

Considering the following:

(𝐷󸀠󸀠) Let 𝑇 ∈ ℎN
0
and let 𝑓 satisfy for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈

[0, 𝑇]
ℎN0

:

(a) 𝑓(𝑥, 𝑡, 𝑢) < ((2ℎ𝑘 − 1)/ℎ)(𝑢 − 𝑀
𝑇
) when 𝑢 ∈

[𝑚
𝑇
,𝑀

𝑇
),

(b) 𝑓(𝑥, 𝑡, 𝑢) > ((2ℎ𝑘 − 1)/ℎ)(𝑢 − 𝑚
𝑇
) when 𝑢 ∈

(𝑚
𝑇
,𝑀

𝑇
],

(c) 𝑓(𝑥, 𝑡,𝑀
𝑇
) ≤ 0 and 𝑓(𝑥, 𝑡, 𝑚

𝑇
) ≥ 0,

the weaker version of the strong maximum principle follows
immediately.

Theorem 16. Assume that the function 𝑓 satisfies (𝐷󸀠󸀠) for all
𝑇 ∈ ℎN0. Let 𝑢 be the unique solution of (8) and (𝑥0, 𝑡0) ∈
[𝑎, 𝑏]Z × ℎN0.

(1) If 𝑢(𝑥0, 𝑡0) = 𝑀
𝑇
(or 𝑢(𝑥0, 𝑡0) = 𝑚

𝑇
), then 𝑢(𝑥, 𝑡) =

𝑀
𝑇
(or 𝑢(𝑥, 𝑡) = 𝑚

𝑇
) onD(𝑥0, 𝑡0).

(2) If 𝑢(𝑥0, 𝑡0) < 𝑀
𝑇
(or 𝑢(𝑥0, 𝑡0) > 𝑚

𝑇
), then 𝑢(𝑥, 𝑡) <

𝑀
𝑇
(or 𝑢(𝑥, 𝑡) > 𝑚

𝑇
) onI(𝑥0, 𝑡0).

Proof. Let us only focus on the former statement of the
theorem; the latter could be proved in very similar way. We
show that if the function 𝑓 satisfies (𝐷󸀠󸀠) and 𝑢(𝑥0, 𝑡0) = 𝑀

𝑇

for some 𝑥0 ∈ (𝑎, 𝑏)Z, 𝑡0 ∈ ℎN0, 0 < 𝑡0 ≤ 𝑇, then
𝑢(𝑥0 − 1, 𝑡0 − ℎ) = 𝑢(𝑥0, 𝑡0 − ℎ) = 𝑢(𝑥0 + 1, 𝑡0 − ℎ) = 𝑀

𝑇
.

The rest follows by induction.
Assume by contradiction first that 𝑢(𝑥0 − 1, 𝑡0 − ℎ) < 𝑀

𝑇

(the case 𝑢(𝑥0 + 1, 𝑡0 − ℎ) < 𝑀
𝑇
follows easily). Using this

assumption, (9), andTheorem 9 we can estimate

𝑢 (𝑥
0
, 𝑡0) = ℎ𝑘 (𝑢 (𝑥0 − 1, 𝑡0 − ℎ) + 𝑢 (𝑥0 + 1, 𝑡0 − ℎ))

+ (1− 2ℎ𝑘) 𝑢 (𝑥0, 𝑡0 − ℎ)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ))

< 2ℎ𝑘𝑀
𝑇
+ (1− 2ℎ𝑘) 𝑢 (𝑥0, 𝑡0 − ℎ)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ)) +𝑀
𝑇

−𝑀
𝑇

= (1− 2ℎ𝑘) (𝑢 (𝑥0, 𝑡0 − ℎ) −𝑀
𝑇
)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ)) +𝑀
𝑇
.

(30)

Thus, (𝐷󸀠󸀠) yields

(1− 2ℎ𝑘) (𝑢 (𝑥0, 𝑡0 − ℎ) −𝑀
𝑇
)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ)) ≤ 0.
(31)

Consequently, there has to be
𝑢 (𝑥0, 𝑡0) < 𝑀

𝑇
, (32)

a contradiction.
If 𝑢(𝑥0, 𝑡0 − ℎ) < 𝑀

𝑇
, then by the similar procedure as

above we obtain
𝑢 (𝑥0, 𝑡0) ≤ (1− 2ℎ𝑘) (𝑢 (𝑥0, 𝑡0 − ℎ) −𝑀

𝑇
)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ)) +𝑀
𝑇
.

(33)

Since 𝑢(𝑥0, 𝑡0 − ℎ) ∈ [𝑚
𝑇
,𝑀

𝑇
) in this case, (𝐷󸀠󸀠) implies that

(1− 2ℎ𝑘) (𝑢 (𝑥0, 𝑡0 − ℎ) −𝑀
𝑇
)

+ ℎ𝑓 (𝑥0, 𝑡0 − ℎ, 𝑢 (𝑥0, 𝑡0 − ℎ)) < 0.
(34)

Hence,
𝑢 (𝑥0, 𝑡0) < 𝑀

𝑇
, (35)

a contradiction.

In the case of nonconstant time discretization ℎ = ℎ(𝑡)we
can follow similar techniques and consider (𝐷) (eventually,
(𝐷󸀠) or (𝐷󸀠󸀠)) with ℎmax (or ℎsup for 𝑇 → ∞); see Remark 5.
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5. Semidiscrete Reaction-Diffusion Equation:
Local Existence

In this section we study the local existence of the following
initial-boundary value problem on semidiscrete domains:

𝑢
𝑡
(𝑥, 𝑡) = 𝑘Δ2

𝑥𝑥
𝑢 (𝑥 − 1, 𝑡) + 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) ,

𝑥 ∈ (𝑎, 𝑏)Z , 𝑡 ∈ R
+

0 , 𝑘 > 0,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (𝑎, 𝑏)Z ,

𝑢 (𝑎, 𝑡) = 𝜉
𝑎
(𝑡) , 𝑡 ∈ R

+

0 ,

𝑢 (𝑏, 𝑡) = 𝜉
𝑏
(𝑡) , 𝑡 ∈ R

+

0 ,

(36)

where 𝑢
𝑡
= 𝜕

𝑡
𝑢 denotes the time derivative, 𝑓 : (𝑎, 𝑏)Z ×R+

0 ×
R → R is a reaction function, 𝜑 : (𝑎, 𝑏)Z → R, 𝜉

𝑎
, 𝜉

𝑏
∈

𝐶1(R+

0 ) are initial-boundary conditions, and R+

0 := [0, +∞).
Given the fact that (36) can be interpreted as a vector

ODE, we can rewrite it as

u󸀠 (𝑡) = g (𝑡, u (𝑡)) , 𝑡 ∈ R
+

0 ,

u (0) = ũ,
(37)

where u : R+

0 → R𝑁, g : R+

0 ×R𝑁 → R𝑁 is continuous and
ũ ∈ R𝑁.

Naturally, we use the well-known result of Picard and
Lindelöf to get the local existence for the initial value problem
(37) (see [20, Theorem 8.13]).

Theorem 17. Assume that g is continuous on the rectangle

𝑄 = {(𝑡, u) ∈R+

0 ×R
𝑁 : 0≤ 𝑡 ≤ 𝛼, ‖u− ũ‖ ≤ 𝛽} (38)

and satisfies the Lipschitz condition on 𝑄; that is, there exists
𝐿 > 0 such that, for all (𝑡1, u1), (𝑡2, u2) ∈ 𝑄

󵄩󵄩󵄩󵄩g (𝑡1, u1) − g (𝑡2, u2)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩u1 − u2
󵄩󵄩󵄩󵄩 (39)

holds. Then there exists 𝜂 > 0 such that (37) has a unique
solution u defined on [0, 𝜂].

We apply Theorem 17 to get the local existence for the
semidiscrete reaction-diffusion equation (36). We use the
following two assumptions:

(𝐶cont) Let 𝑓(𝑥, 𝑡, 𝑢) be continuous in (𝑡, 𝑢) ∈ R+

0
× R for all

𝑥 ∈ (𝑎, 𝑏)Z.
(𝐶lip) Let 𝑓(𝑥, 𝑡, 𝑢) be locally Lipschitz with respect to 𝑢 on

(𝑎, 𝑏)Z × R+

0
× R; that is, for all 𝑥

0
∈ (𝑎, 𝑏)Z, 𝑡0 ∈ R+

0
,

and 𝑢
0
∈ R there exist 𝛼, 𝛽 > 0 and

𝑄 (𝑥
0
, 𝑡
0
, 𝑢

0
) = {(𝑥

0
, 𝑡, 𝑢) ∈ (𝑎, 𝑏)Z ×R

+

0

×R :
󵄨󵄨󵄨󵄨𝑡 − 𝑡

0

󵄨󵄨󵄨󵄨 ≤ 𝛼,
󵄨󵄨󵄨󵄨𝑢 − 𝑢

0

󵄨󵄨󵄨󵄨 ≤ 𝛽}
(40)

and 𝐿 > 0 such that for all (𝑥
0
, 𝑡
1
, 𝑢

1
), (𝑥

0
, 𝑡
2
, 𝑢

2
) ∈ 𝑄

there is
󵄨󵄨󵄨󵄨𝑓 (𝑥0, 𝑡1, 𝑢1) −𝑓 (𝑥0, 𝑡2, 𝑢2)

󵄨󵄨󵄨󵄨 ≤ 𝐿
󵄨󵄨󵄨󵄨𝑢1 −𝑢2

󵄨󵄨󵄨󵄨 . (41)

Theorem 18. Let 𝑓 satisfy (𝐶
𝑐𝑜𝑛𝑡

) and (𝐶
𝑙𝑖𝑝
). Then there exists

𝜂 > 0 such that (36) has a unique solution defined on [𝑎, 𝑏]Z ×
[0, 𝜂].

Proof. Since the space variable 𝑥 is from a finite set (𝑎, 𝑏)Z
problem (36) corresponds to the following vector ODE:

(
(
(

(

𝑢(𝑎 + 1, 𝑡)
𝑢 (𝑎 + 2, 𝑡)

...

𝑢 (𝑏 − 2, 𝑡)
𝑢 (𝑏 − 1, 𝑡)

)
)
)

)

󸀠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
u󸀠(𝑡)

= 𝑘
(
(

(

−2 1 0 ⋅ ⋅ ⋅ 0
1 −2 1 ⋅ ⋅ ⋅ 0

d

0 ⋅ ⋅ ⋅ −2 1
0 ⋅ ⋅ ⋅ 1 −2

)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

(
(
(

(

𝑢(𝑎 + 1, 𝑡)
𝑢 (𝑎 + 2, 𝑡)

...

𝑢 (𝑏 − 2, 𝑡)
𝑢 (𝑏 − 1, 𝑡)

)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
u(𝑡)

+ 𝑘
(
(
(

(

𝜉
𝑎
(𝑡)

0
...

0
𝜉
𝑏
(𝑡)

)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜉(𝑡)

+
(
(
(

(

𝑓(𝑎 + 1, 𝑡, 𝑢 (𝑎 + 1, 𝑡))
𝑓 (𝑎 + 2, 𝑡, 𝑢 (𝑎 + 2, 𝑡))

...

𝑓 (𝑏 − 2, 𝑡, 𝑢 (𝑏 − 2, 𝑡))
𝑓 (𝑏 − 1, 𝑡, 𝑢 (𝑏 − 1, 𝑡))

)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
f(𝑡,u(𝑡))

,

(42)

coupled with the initial condition

(

𝑢(𝑎 + 1, 0)
𝑢 (𝑎 + 2, 0)

...

𝑢 (𝑏 − 1, 0)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
u(0)

= (

𝜑(𝑎 + 1)
𝜑 (𝑎 + 2)

...

𝜑 (𝑏 − 1)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜑

. (43)

Thus, problem (36) can be rewritten in the vector form as
follows:

u󸀠 (𝑡) = 𝑘Au (𝑡) + 𝑘𝜉 (𝑡) + f (𝑡, u (𝑡)) , 𝑡 ∈ R
+

0 ,

u (0) = 𝜑.
(44)
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Assumptions (𝐶cont) and (𝐶lip) yield that the nonlinear
function f is continuous and satisfies Lipschitz conditionwith
respect to u on some rectangle 𝑄. Since the term Au is linear
and therefore Lipschitz with respect to u and 𝜉 ∈ 𝐶1(R+

0 ) the
assumptions of Theorem 17 are satisfied. Consequently, there
exists 𝜂 > 0 such that (44) has a unique solution on [0, 𝜂].

Remark 19. If we assume only (𝐶cont) then we can apply the
Peano theorem [20, Theorem 8.27] instead of Theorem 17 to
get the local existence of solutions of (36) which need not be
unique.

6. Semidiscrete Reaction-Diffusion Equation:
Maximum Principles

Having the local existence and uniqueness we focus on the
maximum principles for (36). In the following analysis we
approximate the solution of (36) by the solutions of the
discrete problem (8) which arises from (36) by the explicit
(Euler) discretization of the time variable.

First, we define the Euler polygon (see [21, I.7]).

Definition 20. Let ℎ > 0 be a discretization step. Consider the
initial value problem (37) on the interval [0, 𝑇]where𝑇 = 𝑛ℎ,
𝑛 ∈ N. Define the subdivision of interval [0, 𝑇] as the set of
points 𝑡

𝑖
= 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑛, and for 𝑖 = 0, 1, . . . , 𝑛 − 1 define

y
𝑖+1 = y

𝑖
+ ℎg (𝑡

𝑖
, y

𝑖
) ,

y0 = u (0) = ũ.
(45)

Then the continuous function y
(ℎ)

: [0, 𝑇] → R𝑁 defined by

y
(ℎ)

(𝑡) = y
𝑖
+ (𝑡 − 𝑡

𝑖
) g (𝑡

𝑖
, y

𝑖
) , 𝑡

𝑖
≤ 𝑡 ≤ 𝑡

𝑖+1, (46)

is called Euler polygon.

The following statement sums up the convergence of
Euler method (see [21, I.7, Theorem 7.3 and I.9, page 54]).

Theorem 21. Let 𝑇 > 0 and let g be continuous, satisfying
Lipschitz condition on

𝑄 = {(𝑡, u) ∈R+

0 ×R
𝑁 : 0≤ 𝑡 ≤𝑇, ‖u− ũ‖ ≤ 𝛽} , (47)

and let ‖g‖ be bounded by a constant 𝐴 > 0 on 𝑄. If 𝑇 ≤ 𝛽/𝐴
then the following hold:

(a) for ℎ → 0+ the Euler polygons y
(ℎ)

(𝑡) converge
uniformly to a continuous function 𝜗(𝑡) on [0, 𝑇],

(b) 𝜗 ∈ 𝐶1(0, 𝑇) and it is the unique solution of (37) on
[0, 𝑇].

We define the bounds of initial-boundary conditions
similarly as in the discrete problem:

𝑀
𝑇

:= max
𝑥∈(𝑎,𝑏)Z ,𝑡∈[0,𝑇]

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} ,

𝑚
𝑇

:= min
𝑥∈(𝑎,𝑏)Z ,𝑡∈[0,𝑇]

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} .

(48)

Before we state the weak maximum principle we describe
the connection between the discretization of (36) and the
assumption (𝐷).

Lemma 22. Let 𝑇 ∈ R+

0 and let 𝑓 satisfy (𝐶
𝑐𝑜𝑛𝑡

), (𝐶
𝑙𝑖𝑝
), and

(𝐶
𝑠𝑖𝑔𝑛

) 𝑓(𝑥, 𝑡,𝑀
𝑇
) ≤ 0 ≤ 𝑓(𝑥, 𝑡, 𝑚

𝑇
) for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈

[0, 𝑇].

Then there exists 𝐻 > 0 such that for all ℎ ∈ (0, 𝐻)

2ℎ𝑘 − 1
ℎ

(𝑢 −𝑚
𝑇
) ≤ 𝑓 (𝑥, 𝑡, 𝑢) ≤

2ℎ𝑘 − 1
ℎ

(𝑢 −𝑀
𝑇
) (49)

holds for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇], and 𝑢 ∈ [𝑚
𝑇
,𝑀

𝑇
].

Proof. Weprove the latter inequality in (49) by contradiction.
The former inequality can be proved in the same way. Let us
assume that for all 𝐻 > 0 there exist ℎ ∈ (0, 𝐻), 𝑥

ℎ
∈ (𝑎, 𝑏)Z,

𝑡
ℎ
∈ [0, 𝑇], and 𝑢

ℎ
∈ [𝑚

𝑇
,𝑀

𝑇
] such that

𝑓 (𝑥
ℎ
, 𝑡
ℎ
, 𝑢

ℎ
) >

2ℎ𝑘 − 1
ℎ

(𝑢
ℎ
−𝑀

𝑇
) . (50)

Therefore, there exist sequences {ℎ
𝑚
}∞
𝑚=1 and {(𝑥

𝑚
, 𝑡
𝑚
,

𝑢
𝑚
)}∞
𝑚=1 (we denote 𝑥

𝑚
:= 𝑥

ℎ𝑚
, 𝑡

𝑚
:= 𝑡

ℎ𝑚
, 𝑢

𝑚
:= 𝑢

ℎ𝑚
) such

that
ℎ
𝑚

󳨀→ 0+,

𝑓 (𝑥
𝑚
, 𝑡
𝑚
, 𝑢

𝑚
) >

2ℎ
𝑚
𝑘 − 1
ℎ
𝑚

(𝑢
𝑚

−𝑀
𝑇
) .

(51)

First, we observe that if 𝑢
𝑚

= 𝑀
𝑇
for some 𝑚 ∈ N we get

a contradiction with (𝐶sign). Thus, we can assume that 𝑢
𝑚

<
𝑀

𝑇
for all 𝑚 ∈ N.
Now we have to distinguish between two cases.

(i) If there does not exist any subsequence {𝑢
𝑚𝑙

}∞
𝑙=1 ⊂

{𝑢
𝑚
}∞
𝑚=1 such that 𝑢

𝑚𝑙
→ 𝑀

𝑇
then the right-hand

side of inequality in (51) goes to infinity. Hence,
from (51) 𝑓(𝑥

𝑚
, 𝑡
𝑚
, 𝑢

𝑚
) also goes to infinity. This

yields a contradiction with (𝐶cont), which implies
boundedness of the function 𝑓 on (𝑎, 𝑏)Z × [0, 𝑇] ×
[𝑚

𝑇
,𝑀

𝑇
].

(ii) Let there exist a subsequence {𝑢
𝑚𝑙

}∞
𝑙=1 ⊂ {𝑢

𝑚
}∞
𝑚=1 such

that 𝑢
𝑚𝑙

→ 𝑀
𝑇
. We show that we get a contradiction

with (𝐶lip) in this case. Since the interval (𝑎, 𝑏)Z
is bounded there exists a convergent subsequence
{𝑥

𝑚𝑙
}∞
𝑙=1 ⊂ {𝑥

𝑚
}∞
𝑚=1 such that 𝑥

𝑚𝑙
→ 𝑥. Analogically,

since [0, 𝑇] is bounded there also exists a convergent
subsequence {𝑡

𝑚𝑙
}∞
𝑙=1 ⊂ {𝑡

𝑚
}∞
𝑚=1 such that 𝑡

𝑚𝑙
→ 𝑡̃.

Let 𝛼, 𝛽 > 0, and 𝐿 > 0 be arbitrary. Then we can find
𝑙̂ ∈ N sufficiently large such that

1 − 2ℎ
𝑚
𝑙̂

𝑘

ℎ
𝑚
𝑙̂

≥ 𝐿,

𝑀
𝑇
−𝑢

𝑚
𝑙̂

≤ 𝛽,

𝑥
𝑚
𝑙̂

= 𝑥,

󵄨󵄨󵄨󵄨󵄨𝑡𝑚𝑙̂ − 𝑡̃
󵄨󵄨󵄨󵄨󵄨 < 𝛼.

(52)
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If we put 𝑥 := 𝑥
𝑚
𝑙̂

, 𝑡̂ := 𝑡
𝑚
𝑙̂

, 𝑢̂ := 𝑢
𝑚
𝑙̂

, and 𝑢̃ := 𝑀
𝑇

and 𝑄(𝑥, 𝑡̃, 𝑢̃) is the rectangle from assumption (𝐶lip)
with given 𝛼 > 0 and 𝛽 > 0 then (𝑥, 𝑡̂, 𝑢̂), (𝑥, 𝑡̃, 𝑢̃) ∈
𝑄(𝑥, 𝑡̃, 𝑢̃). Now from (51), (52), and (𝐶sign) we can
estimate

𝐿 |𝑢̃ − 𝑢̂| ≤
1 − 2ℎ

𝑚
𝑙̂

𝑘

ℎ
𝑚
𝑙̂

(𝑀
𝑇
− 𝑢̂) < 𝑓 (𝑥, 𝑡̂, 𝑢̂)

≤ 𝑓 (𝑥, 𝑡̂, 𝑢̂) − 𝑓 (𝑥, 𝑡̃,𝑀
𝑇
)

= 𝑓 (𝑥, 𝑡̂, 𝑢̂) − 𝑓 (𝑥, 𝑡̃, 𝑢̃)

≤
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡̂, 𝑢̂) − 𝑓 (𝑥, 𝑡̃, 𝑢̃)

󵄨󵄨󵄨󵄨 ,

(53)

a contradiction with (𝐶lip).

Remark 23. The assumption (𝐶sign) defines the forbidden
area for a reaction function 𝑓(𝑥, 𝑡, ⋅) in the same way as
(𝐷). However, this area is reduced to a pair of half-lines.
Let us notice that it is the limit case of forbidden areas for
the discrete case if ℎ → 0+ (see Remark 5 and Figure 1).
Moreover, it is equivalent to the assumption for classical
PDEs; see (5).

Theorem24. Let𝑇 > 0 be arbitrary, let𝑓 satisfy (𝐶cont), (𝐶lip),
and (𝐶

𝑠𝑖𝑔𝑛
), and let 𝑢 be a solution of (36) defined on [𝑎, 𝑏]Z ×

[0, 𝑇]. Then

𝑚
𝑇

≤ 𝑢 (𝑥, 𝑡) ≤ 𝑀
𝑇

(54)

holds for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇].

Proof. We prove that for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇] there
is 𝑢(𝑥, 𝑡) ≤ 𝑀

𝑇
. The first inequality in (54) can be proved

similarly. Let us assume by contradiction that there exist 𝑥
𝑐
∈

(𝑎, 𝑏)Z and 𝑡
𝑐
∈ (0, 𝑇] such that

𝑢 (𝑥
𝑐
, 𝑡
𝑐
) > 𝑀T. (55)

From the continuity of the solution 𝑢 there exist 𝑥0 ∈ (𝑎, 𝑏)Z
and 𝑡0 ∈ [0, 𝑡

𝑐
) such that

(a) 𝑢(𝑥, 𝑡) ≤ 𝑀
𝑇
for all 𝑥 ∈ (𝑎, 𝑏)Z and 𝑡 ∈ [0, 𝑡0],

(b) 𝑢(𝑥0, 𝑡0) = 𝑀
𝑇
,

(c) there exists 𝛿 > 0 such that

𝑢 (𝑥0, 𝑡) > 𝑀
𝑇

on (𝑡0, 𝑡0 + 𝛿) . (56)

Let us analyze the new initial-boundary value problem
(36) with the initial condition 𝑢(𝑥, 𝑡0) at time 𝑡0. Let us
understand this problem as the initial value problem for the
vector ODE (44) with the initial condition at time 𝑡0.

From (𝐶cont), (𝐶lip) we know that f(𝑡, u) is continuous
and Lipschitz on some rectangle 𝑄. From (𝐶cont) we also get
that f is bounded by some constant 𝐴 > 0 on 𝑄. Therefore,
Theorem 21 implies that for sufficiently small discretization
steps ℎ > 0 and for sufficiently small interval [𝑡0, 𝑡0 + 𝜀]

the Euler polygons y
(ℎ)

(𝑡) converge uniformly to the unique
solution u(𝑡) on [𝑡0, 𝑡0 + 𝜀].

Notice that the node points of Euler polygons y
(ℎ)

(𝑡) are
the solutions of (8). From (𝐶cont), (𝐶lip), and (𝐶sign) and from
Lemma 22 the assumption (D) is satisfied (recall that ℎ is
sufficiently small) and therefore, fromTheorem 9

𝑦
(ℎ)

(𝑥, 𝑡) ≤ 𝑀
𝑇

on [𝑡0, 𝑡0 + 𝜀] , ∀𝑥 ∈ (𝑎, 𝑏)Z . (57)

But if y
(ℎ)

(𝑡) converge uniformly to u(𝑡) and 𝑦
(ℎ)

(𝑥, 𝑡) ≤ 𝑀
𝑇

on [𝑡0, 𝑡0 + min{𝛿, 𝜀}] for all 𝑥 ∈ (𝑎, 𝑏)Z then there has to be

𝑢 (𝑥, 𝑡) ≤ 𝑀
𝑇

on [𝑡0, 𝑡0 + min {𝛿, 𝜀}] , ∀𝑥 ∈ (𝑎, 𝑏)Z ,
(58)

a contradiction with (56).

If the assumption (𝐶sign) is not satisfied but the nonlinear
function 𝑓 satisfies the following:
(𝐶󸀠

sign) Let 𝑇 > 0 be arbitrary and let there exist 𝑆 ≥ 𝑀
𝑇
and

𝑅 ≤ 𝑚
𝑇
such that

𝑓 (𝑥, 𝑡, 𝑆) ≤ 0 ≤ 𝑓 (𝑥, 𝑡, 𝑅) (59)

for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇],
then we can state the following generalized weak maximum
principle.

Theorem25. Let𝑇 > 0 be arbitrary, let𝑓 satisfy (𝐶cont), (𝐶lip),
and (𝐶󸀠

𝑠𝑖𝑔𝑛
), and let 𝑢 be a solution of (36) defined on [𝑎, 𝑏]Z ×

[0, 𝑇]. Then

𝑅 ≤ 𝑢 (𝑥, 𝑡) ≤ 𝑆 (60)

holds for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ [0, 𝑇].

