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Annotation

In recent years, the study of quaternions has become an active research area of applied
geometry, mainly due to an elegant and efficient possibility to represent using them ro-
tations in three dimensional space. Thanks to their distinguished properties, quaternions
are often used in computer graphics, inverse kinematics robotics or physics. Furthermore,
dual quaternions are ordered pairs of quaternions. They are especially suitable for de-
scribing rigid transformations, i.e., compositions of rotations and translations. It means
that this structure can be considered as a very efficient tool for solving mathematical
problems originated for instance in kinematics, bioinformatics or geodesy, i.e., whenever
the motion of a rigid body defined as a continuous set of displacements is investigated.

The main goal of this thesis is to provide a theoretical analysis and practical applications
of the dual quaternions on the selected problems originated in geometric modelling and
other sciences or various branches of technical practise. Primarily we focus on problems
which are traditionally solved using quaternions and show that involving dual quater-
nions can simplify the designed approaches and sets them on a unifying basis.

In the first part of the thesis we recall the fundamental theory of quaternion algebra and
their application for the description of the three dimensional rotations. Then we continue
with dual numbers. The quaternions and dual numbers are used for the introduction of
dual quaternions. Subsequently, some elementary notions dealing with dual quaternion
are introduced and explained. Compared to quaternions that can represent only rotation,
the dual quaternions offer a broader representation of both the rotation and translation.

In the second part of the thesis we discuss several practical applications of dual quater-
nions. Firstly, one of the challenging problems from geodesy is solved. The Burša-Wolf
similarity transformation model is presented and a new mathematical method based on
the dual quaternions is introduced and documented. Next, we deal with an interesting
problem relating to structural biology, i.e., the description of the protein structure is thor-
oughly investigated. The well-known method for describing secondary protein structures
is called SrewFit, and the dual-quaternions-improvement is designed as a new approach.
The last part of the thesis is devoted to modifying existing Hermite interpolation schemes
by rational spline motions with help of dual quaternions. Functionality of the designed
method is illustrated on several examples.

Keywords

Quaternions, dual quaternions, datum transformation, Burša-Wolf model, secondary
protein structure, ScrewFit, rational spline motion, Hermite interpolation.
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Anotace

V posledních letech se studium kvaternionů stalo aktivní oblastí výzkumu aplikované
geometrie díky své schopnosti jednoduše a elegantně reprezentovat rotační pohyb. Díky
této vlastnosti jsou kvaterniony často využívány zejména v oblasti počítačové grafiky,
inverzní kinematiky nebo také fyziky. Mimo to, je duální kvaternion také chápán jako
uspořádaná dvojice kvaternionů. Duální kvaterniony jsou především vhodné pro popis
přímé shodnosti, tj. složení rotace a posunutí. Tato struktura se stává tedy velmi efekti-
vním nástrojem při řešení matematických problémů, vzniklých například v kinematice,
bioinformatcie nebo geodézii, tj. vždy, když je zkoumán pohyb tuhého tělasa definovaný
jako spojitá množina posunutí.

Hlavním cílem předkládané práce je poskytnout teoretické poznatky a praktické použití
duálních kvaternionů na vybraných problémech, které vznikají v geometrickém mode-
lování a dalších vědách nebo různých odvětví technické praxe. Speciálně se zaměřujeme
na problémy, které jsou obvykle řešené pomocí kvaternionů a ukazují, že aplikace duál-
ních kvaternionů dokáže zjednodušit navrhované přístupy a hlavně jim dát stejný základ.

V první části práce připomeneme fundamentální teorii kvaternionové algebry a schop-
nost kvaternionů popsat trojrozměrnou rotaci. Dále pokračujeme duálními čísly. Kvater-
niony a duální čísla se používají při zavedení duálních kvaternionů. Následně jsou před-
staveny některé základní pojmy vztažené k duálním kvatrnionům. Duální kvaterniony
ve srovnání s kvaterniony, které dokáží reprezentovat rotaci, nám dokáží nabídnout, vzh-
ledem k jejich schopnosti reprezentovat rotace a posunutí, širší využití.

V druhé části práce se budeme zabývat praktickým využitím duálních kvaternionů.
Nejdříve se zaměříme na jeden z náročných problémů geodezie, tj. Burša-Wolf trans-
formační model. Je zde představena a popsána nová matematická metoda založená na
duálních kvaternionech. Dalším zajímavým problémem, který je zde podrobně zkoumán,
je problém zaměřující se na strukturální biologii, tj. popis proteinové struktury. Použi-
jeme metodu SrewFit, která popisuje sekundární proteinovou strukturu, a vylepšíme ji
s pomocí duálních kvaternionů. Poslední část této práce je věnová na úpravě Hermi-
tovské interpolace racionálními spline pohyby. Funkčnost navržené metody je ilustro-
vána na několika příkladech.

Klíčová slova

Kvaterniony, duální kvaterniony, transformační metoda Burša-Wolf, sekundární pro-
teinová struktura, metoda ScrewFit, racionální spline pohyb, hermitovská interpolace.
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Glossary of notations

Q, P̂ . . . Quaternion
1, i, j, k Quaternion units
q0 Scalar part of quaternion Q
q = (q1, q2, q3) Vector part of quaternion Q
Q∗ Conjugate quaternion to quaternion Q
Q−1 Inverse quaternion to quaternion Q
‖Q‖ Norm of quaternion Q
H Set of quaternions
Hp Set of pure quaternions
θ, ϕ . . . Angle
zd, ẑd . . . Dual number
ε Dual unit
zd Dual number conjugate to dual number zd
∗ε Dual part
i Imaginary unit
D Set of dual numbers
Dp Set of pure dual numbers
zd Dual vector
θd Dual angle
Qd, Q̂d . . . Dual quaternion
Q∗

d Dual quaternion conjugate to dual quaternion Qd
Q∗

d Dual quaternion dual conjugate to dual quaternion Qd
Q−1

d Inverse dual quaternion to dual quaternion Qd
‖Qd ‖ Norm of dual quaternion Qd
v, l . . . Vector
k, s . . . Scalar
GL(3, F) General linear group
SO(3) Special orthogonal group
A,R . . . Matrix
Ck Parametric continuity of order k
Gk Geometric continuity of order k
SE(3) Special Euclidean group
R Set of real numbers
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Chapter 1

Introduction

Quaternions were invented by Sir William Rowan Hamilton (1805–
1865) as an extension to complex numbers. Hamilton tried, for ten
years, to create some structure similar to complex numbers and there-
fore he created the quaternion, an interesting mathematical notion.
The unit quaternions are important, mainly for representation of three
dimensional rotations, and it has been a popular tool in computer
graphics for more than twenty years. This representation is better
than 3 × 3 rotation matrices in many aspects, see Shoemake (1985).
However, classical quaternions are restricted to the representation of
rotations, whereas in many various areas of mathematics there is a re-
quirement to find a more general structure, which will represent also
displacement. William Kingdon Clifford (1845–1879) invented dual
quaternions in the nineteenth century, see Clifford (1882), to represent
rigid transformations. There is a close connection to a classical result
of the spatial kinematics known as Chasles’ theorem, see Murray et al.
(1994) for more details. Chasles’ theorem states that any rigid trans-
formation can be described by a screw, i.e., a rotation about an axis
followed by a translation in the direction of this axis. Therefore, dual
quaternions are convenient to describe a composition of rotations and
translations. In this thesis, we advocate that dual quaternions are in
many aspects a convenient representation of the rigid transformation.

1.1 History

The geometrical interpretation of complex numbers and the method of their
derivation from real numbers expanded during the nineteenth century to many
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Chapter 1. Introduction

different considerations of structures of multicomponent numbers. These num-
bers are called hypercomplex numbers.

It begins with studying expressions such as a0α0 + a1α1 + · · ·+ anαn, where n is
a natural number, a0, a1, . . . , an are real numbers and α0, α1, . . . , αn are new basic
units. The main requirement was to preserve common algebraic property which
is that of being a field, and it is captured by nine laws governing addition and
multiplication, such as ab = ba and a(bc) = (ab)c (commutative and associative
laws for multiplication). Further, the geometric property is the existence of an
absolute value |u|, which measures the distance of u from the origin and is
multiplicative |uv| = |u||v|.
However, we know that the system of hypercomplex numbers can be created
only for n = 1, 2, 4, 8, which was proven by German mathematician Adolf Hur-
witz (1859–1919) in 1898, see Hurwitz (1898). If dimension n is equal to 1, 2, 4
and 8, the algebra is known as real numbers, complex numbers or quaternions,
which have all the required properties except commutative multiplication, and
octonions, which have all the required properties except commutative and asso-
ciative multiplication.

Many various mathematicians such as Sir William Rowan Hamilton, Arthur
Cayley (1821–1895), Augustus de Morgan (1806–1871), brothers Charles Graves
(1810–1860) and John Thomas Graves (1806–1870) and others started to find
a new numeric field which expanded the field of complex numbers.

Hamilton wanted to extend complex numbers to a new algebraic structure with
each element consisting of one real part and two distinct imaginary parts. He
focused on three dimensional complex numbers known as triplets, but his effort
was futile. One of Hamilton’s motivations for seeking three dimensional com-
plex numbers was to find a description of a rotation in the space corresponding
to the complex numbers, where a multiplication corresponds to a rotation and
a scaling in the plane. He published "Theory of Triplets", i.e., a system that
would do for the analysis of three dimensional space what imaginary numbers
do for two dimensional space. Hamilton had been searching for such triplets
since at least 1830. It is significant to note that in this paper Hamilton makes clear
that he understands the nature and importance of the associative, commutative,
and distributive laws, an understanding rare at the time when no exceptions to
these laws were known. Following the example of the complex numbers, he
wrote the triplets of the form a + i b + j c, where a, b, c ∈ R and i2 = j2 = −1.
Hamilton never succeeded in making this generalization, and it has later been
proven that the set of three dimensional numbers is not closed under multiplica-
tion. In 1966 Kenneth O. May (1915–1977) gave an elegant proof of this, see Dam
et al. (1998).

Having searched for his triplets for thirteen years, Hamilton discovered quater-
nions. In a letter he later wrote to one of his children about the discovery, he
recounts that his children used to ask him each morning at breakfast: "Well,
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Chapter 1. Introduction

Papa, can you multiply triplets?" To this he would reply, "No, I can only add
and subtract them." His search ends with his discovery of mathematical entities
he calls quaternions. The story says that on 16th October 1843 which happened
to be a Monday and a council day of the Royal Irish Academy, he was walking
across the Royal Canal in Dublin with his wife, when the solution to quater-
nions came to him in the form of an equation, which he inscribed in stone on
the bridge now called the Brougham or Broom Bride. The original inscription
has faded but a Quaternion plaque exists there today that reads:

Here as walked by
on the 16th October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
i2 = j2 = k2 = ijk = −1
& cut it on a stone of this bridge.

In this formalism, Hamilton devised a four vector form of complex numbers that
had the components of a four dimensional space just as two dimensional space
complex numbers. Later he presented the quaternion theory of mathematics at
a series of lectures at the Royal Irish Academy. The lectures gave rise to a book
Hamilton (1852).

Complex numbers, quaternions and octonions have a special structure and one
of the most remarkable, is their relationship with the projective geometry via
the theorems of Pappus and Desargues, see Stillwell (2010).

Although Hamilton derived his work independently, it had been, discovered ear-
lier in a nearly identical form by a mostly unknown mathematician by the name,
of Olinde Rodrigues (1795–1851). In fact, Rodrigues had a much stronger grasp
on the algebra of the rotations and even had the beginnings of what would later
become known as Lie algebra.