Proof. The statement can be proved in the similar way as
Lemma 22 andTheorem 24.

As in the previous sections we want to establish the
strong maximum principle. First, we recall the well-known
Grönwall’s inequality (see, e.g., [20, Corollary 8.62]).

Lemma 26. Let 𝛽, 𝑢 : [𝑟, 𝑠] → R be continuous functions
and let 𝑢 be differentiable on (𝑟, 𝑠). If

𝑢󸀠 (𝑡) ≤ 𝛽 (𝑡) 𝑢 (𝑡) for 𝑡 ∈ (𝑟, 𝑠) (61)

then

𝑢 (𝑡) ≤ 𝑢 (𝑟) 𝑒
∫
𝑡

𝑟
𝛽(𝜏)𝑑𝜏 for 𝑡 ∈ [𝑟, 𝑠] . (62)

Further, we need the following auxiliary lemma.

Lemma 27. Let 𝑇 > 0 be arbitrary, let 𝑓 satisfy (𝐶cont), (𝐶lip),
and (𝐶

𝑠𝑖𝑔𝑛
), and let 𝑢 be a solution of (36) defined on [𝑎, 𝑏]Z ×

[0, 𝑇]. If 𝑢(𝑥0, 𝑡0) = 𝑀
𝑇
(or 𝑢(𝑥0, 𝑡0) = 𝑚

𝑇
) for some 𝑥0 ∈

(𝑎, 𝑏)Z and 𝑡0 ∈ (0, 𝑇] then

𝑢 (𝑥0, 𝑡) = 𝑀
𝑇

(𝑜𝑟 𝑢 (𝑥0, 𝑡) =𝑚
𝑇
)

∀𝑡 ∈ [0, 𝑡0] .

(63)
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Proof. We prove the statement with 𝑀
𝑇
. The case with 𝑚

𝑇

is similar. First, the weak maximum principle (Theorem 24)
holds; that is, 𝑢(𝑥, 𝑡) ≤ 𝑀

𝑇
for all 𝑥 ∈ [𝑎, 𝑏]Z and 𝑡 ∈ [0, 𝑇].

Suppose by contradiction that there exists 𝑡
𝑐

∈ (0, 𝑡0] such
that

𝑢 (𝑥0, 𝑡𝑐) = 𝑀
𝑇
,

𝑢 (𝑥0, 𝑡) < 𝑀
𝑇

on [𝑡
𝑐
− 𝜀, 𝑡

𝑐
) .

(64)

Without loss of generality let 𝜀 > 0 be sufficiently small so
that the function𝑓(𝑥0, 𝑡, 𝑢) is uniformly Lipschitz in𝑢 on [𝑡

𝑐
−

𝜀, 𝑡
𝑐
)with Lipschitz constant 𝐿 > 0 (follows from (𝐶lip)).With

the help of these facts and also from (𝐶sign) we can estimate

𝑢
𝑡
(𝑥0, 𝑡)

= 𝑘 (𝑢 (𝑥0 − 1, 𝑡) − 2𝑢 (𝑥0, 𝑡) + 𝑢 (𝑥0 + 1, 𝑡))

+𝑓 (𝑥0, 𝑡, 𝑢 (𝑥0, 𝑡))

≤ 𝑘 (2𝑀
𝑇
− 2𝑢 (𝑥0, 𝑡)) +𝑓 (𝑥0, 𝑡, 𝑢 (𝑥0, 𝑡))

−𝑓 (𝑥0, 𝑡,𝑀𝑇
) +𝑓 (𝑥0, 𝑡,𝑀𝑇

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤0

≤ 𝑘 (2𝑀
𝑇
− 2𝑢 (𝑥0, 𝑡))

+
󵄨󵄨󵄨󵄨𝑓 (𝑥0, 𝑡, 𝑢 (𝑥0, 𝑡)) −𝑓 (𝑥0, 𝑡,𝑀𝑇

)
󵄨󵄨󵄨󵄨

≤ 𝑘 (2𝑀
𝑇
− 2𝑢 (𝑥0, 𝑡)) + 𝐿

󵄨󵄨󵄨󵄨𝑢 (𝑥0, 𝑡) −𝑀
𝑇

󵄨󵄨󵄨󵄨

= 𝑘 (2𝑀
𝑇
− 2𝑢 (𝑥0, 𝑡)) + 𝐿 (𝑀

𝑇
−𝑢 (𝑥0, 𝑡))

= − (2𝑘 + 𝐿) (𝑢 (𝑥0, 𝑡) −𝑀
𝑇
) ,

(65)

for all 𝑡 ∈ (𝑡
𝑐
− 𝜀, 𝑡

𝑐
). If we denote 𝛼 := −(2𝑘 + 𝐿) then the

function 𝑢(𝑥0, 𝑡) satisfies 𝑢𝑡(𝑥0, 𝑡) ≤ 𝛼(𝑢(𝑥0, 𝑡) −𝑀
𝑇
) on (𝑡

𝑐
−

𝜀, 𝑡
𝑐
). If we substitute V(𝑡) := 𝑢(𝑥0, 𝑡) − 𝑀

𝑇
then the function

V satisfies the following differential inequality:

V󸀠 (𝑡) ≤ 𝛼V (𝑡) . (66)

Therefore, Grönwall’s inequality (Lemma 26) implies that

V (𝑡) ≤ V (𝑡
𝑐
− 𝜀) 𝑒𝛼(𝑡−𝑡𝑐+𝜀) (67)

and hence

𝑢 (𝑥0, 𝑡) ≤ 𝑀
𝑇
− (𝑀

𝑇
−𝑢 (𝑥0, 𝑡𝑐 − 𝜀)) 𝑒𝛼(𝑡−𝑡𝑐+𝜀)

< 𝑀
𝑇

(68)

on [𝑡
𝑐
− 𝜀, 𝑡

𝑐
], a contradiction.

The strong maximum principle for (36) follows immedi-
ately.

Theorem 28. Let 𝑇 > 0 be arbitrary, let 𝑓 satisfy (𝐶cont),
(𝐶lip), and (𝐶

𝑠𝑖𝑔𝑛
), and let 𝑢 be a solution of (36) defined on

[𝑎, 𝑏]Z × [0, 𝑇]. If 𝑢(𝑥0, 𝑡0) = 𝑀
𝑇
(or 𝑢(𝑥0, 𝑡0) = 𝑚

𝑇
) for some

𝑥0 ∈ (𝑎, 𝑏)Z and 𝑡0 ∈ (0, 𝑇] then

𝑢 (𝑥, 𝑡) = 𝑀
𝑇

(or 𝑢 (𝑥, 𝑡) =𝑚
𝑇
)

∀𝑥 ∈ [𝑎, 𝑏]Z , 𝑡 ∈ [0, 𝑡0] .

(69)

Proof. Lemma 27 yields that 𝑢(𝑥0, 𝑡) = 𝑀
𝑇
for all 𝑡 ∈ [0, 𝑡0].

If 𝑢(𝑥0−1, 𝑡𝑐) < 𝑀
𝑇
(or 𝑢(𝑥0+1, 𝑡𝑐) < 𝑀

𝑇
) at some 𝑡

𝑐
∈ [0, 𝑡0]

then applying (𝐶sign) the following has to be satisfied:

𝑢
𝑡
(𝑥0, 𝑡𝑐)

= 𝑘 (𝑢 (𝑥0 − 1, 𝑡
𝑐
) − 2𝑢 (𝑥0, 𝑡𝑐) + 𝑢 (𝑥0 + 1, 𝑡

𝑐
))

+𝑓 (𝑥0, 𝑡𝑐, 𝑢 (𝑥0, 𝑡𝑐))

< 𝑘 (2𝑀
𝑇
− 2𝑀

𝑇
) +𝑓 (𝑥0, 𝑡𝑐,𝑀𝑇

) ≤ 0,

(70)

a contradiction with the fact that the function 𝑢(𝑥0, 𝑡) is
constant and equal to 𝑀

𝑇
on [0, 𝑡0]. Therefore, functions

𝑢(𝑥0 − 1, 𝑡) and 𝑢(𝑥0 + 1, 𝑡) are also constant and equal to
𝑀

𝑇
on [0, 𝑡0]. Then we can continue inductively in 𝑥 to the

boundary points 𝑥 = 𝑎 or 𝑥 = 𝑏. The case with 𝑚
𝑇
is

similar.

7. Semidiscrete Reaction-Diffusion Equation:
Global Existence

In this sectionwe combine the local existence and uniqueness
and the maximum principle to obtain the global existence of
solution of (36).

Once again, we use known results from the theory of
ordinary differential equations. First, we define the maximal
interval of existence (see [20, Definition 8.31]).

Definition 29. Let g be continuous and let u be a solution
of (37) defined on [0, 𝜂). Then one says [0, 𝜂) is a maximal
interval of existence for u if there does not exist an 𝜂1 > 𝜂
and a solution w defined on [0, 𝜂1) such that u(𝑡) = w(𝑡) for
𝑡 ∈ [0, 𝜂).

In the following we apply the extendability theorem (see
[20, Theorem 8.33]).

Theorem 30. Let g be continuous and let u be a solution of
(37) defined on [0, 𝜔). Then 𝑢 can be extended to a maximal
interval of existence [0, 𝜂), 0 < 𝜂 ≤ ∞. Furthermore, there is
either

𝜂 = ∞

or ‖u (𝑡)‖
𝑡→𝜂−

󳨀󳨀󳨀󳨀󳨀→ ∞.

(71)

This theorem enables us to conclude with the global
existence for (36).
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Theorem31. Let𝑓 satisfy (𝐶cont), (𝐶lip), and (𝐶𝑠𝑖𝑔𝑛
) for all𝑇 >

0.Then (36) has a unique solution defined on [𝑎, 𝑏]Z×R+

0 which
satisfies

inf
𝑥∈(𝑎,𝑏)Z ,𝑡∈R

+

0

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} ≤ 𝑢 (𝑥, 𝑡)

≤ sup
𝑥∈(𝑎,𝑏)Z ,𝑡∈R

+

0

{𝜑 (𝑥) , 𝜉
𝑎
(𝑡) , 𝜉

𝑏
(𝑡)} ,

(72)

for all (𝑥, 𝑡) ∈ [𝑎, 𝑏]Z × R+

0 .

Proof. Let us understand problem (36) as the initial value
problem for the vector ODE (44). From Theorem 18 there
exists a uniquely determined local solution u(𝑡). From The-
orem 30 the solution can be extended to a maximal interval
of existence [0, 𝜂) which is open from right and either

𝜂 = ∞

or ‖u (𝑡)‖
𝑡→𝜂−

󳨀󳨀󳨀󳨀󳨀→ ∞.

(73)

If ‖u(𝑡)‖ → ∞ for 𝑡 → 𝜂− then for all 𝐾 > 0 there have
to exist 𝑥

𝐾
∈ (𝑎, 𝑏)Z and 𝑡

𝐾
∈ [0, 𝜂) such that

󵄨󵄨󵄨󵄨𝑢 (𝑥
𝐾
, 𝑡
𝐾
)
󵄨󵄨󵄨󵄨 > 𝐾. (74)

If we put 𝐾 := max{|𝑚
𝜂
|, |𝑀

𝜂
|} < ∞ (𝜉

𝑎
, 𝜉

𝑏
are 𝐶1 functions

on R+

0 and therefore bounded on [0, 𝜂]) then

󵄨󵄨󵄨󵄨𝑢 (𝑥
𝐾
, 𝑡
𝐾
)
󵄨󵄨󵄨󵄨 > max {

󵄨󵄨󵄨󵄨󵄨𝑚𝜂

󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨𝑀𝜂

󵄨󵄨󵄨󵄨󵄨} , (75)

a contradiction with the maximum principle in Theorem 24
(which holds thanks to (𝐶cont), (𝐶lip), and (𝐶sign)).

Therefore, there has to be 𝜂 = ∞; that is, the solution u(𝑡)
is defined on the interval [0,∞) and from (𝐶lip) it has to be
unique.

Remark 32. All nonlinear functions 𝑓 listed in Example 12
can be considered in Theorems 24 and 31. However, it is
worth noting that we have additional assumptions on the
nonlinearity in the semidiscrete case (conditions (𝐶cont) and
(𝐶lip)). Thus, for non-Lipschitz functions (e.g.,

𝑓 (𝑥, 𝑡, 𝑢) =
{
{
{

− |𝑢|𝑝−1 𝑢, 𝑢 ̸= 0,

0, 𝑢 = 0
(76)

with 𝑝 ∈ [0, 1)), we only get the maximum principles in
discrete case. On the other hand, in discrete case, the validity
of maximum principle depends strongly on the interaction
between the discretization step ℎ and the nonlinearity 𝑓 (see
(12); we illustrate this dependence in detail in Section 8).

Let us finish with the two corollaries that are immediate
consequences of Theorems 24 and 31.

Corollary 33. Assume that 𝜉
𝑎
, 𝜉

𝑏
are bounded. Let 𝑓 satisfy

(𝐶cont), (𝐶lip), and (𝐶
𝑠𝑖𝑔𝑛

) for all 𝑇 > 0. Then the unique
solution 𝑢 of (36) is bounded.

Corollary 34. Assume that 𝜑, 𝜉
𝑎
, 𝜉

𝑏
are nonnegative. Let 𝑓

satisfy (𝐶cont), (𝐶lip), and (𝐶𝑠𝑖𝑔𝑛
) for all 𝑇 > 0. Then the unique

solution 𝑢 of (36) is nonnegative.

8. Application: Discrete and Semidiscrete
Nagumo Equation

In this section we apply the results of this paper to the
most common nonlinearity occurring in the connection
with the reaction-diffusion equation, the bistable/double-well
nonlinearity. For simplicity, we consider only the symmetric
case anduse interval [−1, 1] so that our arguments for positive
values can be directly reproduced for the negative ones; that
is, we study

𝑓 (𝑥, 𝑡, 𝑢) = 𝜆𝑢 (1−𝑢2) , 𝜆 ∈ R. (77)

Throughout this section we assume that the initial-boundary
conditions 𝜑, 𝜉

𝑎
, 𝜉

𝑏
are such that 𝑚

𝑇
= −1 and 𝑀

𝑇
= 1 (or

possibly 𝑚
𝑇

≥ −1 and 𝑀
𝑇

≤ 1) for all 𝑇 > 0.
Starting with the semidiscrete case (36), we observe that

𝑓 is continuous and locally Lipschitz continuous and satisfies
𝑓(𝑥, 𝑡, −1) = 0 = 𝑓(𝑥, 𝑡, 1). Consequently, for any given 𝜆 ∈
R we can apply Theorems 24 and 31 to get that there exists
a unique solution of the semidiscrete problem (36) such that
𝑢(𝑥, 𝑡) ∈ [−1, 1] for all 𝑥 ∈ (𝑎, 𝑏)Z and 𝑡 ∈ R+

0 .
We encounter a more interesting situation if we consider

the problem for the discrete Nagumo equation

𝑢 (𝑥, 𝑡 + ℎ) − 𝑢 (𝑥, 𝑡)

ℎ
= 𝑘Δ2

𝑥𝑥
𝑢 (𝑥 − 1, 𝑡)

+ 𝜆𝑢 (𝑥, 𝑡) (1−𝑢2
(𝑥, 𝑡)) ,

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ (𝑎, 𝑏)Z ,

𝑢 (𝑎, 𝑡) = 𝜉
𝑎
(𝑡) , 𝑡 ∈ ℎN0,

𝑢 (𝑏, 𝑡) = 𝜉
𝑏
(𝑡) , 𝑡 ∈ ℎN0,

(78)

with 𝜆 ∈ R, 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ ℎN0, ℎ > 0, 𝑘 > 0.
Let us assume first that 𝜆 > 0. We observe that 𝑓󸀠(1) =

−2𝜆. Hence the application ofTheorem 9 is restricted to cases
for which the slope of the dashed line in the forbidden area
(see Figure 1) given by 2𝑘 − 1/ℎ (see the assumption (D))
satisfies

2𝑘 −
1
ℎ

≤ − 2𝜆, or equivalently

ℎ ≤
1

2 (𝑘 + 𝜆)
.

(79)

Consequently, if ℎ ≤ 1/2(𝑘 + 𝜆), we can apply Theorem 9
to get that 𝑢(𝑥, 𝑡) ∈ [−1, 1] for all 𝑥 ∈ (𝑎, 𝑏)Z, 𝑡 ∈ ℎN0 (see
Figure 3(a)).

Once ℎ > 1/2(𝑘 + 𝜆), Theorem 9 is no longer available
and we proceed to Theorem 11. We split our argument into
two steps:

(i) Since 𝑓(𝑢) is strictly concave on [0, 1] and attains a
local maximum at 𝑢 = 1/√3, we can for each ℎ > 0
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1
−1−S

∗

S
∗

(a) ℎ ≤ 1/2(𝑘 + 𝜆)

1 S

−S
∗

S
∗

−1

(b) ℎ ∈ (1/2(𝑘 + 𝜆), 1/(2𝑘 + 𝜆/2)) (i.e., 𝑆 ∈ (1, 𝑆∗))

1
−1−S

∗

S = S
∗

(c) ℎ = 1/(2𝑘 + 𝜆/2) (i.e., 𝑆 = 𝑆
∗)

1 S

−1−S
∗

S
∗

(d) ℎ > 1/(2𝑘 + 𝜆/2) (i.e., 𝑆 > 𝑆
∗)

Figure 3: Validity of maximum principles for the discrete Nagumo equation (78) with 𝑚
𝑇

= −1 and 𝑀
𝑇

= 1. If ℎ is small enough we can
applyTheorem 9; see subplot (a). For ℎ ∈ (1/2(𝑘 + 𝜆), 1/(2𝑘+𝜆/2)] we can get weaker bounds (83) by the application ofTheorem 11, subplots
(b) and (c). If ℎ is greater than 1/(2𝑘 + 𝜆/2) our results cannot be applied; see subplot (d).

such that 2𝑘−1/ℎ > −2𝜆 (or equivalently ℎ > 1/2(𝑘+

𝜆)) find a point 𝑇 ∈ (1/√3, 1) such that the slope of a
tangent line of 𝑓 at 𝑇 is 2𝑘 − 1/ℎ. One could compute
that

𝑇 = √ 1
3

−
2𝑘ℎ − 1
3𝜆ℎ

. (80)

(ii) Let us denote by 𝑆 the 𝑥-intercept of the tangent line
of𝑓 at𝑇. Since the slope of this tangent line is 2𝑘−1/ℎ,
we can deduce that

𝑆 =
−2𝑇3

1 − 3𝑇2 =
2𝜆ℎ√(1/3 − (2𝑘ℎ − 1) /3𝜆ℎ)3

1 − 2𝑘ℎ
. (81)

Given the shape of 𝑓(𝑢) for 𝑢 < 0 (decreasing
convexly for𝑢 < −1/√3),Theorem 11 could be applied
once 𝑓(−𝑆) lies below or on the tangent line (cf.
Figures 2 and 3).We observe the following interesting
fact: choosing 𝑆 = 𝑆∗ := √2 the tangent line of
𝑓 at 𝑇 and the function 𝑓 intersect at the point
[−√2, 𝜆√2] for each𝜆 > 0 and 𝑘 > 0 (see Figure 3(c)).

Consequently, we can applyTheorem 11 whenever 𝑆 ≤
√2, which is equivalent to

ℎ ≤
1

2𝑘 + 𝜆/2
. (82)

If we choose 𝑆 > 𝑆∗, then we can easily observe
that 𝑓(−𝑆) lies above the tangent line and therefore
Theorem 11 cannot be applied (see Figure 3(d)).

Sincewe intentionally chose a symmetric𝑓, we can repeat
the same argument on the lower bound of solutions of (78).

If 𝜆 = 0, problem (78) reduces to the linear case and
we can trivially apply (12) whenever ℎ ≤ 1/2𝑘. Finally, if
𝜆 < 0, then the assumption (𝐷) is satisfied as long as the
line (2𝑘 − 1/ℎ)(𝑢 − 1) does not intersect for 𝑢 < 0 or is
tangential to 𝑓(𝑢) = 𝜆𝑢(1 − 𝑢2). One can easily compute that
the tangential case occurs if 2𝑘−1/ℎ = 𝜆/4.Therefore, we can
applyTheorem 9 whenever ℎ ≤ 1/(2𝑘−𝜆/4). If this condition
is violated we cannot useTheorem 11 since 𝑓(𝑢) > 0 for 𝑢 > 1
and for each 𝑆 > 1 the assumption (𝐷󸀠) does not hold.

To sum up, depending on values of 𝜆 and ℎ we obtain the
following bounds for the solution of (78)
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h

1

2k −
𝜆

4

Bounds [−1, 1]

1

2k +
𝜆

2

No bounds

Bounds [−S, S]

𝜆

1

2(k + 𝜆)

(a)

Bounds [−1, 1]

Bounds [−S, S]

h = ht

2

𝜆

1

2𝜆

No bounds

hx

(b)

Figure 4: Bounds of solutions of the discrete Nagumo equation (78) with𝑚
𝑇

= −1 and𝑀
𝑇

= 1 and their dependence on the values of 𝜆 and
ℎ (a) and on the values of space and time discretization steps ℎ

𝑥
and ℎ = ℎ

𝑡
for a fixed 𝜆 > 0 (b). In the light gray area, the bounds follow

fromTheorem 9. In the dark gray area, the bounds are implied byTheorem 11 and 𝑆 is given by (81). In the white area we have no bounds on
solutions.

𝑢 (𝑥, 𝑡)

∈

{{{{{{{{{
{{{{{{{{{
{

[−1, 1] , if 𝜆 ≤ 0, ℎ ≤
1

2𝑘 − 𝜆/4
,

[−1, 1] , if 𝜆 > 0, ℎ ≤
1

2 (𝑘 + 𝜆)
,

[
[

[

−
2𝜆ℎ√(1/3 − (2𝑘ℎ − 1) /3𝜆ℎ)3

1 − 2𝑘ℎ
,
2𝜆ℎ√(1/3 − (2𝑘ℎ − 1) /3𝜆ℎ)3

1 − 2𝑘ℎ
]
]

]

, if 𝜆 > 0, ℎ ∈ (
1

2 (𝑘 + 𝜆)
,

1
2𝑘 + 𝜆/2

] ;

(83)

see Figure 4(a) for the illustrative summary of our results in
this section.

Interestingly, if we considered general space discretiza-
tion step ℎ

𝑥
> 0 in (78), that is,

𝑢 (𝑥, 𝑡 + ℎ) − 𝑢 (𝑥, 𝑡)

ℎ
𝑡

= 𝑘
𝑢 (𝑥 − ℎ

𝑥
, 𝑡) − 2𝑢 (𝑥, 𝑡) + 𝑢 (𝑥 + ℎ

𝑥
, 𝑡)

ℎ2
𝑥

+𝜆𝑢 (𝑥, 𝑡) (1−𝑢2
(𝑥, 𝑡)) ,

(84)

one could get the same bounds as in (83) by replacing 𝑘 with
𝑘/ℎ2

𝑥
. The dependence of regions of maximum principles’

validity on time and space discretization steps ℎ
𝑡
and ℎ

𝑥
for

𝜆 > 0 is depicted in Figure 4(b) (notice that very small values
of ℎ

𝑡
are necessary for small ℎ

𝑥
).

9. Final Remarks

In this paper, we studied a priori bounds for solutions
of initial-boundary value problems related to discrete and
semidiscrete diffusion. Our main motivation for the initial-
boundary problems was the direct comparison with the
classical results (Theorems 2 and 3). However, note that, in

the discrete case, the results would be identical if we dealt
with an initial problem on Z. On the other hand, in the
semidiscrete or classical case, even the solutions of linear
diffusion equations are not necessarily bounded (see, e.g.,
[12]).

Similarly, the ideas of this paper could be easily extended
to a general reaction-diffusion-type equation (possibly with
nonconstant time steps ℎ = ℎ(𝑡))

𝑢 (𝑥, 𝑡 + ℎ) − 𝑢 (𝑥, 𝑡)

ℎ
= 𝑎 (𝑥, 𝑡) 𝑢 (𝑥 − 1, 𝑡)

+ 𝑏 (𝑥, 𝑡) 𝑢 (𝑥, 𝑡)

+ 𝑐 (𝑥, 𝑡) 𝑢 (𝑥 + 1, 𝑡)

+ 𝑓 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡)) .

(85)

For example, the weakmaximumprinciple is then valid if ℎ ≥
−1/𝑏 (replacing ℎ ≤ 1/2𝑘) and the following generalization of
(𝐷) holds (we assume that 𝑏 = −(𝑎 + 𝑐) < 0):

𝑚
𝑇
(1 − 𝑎ℎ − 𝑐ℎ) − (1 + 𝑏ℎ) 𝑢

ℎ
≤ 𝑓 (𝑥, 𝑡, 𝑢)

≤
𝑀

𝑇
(1 − 𝑎ℎ − 𝑐ℎ) − (1 + 𝑏ℎ) 𝑢

ℎ
.

(86)
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Abstract

Existence, uniqueness and continuous dependence results together with maximum principles rep-
resent key tools in the analysis of lattice reaction-diffusion equations. In this paper we study these
questions in full generality, by considering nonautonomous reaction functions, possibly nonsymmet-
ric diffusion and continuous, discrete or mixed time. First, we prove the local existence and global
uniqueness of bounded solutions, as well as continuous dependence of solutions on the underlying
time structure and on initial conditions. Next, we obtain the weak maximum principle, which en-
ables us to get global existence of solutions. Finally, we provide the strong maximum principle,
which exhibits an interesting dependence on the time structure. Our results are illustrated by the
autonomous Fisher and Nagumo lattice equations, and a nonautonomous logistic population model
with a variable carrying capacity.

Keywords: reaction-diffusion equation; lattice equation; existence and uniqueness; continuous de-
pendence; maximum principle; time scale

MSC 2010 subject classification: 34A33, 34A34, 34N05, 35A01, 35B50, 35F25, 39A14, 65M12

1 Introduction

The classical reaction-diffusion equation ∂tu = k∂xxu + f(u) is a nonlinear partial differential equation
frequently used to describe the evolution of numerous natural quantities (chemical concentrations, tem-
peratures, populations, etc.). These phenomena combine a local dynamics (via the reaction function f)
and a spatial dynamics (via the diffusion). It is well known that solutions to reaction-diffusion systems
can exhibit rich behavior, such as the existence of traveling waves or formation of spatial patterns [32].

Motivated by applications in biology, chemistry and kinematics [2, 10, 12, 19], various authors have
considered the lattice reaction-diffusion equation [8, 9, 36, 37]

∂tu(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t)), x ∈ Z, t ∈ [0,∞), (1.1)

as well as the discrete reaction-diffusion equation [6, 9, 18]

u(x, t+ 1)− u(x, t) = k(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + f(u(x, t)), x ∈ Z, t ∈ N0. (1.2)

∗corresponding author, slavik@karlin.mff.cuni.cz
†pstehlik@kma.zcu.cz
‡volek1@kma.zcu.cz

1



Naturally, equations (1.1) and (1.2) are also interesting from the standpoint of numerical mathematics,
since they correspond to semi- or full discretization of the original reaction-diffusion equation [18].

The literature dealing with equations (1.1) and (1.2) studies mainly the dynamical properties such
as the asymptotic behavior [5, 33, 34], existence of traveling wave solutions [6, 9, 10, 21, 35, 36, 37] and
pattern formation [7, 8, 9], in particular for specific nonlinearities (e.g., the Fisher or Nagumo equation).
A growing number of studies have dealt with those questions in nonautonomous cases [17, 24]. In this
paper, we study (1.1)–(1.2) with a general time- and space-dependent nonlinearity f . Our focus lies on the
existence, uniqueness, continuous dependence (both on the initial condition as well as on the underlying
time structure/numerical discretization), and a priori bounds in the form of weak and strong maximum
principles. Note that both continuous dependence and maximum principles are key assumptions in the
proofs of existence of traveling waves [21, 35]. Our goal is to explore and describe them in full generality.

In order to consider both (1.1), (1.2) at once and motivated by convergence issues and continuous
dependence of solutions on the time discretization, we use the language of the time scale calculus [4,
16]. We do not restrict ourselves to symmetric diffusion (see the following paragraph) and consider
nonautonomous reaction-diffusion processes

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + f(u(x, t), x, t), x ∈ Z, t ∈ T, (1.3)

where a, b, c ∈ R, T ⊆ R is a time scale, and the symbol u∆ denotes the delta derivative with respect to
time. Our results are new even in the special cases T = R (when u∆ becomes the partial derivative ∂tu)
and T = Z (when u∆ is the partial difference u(x, t+ 1)− u(x, t)).

If a = c and b = −2a then (1.3) becomes the symmetric lattice reaction-diffusion equation. The
asymmetric case a 6= c, b = −(a + c) corresponds to the lattice reaction-advection-diffusion equation.
Next, if a = 0 and c = −b > 0 then (1.3) reduces to the lattice reaction-transport equation. For more
details and other special cases see [28, Section 1].

In Section 2, we formulate (1.3) as an abstract nonautonomous dynamic equation and prove the local
existence of solutions. In comparison with the existing literature [5, 33, 34] we do not work in the Hilbert
space `2(Z) or in the weighted spaces `2δ(Z) but in the Banach space `∞(Z); as explained in [12], this is
a much more natural choice. We also prove the uniqueness of bounded solutions. In Section 3, we use
techniques from the Kurzweil-Stieltjes integration theory to show the continuous dependence of solutions
on the time scale (time discretization). In the special case, this implies the convergence of solutions of
(1.2) to the solution of (1.1) as the time discretization step tends to zero. Following the ideas from [31]
(which deals with initial-boundary-value problems on finite subsets of Z), we provide weak maximum and
minimum principles in Section 4. These a priori bounds, as usual, depend strongly on the time structure.
Combined with the local existence results they enable us to prove the global existence of bounded solutions
to (1.3). We illustrate our findings on the autonomous logistic and bistable nonlinearities (Fisher and
Nagumo equations) and a nonautonomous logistic population model with a variable carrying capacity.
Finally, in Section 5, we conclude with the strong maximum principle. In the linear case f ≡ 0, the weak
maximum principle was already proved in [28, Theorem 4.7], but the strong maximum principle is new
even for linear equations.

2 Local existence and uniqueness of solutions

In this section, we study the local existence and global uniqueness of solutions to the initial-value problem

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + f(u(x, t), x, t), x ∈ Z, t ∈ [t0, T ]κT,

u(x, t0) = u0
x, x ∈ Z,

(2.1)
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where {u0
x}x∈Z is a bounded real sequence, a, b, c ∈ R, T ⊆ R is a time scale and t0, T ∈ T. We use the

notation [α, β]T = [α, β] ∩ T, α, β ∈ R, and

[t0, T ]κT =

{
[t0, T ]T if T is left-dense,

[t0, T )T if T is left-scattered.

We impose the following conditions on the function f : R× Z× [t0, T ]T → R:

(H1) f is bounded on each set B × Z× [t0, T ]T, where B ⊂ R is bounded.

(H2) f is Lipschitz-continuous in the first variable on each set B×Z× [t0, T ]T, where B ⊂ R is bounded.

(H3) For each bounded set B ⊂ R and each choice of ε > 0 and t ∈ [t0, T ]T, there exists a δ > 0 such
that if s ∈ (t− δ, t+ δ) ∩ [t0, T ]T, then |f(u, x, t)− f(u, x, s)| < ε for all u ∈ B, x ∈ Z.

We begin with a local existence result. Given a function U : T → `∞(Z), the symbol U(t)x denotes
the x-th component of the sequence U(t), and should not be confused with the derivative of U with
respect to x (which never appears in this paper).

Theorem 2.1 (local existence). Assume that f : R×Z× [t0, T ]T → R satisfies (H1)–(H3). Then for each
u0 ∈ `∞(Z), the initial-value problem (2.1) has a bounded local solution defined on Z× [t0, t0 + δ]T, where
δ > 0 and δ ≥ µ(t0). The solution is obtained by letting u(x, t) = U(t)x, where U : [t0, t0 + δ]T → `∞(Z)
is a solution of the abstract dynamic equation

U∆(t) = Φ(U(t), t), U(t0) = u0, (2.2)

with Φ : `∞(Z)× [t0, T ]T → `∞(Z) being given by

Φ({ux}x∈Z, t) = {aux+1 + bux + cux−1 + f(ux, x, t)}x∈Z.

Proof. (H1) guarantees that Φ indeed takes values in `∞(Z). Choose an arbitrary ρ > 0, denote B =
{u ∈ `∞(Z); ‖u − u0‖∞ ≤ ρ}, and B =

[
infx∈Z u0

x − ρ, supx∈Z u
0
x + ρ

]
⊂ R. Note that if u, v ∈ B, then

ux, vx ∈ B for all x ∈ Z. If L is the Lipschitz constant for the function f on B × Z× [t0, T ]T, we get

‖Φ(u, t)− Φ(v, t)‖∞ ≤ ‖a{ux+1 − vx+1}x∈Z‖∞ + ‖b{ux − vx}x∈Z‖∞ + ‖c{ux−1 − vx−1}x∈Z‖∞

+‖{f(ux, x, t)− f(vx, x, t)}x∈Z‖∞ ≤ (|a|+ |b|+ |c|)‖u− v‖∞ + L‖u− v‖∞.
This means that Φ is Lipschitz-continuous in the first variable on B × [t0, T ]T.

Next, we observe that Φ is bounded on B × [t0, T ]T. Indeed, let M be the boundedness constant for
the function |f | on B × Z× [t0, T ]T. For each u ∈ B, we have ux ∈ B for each x ∈ Z, and consequently

‖Φ(u, t)‖∞ ≤ ‖a{ux+1}x∈Z‖∞ + ‖b{ux}x∈Z‖∞ + ‖c{ux−1}x∈Z‖∞ + ‖{f(ux, x, t)}x∈Z‖∞
≤ (|a|+ |b|+ |c|)‖u‖∞ +M ≤ (|a|+ |b|+ |c|)(‖u0‖∞ + ρ) +M.

Finally, we claim that Φ is continuous on B × [t0, T ]T. To see this, consider an arbitrary ε > 0 and
a fixed pair (u, t) ∈ B × [t0, T ]T. Let δ > 0 be the corresponding number from (H3). Then for all
(v, s) ∈ B × [t0, T ]T with ‖u− v‖∞ < ε and s ∈ (t− δ, t+ δ) ∩ [t0, T ]T, we have

‖Φ(u, t)− Φ(v, s)‖∞ ≤ ‖Φ(u, t)− Φ(v, t)‖∞ + ‖Φ(v, t)− Φ(v, s)‖∞
≤ (|a|+ |b|+ |c|+ L)‖u− v‖∞ + ‖{f(vx, x, t)− f(vx, x, s)}x∈Z‖∞
≤ (|a|+ |b|+ |c|+ L+ 1)ε,

which proves that Φ is continuous at the point (u, t).
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By [4, Theorem 8.16], the initial-value problem

U∆(t) = Φ(U(t), t), U(t0) = u0,

has a local solution defined on [t0, t0 + δ]T, where δ > 0 and δ ≥ µ(t0). Letting u(x, t) = U(t)x, x ∈ Z,
we see that u is a solution of the initial-value problem (2.1).

Note that even in the linear case f ≡ 0 the solutions of (2.1) are not unique in general (see, e.g.,
[28, Section 3]) and the uniqueness can be expected only in the class of bounded solutions. In the next
theorem, we tackle this issue for an initial-value problem which generalizes (2.1).

Theorem 2.2. Assume that ϕ : `∞(Z)× Z× [t0, T ]T → R satisfies the following conditions:

1. ϕ is bounded on each set B × Z× [t0, T ]T, where B ⊂ `∞(Z) is bounded.

2. ϕ is Lipschitz-continuous in the first variable on each set B × Z × [t0, T ]T, where B ⊂ `∞(Z) is
bounded.

Then for each u0 ∈ `∞(Z), the initial-value problem

u∆(x, t) = ϕ({u(x, t)}x∈Z, x, t), u(x, t0) = u0
x, x ∈ Z, t ∈ [t0, T ]κT, (2.3)

has at most one bounded solution u : Z× [t0, T ]T → R.

Proof. Assume that u1, u2 are two bounded solutions that do not coincide on Z× (t0, T ]T; let

t = inf{τ ∈ (t0, T ]T; u1(x, τ) 6= u2(x, τ) for some x ∈ Z}.

We claim that u1(x, t) = u2(x, t) for every x ∈ Z. If t = t0, the statement is true. If t > t0 and t is left-
dense, then the statement follows from continuity of solutions with respect to the time variable. Finally,
if t > t0 and t is left-scattered, then u1(x, ρ(t)) = u2(x, ρ(t)), and the statement follows from the fact
that u∆

1 (x, ρ(t)) = u∆
2 (x, ρ(t)).

If t is right-scattered, then u1(x, t) = u2(x, t) and u∆
1 (x, t) = u∆

2 (x, t) imply u1(x, σ(t)) = u2(x, σ(t)),
a contradiction with the definition of t. Hence, t is right-dense. Since the functions Ui(t) = {ui(x, t)}x∈Z,
i ∈ {1, 2}, t ∈ [t0, T ]T, are bounded, their values are contained in a bounded set B ⊂ `∞(Z). By the first
assumption, there is a constant M ≥ 0 such that |ϕ| ≤M on B × Z× [t0, T ]T. We have

ui(x, t)− ui(x, s) =

∫ t

s

u∆
i (x, τ) ∆τ =

∫ t

s

ϕ(Ui(τ), x, τ) ∆τ, i ∈ {1, 2}, t, s ≥ t0, x ∈ Z

(the last integral exists at least in the Henstock-Kurzweil’s sense; see [23, Theorem 2.3]). It follows that

|ui(x, t)− ui(x, s)| ≤ |t− s|M, i ∈ {1, 2}, t, s ≥ t0, x ∈ Z,

and therefore
‖Ui(t)− Ui(s)‖∞ ≤ |t− s|M, i ∈ {1, 2}, t, s ≥ t0,

i.e., the functions U1, U2 are continuous on [t0, T ]T.
By the second assumption, ϕ is Lipschitz-continuous in the first variable on B ×Z× [t0, T ]T; let L be

the corresponding Lipschitz constant. Then

u1(x, r)− u2(x, r) =

∫ r

t

ϕ(U1(τ), x, τ)− ϕ(U2(τ), x, τ) ∆τ, r ≥ t,

‖U1(r)− U2(r)‖∞ ≤
∫ r

t

L‖U1(τ)− U2(τ)‖∞∆τ, r ≥ t
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(the last integral exists since U1 − U2 is continuous). Consequently, for each s ∈ [t, T ]T,

sup
τ∈[t,s]

‖U1(τ)− U2(τ)‖∞ ≤ (s− t)L sup
τ∈[t,s]

‖U1(τ)− U2(τ)‖∞.

Since t is right-dense, there is a point s ∈ [t, T ]T with s > t and (s− t)L < 1. Substituting this inequality
into the previous estimate, we arrive to a contradiction.

Uniqueness of bounded solutions to the initial-value problem (2.1) is now a simple consequence of the
previous theorem.

Theorem 2.3 (global uniqueness). Assume that f : R×Z× [t0, T ]T → R satisfies (H1) and (H2). Then
for each u0 ∈ `∞(Z), the initial-value problem (2.1) has at most one bounded solution u : Z×[t0, T ]T → R.

Proof. Note that (2.1) is a special case of (2.3) with the function ϕ : `∞(Z) × Z × [t0, T ]T → R being
given by

ϕ({ux}x∈Z, x, t) = aux+1 + bux + cux−1 + f(ux, x, t).

Hence, it is enough to verify that the two conditions in Theorem 2.2 are satisfied.
Given an arbitrary bounded set B ⊂ `∞(Z), there exists a bounded set B ⊂ R such that u ∈ B implies

ux ∈ B, x ∈ Z. Hence, the first condition in Theorem 2.2 is an immediate consequence of (H1). To verify
the second condition, let L be the Lipschitz constant for the function f on B × Z × [t0, T ]T. Then, for
each pair of sequences u, v ∈ B ⊂ `∞(Z), we have

|ϕ(u, x, t)−ϕ(v, x, t)| ≤ (|a|+ |b|+ |c|) · ‖u−v‖∞+ |f(ux, x, t)−f(vx, x, t)| ≤ (|a|+ |b|+ |c|+L) · ‖u−v‖∞,

which means that ϕ is Lipschitz-continuous in the first variable on B × Z× [t0, T ]T.

3 Continuous dependence results

This section is devoted to the study of continuous dependence of solutions to abstract dynamic equations
with respect to the choice of the time scale. The results are also applicable to (2.1), whose solutions (as
we know from Theorem 2.1) are obtained from solutions to a certain abstract dynamic equation.

We begin by proving a continuous dependence theorem for the so-called measure differential equations,
i.e., integral equations with the Kurzweil-Stieltjes integral (also known as the Perron-Stieltjes integral)
on the right-hand side. For readers who are not familiar with this concept, it is sufficient to know that
the integral has the usual properties of linearity and additivity with respect to adjacent subintervals.
The main advantage with respect to the Riemann-Stieltjes integral is that the class of Kurzweil-Stieltjes
integrable functions is much larger. For example, if g : [a, b] → R has bounded variation, then the

integral
∫ b
a
f(t) dg(t) exists for each regulated function f : [a, b] → X, where X is a Banach space (see

[26, Proposition 15]).
The statement as well as the proof of the next theorem are closely related to Theorem 5.1 in [3]; for

more details, see Remark 3.3.

Theorem 3.1. Let X be a Banach space, B ⊆ X. Consider a sequence of nondecreasing left-continuous
functions gn : [t0, T ] → R, n ∈ N0, such that gn ⇒ g0 on [t0, T ]. Assume that Φ : B × [t0, T ] → X
is Lipschitz-continuous in the first variable. Let xn : [t0, T ] → B, n ∈ N0, be a sequence of functions
satisfying

xn(t) = xn(t0) +

∫ t

t0

Φ(xn(s), s) dgn(s), t ∈ [t0, T ], n ∈ N0,

and xn(t0) → x0(t0). Suppose finally that the function s 7→ Φ(x0(s), s), s ∈ [t0, T ], is regulated. Then
xn ⇒ x0 on [t0, T ].
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Proof. Since gn(t0) → g0(t0) and gn(T ) → g0(T ), the sequences {gn(t0)}∞n=1 and {gn(T )}∞n=1 are neces-
sarily bounded. Hence, there exists a constant M ≥ 0 such that

vart∈[t0,T ] gn(t) = gn(T )− gn(t0) ≤M, n ∈ N.

The Kurzweil-Stieltjes integral
∫ T
t0

Φ(x0(s), s) d(gn − g0)(s) exists, because s 7→ Φ(x0(s), s) is regulated

and gn − g0 has bounded variation. Since gn − g0 ⇒ 0, it follows from [22, Theorem 2.2] that

lim
n→∞

∫ t

t0

Φ(x0(s), s) d(gn − g0)(s) = 0,

uniformly with respect to t ∈ [t0, T ]. Thus, for an arbitrary ε > 0, there exists an n0 ∈ N such that

∥∥∥∥
∫ t

t0

Φ(x0(s), s) d(gn − g0)(s)

∥∥∥∥ ≤ ε, n ≥ n0, t ∈ [t0, T ].

Moreover, n0 can be chosen in such a way that ‖xn(t0)− x0(t0)‖ ≤ ε for each n ≥ n0.
Consequently, the following inequalities hold for each n ≥ n0 and t ∈ [t0, T ]:

‖xn(t)− x0(t)‖ ≤ ‖xn(t0)− x0(t0)‖+

∥∥∥∥
∫ t

t0

Φ(xn(s), s) dgn(s)−
∫ t

t0

Φ(x0(s), s) dg0(s)

∥∥∥∥

≤ ε+

∥∥∥∥
∫ t

t0

(Φ(xn(s), s)− Φ(x0(s), s)) dgn(s)

∥∥∥∥+

∥∥∥∥
∫ t

t0

Φ(x0(s), s) d(gn − g0)(s)

∥∥∥∥

≤ 2ε+

∫ t

t0

‖Φ(xn(s), s)− Φ(x0(s), s)‖dgn(s) ≤ 2ε+ L

∫ t

t0

‖xn(s)− x0(s)‖dgn(s),

where L is the Lipschitz constant for the function Φ. Using Grönwall’s inequality for the Kurzweil-Stieltjes
integral (see, e.g., [25, Corollary 1.43]), we get

‖xn(t)− x0(t)‖ ≤ 2εeL(gn(t)−gn(t0)) ≤ 2εeLM , n ≥ n0, t ∈ [t0, T ],

which completes the proof.

We now use the relation between measure differential equations and dynamic equations to obtain a
continuous dependence theorem for the latter type of equations. Since we need to compare solutions de-
fined on different time scales (whose intersection might be empty), we introduce the following definitions.

Consider an interval [t0, T ] ⊂ R and a time scale T with t0 ∈ T, supT ≥ T . Let gT : [t0, T ] → R be
given by

gT(t) = inf{s ∈ [t0, T ]T; s ≥ t}, t ∈ [t0, T ]. (3.1)

Each function x : [t0, T ]T → X can be extended to a function x∗ : [t0, T ]→ X by letting

x∗(t) = x(gT(t)), t ∈ [t0, T ]. (3.2)

Note that x∗ coincides with x on [t0, T ]T, and is constant on each interval (u, v] where (u, v)∩T = ∅. We
will refer to x∗ as the piecewise constant extension of x, see Figure 1.

We are now ready to prove a theorem dealing with continuous dependence of solutions to abstract
dynamic equations with respect to the choice of the time scale and initial condition.
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Figure 1: Piecewise constant extension x∗ (gray) of a function x (black); see (3.2).

Theorem 3.2 (continuous dependence). Let X be a Banach space, B ⊆ X. Consider an interval
[t0, T ] ⊂ R and a sequence of time scales {Tn}∞n=0 such that t0 ∈ Tn and supTn ≥ T for each n ∈ N0,

T ∈ T0, and gTn
⇒ gT0

on [t0, T ]. Denote T =
⋃∞
n=0 Tn. Suppose that Φ : B× [t0, T ]T → X is continuous

on its domain and Lipschitz-continuous with respect to the first variable. Let xn : [t0, T ]Tn
→ B, n ∈ N0,

be a sequence of functions satisfying

x∆
n (t) = Φ(xn(t), t), t ∈ [t0, T ]κTn

, n ∈ N0,

and xn(t0)→ x0(t0). Then the sequence of piecewise constant extensions {x∗n}∞n=1 is uniformly convergent
to the piecewise constant extension x∗0 on [t0, T ]. In particular, for every ε > 0, there exists an n0 ∈ N
such that ‖xn(t)− x0(t)‖ < ε for all n ≥ n0, t ∈ [t0, T ]Tn

∩ [t0, T ]T0
.

Proof. According to the assumptions, we have

xn(t) = xn(t0) +

∫ t

t0

Φ(xn(s), s) ∆s, t ∈ [t0, T ]Tn , n ∈ N0.

For each n ∈ N0, let x∗n : [t0, T ]→ X be the piecewise constant extension of xn. Using the relation between
∆-integrals and Kurzweil-Stieltjes integrals (see [27, Theorem 5] or [11, Theorem 4.5]), we conclude that
x∗n satisfy

x∗n(t) = x∗n(t0) +

∫ t

t0

Φ(x∗n(s), gTn
(s)) dgTn

(s), t ∈ [t0, T ], n ∈ N0. (3.3)

Let Φ∗ : B × [t0, T ]→ X be given by

Φ∗(x, t) = Φ(x, gT(t)), x ∈ B, t ∈ [t0, T ].

Note that for each s ∈ [t0, T ]Tn
, we have Φ(x∗n(s), gTn

(s)) = Φ(x∗n(s), s) = Φ(x∗n(s), gT(s)) = Φ∗(x∗n(s), s).
Thus, by [11, Theorem 5.1], the integral equation (3.3) is equivalent to

x∗n(t) = x∗n(t0) +

∫ t

t0

Φ∗(x∗n(s), s) dgTn
(s), t ∈ [t0, T ], n ∈ N0.

Because x0 is continuous on [t0, T ]T0
, its piecewise constant extension x∗0 is regulated on [t0, T ] (see

[27, Lemma 4]). Moreover, its one-sided limits at each point of [t0, T ] are elements of B (note that
x∗0([t0, T ]) = x0([t0, T ]T0) is compact, because x0 is continuous and [t0, T ]T0 is compact). The function
gT is the piecewise constant extension of the identity function from [t0, T ]T to [t0, T ]; hence (again by [27,
Lemma 4]), gT is regulated on [t0, T ]. Consequently, the function s 7→ (x∗0(s), gT(s)) is also regulated on
[t0, T ], and its one-sided limits have values in B × [t0, T ]T. Continuity of Φ on B × [t0, T ]T implies that
s 7→ Φ(x∗0(s), gT(s)) = Φ∗(x∗0(s), s) is regulated on [t0, T ]. According to Theorem 3.1, we have x∗n ⇒ x∗0
on [t0, T ].
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Remark 3.3. The problem of continuous dependence of solutions to dynamic equations with respect to
the choice of time scale has been studied by several authors; see, e.g., [1, 3, 13, 14, 15, 20]. Our approach
is close to the one taken in [3] or [13]; it relies on the continuous dependence result for measure differential
equations from Theorem 3.1, which is similar in spirit to Theorem 5.1 in [3]. In this context, it seems
appropriate to include a few remarks:

• Although the statement of Theorem 5.1 in [3] is essentially correct, the proof provided there is

based on an erroneous estimate of the form ‖
∫ t
t0
fn dgn −

∫ t
t0
fn dg0‖ ≤

∫ T
t0
M d(gn − g0), where fn,

f0 are certain functions whose norm is bounded by M , and gn, g0 are nondecreasing.

• The assumption that the Hausdorff distance between Tn and T0 tends to zero is never used in the
proof of Theorem 5.1 in [3], and can be omitted. On the other hand, the assumption that the

above-mentioned integral
∫ T
t0
fn dg0 exists is missing.

• Theorem 5.1 in [3] deals with measure functional differential equations; our Theorem 3.1 and its
proof can be easily adapted to this type of equations.

The next result shows that each time scale can be approximated by a sequence of discrete time scales
in such a way that the assumptions of Theorem 3.2 are satisfied. We introduce the following notation:

µT = max
t∈[t0,T )T

µ(t).

Theorem 3.4. If T0 ⊂ R is a time scale with t0, T ∈ T0, there exists a sequence of discrete time scales
{Tn}∞n=1 with Tn ⊆ T0, minTn = t0, maxTn = T , and such that gTn

⇒ gT0
on [t0, T ].

Moreover, if µT0
= 0, then limn→∞ µTn

= 0; otherwise, if µT0
> 0, then the sequence {Tn}∞n=1 can be

chosen so that µTn
= µT0

for all n ∈ N.

Proof. We start by proving that for each ε > 0, there exists a left-continuous nondecreasing step function
gε : [t0, T ]→ R such that gε(t0) = t0, gε(T ) = T , and ‖gε − gT0‖∞ ≤ ε.

Given an ε > 0, let t0 = x0 < x1 < · · · < xm = T be a partition of [t0, T ] such that xi − xi−1 ≤ ε,
i ∈ {1, . . . ,m}. We begin the construction of the step function gε : [t0, T ] → R by letting gε(T ) = T .
Then we proceed by induction in the backward direction and define gε on [xm−1, xm), . . . , [x0, x1). At
the same time, we are going to check that ‖gT0

− gε‖∞ ≤ ε on these subintervals, and also ensure that
gε(xi) = xi whenever xi ∈ T0; this will guarantee that gε(t0) = t0.