Furthermore, a biquaternions, which were predecessors of a unit dual quaternions
need to be mentioned. Biquaternions are an eight dimensional algebra consisting
of quaternion numbers with complex coefficients, and were first considered by
Hamilton [47]. He used this term for a quaternion q = a + i b + j c + k d, where
a, b, c, d are complex numbers. This term was later used by William Kingdon
Clifford, an English mathematician and philosopher who worked extensively in
many branches of pure mathematics and classical mechanics. Clifford’s study
of geometric algebras in both Euclidean and non-Euclidean spaces led to his
invention of the biquaternion and dual algebra.

Till this time a general rigid transformation can be described by a screw. This
is a combination of a rotation around the axis and a translation along a specific

3



Chapter 1. Introduction

straight line (the axis) in three dimensional space. Clifford’s biquaternion offers
one of the most elegant and efficient representations for this transformation.

Clifford adopts Hamilton’s term biquaternion1 for a different purpose, namely
to denote a combination of two quaternions, algebraically combined via a new
symbol ω (now ε), defined to have the property ω2 = 0.

The biquaternion can be introduced as the sum of two quaternions, when one of
them is multiplied by the dual unit ω (it has eight parts):

qd = q + ωqω. (1.1)

The symbol ω should be viewed as an operator or as an abstract algebraic entity,
and not as a real number.

Clifford presented the idea of biquaternions in three papers. First mention
was in Preliminary Sketch of Biquaternions (1873), where biquaternions are in-
troduced. The second paper Notes on Biquaternions (1873) was found in Clif-
ford’s manuscripts and was probably intended as a supplement to the first pa-
per. The third paper Further Note on Biquaternions (1876) is more extensive and
it discusses and clarifies why the biquaternion may be interpreted in essentially
two different ways, either as a generalized type of number, or as an operator, for
more details see Roney (2010).

German mathematician Eduard Study (1862–1930) gathered information from
Clifford’s articles and in 1901 he introduced his own article Geometrie der Dyna-
men, where the term dual number is firstly used, see Perez (2003). It starts to use
Study’s biquaternions and Clifford’s biquaternions. It is the same mathematical
structure and thus the need is to introduce a new term dual quaternions. If you
want to learn more about properties of dual numbers and dual quaternions,
see for instance Roney (2010) and Clifford (1873).

1.2 State of the art

Quaternions are a very efficient tool for analyzing situations where the rotations
in three dimensional space are involved. Its geometric meaning is obvious as
the rotation axis and the angle can be trivially recovered. The quaternion alge-
bra, which will be introduced, allows us to easily compose rotations. Quater-
nions have found their way into many different systems such as animation, in-
verse kinematics and physics.

Ken Shoemake popularized quaternions in the world of computer graphics,
see Shoemake (1985). He introduced spherical linear interpolation (slerp), which

1Hamilton use the term biquaternion for quaternion q = s + i x + j y + k z, where x, y, z ∈ C.
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is often considered as the optimal interpolation curve between two general ro-
tations. In animation systems quaternions are often used to interpolate between
animation curves, see e.g. Dam et al. (1998). On the other hand the rotation
matrices are used when many points in the space need to be transformed like
the vertices of the skin of an animated model. The conversion between quater-
nions and matrices was introduced by Shoemake (1994) in the context of com-
puter graphics. Another application can be found in Kavan and Žára (2005)
where the dual quaternions are used.

Quaternions have played an important role in the recent development of
physics. Their main use in the nineteenth century consisted in expressing
physical theories. An important work where this was done was Maxwell’s,
see Maxwell (1873). The quaternion notation of Maxwell’s equation was intro-
duced here. However, he never really calculated with quaternions, he treated
a scalar and a vector part separately. More results of application in physics were
announced in Kwašniewski (2011).

Another application of quaternions can be found in mathematical models of
movement. We mention a few applications, e.g. the motion of an articulated
mechanical arm robot, see Heatinger et al. (2005). One of the latest articles is
focused on movement in aerospace. Rigid–body attitude control is one of the
canonical nonlinear control problems. A fundamental characteristic of attitude
control that proves a fascinating difficulty is the topological complexity of SO(3).
Unit quaternions are often used to parameterize SO(3). This parametriza-
tion is the minimal globally nonsingular representation of the rigid–body at-
titude. Nevertheless, unit quaternions are still used today by many authors,
e.g. see Mayhew et al. (2011) or Arribas et al. (2006).

Quaternion representation is also known, in theory, of spatial curves within
the Pythagorean hodographs (so called PH curves), i.e., polynomial parametric
curves whose hodograph components satisfy the Pythagorean condition. These
curves have many advantageous properties in computer aided geometric design,
e.g. Farouki (1992), Farouki and Neff (1995) or Farouki (2008), therefore it is
known as a class of special Bézier curves. The spatial PH curves were firstly
introduced in Farouki and Sakkalis (1994). The advantage of the quaternion
approach is that they allow us to combine PH curves and rotations in three
dimensional space. In particular, Choi et al. (2002) and Farouki et al. (2002)
gave an elegant quaternion description of spatial PH curves. This model has
great use, see for example Jüttler and Šír (2007), Farouki et al. (2008) or Farouki
and Šír (2011). In addition the PH curves are also generated through octonion
algebra, see Farouki and Sakkalis (2012) for more details.

An interesting use of quaternions can be found in algorithms for Inertial Nav-
igation System (INS). An INS may compute the attitude among other possibil-
ities using them. This method is advantageous since it requires less computa-
tion, gives better accuracy and avoids singularity. For a deeper account of this
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theory we refer the reader to Lee et al. (1998) or Ahmed and Ćuk (2005) and the
references given therein.

As we have mentioned, we consider the quaternion representation as a wide area
for new approaches in many branches of applied mathematics. Therefore, if you
are interested in quaternions you can see some of the latest articles focused on
them, e.g. Gal (2011), Longo and Vigini (2010) or Arnold et al. (2011).