Assume that gε is already defined at xi, and we want to extend it to [xi−1, xi). We distinguish between
two possibilites:

• If T0 ∩ [xi−1, xi) = ∅, then, by the definition of gT0 , we have gT0(t) = gT0(xi) for each t ∈ [xi−1, xi).
Let gε(t) = gε(xi), t ∈ [xi−1, xi). Then |gε(t) − gT0

(t)| = |gε(xi) − gT0
(xi)| ≤ ε, where the last

inequality follows from the induction hypothesis.

• If T0 ∩ [xi−1, xi) is nonempty, let ti be its supremum. Define

gε(xi−1) =

{
xi−1, if xi−1 ∈ T0,

ti, if xi−1 /∈ T0,
gε(t) =

{
ti, t ∈ (xi−1, ti],

gε(xi), t ∈ (ti, xi).

Note that ti might coincide with xi; in this case, we necessarily have xi ∈ T0, and therefore, by the
induction hypothesis, gε(xi) = xi; this guarantees that gε is left-continuous at xi.

For each t ∈ [xi−1, ti], we have xi−1 ≤ t ≤ gT0
(t) ≤ ti. Therefore, 0 ≤ ti − gT0

(ti) ≤ ti − xi−1 ≤ ε,
which in turn means that |gε(t)− gT0

(t)| ≤ ε. For each t ∈ (ti, xi), it follows from the definition of
gT0 that gT0(t) = gT0(xi) , and therefore |gε(t)− gT0(t)| = |gε(xi)− gT0(xi)| ≤ ε.
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Observe that the function gε constructed in this way has the property that gε(t) ≥ t, and that gε(t) = t
implies t ∈ T0.

By choosing ε = 1/n, n ∈ N, we get a sequence of left-continuous nondecreasing step functions
{g1/n}∞n=1 such that g1/n ⇒ gT0 on [t0, T ]. For each n ∈ N, consider the set

Tn = {t ∈ [t0, T ]; g1/n(t) = t}.

Clearly, t0 and T are elements of Tn, and Tn ⊆ T0. Moreover, Tn is finite, since g1/n is a step function
and therefore its graph has only finitely many intersections with the graph of the identity function. Thus,
Tn is a discrete time scale. It follows from the definition of Tn that gTn = g1/n, and therefore gTn ⇒ gT0

on [t0, T ].
To prove the final part of the theorem, we distinguish between two cases:

• Assume that µT0
> 0. Let y0 = t0, and construct a sequence of points y1 < · · · < yk = T using the

recursive formula
yi = sup (yi−1, yi−1 + µT0

] ∩ [t0, T ]T0 .

Since the graininess of T0 never exceeds µT0
, the set whose supremum is being considered is never

empty. Also, note that yi+1−yi−1 ≥ µT0
(otherwise, the point yi+1 would have been chosen directly

after yi−1). Thus, the recursive procedure always terminates by reaching the point tk = T for some
k ∈ N.

In the construction of the function gε described in the beginning of this proof, we can always assume
that the points y0, . . . , yk are among x0, . . . , xm. The construction then guarantees that gε(yi) = yi
for each i ∈ {0, . . . , k}. Consequently, the points y0, . . . , yk are contained in all of the time scales
Tn, n ∈ N, and

µTn
≤ max

1≤i≤k
(yi − yi−1) ≤ µT0

.

On the other hand, since Tn ⊆ T0, we have µT0
≤ µTn

, which in turn means that µTn
= µT0

.

• Assume that µT0
= 0. If µ is the graininess function of an arbitrary time scale T with minT = t0 and

supT ≥ T , observe that gT(t+)−gT(t) = µ(t) if t ∈ [t0, T )T, and gT(t+)−gT(t) = 0 if t ∈ [t0, T )\T.
Hence, we have

µT = sup
t∈[t0,T )T

µ(t) = sup
t∈[t0,T )

(gT(t+)− gT(t)) .

Since gTn ⇒ gT0 on [t0, T ], the Moore-Osgood theorem implies that gTn(t+)− gTn(t) ⇒ gT0(t+)−
gT0(t) on [t0, T ), and therefore

lim
n→∞

µTn
= lim
n→∞

(
sup

t∈[t0,T )

(gTn
(t+)− gTn

(t))

)
= sup
t∈[t0,T )

(gT0
(t+)− gT0

(t)) = µT0
= 0.

4 Weak maximum principle and global existence

A natural task in the analysis of diffusion-type equations is to establish the maximum principles. Given
an initial condition u0 ∈ `∞(Z), let

m = inf
x∈Z

u0
x, M = sup

x∈Z
u0
x.

We introduce the following conditions, which will be useful for our purposes:

(H4) a, b, c ∈ R are such that a, c ≥ 0, b < 0, and a+ b+ c = 0.
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f

µT → 0+

µT → 0+

ψ1

ψ2

Figure 2: Illustration of (H6). The values r,R are chosen so that the function f(·, x, t) does not intersect
the gray forbidden areas. The slope of the boundary dashed lines is determined by the values of µT.

(H5) b < 0 and µT ≤ −1/b.

(H6) There exist r,R ∈ R such that r ≤ m ≤M ≤ R, and one of the following statements holds:

• µT = 0 and f(R, x, t) ≤ 0 ≤ f(r, x, t) for all x ∈ Z, t ∈ [t0, T ]T.

• µT > 0 and
1 + µTb

µT
(r−u) ≤ f(u, x, t) ≤ 1 + µTb

µT
(R−u) for all u ∈ [r,R], x ∈ Z, t ∈ [t0, T ]T.

Remark 4.1. Let us notice that:

• If (H4)–(H5) are not satisfied, then the maximum principle does not hold even in the linear case
with f ≡ 0; see [28, Section 4].

• (H6) defines forbidden areas that the function f(·, x, t) cannot intersect for any x ∈ Z, t ∈ [t0, T ]T,
similarly as in [31] (see Figure 2).

• If (H5) holds, there exists a function f satisfying (H6); indeed, the linear functions ψ1(u) =
1+µTb
µT

(r− u) and ψ2(u) = 1+µTb
µT

(R− u) have identical nonpositive slopes, and the constant term of

ψ1 is less than or equal to the constant term of ψ2. If µT = −1/b or r = R, then (H6) is equivalent
to f(u, x, t) = 0 for all u ∈ [r,R], x ∈ Z and t ∈ [t0, T ]T. Finally, if µT > −1/b and r < R, there
does not exist any function satisfying (H6).

If (H6) holds in the continuous case µT = 0, the following lemma shows that (H6) is also satisfied for
all sufficiently fine time scales (specifically, for almost all of the discrete approximating time scales Tn
from Theorem 3.4).

Lemma 4.2. Assume that µT = 0 and (H2), (H6) hold. Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0] the following inequalities hold:

1 + εb

ε
(r − u) ≤ f(u, x, t) ≤ 1 + εb

ε
(R− u) for all u ∈ [r,R], x ∈ Z, t ∈ [t0, T ]. (4.1)
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Proof. Let L ≥ 0 be the Lipschitz constant for the function f on the set [r,R]× Z× [t0, T ]. Then for all
u ∈ [r,R], x ∈ Z, and t ∈ [t0, T ], we obtain

f(u, x, t) ≤ f(u, x, t)− f(R, x, t) ≤ |f(u, x, t)− f(R, x, t)| ≤ L|u−R| = L(R− u),

f(u, x, t) ≥ f(u, x, t)− f(r, x, t) ≥ −|f(u, x, t)− f(r, x, t)| ≥ −L|u− r| = L(r − u).

Since L(r − u) ≤ f(u, x, t) ≤ L(R − u), the two inequalities in (4.1) will be satisfied if 1/ε+ b ≥ L, i.e.,
for all ε ∈ (0, 1/(L− b)].

The following lemma represents a weak maximum principle for time scales containing no right-dense
points; it will be a key tool in the proof of the general weak maximum principle.

Lemma 4.3. Assume that [t0, T )T does not contain any right-dense points, (H4)–(H6) hold, and u :
Z× [t0, T ]T → R is a solution of (2.1) with u0 ∈ `∞(Z). Then

r ≤ u(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]T. (4.2)

Proof. We show the statement via the induction principle [4, Theorem 1.7] in the variable t. For a fixed
t ∈ [t0, T ]T, we have to distinguish among three cases:

• For t = t0, we obtain from the definition of m and M and from (H6) that

r ≤ m ≤ u(x, t0) ≤M ≤ R for all x ∈ Z.

• Let t ∈ (t0, T ]T be left-dense and assume that r ≤ u(x, s) ≤ R for all s ∈ [t0, t)T and x ∈ Z. Then
the continuity of the function u(x, ·) on [t0, T ]T implies

r ≤ u(x, t) = lim
s→t−

u(x, s) ≤ R for all x ∈ Z.

• Let t ∈ [t0, T )T be right-scattered, i.e., necessarily µT > 0, and

r ≤ u(x, t) ≤ R for all x ∈ Z. (4.3)

We have to show that
r ≤ u(x, t+ µT(t)) ≤ R for all x ∈ Z. (4.4)

Notice that from (H5) and from the fact that µT ≥ µT(t) > 0 we get

0 ≤ 1 + µTb

µT
=

1

µT
+ b ≤ 1

µT(t)
+ b =

1 + µT(t)b

µT(t)
.

Consequently, (H6) yields

1 + µT(t)b

µT(t)
(r− u) ≤ f(u, x, t) ≤ 1 + µT(t)b

µT(t)
(R− u) for all u ∈ [r,R], x ∈ Z, t ∈ [t0, T ]T. (4.5)

Let us prove the latter inequality in (4.4). Using the equation in (2.1), we obtain the estimate

u(x, t+ µT(t)) = µT(t)au(x+ 1, t) + (1 + µT(t)b)u(x, t) + µT(t)cu(x− 1, t)
+µT(t)f(u(x, t), x, t)

(H4),(4.3)

≤ µT(t)(a+ c)R+ (1 + µT(t)b)u(x, t) + µT(t)f(u(x, t), x, t)
(H4)
= −µT(t)bR+ (1 + µT(t)b)u(x, t) + µT(t)f(u(x, t), x, t)

(4.3),(4.5)

≤ −µT(t)bR+ (1 + µT(t)b)u(x, t) + (1 + µT(t)b) (R− u(x, t))
= R,

for each x ∈ Z. The former inequality in (4.4) can be shown in a similar way.
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We do not have to consider the case when t is right-dense, since T does not contain any such point.
Therefore, the induction principle yields that (4.2) holds for all x ∈ Z, t ∈ [t0, T ]T.

We now proceed to the general weak maximum principle for (2.1), where T is an arbitrary time scale
(i.e., allowing right-dense points). The basic idea of the proof is to use the continuous dependence results
from Theorems 3.2 and 3.4 to approximate the solution of (2.1) on any time scale by solutions of (2.1)
defined on discrete time scales, for which we can apply Lemma 4.3.

Theorem 4.4 (weak maximum principle). Assume that (H1)–(H6) hold. If u : Z × [t0, T ]T → R is a
bounded solution of (2.1), then

r ≤ u(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]T. (4.6)

Proof. From Theorems 2.1 and 2.3 we obtain that u has to be unique and U(t) = {u(x, t)}x∈Z is the
unique solution of the abstract initial-value problem

U∆(t) = Φ(U(t), t), U(t0) = u0, (4.7)

where Φ : `∞(Z)× [t0, T ]T → `∞(Z) is given by Φ({ux}x∈Z, t) = {aux+1 + bux + cux−1 + f(ux, x, t)}x∈Z.
According to Theorem 3.4, there exists a sequence {Tn}∞n=1 of discrete time scales such that Tn ⊆ T,

minTn = t0, maxTn = T , gTn
⇒ gT. Moreover, we have either µT = 0 and µTn

→ 0, or µTn
= µT for all

n ∈ N. In any case, using (H5), we get the existence of an n0 ∈ N such that

µTn
≤ −1

b
for all n > n0.

If µT = 0, it follows from Lemma 4.2 that n0 can be chosen in such a way that the inequalities

1 + µTn(t)b

µTn
(t)

(r − u) ≤ f(u, x, t) ≤ 1 + µTn(t)b

µTn
(t)

(R− u) for all u ∈ [r,R], x ∈ Z, t ∈ [t0, T ]Tn

hold for each n > n0. If µT > 0, the same inequalities hold for each n ∈ N because of (H6) and the fact
that µTn

= µT.
Therefore, since Tn are discrete time scales, Lemma 4.3 yields that the corresponding solutions un :

Z× [t0, T ]Tn
→ R of (2.1) satisfy

r ≤ un(x, t) ≤ R for all x ∈ Z, t ∈ [t0, T ]Tn
, n > n0,

i.e., for Un(t) = {un(x, t)}x∈Z, we have

r ≤ inf
x∈Z

Un(t)x ≤ sup
x∈Z

Un(t)x ≤ R for all t ∈ [t0, T ]Tn
, n > n0. (4.8)

Since the solution U is bounded, there is an S > 0 such that ‖U(t)‖∞ ≤ S for each t ∈ [t0, T ]T. Let

B = {V ∈ `∞(Z); ‖V ‖∞ ≤ max (|r|, |R|, S)} .

As in the proof of Theorem 2.1, one can show that the restriction of the mapping Φ to B × [t0, T ]T is
continuous on its domain and Lipschitz-continuous in the first variable. Therefore, if we let T0 = T, the
assumptions of Theorem 3.2 are satisfied (recall that Un(t) ∈ B for all t ∈ Tn and n > n0 from (4.8), and
U(t) ∈ B for all t ∈ T immediately from the definition of B) and hence, U∗n ⇒ U∗ on [t0, T ].

From the definition of the piecewise constant extension U∗n and from (4.8), it is obvious that

r ≤ inf
x∈Z

U∗n(t)x ≤ sup
x∈Z

U∗n(t)x ≤ R for all t ∈ [t0, T ], n > n0. (4.9)
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Since U∗n ⇒ U∗ on [t0, T ], the inequalities (4.9) imply

r ≤ inf
x∈Z

U∗(t)x ≤ sup
x∈Z

U∗(t)x ≤ R for all t ∈ [t0, T ].

Particularly, there has to be

r ≤ inf
x∈Z

U(t)x ≤ sup
x∈Z

U(t)x ≤ R for all t ∈ [t0, T ]T,

which proves that (4.6) holds.

Remark 4.5. In connection with the previous theorem, we point out the following facts:

• The classical maximum principle guarantees that m ≤ u(x, t) ≤M , i.e., it corresponds to the case
when r = m and R = M . However, for this choice of r and R, (H6) need not be satisfied. By
choosing r < m and R > M , we can soften (H6), and obtain the weaker estimate r ≤ u(x, t) ≤ R.

• An examination of the proofs of Lemma 4.3 and Theorem 4.4 reveals that if we are interested only
in the upper bound u(x, t) ≤ R, it is sufficient to assume that a+ b+ c ≤ 0. Symmetrically, to get
the lower bound u(x, t) ≥ r, it is enough to suppose that a+ b+ c ≥ 0.

As an application of the weak maximum principle, we obtain the following global existence theorem.
Since we consider a general class of nonlinearities f , the result is new even in the special case T = R.

Theorem 4.6 (global existence). If u0 ∈ `∞(Z) and (H1)–(H6) hold, then (2.1) has a unique bounded
solution u : Z× [t0, T ]T → R.

Moreover, the solution depends continuously on u0 in the following sense: For every ε > 0, there
exists a δ > 0 such that if v0 ∈ `∞(Z), r ≤ v0

x ≤ R for all x ∈ Z, and ‖u0 − v0‖∞ < δ, then the
unique bounded solution v : Z × [t0, T ]T → R of (2.1) corresponding to the initial condition v0 satisfies
|u(x, t)− v(x, t)| < ε for all x ∈ Z, t ∈ [t0, T ]T.

Proof. We know from Theorems 2.1 and 2.3 that bounded solutions to (2.1) are unique, and that they
correspond to solutions of the initial-value problem

U∆(t) = Φ(U(t), t), t ∈ [t0, T ]κT, U(t0) = u0, (4.10)

with Φ : `∞(Z)× [t0, T ]T → `∞(Z) being given by Φ({ux}x∈Z, t) = {aux+1 +bux+cux−1 +f(ux, x, t)}x∈Z.
Thus, it is enough to prove that (4.10) has a solution on the whole interval [t0, T ]T.

Let S be the set of all s ∈ [t0, T ]T such that (4.10) has a solution on [t0, s]T, and denote t1 = supS. By
Theorem 2.1, we have t1 > t0. Let us prove that t1 ∈ S. The statement is obvious if t1 is a left-scattered
maximum of S; therefore, we can assume that t1 is left-dense. It follows from the definition of t1 that
(4.10) has a solution U defined on [t0, t1)T. According to the weak maximum principle, U takes values
in the bounded set B = {u ∈ `∞(Z); r ≤ ux ≤ R for each x ∈ Z}. As in the proof of Theorem 2.1, one
can show that Φ is continuous on its domain and Lipschitz-continuous in the first variable and bounded
on B × [t0, T ]T; let C be the boundedness constant for ‖Φ‖∞. Since U is a solution of (4.10), we have

U(t) = U(t0) +

∫ t

t0

Φ(U(s), s)∆s (4.11)

for each t ∈ [t0, t1)T. Note also that ‖U(s1) − U(s2)‖∞ ≤ C|s1 − s2| for all s1, s2 ∈ [t0, t1)T. Thus,
the Cauchy condition for the existence of the limit U(t1−) = lims→t1− U(s) is satisfied. If we extend
U to [t0, t1]T by letting U(t1) = U(t1−), we see that (4.11) holds also for t = t1. Since the mapping
s 7→ Φ(U(s), s) is continuous on [t0, t1]T, it follows that U is a solution of (4.10) on [t0, t1]T, i.e., t1 ∈ S.
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If t1 < T , we can use Theorem 2.1 to extend the solution U from [t0, t1]T to a larger interval.
However, this contradicts the fact that t1 = supS. Hence, the only possibility is t1 = T , and the proof
of the existence is complete.

To obtain continuous dependence of the solution on the initial condition, it is enough to show the
following statement: If un ∈ B for n ∈ N, un → u0 in `∞(Z), and Un : [t0, T ]T → `∞(Z) is the unique
solution of the initial-value problem

U∆
n (t) = Φ(Un(t), t), t ∈ [t0, T ]κT, Un(t0) = un,

then Un ⇒ U on [t0, T ]T. Since we know that the solutions Un in fact take values in B, the statement is
an immediate consequence of Theorem 3.2, where we take Tn = T for each n ∈ N0.

Let us illustrate the application of the weak maximum principle and the global existence theorem on
the following special cases of (2.1).

Example 4.7. Consider the logistic nonlinearity f(u, x, t) = λu(1− u), u ∈ R, x ∈ Z, t ∈ [t0, T ]T, where
λ > 0 is a parameter. In this case, (2.1) becomes a Fisher-type reaction-diffusion equation:

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + λu(x, t) (1− u(x, t)) , x ∈ Z, t ∈ [t0, T ]κT,

u(x, t0) = u0
x, x ∈ Z.

(4.12)

Obviously, f satisfies (H1)–(H3). Suppose that a, c ≥ 0, b < 0, a+ b+ c = 0, and µT ≤ −1/b; i.e., (H4)
and (H5) hold. Consider an arbitrary nonnegative initial condition u0 ∈ `∞(Z), i.e., m ≥ 0. We now
distinguish between the cases µT = 0 and µT > 0:

• If µT = 0, let r = min(m, 1) and R = max(M, 1). Then f(R, x, t) ≤ 0 and f(r, x, t) ≥ 0, i.e., (H6)
holds and there exists a unique global solution u of (4.12). Moreover, u satisfies r ≤ u(x, t) ≤ R for
all x ∈ Z and t ∈ [t0, T ]T. In particular, nonnegative initial conditions always lead to nonnegative
solutions.

• If µT > 0, Lemma 4.2 together with the analysis of the previous case guarantee that (H6) holds
with r = min(m, 1) and R = max(M, 1) whenever µT is sufficiently small. For example, if M ≤ 1,

consider the linear functions ψ1(u) = 1+µTb
µT

(r − u) and ψ2(u) = 1+µTb
µT

(R− u) from (H6). We have

ψ1(u) ≤ 0 ≤ f(u, x, t) for each for u ∈ [r,R], i.e., the first inequality in (H6) is satisfied. The graphs
of ψ2 and f(·, x, t) meet at the point (1, 0). Therefore, the second inequality f(u, x, t) ≤ ψ2(u)
in (H6) will be satisfied for u ∈ [r,R] if and only if ∂f

∂u (1, x, t) ≥ ψ′2(1), i.e., if and only if −λ ≥
−(1/µT + b). The last condition is equivalent to λ− b ≤ 1/µT, which holds if µT ≤ 1/(λ− b) (note
that b < 0 < λ). Under these assumptions, (H6) holds and there exists a unique bounded global
solution u of (4.12). Moreover, u satisfies m = r ≤ u(x, t) ≤ R = 1 for all x ∈ Z and t ∈ [t0, T ]T.

Example 4.8. Consider the so-called bistable nonlinearity f(u, x, t) = λu(1 − u2), u ∈ R, x ∈ Z,
t ∈ [t0, T ]T, where λ > 0. In this case, (2.1) becomes a Nagumo-type reaction-diffusion equation:

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + λu(x, t)
(
1− u(x, t)2

)
, x ∈ Z, t ∈ [t0, T ]κT,

u(x, t0) = u0
x, x ∈ Z.

(4.13)

Obviously, f satisfies (H1)–(H3). Suppose that a, c ≥ 0, b < 0, a+ b+ c = 0, and µT ≤ −1/b; i.e., (H4)
and (H5) hold. Consider an arbitrary initial condition u0 ∈ `∞(Z). Again, we distinguish between the
cases µT = 0 and µT > 0:

• If µT = 0, let

r =

{
min(m,−1) if m < 0,

min(m, 1) if m ≥ 0,
R =

{
max(M,−1) if M ≤ 0,

max(M, 1) if M > 0.
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Then f(R, x, t) ≤ 0 and f(r, x, t) ≥ 0, i.e., (H6) holds and there exists a unique bounded global
solution u of (4.13). Moreover, u satisfies r ≤ u(x, t) ≤ R for all x ∈ Z and t ∈ [t0, T ]T. In particular,
nonnegative/nonpositive initial conditions always lead to nonnegative/nonpositive solutions.

• If µT > 0, Lemma 4.2 together with the analysis of the previous case guarantee that (H6) holds
whenever µT is sufficiently small. For example, if ‖u0‖∞ ≤ 1, one can follow the computations from
[31, Section 8] to conclude that there exists a unique global solution u of (4.13) satisfying

u(x, t) ∈
{

[−1, 1] if µT ≤ 1/(2λ− b),
[−R̃, R̃] if 1/(2λ− b) < µT ≤ 2/(λ− 2b),

where

R̃ =
2λµT(1/3 + (1 + 2bµT)/3λµT)3/2

1 + bµT
.

We have no a priori bounds for µT > 2/(λ− 2b).

Example 4.9. Consider the nonautonomous nonlinearity f(u, x, t) = λu(d(x, t) − u), u ∈ R, x ∈ Z,
t ∈ [t0, T ]T, where λ > 0 and d : Z× [t0, T ]T → R. In this case, (2.1) has the form

u∆(x, t) = au(x+ 1, t) + bu(x, t) + cu(x− 1, t) + λu(x, t)(d(x, t)− u(x, t)), x ∈ Z, t ∈ [t0, T ]κT,

u(x, t0) = u0
x, x ∈ Z.

(4.14)

The equation can be interpreted as the logistic population model where the carrying capacity d depends
on position and time. Assume that d has the following properties:

• d is bounded.

• For each choice of ε > 0 and t ∈ [t0, T ]T, there exists a δ > 0 such that if s ∈ (t− δ, t+ δ)∩ [t0, T ]T,
then |d(x, t)− d(x, s)| < ε for all x ∈ Z.

Then the function f satisfies (H1)–(H3). Indeed, let D be the boundedness constant for |d|. If B ⊂ R is
bounded, it is contained in a ball of radius ρ centered at the origin. Consequently, for all u, v ∈ B, x ∈ Z,
t, s ∈ [t0, T ]T, we get the estimates

|f(u, x, t)| ≤ λ|u|(|d(x, t)|+ |u|) ≤ λρ(D + ρ),

|f(u, x, t)− f(v, x, t)| = λ|(u− v)(d(x, t)− u− v)| ≤ λ|u− v|(D + 2ρ),

|f(u, x, t)− f(u, x, s)| = λ|u(d(x, t)− d(x, s))| ≤ λρ|d(x, t)− d(x, s)|,

which imply that (H1)–(H3) hold.
As an example, let us mention the model of population dynamics with a shifting habitat, which was

described in [17]. The authors considered the problem (4.14) with T = R, a = c, b = −2a (i.e., symmetric
diffusion), and d(x, t) = e(x−γt), where γ > 0 and e : R→ R is continuous, nondecreasing, and bounded.
It follows that e is uniformly continuous on R: Given an ε > 0, there exists a δ > 0 such that |t1− t2| < δ
implies |e(t1)− e(t2)| < ε. Thus, we get

|d(x, t)− d(x, s)| = |e(x− γt)− e(x− γs)| < ε

whenever |t − s| < δ
γ and x ∈ Z; this shows that d satisfies our assumptions. (We remark that some

of the results presented in [17] can be found in our earlier paper [29]. In particular, the fundamental
solution of the linear lattice diffusion equation was derived in [29, Example 3.1], and [17, Corollary 2.1]
is a consequence of our superposition principle from [29, Theorem 2.2].)
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Another simple example is obtained by letting d(x, t) = e(t), where e : R→ R is a continuous periodic
function; this choice corresponds to a population model with a periodically changing habitat. Since e is
necessarily bounded and uniformly continuous on R, it is obvious that d satisfies our assumptions.