The quaternions have been widely used in many branches of biology in re-
cent years. We can find an interesting application in parts concerning proteins,
e.g. the problem of predicting the tertiary structure of a protein molecules, for
more details see Huliatinskyi and Rudyk (2013). This protein structure plays one
of the main roles in determining the functional properties of proteins. The re-
sults can be applied in medicine, pharmaceutics or bioinformatics. Papers,
Kneller and Calligari (2006) and Kneller and Calligari (2012), where the applica-
tion to structural biology can be found, introduced a new method called
ScrewFit, which is useful for the study of localizing changes in protein struc-
ture. This method is based on quaternions.

In recent years, studying dual quaternions has also been an active research area.
Therefore, we mention some interesting applications. For instance, skinning is
a common task in computer graphics which can be expressed by the method
based on dual quaternions. It offers a very simple efficient skinning method.
Due to their properties, none of the skin collapsing effects will manifest them-
selves. There have been several articles focusing on the generalization of estab-
lished techniques for blending of the rotations to include all the rigid transfor-
mations, approaches are presented in Kavan et al. (2006) and Kavan et al. (2007).
Algorithms based on dual quaternions are computationally more efficient than
previous solutions and have better properties (constant speed, shortest path and
coordinate invariance).

Applying dual quaternions has appeared in a kinematics equation of
the robot form. The dual quaternion synthesis methodology provides a tool
for the systematic design of constrained robots. Some of these results
have been implemented in computer–aided design (CAD) systems. Since
then, dual quaternions and their planar version have been widely used in
the analysis of robotic systems, see for instance the works by Perez (2003)
and Dooley and McCarthy (1991). An interesting and specific area for applying
dual quaternions is hand eye calibration algorithm on an endoscopic surgery
robot. Special focus is on robustness, since the error of position and orientation
data provided by the robot can be large depending on the movement actually
executed. The best general reference is Daniilidis (1999) or Schmidt et al. (2003).
Further important research topic concerns the teleoperation of open chain se-
rial link manipulators in laparoscopy. The paper Marinho et al. (2014) intro-
duces a novel intuitive algorithm for robotic control of laparoscopic tools using
programmable Remote Center of Motion which is based on dual quaternions.
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The latest article dealing with the shortest path interpolation using dual quater-
nions, that are singularity–free and unambiguous, is Schilling (2011). From
a different part of kinematics the paper, Wang et al. (2012) can be mentioned.
This paper focuses on finding a dual quaternion solution to attitude and po-
sition control for multiple rigid body coordination. Representing rigid bodies
in three dimensional space by unit dual quaternion kinematics, a distributed
control strategy, together with a specified rooted-tree structure, are proposed
to control the attitude and position of networked rigid bodies simultaneously
with notion concision and nonsingularity. Additionally, the paper dealing with
the control of an n-dof robot arm in an efficient way using dual quaternions is
by Özgür and Mezouarb (2016). Of course, the task-space design problem is
widely found. The paper by Marinho et al. (2015) deals with the design problem
of a linear-quadratic optimal tracking controller for robotic manipulators which
is modified with using the unit dual quaternion formalism. The efficiency and
compactness of singularity of the representation render the unit dual quaternion
a suitable framework for simultaneously describing the attitude and the position
of the end-effector.

Algebra of dual quaternions has not been used in other areas of physics as fre-
quently as it deserves. The formulation of classical electromagnetism by dual
quaternions is another interesting application for them. Firstly, we found an eff-
ort to express reformulation of Maxwell’s equations by using dual quaternions.
It means that Maxwell’s four equations could be expressed in a single equation.
Further, there were derived constitutive relations and related equations which
satisfy all the equations which were earlier given by using biquaternions. These
dual quaternionic representations can be successfully adapted to the physical si-
tuations, see Demir and Özdas (2003) for more details. Later Maxwell’s equa-
tions and the constitutive relations for electromagnetism are expressed in the
terms of dual quaternionic matrices and for this purpose, new 88 matrices
connected with the quaternion basis elements have been introduced, see Demir
(2007) and the references given there.

Another approach based on dual quaternion is used for the space mo-
tions. The important thought was that the positions of the moving objects
are represented using the dual quaternion curves without any normaliza-
tion conditions, see Jütler (1994). This paper focused on rational motions
described by dual quaternions. Other papers focused on a new method
for tool path generation using rational Bézier cutter motions. A represent-
ing point trajectory could be used by rational Bézier dual quaternion. The
Bézier dual quaternion curve corresponds to a rational Bézier motion whose
point trajectories are rational Bézier curves. The influence of weights of
the dual quaternion curves on the resulting rational motion can be found
in Zhang et al. (2004) and Purwar and Qiaode (2005). A recent study fo-
cused on 5–axis NC machining. The rational rigid movement of a cutter is
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interpolated by a B–spline curve in dual quaternion space, see Bi et al. (2010).

Current application of dual quaternion can be found in Hedgüs et al. (2012).
This article is focused on the generic rational curve C in the group of Euclidean
displacements. Furthermore, the linkage such that the constrained motion of
one of the links of curve C is constructed. This construction is based on the
factorization of polynomials over dual quaternions. Moreover, the constructive
proof for the existence of a unique rational motion of minimal degree in the dual
quaternion model of rigid transformation with a given rational parametric curve
as trajectory, is given by Li et al. (2016).

Dual quaternions have expanded in the navigation community too. Unfortu-
nately, researches have been aware of the benefits of them during the last decade,
although quaternions were used much earlier. Thus, recent effort is to propose
that dual quaternions are an elegant and efficient mathematical tool for inves-
tigating strapdown algorithms, see Wu et al. (2005) or Wu et al. (2006). Last
but not least is the amazing application of dual quaternion which can be used
during docking. One of the most important flying task, i.e., task for the suc-
cessful implementation of autonomous rendezvous and docking, is the ability
to acquire the relative position and attitude information between the chaser and
the target satellites in real time, see Qiao et al. (2013) or Dong et al. (2016).

Furthermore, from the recently published papers we should mention the ap-
proach of combined position and attitude tracking controllers based on dual
quaternions which can be developed with relatively low effort from existing
attitude-only tracking controllers based on quaternions, see Filippe and Tsiotras
(2013) and the reference given there. The next application is devoted to the H∞

robust control problem for robot manipulators using unit dual quaternion repre-
sentation, which allows a description of the end-effector transformation without
decoupling rotational and translational dynamics, see Figueredo et al. (2013).

Another interesting field where the dual quaternions could be used is the area
of spacecrafts. The dual quaternions are used to improve successful Quater-
nion Multiplicative Extended Kalman Filter for spacecraft attitude estimation.
The quaternion approach has been used extensively in several NASA spacecraft.
Therefore there was motivation to make improvements. This new approach can
be found in Nuno et al. (2016)

The first connection between estimating of three dimensional location parame-
ters was first introduced by Walker et al. (1991). By minimizing a single-cost
function associated with the sum of the orientation and position errors, the ro-
tation matrix and the translation vector were derived simultaneously. However,
the scale parameter in the process of transformation was not considered. There-
fore, the scale parameter was directly introduced into the coordinate transfor-
mation in registration of LiDAR points in work Wang et al. (2014).

Dual quaternions are applied in bioinformatics as well as quaternions. Mainly,
the focus is on models of proteins and there is an effort to use dual quaternions

8
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for its description, see Wasnik et al. (2013) and the references given there. This
paper presents a method for optimal alignment of a Protein Backbone with re-
spect to another. Kabsch Method is used which consists of finding the optimal
translation and rotation.

1.3 Objectives and main contribution

The thesis will contribute to advancing the state of the art concerning the usage
of dual quaternions in selected disciplines with promising application potential.
In particular, the main objectives and challenges, which were formulated at the
beginning of the dissertation task, can be summarized as follows:

♣ to describe the latest advances in applications of quaternions and dual
quaternions on different problems originated in various (especially non-
traditional) fields of technical or natural sciences;

♦ to identify and analyze recent methods, techniques, computations and al-
gorithms based on quaternions which are suitable for an efficient (and
simple) reformulation using dual quaternions;

♥ to enhance the existing framework and derive new results and algorithms
for certain classes of (mainly) real-world problems that can be newly solved
using the unifying approach based on dual quaternions, to focus mainly
on simplifications of existing techniques;

♠ to implement the designed novel methods in a suitable software and to
prove their functionality on particular examples and discuss advantages
(or disadvantages) of traditional and newly formulated approaches.

The above formulated goals will be met in the following way. We start with
giving some basic notions of quaternion algebra. Quaternions are very efficient
tool for analyzing situations where the rotations in three dimensional space
are involved. Further, we will present a complete algebraic structure of dual
quaternions and their possibility of the representing rigid transformation. As in
the above referred, dual quaternion algebra has been applied in a various fields.
Therefore, we will show some examples of their applications. Advantages of
the dual quaternion representation and application will be mentioned here. This
thesis is an attempt to use this algebra in a special geodetic area known as datum
transformation. The motivation behind the using of dual quaternion is to pro-
vide better approach and attempt to expand dual quaternions to other fields and
find their advantages. The main contribution is a simplification of the original
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solution of this transformation which was introduced in Prošková (2012). Fur-
thermore, the attention is devoted to secondary protein structure, e.g. method
ScrewFit which is useful for the study of localizing changes in protein structure.
This method is based on quaternions. The main goal of this algorithm is to de-
termine the relationships between sets of atoms. This part of the thesis is based
on Prošková (2014). The next focus is on interpolation by rational spline motions
which is an important part of the technical practice, e.g. robotics. Rational spline
motions are characterized by the property that the trajectories of the points of
the moving object are rational spline curves. We will focus on piecewise rational
motions with the first order geometric continuity, i.e., G1 and G2 Hermite in-
terpolation. We will briefly introduce a new approach to rational spline motion
design, which uses dual quaternions that is mentioned in Prošková (2017).

A fundamental aspect of the proposed research aims at combining the applied
mathematics and scientific computing on one side and suitably chosen topics
from selected disciplines on the other side. The proposed investigation draws
from results and methods which belong to various branches of not only
theoretical or applied mathematics but also to other natural or technical sci-
ences (structural biology, geodesy, kinematics etc.). The research methodology
is based on the use of theoretical tools, which will be employed and adjusted to
new classes of problems as well as on symbolical computations and numerical
experiments. We shortly recall the contributions of the main fields.

• Principles from algebra of quaternions and dual quaternions will be used.
The thesis needs algorithms for computing with quaternion and dual
quaternion representations, and especially their applications in geometry.

• The thesis will exploit techniques of symbolic computation, in particular
methods for solving systems of non-linear equations and elimination tech-
niques. In addition, exact computation will be used extensively when
possible.

• Principles from computational geometry will be used. These are needed
in order to design algorithms that can be suitable for real-world appli-
cations working with mathematical objects that are assumed to be given
by parameterizations.

• Advanced techniques of geometric modelling are used throughout the thesis.
This concerns especially techniques for modelling with curves and the use
of non-linear geometric representations with special properties

• Methods from classical numerical analysis will be used, especially when
formulating and studying the modified algorithms. The thesis combines
numerical and symbolic computations in order to obtain a better under-
standing of numerical continuation algorithms for geometric design appli-
cations.
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• Fundamental principles, methods and techniques from other suitably cho-
sen disciplines (structural biology, geodesy, computer graphics, kinematics etc.)
will be used to enable bridge the results from applied mathematics with
chosen real-life problems from these other fields.