Suppose now that a, c ≥ 0, b < 0, a + b + c = 0, and µT ≤ −1/b; i.e., (H4) and (H5) hold. For
simplicity, let us restrict ourselves to the case when d is a positive function, and let

dmin = inf
(x,t)∈Z×[t0,T ]T

d(x, t), dmax = sup
(x,t)∈Z×[t0,T ]T

d(x, t).

Consider an arbitrary nonnegative initial condition u0 ∈ `∞(Z), i.e., m ≥ 0. Take r = min(m, dmin) and
R = max(M,dmax). Then f(r, x, t) ≥ 0 and f(R, x, t) ≤ 0 for all x ∈ Z and t ∈ [t0, T ]T. This means
that (H6) holds if µT = 0, or (by Lemma 4.2) if µT is positive and sufficiently small. In these cases, the
problem (4.14) possesses a unique global solution u, and r ≤ u(x, t) ≤ R for all x ∈ Z and t ∈ [t0, T ]T.

5 Strong maximum principle

In the rest of the paper we focus on the strong maximum principle for (2.1). We need the following
stronger versions of (H4)–(H6):

(H4) a, b, c ∈ R are such that a, c > 0, b < 0, and a+ b+ c = 0.

(H5) b < 0 and µT < −1/b.

(H6) There exist r,R ∈ R such that r ≤ m ≤ M ≤ R, and the following statements hold for all x ∈ Z
and t ∈ [t0, T ]T:

• f(R, x, t) ≤ 0 ≤ f(r, x, t).

• If µT > 0, then f(u, x, t) >
1 + µTb

µT
(r − u) for all u ∈ (r,R].

• If µT > 0, then f(u, x, t) <
1 + µTb

µT
(R− u) for all u ∈ [r,R).

The next lemma analyzes the situation when a solution of (2.1) attains its maximum at a left-scattered
point.

Lemma 5.1. Assume that (H1), (H2), (H3), (H4), (H5), (H6) hold, and u : Z × [t0, T ]T → R is
a bounded solution of (2.1). If u(x̄, t̄) ∈ {r,R} for some x̄ ∈ Z and a left-scattered point t̄ ∈ (t0, T ]T, then
u(x, ρT(t̄)) = u(x̄, t̄) for each x ∈ {x̄− 1, x̄, x̄+ 1}.

Proof. We consider the case when u(x̄, t̄) = R; the case u(x̄, t̄) = r can be treated in a similar way.
Denote s̄ = ρT(t̄). We have

u(x̄, t̄) = µT(s̄)au(x̄+ 1, s̄) + (1 + µT(s̄)b)u(x̄, s̄) + µT(s̄)cu(x̄− 1, s̄) + µT(s̄)f(u(x̄, s̄), x̄, s̄).

By the weak maximum principle (which holds because (H4)–(H6) imply (H4)–(H6)), the values of u
cannot exceed R. If at least one of the values u(x̄+ 1, s̄), u(x̄− 1, s̄) is smaller than R and u(x̄, s̄) = R,
then

u(x̄, t̄)
(H4)
< µT(s̄)(a+ c)R+ (1 + µT(s̄)b)R+ µT(s̄)f(R, x̄, s̄)

(H4)
= R+ µT(s̄)f(R, x̄, s̄)

(H6)

≤ R,
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which contradicts the fact that u(x̄, t̄) = R. If u(x̄, s̄) < R, then

u(x̄, t̄) ≤ µT(s̄)(a+ c)R+ (1 + µT(s̄)b)u(x̄, s̄) + µT(s̄)f(u(x̄, s̄), x̄, s̄)
(H4),(H6)

< µT(s̄)(a+ c)R+ (1 + µT(s̄)b)u(x̄, s̄) + µT(s̄) 1+µTb
µT

(R− u(x̄, s̄))

≤ µT(s̄)(a+ c)R+ (1 + µT(s̄)b)u(x̄, s̄) + (1 + µT(s̄)b)(R− u(x̄, s̄))
(H4)
= R,

(5.1)

which is a contradiction again. Thus, the only possibility is that

u(x̄+ 1, s̄) = u(x̄, s̄) = u(x̄− 1, s̄) = R.

We now turn our attention to the case when the maximum is attained at a left-dense point.

Lemma 5.2. Assume that (H1), (H2), (H3), (H4), (H5), (H6) hold, and u : Z × [t0, T ]T → R is a
bounded solution of (2.1). If u(x̄, t̄) ∈ {r,R} for some x̄ ∈ Z and a left-dense point t̄ ∈ (t0, T ]T, then
u(x, t) = u(x̄, t̄) for all x ∈ Z and t ∈ [t0, t̄]T.

Proof. We consider the case when u(x̄, t̄) = R; the case u(x̄, t̄) = r can be treated in a similar way. We
begin by proving that

u(x̄, t) = R for all t ∈ [t0, t̄]T. (5.2)

Assume that there exists a s̄ ∈ [t0, t̄)T such that u(x̄, s̄) < R. Let L ≥ 0 be the Lipschitz constant for f
on the set [r,R] × Z × [t0, T ]T. Choose a partition s̄ = s0 < s1 < · · · < sk = t̄ such that s0, . . . , sk ∈ T
and for each i ∈ {1, . . . , k}, we have either si− si−1 < 1/(L− b), or si = σT(si−1). We will use induction
with respect to i to show that u(x̄, si) < R for each i ∈ {0, . . . , k}; this will be a contradiction with the
fact that u(x̄, sk) = u(x̄, t̄) = R.

For i = 0, we know that u(x̄, s0) = u(x̄, s̄) < R. By the weak maximum principle (which holds
because (H4)–(H6) imply (H4)–(H6)), the values of u cannot exceed R. If i ∈ {0, . . . , k− 1} is such that
si+1 = σT(si), then the induction hypothesis u(x̄, si) < R and Lemma 5.1 imply that u(x̄, si+1) < R.
Otherwise, we have si+1 − si < 1/(L− b). For each t ∈ [si, si+1)T, we get

(u(x̄, t)−R)∆ = au(x̄+ 1, t) + bu(x̄, t) + cu(x̄− 1, t) + f(u(x̄, t), x̄, t)
(H4),Thm.4.4

≤ (a+ c)R+ bu(x̄, t) + f(u(x̄, t), x̄, t)− f(R, x̄, t) + f(R, x̄, t)
(H4),(H6)

≤ −b(R− u(x̄, t)) + f(u(x̄, t), x̄, t)− f(R, x̄, t)
≤ −b(R− u(x̄, t)) + |f(u(x̄, t), x̄, t)− f(R, x̄, t)|
≤ −b(R− u(x̄, t)) + L |u(x̄, t)−R|

Thm.4.4
= (b− L) (u(x̄, t)−R) .

Notice that 1 + µT(t)(b− L) > 0 for all t ∈ [si, si+1)T. Therefore, Grönwall’s inequality [4, Theorem 6.1]
yields

u(x̄, si+1)−R ≤ (u(x̄, si)−R)︸ ︷︷ ︸
<0

eb−L(si+1, si)︸ ︷︷ ︸
>0

< 0,

which completes the proof by induction and confirms that (5.2) holds.
Let us prove that u(x̄ ± 1, t) = R for all t ∈ [t0, t̄]T. Assume that there exists a t ∈ [t0, t̄]T such that

at least one of the values u(x̄ ± 1, t) is smaller than R. The fact that u(x̄, ·) is a constant function on
[t0, t̄]T implies that u∆(x̄, t) = 0 (note that if t = t̄, then t is necessarily left-dense). On the other hand,

u∆(x̄, t) = au(x̄+ 1, t) + bu(x̄, t) + cu(x̄− 1, t) + f(u(x̄, t), x̄, t) < (a+ b+ c)R+ f(R, x̄, t) ≤ 0,

i.e., u∆(x̄, t) < 0, a contradiction.
Once we know that u(x̄ ± 1, t) = R for all t ∈ [t0, t̄]T, it follows by induction with respect to x ∈ Z

that u(x, t) = R for all x ∈ Z and t ∈ [t0, t̄]T.
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With the help of previous two lemmas, we derive the strong maximum principle.

Theorem 5.3 (strong maximum principle). Assume that (H1), (H2), (H3), (H4), (H5), (H6) hold with
r = m ≤ M = R and u : Z × [t0, T ]T → R is a bounded solution of (2.1). If u(x̄, t̄) ∈ {r,R} for some
x̄ ∈ Z and t̄ ∈ (t0, T ]T, then the following statements hold:

(a) If [t0, t̄]T contains only isolated points, i.e., t0 = ρkT(t̄) for some k ∈ N, and

D(x̄, t̄) =
{

(x, t) ∈ Z× [t0, t̄]T : t = ρjT(t̄), j = 0, . . . , k, and x = x̄± i, i = 0, . . . , j
}
,

then u(x, t) = u(x̄, t̄) for all (x, t) ∈ D(x̄, t̄).

(b) Otherwise, if [t0, t̄]T contains a point which is not isolated, then r = R and u(x, t) = R for all x ∈ Z
and t ∈ [t0, T ]T.

Remark 5.4. In order to prevent any confusion, we emphasize that the fact whether a point is isolated
or not is considered with respect to the time scale interval [t0, t̄]T, not the entire time scale T. In other
words, the statement distinguishes between the cases in which the interval [t0, t̄]T is a finite set (part (a))
or at least countable (part (b)).

Proof. We consider the case when u(x̄, t̄) = R; the case u(x̄, t̄) = r can be treated in a similar way. We
prove the statement by analyzing two different cases:

1. Let there be a left-dense point in [t0, t̄]T. Denote

Pld = {t ∈ [t0, t̄]T : t is left-dense} 6= ∅

and tld = supPld. Given the definition of supremum and the fact that T is a closed set, we obtain
tld ∈ T. To show that tld is left-dense, let us assume by contradiction that tld is left-scattered.
Thus, tld /∈ Pld and immediately from the definition of supremum we get a contradiction. From
the proofs of Lemmas 5.1 and 5.2 we obtain that u(x̄, t) = R for all t ∈ [t0, t̄]T and particularly,
u(x̄, tld) = R. Furthermore, since tld is left-dense, Lemma 5.2 yields that

u(x, t) = R for all x ∈ Z, t ∈ [t0, tld]T. (5.3)

There remains to prove the statement for t ∈ [tld, T ]T. From (5.3) we get that u(x, t0) = u0
x = R

for all x ∈ Z and thus, r = m = M = R. Consequently, since (H6) holds with r = m = M = R,
Theorem 4.4 (weak maximum principle) yields that

R ≤ u(x, t) ≤ R, i.e., u(x, t) = R, for all x ∈ Z, t ∈ [t0, T ]T.

2. Let us assume that [t0, t̄]T does not contain any left-dense point.

(i) If [t0, t̄)T does not contain any right-dense point, i.e., [t0, T ]T contains only isolated points,
then the part (a) of the theorem follows immediately from Lemma 5.1.

(ii) Let there exist a right-dense point in [t0, t̄)T. Denote

Prd = {t ∈ [t0, t̄)T : t is right-dense} 6= ∅,

and trd = supPrd. From the fact that t̄ is left-scattered and from the definition of supremum
we obtain trd < t̄. Moreover, since T is closed, there is trd ∈ T. Further, we show that trd
is right-dense as well. Indeed, let us assume that trd is right-scattered, i.e., trd /∈ Prd. Then
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trd is an unattained supremum of Prd and there exists a sequence {tn}∞n=1 ⊂ Prd such that
tn ↗ trd. This would imply that trd is left-dense, a contradiction. Thus, trd is right-dense.

From the definition of trd, the sequence of predecessors of t̄, namely

{
ρjT(t̄)

}∞
j=1
⊆ (trd, t̄]T,

is well-defined and satisfies ρjT(t̄)↘ trd. Let us assume that x ∈ Z is arbitrary but fixed, i.e.,
x = x̄+ i0 or x = x̄− i0 for some i0 ∈ N0. We consider the case x = x̄+ i0; the other case is

similar. Lemma 5.1 implies that for all j ≥ i0, there is u
(
x, ρjT(t̄)

)
= u

(
x̄+ i0, ρ

j
T(t̄)

)
= R.

Then the continuity of the function u(x, ·) yields that

R = lim
j→∞

u
(
x, ρjT(t̄)

)
= u(x, trd),

and since x ∈ Z is arbitrary, there is u(x, trd) = R for all x ∈ Z.

Now we prove that u(x, t) = R for x ∈ Z and t ∈ [t0, trd]T. We use the backward induction
principle in the variable t (see [4, Theorem 1.7 and Remark 1.8]):

• Above we have shown that for t = trd there is u(x, trd) = R for all x ∈ Z.

• Let t ∈ (t0, trd]T be left-scattered and u(x, t) = R for all x ∈ Z. Then Lemma 5.1
immediately implies that u(x, ρT(t)) = R for all x ∈ Z.

• Let t ∈ [t0, trd)T be right dense and u(x, s) = R for all x ∈ Z and s ∈ (t, trd]T. Then again
from the continuity of the functions u(x, ·) we obtain

R = lim
s→t+

u(x, s) = u(x, t) for all x ∈ Z.

• We do not have to consider the case when t ∈ (t0, trd]T is left-dense, since we assume that
[t0, trd]T does not contain any such point.

The backward induction principle implies that u(x, t) = R for all x ∈ Z and t ∈ [t0, trd]T.

Finally, it remains to prove that u(x, t) = R for x ∈ Z and t ∈ [trd, T ]T. Since u(x, t0) = u0
x = R

for all x ∈ Z, there is r = m = M = R and analogously as above, we can use Theorem 4.4
(weak maximum principle) to show that

R ≤ u(x, t) ≤ R, i.e., u(x, t) = R, for all x ∈ Z, t ∈ [t0, T ]T.

Corollary 5.5. Assume that (H1), (H2), (H3), (H4), (H5), (H6) hold with r = m ≤ M = R and
u : Z × [t0, T ]T → R is a bounded solution of (2.1). If there is a point td ∈ [t0, T )T that is not isolated
and if the initial condition u0 is not constant, then

r < u(x, t) < R for all x ∈ Z, t ∈ (td, T ]T.

Proof. Assume by contradiction that there exist x̄ ∈ Z, t̄ ∈ (td, T ]T such that u(x̄, t̄) ∈ {r,R}. Since
td ∈ [t0, t̄)T and td is not isolated, the part (b) of Theorem 5.3 yields that r = m = M = R, a contradiction
with the assumption that u0 is not constant.

The following remarks explain why the original conditions (H4)–(H6) are not sufficient to establish
the strong maximum principle, and had to be replaced by their stronger counterparts (H4)–(H6).
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Remark 5.6. (H4) is too weak for the strong maximum principle; we need the constants a, c ∈ R to be
strictly positive. Indeed, let us consider the linear transport equation

∂u

∂t
(x, t) = u(x+ 1, t)− u(x, t), x ∈ Z, t ∈ [0, T ],

u(x, 0) =

{
1, x ≥ 0,
0, x < 0,

i.e., the initial-value problem (2.1) with a = 1, b = −1, c = 0 and f ≡ 0. Then the unique bounded
solution is given by (see [30, Corollary 4.3])

u(x, t) =





1, x ≥ 0, t ∈ [0, T ],

1−
−x−1∑

j=0

tj

j!
e−t, x < 0, t ∈ [0, T ].

Thus, the strong maximum principle does not hold.

Remark 5.7. To see that (H5) does not suffice, consider the time scale T = N0 and the linear equation
(f ≡ 0)

u∆(x, t) =
1

2
u(x+ 1, t)− u(x, t) +

1

2
u(x− 1, t), x ∈ Z, t ∈ N0,

which corresponds to (2.1) with a = c = 1
2 , b = −1, and f ≡ 0. The equation holds if and only if

u(x, t+ 1) =
1

2
u(x+ 1, t) +

1

2
u(x− 1, t), x ∈ Z, t ∈ N0.

For the initial condition

u(x, 0) =

{
1, x is even,
0, x is odd,

we obtain

u(x, 1) =

{
0, x is even,
1, x is odd,

which violates the strong maximum principle.

Remark 5.8. Finally, let a, b, c be an arbitrary triple satisfying (H4), and T = µN0 = {0, µ, 2µ, . . .},
where µ > 0 satisfies (H5). Consider the problem (2.1) with

u0
x =

{
1, x 6= 0,
0, x = 0,

and f(u, x, t) =

(
b+

1

µ

)
(1− u).

We have m = 0 and M = 1. For r = 0 and R = 1, the function f satisfies (H6), but not (H6). Using
(2.1), we calculate

u(0, µ) = µau(1, 0) + (1 + µb)u(0, 0) + µcu(−1, 0) + µf(u(0, 0), 0) = µ(a+ c) + (1 + µb)
(H4)
= 1.

Therefore, u(0, µ) = 1 = R, but u(0, 0) = 0, which contradicts the strong maximum principle.
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We analyze existence and uniqueness of �2-solutions of the implicit discrete Nagumo 
reaction–diffusion equation. We study the infinite-dimensional problem variationally 
and describe corresponding potentials which have either the convex or mountain pass 
geometry. Consequently, we show that the implicit Nagumo equation has a solution 
for all reaction parameters λ ∈ R, at least for small time discretization steps h. 
Moreover, the solution is unique in the bistable case, λ > 0.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Reaction–diffusion equations (RDEs) vt = vxx +f(v) model a wide range of physical, chemical, biological 
and epidemiological phenomena in which two forces interact. On the one hand, the diffusion causes spatial 
spread of species/substance. On the other hand, the reaction function f describes the local dynamics (e.g., 
reproduction, or chemical reaction), [8].

Numerical methods for RDEs usually consist of two processes, [21]. First, a space discretization re-
duces partial differential equation(s) into a system of ordinary differential equations. Then a certain time 
discretization technique is applied. In the case of RDEs, implicit methods are often used because of the 
stiffness, [12].

Many studies considered preservation of various characteristics of RDEs through discretization processes. 
In contrast to the problem on the bounded domain, e.g., [11], the problem on the unbounded domain is 
infinite-dimensional and the corresponding dynamics is more complex, [2,3,10].

In this paper we consider a fully implicit discretization of Nagumo equation on an unbounded domain:
{

Δtv(x, t) = kΔ2
xxv(x − 1, t + h) + λv(x, t + h)

(
1 − v2(x, t + h)

)
, λ ∈ R,

v(x, 0) = ϕ(x),
(1.1)

* Corresponding author.
E-mail addresses: pstehlik@kma.zcu.cz (P. Stehlík), volek1@kma.zcu.cz (J. Volek).

http://dx.doi.org/10.1016/j.jmaa.2016.02.009
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where x ∈ Z, t ∈ hN0 := {0, h, 2h, . . .}, k > 0, h > 0 and the partial differences are defined by Δtv(x, t) =
v(x,t+h)−v(x,t)

h , Δ2
xxv(x − 1, t + h) = v(x − 1, t + h) − 2v(x, t + h) + v(x + 1, t + h). For the sake of brevity, 

we assume that the space discretization step hx = 1 but all our results are valid for arbitrary hx > 0 by 
considering k̄ = k

h2
x

instead of k in (1.1).
Explicit discrete Nagumo equation has been studied extensively by many authors, e.g., [4,23]. Note that in 

this case, existence and uniqueness follow trivially from the recursive scheme and consequently the interest 
is focused on (non)existence of traveling waves, pattern formation, etc.

We use variational methods to get existence (and uniqueness for λ ≥ 0) of bounded solutions of the 
implicit problem (1.1) in �2 = �2(Z) (note that [2,3] study (1.1) in weighted sequence spaces). Our technique 
provides results for solutions in �2 in certain cases which have not been studied so far (e.g., when the 
dissipativity condition used in [3] is violated).

Variational methods have proved to be a very efficient tool in the analysis of ordinary boundary discrete 
problems (e.g., [7,14,15]), whose solutions correspond to stationary solutions of (1.1). In this case, the finite 
dimension of function spaces is usually exploited. From this point of view, our paper moves these studies 
one step further. It not only considers non-stationary solutions of (1.1) but also formulates variationally 
discrete problems in infinite-dimensional spaces.

In more general terms, several properties of differential equations and dynamical systems have recently 
been identified that show a strong, rich and interesting dependence on partial/full discretizations. Besides 
the renowned properties of dynamical systems (e.g., [18,16]), let us mention spectral properties (e.g., [9,17,
20]) or maximum principles (e.g., [13,19,22]).

The paper is organized as follows. In Sections 2–3 we provide functional-analytic background and formu-
late (1.1) variationally. In Section 4 we show global uniqueness of solutions of (1.1) for λ ≥ 0 and sufficiently 
small h. In Section 5, we show the existence of solutions for λ < 0. Given the fact that in this case the 
functional has the mountain pass geometry we conjecture, in Section 6, about multiple solutions for λ < 0. 
We conclude with a summary of our results and a short list of open problems in Section 7.

2. Abstract formulation in �2

Since we are interested in the existence of solutions of (1.1) which form �2 := �2(Z) sequences at every 
time level t ∈ hN0, we reformulate (1.1) as an abstract problem in �2 in this section.

First, we define operators L, N : �2 → �2 by (for u ∈ �2):

(Lu)i := kui−1 − 2kui + kui+1 = kΔ2ui−1, i ∈ Z, (2.1)

(N(u))i := ui

(
1 − u2

i

)
, i ∈ Z. (2.2)

We prove basic properties of operators L and N . First, we analyze the linear operator L (note that for 
k = 1 it is the central second difference operator). We observe that L is bounded with ‖L‖∗ = 4k (see [19, 
Section 3]). Further, we prove that L is self-adjoint and negative.

Lemma 2.1. The operator L ∈ L(�2) defined by (2.1) is self-adjoint.

Proof. Let u, w ∈ �2 be arbitrary. Then the series
∑

i∈Z
(ui−1 − 2ui + ui+1)wi

is absolutely convergent. Indeed, we can use the triangle and Cauchy–Schwarz inequalities to prove that:
∑

i∈Z
|ui−1 − 2ui + ui+1| · |wi| ≤

∑

i∈Z
(|ui−1| + 2|ui| + |ui+1|) · |wi| ≤ 4‖u‖2‖w‖2.
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Consequently, the following reordering is correct:

(Lu,w)2 = k
∑

i∈Z
(ui−1 − 2ui + ui+1)wi

= k (. . . + (ui−2 − 2ui−1 + ui)wi−1 + (ui−1 − 2ui + ui+1)wi + (ui − 2ui+1 + ui+2)wi+1 + . . .)

= k (. . . + ui−1(wi−2 − 2wi−1 + wi) + ui(wi−1 − 2wi + wi+1) + ui+1(wi − 2wi+1 + wi+2) + . . .)

= k
∑

i∈Z
ui(wi−1 − 2wi + wi+1) = (u, Lw)2

and therefore, L is self-adjoint. �
Lemma 2.2. The operator L ∈ L(�2) defined by (2.1) is negative.

Proof. We prove that K := − 1
kL is a positive operator. Let u ∈ �2 be arbitrary. Then,

(Ku, u)2 = −
∑

i∈Z
(ui−1 − 2ui + ui+1)ui

= 2
∑

i∈Z
u2

i −
∑

i∈Z
ui(ui−1 + ui+1)

= 2‖u‖2
2 − (u,w)2

≥ 2‖u‖2
2 − ‖u‖2‖w‖2

when we apply the Cauchy–Schwarz inequality for u, w ∈ �2, wi := ui−1+ui+1. The last term of the estimate 
above is nonnegative if

2‖u‖2 − ‖w‖2 ≥ 0 or equivalently ‖w‖2
2 ≤ 4‖u‖2

2.

With the help of the inequality (a + b)m ≤ 2m−1 (am + bm), a, b ≥ 0, m ≥ 1, we can estimate

‖w‖2
2 =

∑

i∈Z
|wi|2 =

∑

i∈Z
|ui−1 + ui+1|2 ≤ 2

∑

i∈Z

(
|ui−1|2 + |ui+1|2

)
≤ 4‖u‖2

2.

Hence, (Ku, u)2 ≥ 0, i.e., K is positive operator and therefore, L is negative. �
Next, we focus on the nonlinear Nemytskii (substitution) operator N and prove that it is well-defined 

and continuous.

Lemma 2.3. The operator N : �2 → �2 defined by (2.2) is continuous on Dom(N) = �2.

Proof. Firstly, we prove that Dom(N) = �2, i.e., we have to verify that ‖N(u)‖2 < ∞ for all u ∈ �2. Let 
u ∈ �2 be arbitrary, then

‖N(u)‖2
2 =

∑

i∈Z
|(N(u))i|2 =

∑

i∈Z
|ui − u3

i |2

≤
∑

i∈Z
2
(
|ui|2 + |ui|6

)

= 2
(
‖u‖2

2 + ‖u‖6
6
)

≤ 2
(
‖u‖2

2 + ‖u‖6
2
)
< ∞,
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when we use (a + b)m ≤ 2m−1(am + bm), a, b ≥ 0, m ≥ 1, in the first inequality and the embedding �2 ↪→ �p, 
p ≥ 2, and the fact that for all u ∈ �2 there is ‖u‖p ≤ ‖u‖2 in the second one.

Secondly, we prove that N is continuous. Let un → u in �2 (we use upper indices for the sequences in �2). 
Therefore, there exists q > 0 such that ‖un‖2 ≤ q for all n ∈ N. Since u is the limit of the sequence {un}, 
there is also ‖u‖2 ≤ q. Further, we use that sup

i∈Z
|wi| = ‖w‖∞ ≤ ‖w‖2 for all w ∈ �2 and hence, there is:

sup
i∈Z

|un
i | ≤ ‖un‖2 ≤ q, i.e., |un

i | ≤ q for all n ∈ N, i ∈ Z.

Analogically, for the limit u we obtain |ui| ≤ q for all i ∈ Z. Consequently, we can estimate:

‖N(un) − N(u)‖2
2 =

∑

i∈Z
|un

i − (un
i )3 − ui + u3

i |2

≤
∑

i∈Z
2
(
|un

i − ui|2 + | (un
i )3 − u3

i |2
)

= 2‖un − u‖2
2 + 2

∑

i∈Z
|un

i − ui|2 · | (un
i )2 + un

i ui + u2
i |2

≤ 2‖un − u‖2
2 + 2

∑

i∈Z
|un

i − ui|2 · 9q4

= 2(1 + 9q4)‖un − u‖2
2 (2.3)

and since the right-hand side converges to zero, N(un) → N(u) in �2, i.e., the Nemytskii operator N is 
continuous. �

Going back to the implicit reaction–diffusion equation (1.1), we assume that ϕ := {ϕ(x)}x∈Z ∈ �2 and 
look for solutions of (1.1) for which v(·, t) := {v(x, t)}x∈Z ∈ �2 for all t ∈ hN0. Then the problem (1.1) is 
equivalent to the difference equation in the Hilbert space �2:

{Δtv(·, t) = L(v(·, t + h)) + λN(v(·, t + h)), λ ∈ R,

v(·, 0) = ϕ,
(2.4)

where Δtv(·, t) = 1
h (v(·, t + h) − v(·, t)) and L, N are defined in (2.1), (2.2) respectively.

First, we consider a local problem, i.e., for a fixed t ∈ hN0 and a given v(·, t) ∈ �2 (i.e., a priori known) we 
look for a solution v(·, t + h) ∈ �2 of (2.4) (later, in Sections 4–5 we extend this approach via mathematical 
induction and analyze a global problem, in which we study the existence of solutions v(·, t) of (2.4) for all 
time instances t ∈ hN0). We can rewrite the equation in (2.4) into

v(·, t + h) = v(·, t) + hL(v(·, t + h)) + hλN(v(·, t + h)), λ ∈ R.

If we denote b := v(·, t), u := v(·, t + h), then the problem (2.4) for a fixed t ∈ hN0 is equivalent to a 
fixed-point problem in �2:

u = b + hL(u) + hλN(u), λ ∈ R. (2.5)

3. Variational formulation

We proceed from the abstract fixed-point problem formulation (2.5) of the local problem and introduce 
the variational setting in this section. Problem (2.5) is equivalent to the following operator equation:
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F (u) := u − b − hL(u) − hλN(u) = o. (3.1)

The operator F : �2 → �2 has a potential F : Dom(F) = �2 → R given by (we use Lemma 2.1, i.e., that the 
operator L is self-adjoint):

F(u) := 1
2
∑

i∈Z
u2

i −
∑

i∈Z
biui − h

2
∑

i∈Z
(Lu)iui − hλ

2
∑

i∈Z
u2

i + hλ

4
∑

i∈Z
u4

i

= 1 − hλ

2 ‖u‖2
2 − (b, u)2 − h

2 (Lu, u)2 + hλ

4 ‖u‖4
4. (3.2)

The next lemma reveals the connection between critical points of the potential F and solutions of the 
equation (3.1).

Lemma 3.1. ũ ∈ �2 is a critical point of F given by (3.2) if and only if ũ is the solution of (3.1).

Proof. The functional F given by (3.2) is differentiable and for each w ∈ �2 we have

(∇F(u), w)2 =
∑

i∈Z
uiwi −

∑

i∈Z
biwi − h

∑

i∈Z
(Lu)iwi − hλ

∑

i∈Z
uiwi + hλ

∑

i∈Z
u3

i wi

= (u − b − hL(u) − hλN(u), w)2 . (3.3)

Therefore, ũ is a critical point of F if and only if ∇F(ũ) = o, i.e., if ũ − b − hL(ũ) − hλN(ũ) = o. �
Consequently, we look for critical points of the potential F . Our analysis is based on the following two 

variational principles.

Theorem 3.2. (See [6, Theorem 7.2.11, Proposition 7.1.8].) Let M be a closed, nonempty, bounded and 
convex subset of a Hilbert space H. Let F be a convex and continuous functional on M . Then F is bounded 
below and there exists ũ ∈ M such that F(ũ) = inf

u∈M
F(u). Moreover, if F is strictly convex and Gâteaux 

differentiable on M and ũ ∈ Int(M) then ũ is the unique critical point of F on M .

Theorem 3.3. (See [6, Theorem 7.2.12, Proposition 7.1.8].) Let F be a convex, continuous and weakly 
coercive functional on a Hilbert space H. Then F is bounded below on H and there exists ũ ∈ H such that 
F(ũ) = inf

u∈H
F(u). Moreover, if F is strictly convex and Gâteaux differentiable on H then ũ is the unique 

critical point of F on H.

In order to apply Theorems 3.2 and 3.3 we study the properties of the potential F given by (3.2). First, 
let us study the part of the functional F given by the linear operator L:

A : �2 → R, A(u) := −(Lu, u)2. (3.4)

Lemma 3.4. The functional A : �2 → R given by (3.4) is convex on �2.

Proof. First, let us notice that the bounded linear operator L is self-adjoint (Lemma 2.1) and negative 
(Lemma 2.2), i.e., the bounded linear operator A := −L is self-adjoint and positive. We can rewrite the 
definition of the quadratic functional A as follows:

A(u) = −(Lu, u)2 = ((−L)u, u)2 = (Au, u)2.

The functional A is continuously differentiable and its gradient is given by:
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∇A(u) = 2A(u).

From the positivity of the linear operator A we obtain:

(∇A(u) − ∇A(w), u − w)2 = 2(A(u − w), u − w)2 ≥ 0

for all u, w ∈ �2 and therefore, the gradient ∇A is the monotone mapping. Consequently, the operator A is 
convex on �2 (see, e.g., [6, Exercise 7.2.30]). �

Since we want to apply Theorems 3.2 and 3.3, we need the continuity of the potential F . We show that 
F is even continuously differentiable.

Lemma 3.5. The potential F : �2 → R given by (3.2) is continuously differentiable on �2.

Proof. The functional F is differentiable from Lemma 3.1. Therefore, we prove that the gradient ∇F :
�2 → �2 is a continuous mapping. From (3.3) there is:

∇F(u) = u − b − hLu − hλN(u).

The fact that L ∈ L(�2) and Lemma 2.3 yield that ∇F is continuous and hence, F is continuously differen-
tiable on �2. �
4. Existence and uniqueness for λ ≥ 0

In this section we consider the Nagumo equation (1.1) with the bistable nonlinearity, i.e., the case λ ≥ 0. 
We prove the global existence and uniqueness for small values of time discretization step h > 0 with the 
help of Theorem 3.3.

Theorem 4.1. Let λ ≥ 0 and assume h(λ +4k) < 1 and ϕ ∈ �2. Then the problem (1.1) has a unique solution 
v(x, t) that exists for all x ∈ Z, t ∈ hN0 and satisfies

(∑

x∈Z
|v(x, t)|2

) 1
2

< ∞ for all t ∈ hN0.

Proof. We prove the statement by mathematical induction. For t = 0 we put v(x, 0) = ϕ(x) for all x ∈ Z, 
i.e., v(·, 0) = ϕ ∈ �2. Let us assume that we have a unique solution v(·, t) at time t ∈ hN0 satisfying 
‖v(·, t)‖2 < ∞. Let us prove the existence of a unique solution of (1.1) at time t + h. As we showed in 
the previous section, this local problem is equivalent to finding critical points of the associated potential F
given by (3.2) (we use the same notation, e.g., u = v(·, t + h), b = v(·, t), etc.).

Recall that the potential F given by

F(u) = 1 − hλ

2 ‖u‖2
2 − (b, u)2 − h

2 (Lu, u)2 + hλ

4 ‖u‖4
4, λ ≥ 0,

is continuously differentiable (see Lemma 3.5) and it is strictly convex on �2. Indeed,

• 1−hλ
2 ‖u‖2

2 = 1−hλ
2

∑
i∈Z

u2
i is strictly convex since hλ − 1 < −4hk < 0 and the real function t 	→ t2 is 

strictly convex,
• −(b, u)2 is convex since it is the linear form,
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Fig. 1. Graphical illustration of existence and uniqueness results for implicit Nagumo RDE (1.1). See Table 1 for more details.

• −h
2 (Lu, u)2 = h

2 A(u) is convex since h
2 > 0 and A is convex from Lemma 3.4,

• hλ
4 ‖u‖4

4 = hλ
4
∑
i∈Z

u4
i is convex since hλ ≥ 0 and the real function t 	→ t4 is strictly convex.

Moreover, F is weakly coercive on �2 since for un → u in �2 the following holds:

F(u) ≥ 1 − hλ − h‖L‖∗
2 ‖u‖2

2 − ‖b‖2‖u‖2 = 1 − h(λ + 4k)
2 ‖u‖2

2 − ‖b‖2‖u‖2 → ∞,

where we use the Cauchy–Schwarz inequality, ‖L‖∗ = 4k and h(λ + 4k) < 1.
Consequently, from Theorem 3.3 there exists a unique minimizer ũ ∈ �2 of the potential F and it is the 

unique critical point of F on �2. Hence, there exists the unique solution v(x, t + h) of (1.1) at time t + h

such that

v(·, t + h) = ũ and
(∑

x∈Z
|v(x, t + h)|2

)
= ‖v(·, t + h)‖2 = ‖ũ‖2 < ∞. �

Remark 4.2. We note that for given λ ≥ 0 and k > 0 there always exist sufficiently small values of time 
discretization step h > 0 which satisfy h(λ + 4k) < 1, see Fig. 1. Obviously, the stronger reaction (or the 
stronger diffusion) the smaller h > 0 is required.

5. Existence for λ < 0

For negative values of λ in (1.1) we lose the globally convex and weakly coercive geometry of the po-
tential F . We prove that in this case the functional F is convex at least locally (i.e., on a closed ball). 
Consequently, we use Theorem 3.2 to obtain the existence of a local minimizer of F . Moreover, in Section 6
we show that F has the mountain pass geometry.

For the sake of brevity, let us define the auxiliary real valued function ξ : R → R:

ξ(s) := 1 − hλ − 4hk
2 s + hλ

4 s3 (5.1)

and the positive constant (assuming that λ < 0 and h(λ + 4k) < 1):

R := min
{(

hλ − 1
3hλ

) 1
2

,

(
2(4hk + hλ − 1)

3hλ

) 1
2
}

. (5.2)

Lemma 5.1. Let λ < 0, h(λ + 4k) < 1 and

‖b‖2 < ξ(R). (5.3)
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Then the functional F given by (3.2) has a local minimizer ũ ∈ �2 which is the unique critical point of F
with the property

‖ũ‖2 < R. (5.4)

Proof. Let us consider the ball M := B(o, r) ⊂ �2 with r =
(

hλ−1
3hλ

) 1
2 and verify the assumptions of 

Theorem 3.2. We show that F is strictly convex on M . From its definition (3.2) we rewrite F as

F(u) =
∑

i∈Z

(
1 − hλ

2 u2
i + hλ

4 u4
i

)
− (b, u)2 − h

2 (Lu, u)2. (5.5)

Observing the sum we define the function

ψ(s) := 1 − hλ

2 s2 + hλ

4 s4. (5.6)

Recalling that λ < 0 and h(λ + 4k) < 1 and differentiating twice we deduce that ψ is strictly convex on the 

interval I =
[
−
(

hλ−1
3hλ

) 1
2 ,
(

hλ−1
3hλ

) 1
2
]

= [−r, r]. Since ‖u‖∞ ≤ ‖u‖2 for all u ∈ �2, there is

sup
i∈Z

|ui| = ‖u‖∞ ≤ ‖u‖2 ≤
(

hλ − 1
3hλ

) 1
2

= r for all u ∈ M.

Applying the strict convexity of the function ψ defined by (5.6) on I, the convexity of the linear form 
−(b, u)2 and the convexity of the functional A(u) = −(Lu, u)2 (Lemma 3.4) we observe that F defined 
by (5.5) is strictly convex (using the same arguments as in the proof of Theorem 4.1).

Moreover, F ∈ C1(�2, R) from Lemma 3.5. The strict convexity and continuity of F on M imply (see The-
orem 3.2) that for all ρ ∈ (0, r] there exists a unique ũ(ρ) ∈ B(o, ρ) ⊂ �2 such that F(ũ(ρ)) = inf

u∈B(o,ρ)
F(u).

Secondly, we show that ũ(ρ) (for some ρ ∈ (0, r]) is a critical point of F by excluding the possibility 
that ũ(ρ) lies on the boundary ∂B(o, ρ), possibly for maximal ‖b‖2. Since F(o) = 0, it suffices to show that 
F(u) > 0 for all u ∈ ∂B(o, ρ), i.e., for all u ∈ �2 such that ‖u‖2 = ρ.

Applying the Cauchy–Schwarz inequality and the fact that ‖u‖4 ≤ ‖u‖2 for all u ∈ �2 we can estimate 
F(u) on ∂B(o, ρ):

F(u) = 1 − hλ

2 ‖u‖2
2 − (b, u)2 − h

2 (Lu, u)2 + hλ

4 ‖u‖4
4

≥ 1 − hλ − h‖L‖∗
2 ‖u‖2

2 − ‖b‖2‖u‖2 + hλ

4 ‖u‖4
2

= 1 − hλ − 4hk
2 ρ2 − ‖b‖2ρ + hλ

4 ρ4

= ρ

(
1 − hλ − 4hk

2 ρ − ‖b‖2 + hλ

4 ρ3
)

. (5.7)

Consequently, F(u) ≥ ρ 
( 1−hλ−4hk

2 ρ − ‖b‖2 + hλ
4 ρ3) > 0 for all u ∈ ∂B(o, ρ) if

‖b‖2 <
1 − hλ − 4hk

2 ρ + hλ

4 ρ3 (5.1)= ξ(ρ).

Analyzing the function ξ defined by (5.1) we observe that it has a positive maximum ξ(ρmax) at
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ρmax =
(

2(4hk + hλ − 1)
3hλ

) 1
2

. (5.8)

Moreover, it is strictly increasing for ρ ∈ [0, ρmax] and strictly decreasing for ρ ∈ [ρmax, ∞). Since we do not 
know if r ≤ ρmax or r > ρmax, we have to assume (5.3):

‖b‖2 < ξ(min {r, ρmax}) (5.2)= ξ(R).

Consequently, ũ(R) ∈ Int(B(o, R)) and therefore, it is a local minimizer of F and the unique critical 
point of F on B(o,R) (see Theorem 3.2 again). �

Lemma 5.1 provides a sufficient condition for the existence of a local solution of (1.1) with λ < 0.

Theorem 5.2. Let λ < 0 and assume h(λ + 4k) < 1 and v(x, t) is a solution of (1.1) at a fixed time t ∈ hN0
such that

(∑

x∈Z
|v(x, t)|2

) 1
2

< ξ(R).

Then there exists a solution v(x, t + h) of the problem (1.1) at time t + h such that

(∑

x∈Z
|v(x, t + h)|2

) 1
2

< R.

Proof. The existence of such solution is equivalent to the existence of a critical point of the potential F
defined by (3.2) which follows from Lemma 5.1. �

We extend this result, under an additional assumption on h and λ, to the global existence.

Theorem 5.3. Let λ < 0 and assume h(λ + 4k) ≤ −2 and ϕ ∈ �2 satisfies

‖ϕ‖2 < ξ(R).

Then the problem (1.1) has a solution v(x, t) that exists for all x ∈ Z, t ∈ hN0 and is unique with the 
property

(∑

x∈Z
|v(x, t)|2

) 1
2

< R for all t ∈ hN. (5.9)

Proof. Since ϕ ∈ �2, we can apply Theorem 5.2 to get a solution v(x, h) at time t = h that satisfies the 
inequality in (5.9) (observe that since h(λ +4k) ≤ −2 the assumption on λ and h in Theorem 5.2 is satisfied).

Next, we proceed by mathematical induction. Let us assume that we have a solution v(x, t) at a fixed 
time t satisfying (5.9). To prove the existence of v(x, t + h) at time t + h we need ‖v(·, t)‖2 < ξ(R). 
The induction hypothesis implies that ‖v(·, t)‖2 < R. Since ρmax ≤ ξ(ρmax) for h > 0, λ < 0 satisfying 
h(λ + 4k) ≤ −2 (ρmax is given by (5.8)) and the function ξ given by (5.1) is concave on [0, ∞) then:

s ≤ ξ(s) for s ∈ [0, R].

Consequently, ‖v(·, t)‖2 < R ≤ ξ(R). Thus, Theorem 5.2 implies that there exists a solution v(x, t + h)
which is unique with the property (5.9). �
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Remark 5.4. For the illustration of admissible values of h > 0 and λ < 0 in Theorem 5.2 and Theorem 5.3
see Fig. 1 again.

6. Mountain pass geometry and conjectures about multiplicity for λ < 0

In addition to the local convexity shown in the previous section, we show that the potential F has the 
mountain pass geometry for λ < 0. A natural question arises – can we apply the Mountain Pass Theorem 
for proving the existence of another critical point of F , which would imply the existence of another solution 
of (1.1)?

Theorem 6.1 (Mountain Pass Theorem). (See Ambrosetti, Rabinowitz [1], [6, Theorem 7.4.5].) Let H be a 
Hilbert space and F ∈ C1(H, R), e ∈ H and ρ > 0 be such that ‖e‖H > ρ and

inf
‖u‖H=ρ

F(u) > F(o) ≥ F(e). (6.1)

Let

c := inf
γ∈Γ

max
t∈[0,1]

F(γ(t)) and Γ := {γ ∈ C([0, 1], H) : γ(0) = o, γ(1) = e} .

Let F satisfy the Palais–Smale condition on the level c:

(PS)c Any sequence {un} ⊂ H such that

F(un) → c ∈ R, ∇F(un) → o ∈ H,

has a convergent subsequence in the norm of H.

Then c is a critical value of F .

We conjecture that in the case of λ < 0 the functional F has at least two critical points.

Conjecture 6.2. Let λ < 0 and assume h(λ + 4k) < 1 and b ∈ �2 satisfy (5.3). Then the functional F given 
by (3.2) has at least two critical points.

The existence of the first critical point of F follows from Lemma 5.1. We want to show that F has another 
critical point which is of the mountain pass-type. Theorem 6.1 has three assumptions – the continuous 
differentiability of F , the mountain pass geometry (6.1) and the Palais–Smale condition (PS)c. Firstly, the 
continuous differentiability of F has already been proven in Lemma 3.5. Secondly, the following statement 
shows that under the assumptions of Lemma 5.1 the potential F has the mountain pass geometry.

Lemma 6.3. Let λ < 0 and assume h(λ + 4k) < 1 and b ∈ �2 satisfy (5.3). Then there exist e ∈ �2 and ρ > 0
such that ‖e‖2 > ρ and the functional F given by (3.2) satisfies (6.1).

Proof. From the proof of Lemma 5.1 (see (5.7) and below) we get:

F(u) ≥ R

(
1 − hλ − 4hk

2 R − ‖b‖2 + hλ

4 R3
)

=: a > 0 for u ∈ ∂B(o,R). (6.2)

Let e ∈ �2 be such that:
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ei =
{

s > 0, i = 0,
0, i �= 0.

Consequently, for s → ∞ there is (recall that λ < 0):

F(e) = 1
2s2 − b0s + hks2 − hλ

2 s2 + hλ

4 s4 = 1 + hk − hλ

2 s2 − b0s + hλ

4 s4 → −∞.

Hence, for sufficiently large s > R > 0 there is F(e) < 0, i.e., if we put ρ := R then ‖e‖2 = s > ρ and 
from (6.2):

inf
∂B(o,ρ)

F(u) ≥ a > 0 = F(o) > F(e). �
The main obstacle in the application of Theorem 6.1 in this case is to prove its third assumption, the 

Palais–Smale condition (PS)c. This condition requires that all sequences {un} ⊂ �2 satisfying:

F(un) → c ∈ R and ∇F(un) → o ∈ �2, (6.3)

contain a strongly convergent subsequence. Usually, the proof proceeds in two steps. Firstly, one proves that 
{un} contains a bounded subsequence. Secondly, since a Hilbert space is considered, one passes to a weakly 
convergent subsequence and shows that it converges strongly as well.

The first step, showing that all sequences {un} satisfying (6.3) contain a bounded subsequence, is not 
too complicated.

Lemma 6.4. Let λ < 0, h(λ + 4k) < 1, b ∈ �2 and the functional F be given by (3.2). Then every sequence 
{un} ⊂ �2 satisfying (6.3) contains a bounded subsequence.

Proof. Let the sequence {un} ⊂ �2 satisfy (6.3). Hence, for a given ε > 0 there exists n̄ ∈ N such that for 
all n > n̄ there is:

F(un) < c + ε and ‖∇F(un)‖2 ≤ 1. (6.4)

Therefore, from the Cauchy–Schwarz inequality we obtain that for all n > n̄ there is:

1
4 |(∇F(un), un)2| ≤ ‖∇F(un)‖2‖un‖2 ≤ ‖un‖2. (6.5)

We use (6.4) and (6.5) to estimate (again n > n̄):

c + ε + ‖un‖2 ≥ F(un) − 1
4(∇F(un), un)2

= 1
2‖un‖2

2 − (b, un)2 − h

2 (Lun, un)2 − hλ

2 ‖un‖2
2 + hλ

4 ‖un‖4
4

− 1
4‖un‖2

2 + 1
4(b, un)2 + h

4 (Lun, un)2 + hλ

4 ‖un‖2
2 − hλ

4 ‖un‖4
4

= 1 − hλ

4 ‖un‖2
2 − 3

4(b, un)2 − h

4 (Lun, un)2

≥ 1 − hλ − 4hk
4 ‖un‖2

2 − 3
4‖b‖2‖un‖2,

which is equivalent to
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c + ε +
(

1 + 3
4‖b‖2

)
‖un‖2 ≥ 1 − hλ − 4hk

4 ‖un‖2
2

where 1−hλ−4hk
4 > 0 from the assumption h(λ + 4k) < 1. If we assume, without loss of generality, that 

c + ε > 0, then the quadratic function 1−hλ−4hk
4 ‖un‖2

2 is bounded from above by the linear function 
c + ε +

(
1 + 3

4‖b‖2
)
‖un‖2 for n > n̄ and therefore, ‖un‖2 is bounded. �

Remark 6.5. Lemma 6.4 yields that every sequence {un} ⊂ �2 satisfying (6.3) contains a bounded subse-
quence. Since we are on the separable Hilbert space �2 we can pass to a weakly convergent subsequence 
(denoted for simplicity by {un} as well) satisfying

un ⇀ u ∈ �2. (6.6)

Typical mountain-pass arguments at this stage exploit the convergence of either (∇F(un) −∇F(u), un −u)2
or (∇F(un) − ∇F(um), un − um)2. The analysis of these expressions could yield the convergence of 
‖un − u‖2 → 0 or alternatively

‖un‖2 → ‖u‖2. (6.7)

In turn, the weak convergence (6.6) and the convergence of norms (6.7) would imply the desired convergence 
un → u.

In the case of the functional F defined by (3.2) we observe that

(∇F(un) − ∇F(u), un − u)2 = (1 − hλ)(un, un − u)2 − (b, un − u)2

− h(Lun, un − u)2 + hλ
∑

i∈Z
(un

i )3(un
i − ui)

− (1 − hλ)(u, un − u)2 + (b, un − u)2

+ h(Lu, un − u)2 − hλ
∑

i∈Z
u3

i (un
i − ui)

= (1 − hλ)‖un − u‖2
2 − h(L(un − u), un − u)2

+ hλ
∑

i∈Z

(
(un

i )3 − u3
i

)
(un

i − ui).

Using the fact that the linear bounded operator L is negative (see Lemma 2.2) we can estimate:

(1 − hλ)‖un − u‖2
2 ≤ (∇F(un) − ∇F(u), un − u)2 − hλ

∑

i∈Z

(
(un

i )3 − u3
i

)
(un

i − ui). (6.8)

Unfortunately, we are unable to show that the last term tends to zero (note that the term is nonnegative 
due to the fact that λ < 0 and the nonnegativity of each term 

(
(un

i )3 − u3
i

)
(un

i −ui) in the sum). Similarly, 
we are unable to use the estimate

(1 − hλ + hλK)‖un − u‖2
2 ≤ (∇F(un) − ∇F(u), un − u)2, (6.9)

where K is a bound on the norm of the sequence 
{
(un

i )2 + un
i ui + u2

i

}
. The estimate (6.9) then follows from 

(6.8) once we use the equality

(
(un

i )3 − u3
i

)
(un

i − ui) = (un
i − ui)2

(
(un

i )2 + un
i ui + u2

i

)
.
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Table 1
Summary of our results for implicit Nagumo RDE (1.1), also see Fig. 1.

λ λ < 0 λ ≥ 0
(
−∞, − 2

h − 4k
] (

− 2
h − 4k, 1

h − 4k
) [

0, 1
h − 4k

) [ 1
h − 4k, ∞

)

Geometry of F mountain pass mountain pass globally convex ?
Existence global (Theorem 5.3) local (Theorem 5.2) global (Theorem 4.1) ?
Uniqueness ? (Conjecture 6.7) ? (Conjecture 6.7) yes (Theorem 4.1) ?

Despite the first impressions it is not clear whether we can ensure that the term (1 −hλ + hλK) is positive 
because h > 0 and λ < 0 are given and the bound K depends both on λ and h (via the geometry of the 
functional F). Consequently, the open question is whether a finer analysis of the interplay among K, λ
and h can yield the positivity of the term (1 −hλ + hλK), at least for some values of h, λ (see Fig. 1). The 
estimate (6.9) would then directly yield ‖un − u‖2 → 0.

Therefore, the following conjecture remains open and essential to the proof of the existence of another 
critical point of F .

Conjecture 6.6. Let λ < 0, h(λ +4k) < 1, b ∈ �2 and the functional F be given by (3.2). Then every sequence 
satisfying (6.3) contains a strongly convergent subsequence.