The remainder of the thesis is organized as follows. After introduction, in Chap-
ter 2 we recall some basic notions and facts from the quaternion geometry which
are consequently used for the introduction of dual quaternions. Further, we in-
troduce the definition of dual numbers and dual quaternions. Subsequently,
dual quaternions are used for describing rigid transformation in the special
Euclidean group. Since dual quaternions are composed of eight real compo-
nents, 8 × 8 matrix representation is also introduced. The following part is de-
voted to practical applications of dual quaternions. The formula for computation
of rotation, translation and scale parameters in the Burša–Wolf geodetic datum
transformation model from two sets of co–located three dimensional coordinates
is derived. Furthermore, Chapter 4 is devoted to a particular application of dual
quaternions in bioinformatics where the model and the algorithm for description
protein secondary structure can be found. Chapter 5 is devoted to G1 and G2

Hermite interpolation, which can be practically described in the form of dual
quaternions where advantage is found in simplification of original approach.
Finally, we conclude the thesis in Chapter 6.
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Preliminaries

As we have mentioned earlier, our results are based on the observations
on quaternions and dual quaternions. This thesis explores the basics
of the quaternion algebra, particularly its description of the three di-
mensional rotations. Subsequently, the notions of dual quaternion are
explained. Let us therefore start our discussion with recalling some
fundamental facts regarding quaternions, see e.g. Dam et al. (1998).
The quaternion can represent only rotation, while the dual quaternion
can do both rotation and translation. Therefore, the dual quaternion
is mainly used in applications to robotics or computer graphics. Un-
doubted advantage of dual quaternions is that while the orientation of
a rigid body is represented by nine elements in homogenous transfor-
mations, dual quaternions reduce the number of elements to four. The
structure of dual algebra is very similar to complex numbers. In this
thesis, we present an efficient algorithm which is based on the use of
dual quaternions. Moreover, the matrix representation of these struc-
tures is explained. More details can be found e.g. in Clifford (1882)
or Stachel (2004).

2.1 Quaternions

In this section, we provide a definition of quaternion algebra. The first part
will be devoted to basic definition of quaternion algebra. Although this thesis
is focused on dual quaternions, the basic quaternion theory is also needed for
better understanding. The rest of the section will be focused on representation
of rotations with quaternions.
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2.1.1 Quaternion algebra

Definition 2.1. Let i2 = k2 = j2 = ijk = −1, ij = k a ji = −k. A quaternion Q
can be written as

Q = (q0, q), q0 ∈ R, q ∈ R
3

= (q0, q1, q2, q3), q0, q1, q2, q3 ∈ R

= 1q0 + i q1 + j q2 + k q3, q0, q1, q2, q3 ∈ R,

where the basis elements 1, i, j, k are called quaternion units.

Definition 2.2. The set of quaternions is denoted by H.

Definition 2.3. Let Q = (0, q) ∈ H, q0 = 0, then Q is called a pure quaternion.
The set of all pure quaternions1 is denoted by Hp.

q

R
3 quaternions

Q = (0, q)

pure quaternions

H

Figure 2.1: Relation between quaternions in H and vectors in R
3.

Note that addition of quaternions is as simple as addition of complex numbers
but the multiplication is not commutative because of the properties of quater-
nion units.

Definition 2.4. Let Q ∈ H. Then Q∗ = q0 − i q1 − j q2 − k q3 = q0 − q is called
conjugate quaternion for a given quaternion Q.

Definition 2.5. Let Q,P ∈ H, where Q = (q0, q) and P = (p0, p). Addition is
defined as

Q+ P = (q0 + p0) + (q1 + p1)i + (q2 + p2)j + (q3 + p3)k

= (q0 + p0, q + p). (2.1)

The multiplication rule for quaternions is the same as for polynomials, extended
by the multiplicative properties of the quaternion elements i, j, k.

1Sometimes called imaginary quaternions.
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Definition 2.6. Let Q,P ∈ H, where Q = (q0, q) and P = (p0, p). Multiplication
is defined as

QP = (q0 p0 − q · p, q × p + q0p + p0q), (2.2)

where the symbols · and × are the standard dot product and the cross product
of the vectors from R3.

The multiplication of quaternions is anticommutative, i.e., the equality
ab = −(ba) is not satisfied in general. Nevertheless, the multiplication is as-
sociative and distributive over addition.

Given two quaternions Q and P , we can easily verify that it holds

(QP)∗ = P∗Q∗. (2.3)

Definition 2.7. Let Q ∈ H, Q = (q0, q). The norm ‖Q‖ of the quaternion Q is
given by

‖Q‖=
√

q2
0 + q2

1 + q2
2 + q2

3 =
√
QQ∗, (2.4)

thus
‖Q‖2= q2

0 + q2
1 + q2

2 + q2
3 = q2

0+ ‖q‖2, ‖Q‖≥ 0.

‖Q‖= 0 if and only if q0 = q1 = q2 = q3 = 0, thus

‖Q‖= 0 ⇔ Q = 0.

Theorem 2.8. Let Q,P ∈ H. Then the following identities are satisfied

QQ∗ = ‖Q‖2, (2.5)

‖QP‖ = ‖Q‖‖P‖, (2.6)

‖QP ‖2 = ‖Q‖2‖P‖2 . (2.7)

Proof. See e.g. Prošková (2009).

Definition 2.9. Let Q ∈ H. If
‖Q‖= 1, (2.8)

then Q is called a unit quaternion. The set of all unit quaternions is denoted by H1.

Theorem 2.10. Let Q ∈ H, Q 6= 0. Then there exists a unique inverse quaternion Q−1

satisfying QQ−1 = Q−1Q = 1 which can be obtained as

Q−1 =
Q∗

‖Q‖2 . (2.9)

Proof. For more details see e.g. Prošková (2009).
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Theorem 2.11. Let Q,P ∈ H1. Then the following identities are satisfied

‖QP ‖ = 1, (2.10)

Q−1 = Q∗. (2.11)

Proof. We can use relationship (2.6), for more details see e.g. Prošková (2009).

Theorem 2.12. Let Q ∈ H1, then there exists a unit vector n ∈ R3 and an angle
θ
2 ∈ 〈−π, π〉 such that

Q =

(
cos

θ

2
, n sin

θ

2

)
. (2.12)

Proof. See Prošková (2009).

Furthermore, quaternions can be also represented in the form of 2 × 2 complex
or 4 × 4 real matrices in such a way that matrix multiplication corresponds to
quaternion multiplication.