From another point of view, note that the difficulty is caused by the fact that the space variable x in 
the problem (1.1) is from the unbounded domain, i.e., x ∈ Z. In the abstract formulation it means that 
the underlying Hilbert space (�2 in our case) is infinite-dimensional. If we solved the initial–boundary value 
problem, i.e., the problem (1.1) with x ∈ [a, b] ∩ Z and with some boundary conditions at points x = a

and x = b, the abstract problem would be finite-dimensional and the proof of the Palais–Smale condition 
would be restricted to the proof of boundedness of {un} (since in the finite-dimensional space every bounded 
sequence contains a convergent subsequence) which is done in Lemma 6.4.

Finally, note that if Conjecture 6.2 holds then the problem (1.1) has at least two solutions. We sum up 
this in the following conjecture.

Conjecture 6.7. Let λ < 0, h(λ +4k) < 1 and v(x, t) be a solution of (1.1) at a fixed time t ∈ hN0 such that:

(∑

x∈Z
|v(x, t)|2

) 1
2

< ξ(R).

Then the problem (1.1) has at least two solutions v1(x, t + h), v2(x, t + h) at time t + h such that:

(∑

x∈Z
|vj(x, t + h)|2

) 1
2

< ∞, j = 1, 2.

7. Conclusion and open problems

We studied implicit discretization of the Nagumo RDE via variational methods. Our results (which are 
summed up in Table 1 and illustrated in Fig. 1) leaned on the geometry of the corresponding potential F
which is convex for the bistable case λ > 0 and has the mountain pass geometry for the case λ < 0.
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There are several open questions related to our conclusions:

1. In the case λ < 0, can we prove the existence of another solution at least for some values of h > 0? 
Or, can we obtain nonuniqueness if we study the problem in weighted sequence spaces which have been 
used, e.g., in [3]?

2. We have no results for the case in which λ ≥ 1
h −4k. What is the geometry of the potential in this case?

3. Is there a global solution for λ < 0 and h → 0+?
4. Can our results be extended to general RDE with other nonlinearities?
5. It is known (e.g., [5]) that in certain cases the existence of sub- and supersolutions ensures a special 

variational structure. Can this connection be established for implicit RDEs and used to obtain improved 
results without assumptions on the initial condition ϕ(x)?
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1. Introduction

We investigate the existence and uniqueness for discrete Neumann and periodic problems.
We analyze both ordinary and partial difference equations. The motivation for the study
of discrete problems is miscellaneous. For example, the discrete approach is quite natural
in economic, social or biological modelling – we can mention population dynamics or
analyzing processes in cell (e.g. neural) nets, etc., [3]. Naturally, the difference equations
are important for the numerical reasons, since they arise from the differential equations
for example by the finite difference method, [8].

Our results are based on reformulating discrete boundary value problems as an algebraic
system

Au = G(u), u ∈ RN , (P)

where the matrix A represents corresponding linear difference operator with particular
boundary conditions and G is the superposition vector function representing a nonlinear
perturbation. Generally, Dirichlet problems correspond to systems with regular positive
definite matrices [12,21], Neumann and periodic problems involve singular positive semi-
definite matrices [18,20].

There are many papers that deal with the existence and uniqueness for discrete
Neumann and periodic problems. A lot of these works use topological approach. Let
us mention, e.g. [1,5–7], where the authors present a nice application of the Brouwer
topological degree or Brouwer fixed-point theorem together with the method of lower and
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2 J. VOLEK

upper solutions. They obtain conditions for the existence and multiplicity of solutions
for problems involving one dimensional discrete Laplacian or φ-Laplacian. Moreover,
the papers [5–7] contain versions of Landesman–Lazer type conditions (firstly studied by
Landesman and Lazer [14] for elliptic partial differential equations in resonance).

Our approach is motivated by [18], where the author shows a nice comparison of topo-
logical and variational methods for discrete periodic problems and emphasizes advantages
of analyzing these problems variationally. The expanding literature shows that the critical
point theory is generally an efficient tool in the analysis of discrete problems. One can see
the application of variational techniques for ordinary difference equations in [12,18], for
problems involving discrete p-Laplacian in [4,9,19], and for partial difference equations in
[2,15].

Many works mentioned above investigate particular boundary value problems, in other
words, use a concrete form of the matrix A in (P). Nonetheless, we prefer the general
representation (P) and apply the properties of A that are common for all possible choices -
ordinary/partial difference equation, Neumann/periodic boundary conditions. Let us note
that our results can also be applied for the so-called difference equations on graphs. On the
other hand, the formulation via (P) does not allow the investigation of problems involving
nonlinear difference operators like p- or general φ-Laplacian.

Consequently,we study (P)with apositive semi-definiteA andwith anonlinear function
G which has sublinear growth (Section 2). We apply the Saddle Point Theorem which is
due to P.H. Rabinowitz [16] to prove the existence result based on a type of Landesman–
Lazer condition (Sections 3–4). Furthermore, if we restrict ourselves to a certain class of
bounded nonlinearities, we show that this condition is even necessary. Therefore, we also
specify the cases in which there does not exist any solution (Section 5). Finally, we discuss
the uniqueness (Section 6).

2. Problem formulation

We formulate in examples below discrete Neumann and periodic problems as the algebraic
system (P) on RN , N ≥ 2. We show that for these problems the appropriate matrices A
satisfy the following general conditions (see [15]):

(A1) A is a symmetric and positive semi-definite matrix.
(A2) λ1 = 0 is an eigenvalue of A with the multiplicity one.
(A3) ϕ1 = †1, 1, . . . , 1‡T ∈ RN is the eigenvector of A corresponding to the
eigenvalue λ1 = 0.

Example 2.1: Let us consider the discrete Neumann problem⎧⎪⎪⎨
⎪⎪⎩

−�2u(t − 1) = g̃(t, u(t)), t = 1, 2, . . . ,N ,

�u(0) = c1,
�u(N) = c2,

(2.1)

where u : {0, 1, . . . ,N ,N + 1} → R, �2u(t − 1) = u(t − 1) − 2u(t) + u(t + 1) is the
second central difference of u, �u(t) = u(t + 1) − u(t) is the first forward difference of u,
g̃ : {1, 2, . . . ,N} × R → R is a given function, and c1, c2 ∈ R.
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We use the values u(t) for t = 1, 2, . . . ,N to define a vector

u = [
u(1), u(2), . . . , u(N)

]T ∈ RN (2.2)

(T denotes the transposition of a vector). The boundary conditions are equivalent to
u(0) = u(1)− c1 and u(N +1) = u(N)+ c2. Therefore, we find out that (2.1) is equivalent
to the algebraic problem (P) with the vector u defined by (2.2) and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 2 −1 . . . 0 0
0 −1 2 0 0

...
. . .

...

0 0 0 2 −1
0 0 0 . . . −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and G(u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(1, u(1))
g(2, u(2))
g(3, u(3))

...

g(N − 1, u(N − 1))
g(N , u(N))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.3)

where

g(t, u) =
⎧⎨
⎩

g̃(1, u) − c1, t = 1,
g̃(t, u), t = 2, 3, . . . ,N − 1,
g̃(N , u) + c2, t = N .

The matrix A in (2.3) satisfies (A1)–(A3).
Indeed, the symmetry is clear. Let us prove the positive semi-definiteness of A. Firstly,

the matrix A is singular because, e.g. the sum of its rows is the zero vector. Secondly, we
verify that for all u ∈ RN there is (Au, u) ≥ 0. Let u ∈ RN and N ≥ 3 (for N = 2 it is
obvious), then

(Au, u) = (u(1) − u(2))u(1) +
N−1∑
t=2

[
( − u(t − 1) + 2u(t) − u(t + 1))u(t)

]
+ ( − u(N − 1) + u(N))u(N)

= u2(1) − u(1)u(2) +
N−1∑
t=2

[(
u2(t) − u(t)u(t + 1)

) + (
u2(t) − u(t − 1)u(t)

)]
+ u2(N) − u(N − 1)u(N)

=
N−1∑
t=1

(
u2(t) − u(t)u(t + 1)

) +
N∑
t=2

(
u2(t) − u(t − 1)u(t)

)

=
N−1∑
t=1

(
u2(t) − u(t)u(t + 1) + u2(t + 1) − u(t)u(t + 1)

)

=
N−1∑
t=1

(
u(t) − u(t + 1)

)2
≥ 0.

Therefore,A satisfies (A1). The positive semi-definitness ofA implies also that λ1 = 0 is the
minimal eigenvalue. Let us prove that λ1 = 0 has the multiplicity one. The eigenvectors
corresponding to λ1 = 0 are nontrivial solutions of the homogeneous linear algebraic
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system Au = o. Since an eigenvector multiplied by a real constant is also an eigenvector,
we can assume without loss of generality that u(1) = ρ where ρ �= 0 is a real parameter.
Therefore, from the first equation of the system Au = o, we obtain that u(2) = ρ. Then
we can proceed inductively to show that all eigenvectors corresponding to λ1 = 0 have
the form [ρ, ρ, . . . , ρ]T ∈ RN . Hence, the dimension of the eigenspace corresponding to
λ1 = 0 is one which implies that λ1 = 0 has the multiplicity one and (A2) is proved.
Moreover, if we put ρ = 1 we obtain that ϕ1 = [1, 1, . . . , 1]T ∈ RN is an eigenvector
corresponding to λ1 = 0 and thus, (A3) holds.

Let us note that the fact that A satisfies (A1)–(A3) could be derived also from more
general Example 2.5.
Example 2.2: Let us consider the discrete periodic problem (see [15,18])⎧⎪⎪⎨

⎪⎪⎩
−�2u(t − 1) = g(t, u(t)), t = 1, 2, . . . ,N ,

u(0) = u(N),
�u(0) = �u(N).

(2.4)

Analogously as in Example 2.1, (2.4) can be rewritten as the algebraic problem (P) where
A is defined by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1
−1 2 −1 . . . 0 0
0 −1 2 0 0

...
. . .

...

0 0 0 2 −1
−1 0 0 . . . −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and G is given via the function g in the same way as in (2.3). The matrix A satisfies
(A1)–(A3) (see Example 2.5).

The following two examples show that also partial difference equations can be consid-
ered.
Example 2.3: Let us consider the Neumann problem for the difference Poisson equation
(see [15])⎧⎪⎪⎨

⎪⎪⎩
−�2

s u(s − 1, t) − �2
t u(s, t − 1) = g̃(s, t, u(s, t)), t, s = 1, 2, . . . ,N ,

�su(0, t) = c1(t) and �su(N , t) = c2(t) for all t = 1, 2, . . . ,N ,
�tu(s, 0) = d2(s) and �tu(s,N) = d2(s) for all s = 1, 2, . . . ,N ,

(2.5)

where u : {0, 1, . . . ,N ,N + 1}2 → R, �2
s u(s − 1, t), �2

t u(s, t − 1) are the second partial
central differences of u, �su(s, t), �tu(s, t) are the first partial forward differences of u
with respect to s and t, g : {1, 2, . . . ,N}2 × R → R, and c1, c2, d1, d2 : {1, 2, . . . ,N} → R.

We follow the approach, e.g. from [8] or [15]. Using the values u(s, t) for s, t =
1, 2, . . . ,N we define a vector

u = [
u(1, 1), . . . u(1,N), u(2, 1), . . . , u(2,N), . . . , u(N , 1), . . . , u(N ,N)

]T ∈ RN2
. (2.6)
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Consequently, we obtain that (2.5) is equivalent to the algebraic problem (P) on RN2 with
the vector u defined by (2.6) and with a block matrix A ∈ RN2×N2 given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B1 −I 0 0 0
−I B2 −I . . . 0 0
0 −I B2 0 0

...
. . .

...

0 0 0 B2 −I
0 0 0 . . . −I B1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where I ∈ RN×N is the identity matrix and B1,B2 ∈ RN×N are given by

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 3 −1 . . . 0 0
0 −1 3 0 0

...
. . .

...

0 0 0 3 −1
0 0 0 . . . −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0
−1 4 −1 . . . 0 0
0 −1 4 0 0

...
. . .

...

0 0 0 4 −1
0 0 0 . . . −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The nonlinear function G can be established involving boundary conditions analogously
as in Example 2.1. The matrix A satisfies (A1)–(A3) (see Example 2.5).
Example 2.4: Let us consider the periodic problem for the difference Poisson equation⎧⎪⎪⎨

⎪⎪⎩
−�2

s u(s − 1, t) − �2
t u(s, t − 1) = g(s, t, u(s, t)), s, t = 1, 2, . . . ,N ,

u(0, t) = u(N , t) and �su(0, t) = �su(N , t) for all t = 1, 2, . . . ,N ,
u(s, 0) = u(s,N) and �tu(s, 0) = �tu(s,N) for all s = 1, 2, . . . ,N .

(2.7)

Analogously as in Example 2.3, we find out that (2.7) can be reformulated as the algebraic
problem (P) on RN2

with a block matrix A ∈ RN2×N2
given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B −I 0 0 −I
−I B −I . . . 0 0
0 −I B 0 0

...
. . .

...

0 0 0 B −I
−I 0 0 . . . −I B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where B ∈ RN×N is defined by

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 0 −1
−1 4 −1 . . . 0 0
0 −1 4 0 0

...
. . .

...

0 0 0 4 −1
−1 0 0 . . . −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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The matrix A satisfies (A1)–(A3) (see Example 2.5).
The last example shows the possible application of our results to general difference

equations on graphs.
Example 2.5: Let G = (V ,E) be an undirected graph with a set of vertices V =
{1, 2, . . . ,N} and a set of edges E ⊂ {{s, t} : s, t ∈ V , s �= t}. The setN (t) = {i ∈ V : {i, t}
∈ E} is the neighbourhood of the vertex t ∈ V and the number dG(t) = |N (t)| is the
degree of vertex t ∈ V (see, e.g. [13] for details about the graph theory).

Let u : V → R be a function defined on the set of vertices V and define the difference
operator on the graph G

�Gu(t) = dG(t)u(t) −
∑

i∈N (t)

u(i).

Consequently, we consider the nonlinear difference equation on the graph G

�Gu(t) = g(t, u(t)), t ∈ V , (2.8)

with g : V × R → R. The problem (2.8) is equivalent to the algebraic system (P) with A
being the so-called Laplace matrix of G. The entries of A are given by

A(s, t) =
⎧⎨
⎩

dG(t), s = t,
−1, s �= t and {s, t} ∈ E,
0, s �= t and {s, t} /∈ E.

(2.9)

If G is a connected graph then A satisfies (A1)–(A3) (see [13, Section 13]).
Let us conclude the example with an interesting relationship of difference equations on

graphs with Neumann and periodic boundary value problems for difference equations. It
follows from the algebraic formulations of boundary value problems (Examples 2.1 – 2.4)
that:

• the Neumann problem for ordinary difference equation (2.1) is equivalent to (2.8)
with G being a path (see Figure 1(a)),

• the periodic boundary value problem for ordinary difference equation (2.4) corre-
sponds to (2.8) with G being a cycle (see Figure 1(b)),

• the Neumann problem for the difference Poisson equation (2.5) (for the sake of
simplicity let N = 3) corresponds to (2.8) with G given in Figure 1(c),

• the periodic problem for the difference Poisson equation (2.7) (again let N = 3) is
equivalent to (2.8) with G given in Figure 1(d).

Therefore, the difference equations on graphs generalize the boundary value problems for
ordinary and partial difference equations. Since all graphs in Figure 1 are connected, the
matrices A in Examples 2.1 – 2.4 satisfy (A1)–(A3).

Remark 2.6: Let us note that we do not have to restrict ourselves to discrete problems
of second order. One can show that the reformulation into (P) also works for problems of
2nth order (n ∈ N), see [18].
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(a) (b) (d)(c)

Figure 1. The graphsG from Example 2.5 that are related with Neumann and periodic discrete boundary
value problems (2.1), (2.4), (2.5) and (2.7).

Motivated by Examples 2.1 – 2.5, we study the general algebraic problem for u ∈ RN ,
N ≥ 2,

Au = G(u), (P)

where A ∈ RN×N is an N × N matrix satisfying (A1)–(A3) and G : RN → RN is a
nonlinear superposition vector function given by

G(u) = [
g(1, u(1)), g(2, u(2)), . . . , g(N , u(N))

]T ,
where g : {1, 2, . . . ,N} × R → R.

From (A1) and (A2), there is λ1 = 0 theminimal eigenvalue ofA andwe can understand
the problem (P) as

Au = λ1u + G(u),

i.e. as the algebraic problem in resonance. Therefore, one can expect an orthogonality
condition of Landesman–Lazer type on G for the existence. Since G : RN → RN is the
superposition vector function defined via the function g : {1, 2, . . . ,N} × R → R, we
formulate our conditions for G via the function g as well:

(H1) The functions g(t, ·) are continuous on R for each t = 1, 2, . . . ,N .
(H2) There exist α,β ∈ [0, 1) such that for each t = 1, 2, . . . ,N there exist limits

g−∞(t) = lim
u→−∞

g(t, u)
|u|α and g+∞(t) = lim

u→+∞
g(t, u)
|u|β .

(LL) The function g satisfies

N∑
t=1

g−∞(t) < 0 <
N∑
t=1

g+∞(t).

Remark 2.7: The condition (LL) represents a variant of the Landesman–Lazer condition.
It is a type of an orthogonality relation, since the inequalities in (LL) can be rewritten as

(g−∞,ϕ1) < 0 < (g+∞,ϕ1),
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where the vectors g±∞ ∈ RN are defined by g±∞ = [
g±∞(1), g±∞(2), . . . , g±∞(N)

]T.
The symbol

(u, v) =
N∑
t=1

u(t)v(t)

denotes the scalar product on RN .
Remark 2.8: Consider the problem (P) with A satisfying (A1)–(A3) when the function g
is independent of t, i.e. g(t, u) = g(u). Suppose that there exists ρ ∈ R such that g(ρ) = 0.
Then obviously, (P) has the solution u = [

ρ, ρ, . . . , ρ
]T, since u = ρϕ1 and

Au = A(ρϕ1) = λ1ρϕ1 = o = [
g(ρ), g(ρ), . . . , g(ρ)

]T = G(u).

Consequently, we focus on the nonlinearities which depend also on the variable t.

3. Variational formulation

We discuss the variational formulation of (P) in this section and summarize the main
theorems of the critical point theory that we use later.

Since we assume that A satisfies (A1) and g satisfies (H1), the potential J : RN → R
associated with the problem (P) is well-defined and given by

J (u) = 1
2
(Au, u) −

N∑
t=1

∫ u(t)

0
g(t, s)ds. (3.1)

Lemma 3.1 ([21, Lemma 1]): A vector u ∈ RN is a solution of (P) if and only if it is a
critical point of the potential J given by (3.1).

Theorem 3.2 (Saddle Point Theorem, [10, Theorem 7.6.12]): Let X = Y ⊕ Z be a
Banach space with Z closed and 0 < dimY < +∞. For ρ̄ > 0 define

M = {u ∈ Y : ‖u‖ ≤ ρ̄} , M0 = {u ∈ Y : ‖u‖ = ρ̄} .

Let J ∈ C1(X,R) be such that

inf
u∈Z J (u) > max

u∈M0
J (u).

Let
c = inf

γ∈

max
u∈MJ (γ (u)) where 
 = {

γ ∈ C(M,X) : γ |M0 = id
}

and J satisfy the Palais–Smale condition: ‘Any sequence {un} ⊂ X such that J (un) → c
and ∇J (un) → o has a convergent subsequence’. Then c is a critical value of J .

The Saddle Point Theorem has three assumptions - the continuous differentiability of
J , the saddle type geometry ofJ and the Palais–Smale condition. To show that J has the
saddle type geometry we need the following statement about the existence of a minimum
for a functional.
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Theorem 3.3 ([10, Thm. 7.2.8]): Let J : H → R be a weakly sequentially lower semi-
continuous and weakly coercive functional on a Hilbert space H. Then J is bounded below
on H and there exists u0 ∈ H such that J (u0) = infu∈H J (u).

Remark 3.4: Since we work on finite dimensional spaces where the weak and strong
topologies coincide, the weak sequential lower semi-continuity is equivalent to the strong
lower semi-continuity.

4. Existence of solution

In this section, we prove the existence for (P) applying the statements from Section 3. We
work on the spaceX = RN . In order to apply Theorem 3.2 we define subspaces Y ,Z ⊂ RN

as follows:
Y = Lin {ϕ1} , Z = Y⊥, (4.1)

where ϕ1 = [1, 1, . . . , 1]T is the eigenvector of A corresponding to the eigenvalue λ1 = 0
(see (A3)). It is obvious that Y ,Z satisfy the assumptions of Theorem 3.2. Let us start with
the following three auxiliary lemmas.

Lemma 4.1: Let A satisfy (A1) and (A2). Then the function ‖u‖A = [
(Au, u)

] 1
2 defines

a norm on the subspace Z defined in (4.1).

Proof: The matrix A is symmetric from (A1). If moreover A is positive definite on the
subspaceZ then thebilinearmapping (·, ·)A : Z×Z → R givenby (u, v)A = (Au, v)defines
a scalar product onZ and therefore, ‖·‖A is the norm induced by (·, ·)A. Indeed, the positive
definiteness of A on Z follows from the fact that we are on the finite-dimensional space
and from [10, Lemma 1.1.31] which guarantees that under (A1) and (A2) the restriction
A|Z has only positive eigenvalues.

In the following, ‖ · ‖p denotes the p-norm on RN with p ≥ 1, i.e.

‖u‖p =
( N∑

t=1

|u(t)|p
) 1

p

, u ∈ RN .

Lemma 4.2: For all 1 ≤ r ≤ p there is

‖u‖p ≤ ‖u‖r ≤ N
1
r − 1

p ‖u‖p for all u ∈ RN . (4.2)

Moreover, if A satisfies (A1) and (A2) then for all p ≥ 1 there exist mp,A,Mp,A > 0 such that

mp,A‖u‖p ≤ ‖u‖A ≤ Mp,A‖u‖p for all u ∈ Z. (4.3)

Proof: The inequality (4.2) is well-known result for p-norms on RN . The inequality (4.3)
follows from the fact that on finite-dimensional spaces all norms are equivalent (see [10,
Corollary 1.2.11]) and from Lemma 4.1.

Remark 4.3: For the sake of brevity, we denote henceforward the norm ‖ · ‖2 induced by
the scalar product (·, ·) only by ‖ · ‖.
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The following lemma states that under (H1) and (H2), the function g has sublinear
growth.
Lemma 4.4: Let g satisfy (H1) and (H2) and γ = max {α,β}. Then there exists constants
M1,M2 ≥ 0 such that∣∣g(t, u)∣∣ ≤ M1 |u|γ + M2 for all t = 1, 2, . . . ,N and u ∈ R.

Proof: The statement is an immediate consequence of (H1) and (H2).

Let us begin to verify the assumptions of Theorem 3.2. Firstly, we have to show that the
potential J is continuously differentiable.
Lemma 4.5: Let A satisfy (A1) and g satisfy (H1). Then the potential J given by (3.1) is
continuously differentiable on RN .

Proof: The gradient ∇J : RN → RN of the potential J is given by

∇J (u) = Au − G(u), u ∈ RN .

The linearmappingu 
→ Au is trivially continuous. Themappingu 
→ G(u) is continuous,
since

G(u) = [
g(1, u(1)), g(2, u(2)), . . . , g(N , u(N))

]T ,
and the entries g(t, u(t)) are continuous from (H1). Consequently, the gradient ∇J :
RN → RN is a continuous mapping and therefore, the potential J is continuously
differentiable on RN (see, e.g. [10, Proposition 3.2.15]).

The following two lemmas describe the geometry of J . The first one deals with the
geometry of J on the subspace Z.
Lemma 4.6: Let A satisfy (A1) and (A2) and g satisfy (H1) and (H2). Then there exists
uZ ∈ Z such that

J (uZ) = min
u∈Z J (u).

Proof: We prove the statement by the application of Theorem 3.3. Let us verify that J is
weakly coercive on Z. Let {un} ⊂ Z be such that ‖un‖ → +∞. From the definition of J
(3.1) we obtain

J (un) ≥ 1
2
(Aun, un) −

N∑
t=1

∣∣∣∣∣
∫ un(t)

0
|g(t, s)|ds

∣∣∣∣∣ .
Applying Lemmas 4.4 and 4.1 we continue with the estimate

J (un) ≥ 1
2
(Aun, un) −

N∑
t=1

∣∣∣∣∣
∫ un(t)

0

(
M1|s|γ + M2

)
ds

∣∣∣∣∣
≥ 1

2
(Aun, un) − M1

γ + 1

N∑
t=1

|un(t)|γ+1 − M2

N∑
t=1

|un(t)|

= 1
2
‖u‖2A − M1

γ + 1
‖un‖γ+1

γ+1 − M2‖un‖1.
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Consequently, from Lemma 4.2 there is

J (un) ≥ m2
2,A
2

‖un‖2 − M1N
1−γ
2

γ + 1
‖un‖γ+1 − M2N

1
2 ‖un‖.

Since ‖un‖ → +∞ and γ = max {α,β} < 1, there is J (un) → +∞ and J is weakly
coercive on Z.

Since we work on RN and thus, the subspace Z is also finite dimensional, the weak and
strong topologies on Z coincide. Therefore, the continuity of J (see Lemma 4.5) implies
that J is also weakly sequentially lower semi-continuous on Z (see also Remark 3.4).
Consequently, Theorem 3.3 yields the statement.

The following lemma describes the geometry of J on the subspace Y .
Lemma 4.7: Let A satisfy (A1)–(A3) and g satisfy (H1) and (H2) and (LL). Then

lim|ρ|→+∞J (ρϕ1) = −∞. (4.4)

Proof: Since ϕ1 = [1, 1, . . . , 1]T ∈ Y is the eigenvector of A corresponding to the
eigenvalue λ1 = 0, there is (Aϕ1,ϕ1) = λ1‖ϕ1‖2 = 0. Therefore,

J (ρϕ1) = ρ2

2
(Aϕ1,ϕ1) −

N∑
t=1

∫ ρϕ1(t)

0
g(t, s)ds = −

N∑
t=1

∫ ρ

0
g(t, s)ds. (4.5)

Let us prove thatJ (ρϕ1) → −∞ for ρ → +∞. From (LL) there is
∑N

t=1 g+∞(t) > 0 and
hence, there exists ε > 0 satisfying

N∑
t=1

(
g+∞(t) − ε

)
> 0. (4.6)

Moreover, from (H2) and from the definition of limits g+∞(t) there exists s̄ ∈ R such that

g(t, s) >
(
g+∞(t) − ε

) |s|β for all t = 1, 2, . . . ,N and s ≥ s̄. (4.7)

Using (4.5) and (4.7), we estimate for ρ ≥ s̄

J (ρϕ1) = −
N∑
t=1

∫ s̄

0
g(t, s)ds −

N∑
t=1

∫ ρ

s̄
g(t, s)ds

≤ −
N∑
t=1

∫ s̄

0
g(t, s)ds −

N∑
t=1

∫ ρ

s̄
(g+∞(t) − ε) |s|β ds

= −
N∑
t=1

∫ s̄

0
g(t, s)ds −

∫ ρ

s̄
|s|β ds

N∑
t=1

(g+∞(t) − ε)

= −
N∑
t=1

∫ s̄

0
g(t, s)ds − 1

β + 1
(|ρ|β ρ − |s̄|β s̄

) N∑
t=1

(
g+∞(t) − ε

)
.
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Observing that the former term on the right-hand side is constant, we pass to the limit for
ρ → +∞ and applying (4.6) we obtain

lim
ρ→+∞J (ρϕ1) = −∞.

The second case limρ→−∞ J (ρϕ1) = −∞ can be shown in the same way using g−∞(t)
and the former inequality in (LL). Consequently, (4.4) holds.

The last point before the application of Theorem 3.2 is the verification of the Palais–
Smale condition.
Lemma 4.8: Let A satisfy (A1)–(A3) and g satisfy (H1) and (H2) and (LL). Then the
potential J satisfies the Palais–Smale condition.

Proof: We prove a more general property:

if {J (un)} ⊂ R is bounded and ∇J (un) → o, (4.8)

then there exists a convergent subsequence
{
unk

} ⊂ {un}. In our case it is sufficient to
prove that the sequence {un} is bounded because we work on the finite-dimensional space
RN where every bounded sequence contains a convergent subsequence.

Motivated by the procedure from [11, Theorem 2], let us assume by contradiction that
there exists a sequence {un} ⊂ RN satisfying (4.8) and ‖un‖ → +∞. Without loss of
generality, let us assume that ‖un‖ > 0 for all n ∈ N. From the proof of Lemma 4.5 there
is ∇J (un) = Aun − G(un). If we multiply this equality by 1

‖un‖ and denote vn = un‖un‖ we
obtain

∇J (un)
‖un‖ = Avn − G(un)

‖un‖ . (4.9)

Since the sequence {vn} ⊂ RN is bounded and ‖vn‖ = 1 for all n ∈ N there is vn → v0 at
least for a subsequence and ‖v0‖ = 1.

For the left-hand side of (4.9) there is immediately ∇J (un)‖un‖ → o, because∇J (un) → o.
Let us investigate the term G(un)‖un‖ . We distinguish two possibilities:

• If t ∈ {1, 2, . . . ,N} is such that the sequence {un(t)} ⊂ R is bounded, then
{
g(t, un(t))

}
is bounded as well from (H1). Therefore,

g(t,un(t))
‖un‖ → 0.

• Otherwise, if t ∈ {1, 2, . . . ,N} is such that the sequence {un(t)} ⊂ R is unbounded,
then at least for a subsequence there is |un(t)| → +∞ and un(t) �= 0 for all n ∈ N.
Applying Lemma 4.2, we estimate

∣∣g(t, un(t))∣∣
‖un‖ ≤ N

1
2
∣∣g(t, un(t))∣∣
‖un‖1 ≤ N

1
2
∣∣g(t, un(t))∣∣
|un(t)| ≤ N

1
2
∣∣g(t, un(t))∣∣

|un(t)|γ |un(t)|1−γ
,

where γ = max {α,β}. Since |g(t,un(t))|
|un(t)|γ is bounded from (H1) and (H2) and γ < 1,

there is |g(t,un(t))|
‖un‖ → 0.



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 13

Consequently, if we put together these two cases, then G(un)‖un‖ → o in (4.9) at least for a
subsequence. Therefore, there exists a subsequence

{
unk

} ⊂ {un} such that vnk → v0,
∇J (unk )

‖unk‖ → o and G(unk )‖unk‖ → o in (4.9) which implies

Av0 = o.

Hence, v0 is an eigenvector of A corresponding to the eigenvalue λ1 = 0, i.e. v0 = ρϕ1
for some ρ ∈ R. Moreover, since ‖v0‖ = 1 and ϕ1 = [1, 1, . . . , 1]T, there is either
v0 = 1√

N
ϕ1 =

[
1√
N
, 1√

N
, . . . , 1√

N

]T
or v0 = − 1√

N
ϕ1 =

[
− 1√

N
,− 1√

N
, . . . ,− 1√

N

]T
.

Let us assume that v0 = 1√
N

ϕ1. From the definition of J (3.1) and from ∇J (u) =
Au − G(u), the following equality holds:

2J (un) − (∇J (un), un) = −2
N∑
t=1

∫ un(t)

0
g(t, s)ds +

N∑
t=1

g(t, un(t))un(t).

If we multiply this equality by 1
‖un‖β+1 and use vn = un‖un‖ , we obtain

2J (un)
‖un‖β+1 − (∇J (un), vn)

‖un‖β
= −

N∑
t=1

2
‖un‖β+1

∫ un(t)

0
g(t, s)ds +

N∑
t=1

g(t, un(t))
‖un‖β

vn(t).

(4.10)
The left-hand side of (4.10) converges to zero because {J (un)} is bounded, ∇J (un) → o
and {vn} is bounded. Let us analyze the right-hand side of (4.10) if we pass to the limit
with respect to the above mentioned subsequence (we denote the index only by n for the
simplicity):

• Firstly, we focus on the former term on the right-hand side of (4.10). L’Hôpital’s rule
and the convergence un(t) → +∞ for all t = 1, 2, . . . ,N (because vn = un‖un‖ →
v0 =

[
1√
N
, 1√

N
, . . . , 1√

N

]T
and ‖un‖ → +∞) yield

lim
n→+∞

N∑
t=1

2
‖un‖β+1

∫ un(t)

0
g(t, s)ds

=
N∑
t=1

(
lim

n→+∞
2vn(t) |un(t)|β

‖un‖β
· lim
n→+∞

∫ un(t)
0 g(t, s)ds
|un(t)|β un(t)

)

=
N∑
t=1

(
lim

n→+∞
(
2vn(t) |vn(t)|β

) · lim
n→+∞

g(t, un(t))
(β + 1) |un(t)|β

)
,

provided the right-hand side makes sense. However, since vn(t) → 1√
N
, un(t) →

+∞ for all t = 1, 2, . . . ,N and from (H1) and (H2) we obtain

lim
n→+∞

N∑
t=1

2
‖un‖β+1

∫ un(t)

0
g(t, s)ds = 2

N
β+1
2 (β + 1)

N∑
t=1

g+∞(t). (4.11)
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• Secondly, we investigate the latter term on the right-hand side of (4.10). Applying
similar arguments as above we derive that

lim
n→+∞

N∑
t=1

g(t, un(t))
‖un‖β

vn(t) =
N∑
t=1

lim
n→+∞

(
g(t, un(t))
|un(t)|β

· |un(t)|β vn(t)
‖un‖β

)

= 1

N
β+1
2

N∑
t=1

g+∞(t). (4.12)

Taking into account that the left-hand side of (4.10) converges to zero and limits (4.11),
(4.12), we get

1

N
β+1
2

(
− 2

β + 1
+ 1

) N∑
t=1

g+∞(t) = 0,

a contradiction with the latter inequality in (LL) because β < 1. Finally, if v0 = − 1√
N

ϕ1
we obtain a contradiction with the former inequality in (LL) using the similar procedure
with α instead of β .

Consequently, we present the main result of this section – existence theorem for (P).
Theorem 4.9: Let A satisfy (A1)–(A3) and g satisfy (H1) and (H2) and (LL). Then there
exists a solution of (P).

Proof: According to Lemma 3.1, we show that J has a critical point. Auxiliary
Lemmas 4.6 and 4.7 yield that J has a minimum J (uZ) > −∞ on the subspace Z
and lim|ρ|→+∞ J (ρϕ1) = −∞. Hence, there exists ρ̄ > 0 sufficiently large such that

J (uZ) > J ( ± ρ̄ϕ1). (4.13)

Let us define

M =
{
u ∈ Y : ‖u‖ ≤ ρ̄

√
N
}

and M0 =
{
u ∈ Y : ‖u‖ = ρ̄

√
N
}

.

Then we obtain from (4.13)

min
u∈Z J (u) = J (uZ) > max {J ( − ρ̄ϕ1),J (ρ̄ϕ1)} = max

u∈M0
J (u).

Moreover, J satisfies the Palais–Smale condition (Lemma 4.8). Theorem 3.2 then yields
that

c = inf
γ∈


max
u∈MJ (γ (u)) where 
 = {

γ ∈ C(M,RN ) : γ |M0 = id
}

is a critical value of J and there exists a critical point of J .

Example 4.10: Consider the boundary value problems (2.1), (2.4), (2.5), (2.7) or (2.8).
Theorem 4.9 is applicable for example for the following nonlinear functions:

• g(t, u) =

⎧⎪⎨
⎪⎩

|u|p−2 u + f (t), u < 0, p ∈ (1, 2),
f (t), u = 0, f : {1, 2, . . . ,N} → R arbitrary,
|u|q−2 u + f (t), u > 0, q ∈ (1, 2),
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• g(t, u) =

⎧⎪⎨
⎪⎩

|u|p−2 u + f (t), u ≤ −1, p ∈ (1, 2),
− sin

( 3π
2 u

) + f (t), u ∈ ( − 1, 1), f : {1, 2, . . . ,N} → R arbitrary,
|u|q−2 u + f (t), u ≥ 1, q ∈ (1, 2),

• g(t, u) =
⎧⎨
⎩ |u − t|p−2 (u − t) + sin (u − t)

u − t
, u �= t, p ∈ (1, 2),

1, u = t.

We can also consider bounded nonlinearities, e.g.:

• g(t, u) = e−u2 + tanh (u) + f (t) with −1 < 1
N
∑N

t=1 f (t) < 1,
• g(t, u) = (t − 2) arctan

(
u − log (t)

)
with N ≥ 4.

Example 4.10 motivates us to the following consequences of Theorem 4.9.
Corollary 4.11: Let A satisfy (A1)–(A3) and g be defined by

g(t, u) = h(u) + f (t),

where f : {1, 2, . . . ,N} → R is arbitrary and h : R → R satisfies (H1) and (H2) and (LL)
with α,β ∈ (0, 1). Then there exists a solution of (P).

Proof: The statement is an immediate consequence of Theorem 4.9 and of the fact that for
α,β ∈ (0, 1) and each t = 1, 2, . . . ,N there is f (t)

|u|α → 0 provided u → −∞ and f (t)
|u|β → 0

provided u → +∞.

Corollary 4.12: Let A satisfy (A1)–(A3) and g be defined by

g(t, u) = h(u) + f (t),

where f : {1, 2, . . . ,N} → R and h : R → R satisfies (H1) and (H2) and (LL) with
α = β = 0 and h±∞ = limu→±∞ h(u). If f satisfies

−h+∞ <
1
N

N∑
t=1

f (t) < −h−∞, (4.14)

then there exists a solution of (P).

Proof: The statement follows immediately from g±∞(t) = h±∞ + f (t), t = 1, 2, . . . ,N ,
and from Theorem 4.9.

Remark 4.13: The inequalities in (4.14) are equivalent to −h+∞ < 1
N (f ,ϕ1) < −h−∞

where the vector f ∈ RN is defined by f = [
f (1), f (2), . . . , f (N)

]T.

5. Necessity of (LL) condition for bounded nonlinearities

Let us focus on (P) with bounded nonlinear functions g . We find out that for a certain class
of bounded functions the Landesman–Lazer type condition (LL) is also necessary for the
existence. We use the following additional condition:
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(H3) The function g satisfies

g−∞(t) < g(t, u) < g+∞(t) for all t = 1, 2, . . . ,N and u ∈ R.

Remark 5.1: If (H1) and (H3) hold together, then the functions g(t, ·) are necessarily
bounded for each t = 1, 2, . . . ,N . It implies that (H2) holds for all α,β ∈ (

0, 1
)
. However,

the strict inequalities in (H3) yield that g(t, ·) have to be bounded by the limits

g−∞(t) = lim
u→−∞ g(t, u) and g+∞(t) = lim

u→+∞ g(t, u),

i.e. by g±∞(t) corresponding to α = β = 0.
Theorem 5.2: Let A satisfy (A1)–(A3) and g satisfy (H1)–(H3). Then (P) has a solution if
and only if (LL) holds.

Proof: The sufficiency of (LL) follows from Theorem 4.9. Conversely, assume that u ∈ RN

is a solution of (P). Therefore, u is a critical point of the potential J by Lemma 3.1, i.e.
there is (∇J (u), v) = (Au − G(u), v) = 0 for all v ∈ RN . If we put v = ϕ1 then from the
symmetry of A we get

(G(u),ϕ1) = (Au,ϕ1) = (u,Aϕ1) = λ1(u,ϕ1) = 0. (5.1)

Since ϕ1 = [1, 1, . . . , 1]T, the equality (5.1) is equivalent to∑N
t=1 g(t, u(t)) = 0. Exploiting

(H3) we obtain
N∑
t=1

g−∞(t) <
N∑
t=1

g(t, u(t)) = 0 <
N∑
t=1

g+∞(t).

Example 5.3: Consider the boundary value problems (2.1), (2.4), (2.5), (2.7) or (2.8) with
the nonlinear function g defined by

g(t, u) = a arctan (u) + f (t), a > 0, (5.2)

where f : {1, 2, . . . ,N} → R. Obviously, the function g satisfies (H1)–(H3)withα = β = 0
and g±∞(t) = ± aπ

2 + f (t). Therefore, (LL) is satisfied if and only if

−aπ
2

<
1
N

N∑
t=1

f (t) <
aπ
2

. (5.3)

Consequently, Theorem 5.2 yields that the problems (2.1), (2.4), (2.5), (2.7) or (2.8) with g
given by (5.2) have a solution if and only if f satisfies (5.3). In particular,

• for a > 2
πN

∣∣∣∣ N∑
t=1

f (t)
∣∣∣∣ there exists a solution,

• for a ≤ 2
πN

∣∣∣∣ N∑
t=1

f (t)
∣∣∣∣ there does not exist any solution.

The following statement is an immediate consequence of Theorem 5.2 and is related to
Corollary 4.12.
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Corollary 5.4: Let A satisfy (A1)–(A3) and g be defined as

g(t, u) = h(u) + f (t), (5.4)

where f : {1, 2, . . . ,N} → R and h : R → R satisfies (H1)–(H3). Then (P) has a solution if
and only if (4.14) holds.
Remark 5.5: Landesman–Lazer type conditions for difference equations have already
been studied (among other things) in [5–7]. Our findings complement these results in the
following way:

• Our approach via the algebraic formulation (P) is general in the sense that Neumann/
periodic problems, ordinary/partial difference equations are considered at once,
whereas in [5–7] specific boundary value problems are studied. On the other hand,
in [6,7] more general problems involving discrete φ-Laplacian (even singular) are
studied.

• Landesman–Lazer conditions in [5–7] are assumed to be sufficient. We show that
for a certain class of bounded nonlinearities (LL) is even necessary and therefore, we
obtain the nonexistence as well.

• All three papers [5–7] formulate the Landesman–Lazer conditions for nonlinear
functions in separated form g(t, u) = h(u)+ f (t). We also study functions in general
nonseparated form g(t, u).

6. Uniqueness of solution

After the existence part of the paper we go further and analyze the uniqueness in this
section. We use the following algebraic result for commuting matrices.

Theorem 6.1 ([17, Theorem 2.1]): Let A,B ∈ RN×N be such that AB = BA and λs(A),
λs(B) be eigenvalues of A and B respectively and λs(A + B) be eigenvalues of A + B for
s = 1, 2, . . . ,N. Then there exist permutations a and b of {1, 2, . . . ,N} such that λs(A+B) =
λa(s)(A) + λb(s)(B) for all s = 1, 2, . . . ,N.

In order to apply Theorem 6.1, we assume that the nonlinear function g satisfies the
following conditions:

(H4) The functions g(t, ·) are continuously differentiable on R for each t = 1, 2,
. . . ,N .
(H5) Let A ∈ RN×N and λs(A), s = 1, 2, . . . ,N , be eigenvalues of A. The function
g satisfies

gu(t, u) �= λs(A) for all t = 1, 2, . . . ,N , u ∈ R, and s = 1, 2, . . . ,N .

Theorem 6.2: Let A be arbitrary and g satisfy (H4) and (H5). Then (P) has at most one
solution.

Proof: Suppose by contradiction that there are two distinct solutions u, v ∈ RN . Conse-
quently, there is A(u − v) = G(u) − G(v). From (H4) and from the mean value theorem
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there has to exist ξ ∈ RN such that

G(u) − G(v) =

⎡
⎢⎢⎢⎣

g(1, u(1)) − g(1, v(1))
g(2, u(2)) − g(2, v(2))

...

g(N , u(N)) − g(N , v(N))

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

gu(1, ξ(1))(u(1) − v(1))
gu(2, ξ(2))(u(2) − v(2))

...

gu(N , ξ(N))(u(N) − v(N))

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

gu(1, ξ(1)) 0 . . . 0
0 gu(2, ξ(2)) 0
...

. . .

0 0 gu(N , ξ(N))

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=B

⎡
⎢⎢⎢⎣

u(1) − v(1)
u(2) − v(2)

...

u(N) − v(N)

⎤
⎥⎥⎥⎦

= B(u − v).

If we denotew = u−v we obtain thatw has to be a solution of the homogeneous algebraic
problem

(A − B)w = o. (6.1)
Since B is diagonal, there is AB = BA. Theorem 6.1 and (H5) yield that the eigenvalues
λs(A − B), s = 1, 2, . . . ,N , are nonzero. Consequently, the matrix A − B is regular and
(6.1) has only the trivial solution w = o, a contradiction.

The following lemma provides properties of the function g satisfying (H4) and (H5).
Let us note that if (H4) holds then (H1) is obviously satisfied.
Lemma 6.3: Let A satisfy (A1) and (A2) and 0 = λ1(A) < λ2(A) ≤ . . . ≤ λN (A) be
eigenvalues of A. The following statements hold:

(1) If g satisfies (H4) and (H5) then the functions g(t, ·) are strictly monotone for each
t = 1, 2, . . . ,N.

(2) If g satisfies (H2) and (H4), then (H5) holds if and only if for each t = 1, 2, . . . ,N
there is

0 = λ1(A) < gu(t, u) < λ2(A) or gu(t, u) < λ1(A) = 0 for all u ∈ R.

(3) If g satisfies (H2)–(H4), then (H5) holds if and only if for each t = 1, 2, . . . ,N there
is

0 = λ1(A) < gu(t, u) < λ2(A) for all u ∈ R.

Proof: Let us follow the structure of lemma:

(1) The first statement follows immediately from the continuous differentiability of the
functions g(t, ·) and from gu(t, u) �= λ1(A) = 0 for any t = 1, 2, . . . ,N and u ∈ R.

(2) Suppose (H2), (H4) and (H5) and assume by contradiction that for some t2 ∈
{1, 2, . . . ,N}, u2 ∈ R there is gu(t2, u2) > λ2(A) > 0. From (H4) we know that
gu(t2, ·) is a continuous function. Since gu(t2, u) �= λ2(A) for all u ∈ R (from (H5)),
there is gu(t2, u) > λ2(A) > 0 for all u ∈ R. Then we obtain for u ≥ 0∫ u

0
gs(t2, s)ds ≥

∫ u

0
λ2(A)ds,
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and therefore, g(t2, u) ≥ λ2(A)u + g(t2, 0). This is a contradiction, since g(t2, ·)
has sublinear growth from (H2) and (H4) (Lemma 4.4). The converse implication
is obvious.

(3) The condition (H3) implies that any function g(t, ·), t = 1, 2, . . . ,N , cannot be
decreasing onR (see Remark 5.1). Then the last statement of lemma is an immediate
consequence of the second one.

The following statements summarize the existence and uniqueness results from
Theorems 4.9, 5.2 and Theorem 6.2.
Theorem 6.4: Let A satisfy (A1)–(A3) and g satisfy (H2), (H4) and (H5) and (LL). Then
there exists a unique solution of (P).
Theorem 6.5: Let A satisfy (A1)–(A3) and g satisfy (H2)–(H5). Then (P) has a solution if
and only if (LL) holds. Moreover, if the solution exists it has to be unique.
Example 6.6: For simplicity, let us consider the Neumann problem (2.1) with N = 3
and c1 = c2 = 0. The corresponding matrix A ∈ R3×3 satisfies (A1)–(A3) and λ1(A) = 0,
λ2(A) = 1 and λ3(A) = 3 (see Example 2.1). Further, suppose that the function g is given
by

g(t, u) =
(
t
3

− a
)
arctan (u) + bt, a > 0, b ∈ R. (6.2)

Let us investigate for which a, b we can apply Theorems 6.4 and 6.5.

• The condition (H2) holds with α,β = 0 and

g±∞(t) = ±π

2

(
t
3

− a
)

+ bt. (6.3)

• The condition (H3) is satisfied if and only if the functions g(t, ·) are strictly increasing
for each t = 1, 2, . . . ,N , i.e. if a < 1

3 .• In order to satisfy (H4) and (H5), we compute the derivative

gu(t, u) =
t
3 − a
1 + u2

.

The condition (H4) obviously holds. According to Lemma 6.3, (H5) holds if and
only if 0 �= gu(t, u) < 1 for all t = 1, 2, . . . ,N and u ∈ R. Since 0 < 1

1+u2 ≤ 1,
there has to be 0 �= t

3 − a < 1 for t = 1, 2, 3. Hence, (H5) is satisfied if and only if
a ∈ (0,+∞) \ { 1

3 ,
2
3 , 1

}
.

• Since the limits g±∞(t) are given by (6.3), there is

3∑
t=1

g±∞(t) = ±π

2

3∑
t=1

(
t
3

− a
)

+ b
3∑

t=1

t = ±π

2
(2 − 3a) + 6b.

Therefore, (LL) holds if and only if

−π

(
1
6

− a
4

)
< b < π

(
1
6

− a
4

)
. (6.4)
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Let us notice, that (6.4) can be satisfied only for a < 2
3 .

Consequently, we can apply our results for a ∈ (
0, 13

) ∪ ( 1
3 ,

2
3
)
and conclude:

(a) For a ∈ (
0, 13

)
the conditions (H2)–(H5) are satisfied. Theorem 6.5 then yields that

the problem (2.1) withN = 3 has a solution if and only if b satisfies (6.4). Moreover,
the solution is unique provided it exists.

(b) For a ∈ ( 1
3 ,

2
3
)
the conditions (H2) and (H4) and (H5) are satisfied but (H3) not.

Applying now Theorem 6.4 we obtain that the problem (2.1) with N = 3 has a
unique solution at least for b satisfying (6.4).

In contrast to the previous Example 6.6, the next one shows the possible application of
Theorem 6.4 for unbounded g .
Example 6.7: Consider the boundary value problems (2.1), (2.4), (2.5), (2.7) or (2.8)
where g is defined by

g(t, u) =

⎧⎪⎨
⎪⎩

|u|p−2 u + p − 2 + f (t), u ≥ 1,
(p − 1)u + f (t), |u| < 1,
|u|p−2 u − p + 2 + f (t), u ≤ −1,

(6.5)

where p ∈ (1, 2) and f : {1, 2, . . . ,N} → R is arbitrary. We obtain easily that g satisfies
(H2) and (LL) with α,β = p − 1 and g±∞(t) = ±1. One can show that

gu(t, u) =
{

(p − 1) |u|p−2 , |u| ≥ 1,
p − 1, |u| < 1.

The function gu(t, ·) is positive and continuous, i.e. (H4) holds. Moreover, gu(t, ·) has
a positive maximum p − 1. Let A be the appropriate matrix representing the difference
operator in (2.1), (2.4), (2.5), (2.7) or (2.8). If p − 1 < λ2(A), then

λ1(A) = 0 < gu(t, u) ≤ p − 1 < λ2(A) for all t = 1, 2, . . . ,N and u ∈ R,

and hence, (H5) holds. Therefore, Theorem 6.4 yields that if p − 1 < λ2(A), the problems
(2.1), (2.4), (2.5), (2.7) or (2.8) with g given by (6.5) have a unique solution.

7. Concluding remarks and open problems

We conclude the paper with several open questions and possible future research directions
arising from this study:

• If we assume that the nonlinear function is linear or superlinear, the geometry of the
potential changes. Are we able to show existence results variationally even in these
cases?

• Can we use some a priori bounds on a solution and apply our results for bounded
nonlinearities (especially, necessary and sufficient existence condition) to prove the
existence for other types of unbounded nonlinear functions?

• Motivated by [5–7] we can ask - is it possible and reasonable to define lower and
upper solutions for the algebraic system (P) and apply this method to obtain new
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existence results? Moreover, are there conditions guaranteeing the existence of such
lower and upper solutions?

• One of the bases of this paper is the possibility of representing linear difference
operators by a matrix A (see [12,18,20,21]). Straightforwardly, we cannot apply
our results for problems involving nonlinear difference operators. Consequently,
is it possible to extend our approach and reformulate problems with, e.g. discrete
p-Laplacian (see [4,9,15,19]) or φ-Laplacian (see [6,7]) as an algebraic system and
investigate the existence and uniqueness via this general representation?
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