Definition 2.13. The 2 × 2 complex matrix representation of the quaternion Q has
the form

Q = q0 + iq1 + jq2 + kq3 =

[
q0 + iq1 q2 + iq3
−q2 + iq3 q0 − iq1

]
, (2.13)

where the orthogonal units 1, i, j, k are represented by the matrices

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
(2.14)

and i is the ordinary imaginary unit.

As we have mentioned above, a quaternion Q can be also expressed by a 4 × 4
matrix, see Suleyman (2007) for more details.

Definition 2.14. The 4 × 4 real matrix representation of the quaternion Q has the
form

Q = q0 + iq1 + jq2 + kq3 =




q0 q1 q2 q3
−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0


. (2.15)

This expression is a useful way how to compute, e.g. the quaternion prod-
ucts. The quaternion product S = QQ̂, where S = s0 + is1 + js2 + ks3 ∈ H is
described in the matrix form as

S =




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0







q̂0
q̂1
q̂2
q̂3


 =




q̂0 −q̂1 −q̂2 −q̂3
q̂1 q̂0 q̂3 −q̂2
q̂2 −q̂3 q̂0 q̂1
q̂3 q̂2 −q̂1 q̂0







q0
q1
q2
q3


. (2.16)
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The main properties of quaternions were summarized in this chapter. These
properties are required for better understanding of the following text. There
exist more important issues connected with quaternions which we do not men-
tion here for the sake of brevity (e.g. quaternion functions, quaternion analy-
sis, differential calculus or quaternion physics). More details can be found for
example in Dam et al. (1998) or Lindsay (2005).

2.1.2 Rotation using quaternions

There exist more approaches how to represent rotations in R3. We can mention
e.g. Euler angles, the most common way to represent the attitude of a rigid body.
Some sets of Euler angles are so widely used that they have trivial names such as
the roll, pitch, and yaw of an airplane. Nevertheless, the main disadvantages of
the Euler angles are for example that certain important functions of Euler angles
have singularities or they are less accurate than unit quaternions when used
to integrate incremental changes in attitude over time as it is shown in Diebel
(2006). More details can be found in Pisacane (2005). Therefore, we choose
quaternions because functions of unit quaternions have no singularities.

Definition 2.15. The special orthogonal group is defined as

SO(3) = {A ∈ GL(3, R) |ATA = I ∧ det A = 1}, (2.17)

where GL(3, R) denotes the linear group over the set of real numbers R.

The matrix A represents a rotation in R3 about the origin if and only if
A ∈ SO(3), see Park and Ravani (1997) and references therein. From the
following statement we can easily see how the unit quaternions can represent
rotations.

Theorem 2.16. Each element in SO(3) can be expressed as

P 7→ QPQ∗, (2.18)

where P is a pure quaternion and Q is a unit quaternion.

Proof. See Gallier (2001) for instance.

Theorem 2.17. A unit quaternion Q = (cos θ
2 , n sin θ

2) represents the rotation of a vec-
tor p ∈ R3 by the angle θ along the axis given by n, see Fig. 2.2. The vector p is
represented by the pure quaternion P = (0, p). The rotated vector p, represented as
a pure quaternion, is

P̂ = QPQ∗. (2.19)
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Proof. We can find an elegant proof of this in Dam et al. (1998). First, it is shown
how a vector p is rotated by θ along n, using sine, cosine and the scalar and
the vector products. Then it is shown that the same result is obtained through
a rotation described by quaternions.

n

P P̂
θ

o

0

Figure 2.2: Rotation of a point P given by the position vector p by
the angle θ along the axis o given by the vector n.

We have a basic idea of matrix representation of the quaternions, see Defini-
tion 2.14, Equation (2.15) and Equation (2.16). Let us try to apply this formulae
for the quaternion representation of rotations. Equation (2.19), i.e., P̂ = QPQ∗

can be expressed in matrix form as

P̂ =




q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0







0 −p1 −p2 −p3
p1 0 −p3 p2
p2 p3 0 −p1
p3 −p2 p1 0







q0
−q1
−q2
−q3


. (2.20)
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Therefore, we get

p̂1 = p1(q1q1 + q0q0 − q2q2 − q3q3) + p2(2q0q2 − 2q0q3)

+p3(2q1q3 + 2q0q2), (2.21)

p̂2 = p1(2q0q3 + 2q1q2) + p2(q0q0 − q1q0 + q2q2 − q3q3)

+p3(−2q0q1 + 2q2q3), (2.22)

p̂3 = p1(−2q0q2 + 2q1q3) + p2(2q0q1 + 2q2q3)

+p3(q0q0 − q1q1 − q2q2 + q3q3). (2.23)

The point P with the position vector p = (p1, p2, p3) is rotated to the point P̂
with the position vector p̂ = (p̂1, p̂2, p̂3).

2.2 Dual quaternions

A dual quaternion is considered as an ordinary quaternion whose components
are dual numbers. They can represent points, lines or surfaces. Nevertheless, the
most important application is a representation of the kinematics of a body, i.e.,
a rigid body motion. For the sake of brevity, we present at least some necessary
definitions and properties dealing with dual quaternions.

2.2.1 Dual numbers

Dual numbers were invented by Clifford in 1873 but their first applications to
mechanics are due to Alexandr Petrovich Kotelnikov (1865–1944), see Clifford
(1873) or Kotelnikov (1895) for more details. This algebra proved to be a power-
ful tool for the analysis of mechanical systems as well. Dual numbers are an ex-
tension of real numbers analogous to complex numbers. The new element ε, i.e.,
the dual unit is added to the real numbers. This dual unit satisfies ε2 = 0.

Definition 2.18. Let a ∈ R, aε ∈ R and ε 6= 0, ε2 = 0. A dual number zd can be
written as

zd = a + εaε , (2.24)

where a is the non-dual part, aε is the dual part and ε is the basis element.

The dual number can be written as zd = [a, aε]. The set of all dual numbers is
commutative and associative ring with a unit element.

Definition 2.19. The set of all dual numbers is denoted by D.
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Definition 2.20. Let zd = [a, aε] ∈ D, a = 0, then zd is called a pure dual number.
The set of all pure dual numbers is denoted by Dp.

Definition 2.21. Let zd, ẑd ∈ D, where zd = [a, aε] and ẑd = [â, âε], then

zd = ẑd ⇔ a = â ∧ aε = âε. (2.25)

The appropriate expressions for the conjugate can be obtained in a straight-
forward manner. The dual conjugate is analogous to the complex conjugate,
see the following definition.

Definition 2.22. Let zd ∈ D. Then the dual number

zd = [a, aε] = [a,−aε] = a − εaε (2.26)

is called dual conjugate to the dual number zd.

The algebra of dual numbers satisfies the following rules for addition, multipli-
cation and division.

Definition 2.23. Let zd, ẑd ∈ D, where zd = [a, aε] and ẑd = [â, âε]. Addition is
defined as

zd + ẑd = [a, aε ] + [â, âε]

= (a + εaε) + (â + εâε)

= (a + â) + ε(aε + âε). (2.27)

Definition 2.24. Let zd, ẑd ∈ D, where zd = [a, aε] and ẑd = [â, âε]. Multiplication
is defined as

zd ẑd = [a, aε ][â, âε]

= (a + εaε)(â + εâε)

= aâ + ε(aâε + aε â). (2.28)

Definition 2.25. Let zd, ẑd ∈ D, where zd = [a, aε ], ẑd = [â, âε] and â 6= 0. Division
is defined as

zd

ẑd
=

a + εaε

â + εâε

=
(a + εaε)(â − εâε)

(â + εâε)(â − εâε)

=
aâ − εaâε + εâaε − ε2aε âε

â2 + εââε − εââε − ε2 â2
ε

=
aâ + ε(âaε − aâε)

â2

=
a
â
− ε

(
aâε − aε â

â2

)
. (2.29)
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The division of dual numbers is very similar to division of complex numbers
because the fraction is extended by the dual conjugate number. It is obvious
from the previous definition that division for pure dual number is not defined.
This is a fundamental difference from complex numbers because every non-zero
complex number has the inverse defined.

The dual number may be used to specify the relative position between two lines
in the three dimensional space. In this case, the dual number is referred to as
the dual angle.

Definition 2.26. Let be given two lines m, n in three dimensional space, the an-
gle β between these two lines and let s denote their distance. Then the dual angle
α of these lines is defined as

α = β + εs. (2.30)

Especially it holds

1. if the lines m, n are intersecting then α = β;

2. if the lines m, n are parallel then α = εs;

3. it the lines m, n are coincident then α = 0.

.

.

n

m

E

F

n
′

o

s

x

y

z

β
0

Figure 2.3: The dual angle α = β + εs expressing the relationship be-
tween the lines m and n in space.

The dual angle enables to describe the position of an arbitrary skew line m in
space according to another skew line n, see Fig. 2.3. The dual angle is a very
useful tool in connection with the screw motion. For more details about the dual
angle see e.g. Fischer (1998).

We emphasize that lines may be represented using dual vectors whereas trans-
formation can be described by dual quaternions.
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Definition 2.27. Let a and aε be the vectors and ε is the dual unit. Then the dual
vector z is defined as

zd = a + εaε. (2.31)

Screw motions can be represented by the dual vectors at the origin, for more
details see Keler (2000). The best general reference about dual vectors can be
found in Stillwell (1995).

It is again also possible to introduce a matrix representation of dual numbers,
i.e., the dual unit is represented by a special 2 × 2 matrix.

Definition 2.28. The 2 × 2 matrix representation of the dual unit ε has the form

ε =

[
0 1
0 0

]
, where ε2 =

[
0 0
0 0

]
. (2.32)

Therefore, the dual number zd is expressed as

zd = a + εaε =

[
a aε

0 a

]
. (2.33)

2.2.2 Dual quaternion algebra

Definition 2.29. A dual quaternion Qd is defined as the sum of two standard
quaternions

Qd = Q+ εQε, (2.34)

where

Q = q0 + q1i + q2j + q3k and Qε = q0ε + q1εi + q2εj + q3εk (2.35)

are real quaternions and 1, i, j, k are the usual quaternion units.

We recall that the dual unit ε commutes with the quaternion units, for example
it holds i ε = εi.

Definition 2.30. The set of all dual quaternions is denoted by Hd.

A dual quaternion can also be considered as an 8–tuple of real numbers, i.e.,

Qd = q0d + q1di + q2dj + q3dk

= (q0 + εq0ε) + (q1 + εq1ε)i + (q2 + εq2ε)j + (q3 + εq3ε)k, (2.36)

where q0d is the scalar part (a dual number), (q1d, q2d, q3d) is the vector part
(a dual vector), see Stachel (2004).
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Definition 2.31. Let Qd ∈ Hd. The conjugation Qd
∗ of a dual quaternion Qd is

defined using the classical quaternion conjugation

Qd
∗ = Q∗ + εQ∗

ε . (2.37)

Nevertheless, the dual number conjugation (2.26) can be applied to dual quater-
nion conjugation.

Definition 2.32. Let Qd ∈ Hd. The dual conjugate dual quaternion Q∗
d of a dual

quaternion Qd is defined as

Q∗
d = Q∗ − εQ∗

ε . (2.38)

Definition 2.33. Let Qd,Pd ∈ Hd where Qd = Q + εQε and Pd = P + εPε.
Addition is defined as

Qd + Pd = Q+ εQε + P + εPε. (2.39)

Definition 2.34. Let Qd,Pd ∈ Hd where Qd = Q + εQε and Pd = P + εPε.
Multiplication is defined as

QdPd = P + ε(QPε +QεP). (2.40)

Multiplication of dual quaternions is associative, distributive, but not commuta-
tive.

Definition 2.35. Let Qd ∈ Hd, Qd = Q + εQε = q0 + q1i + q2j + q3k + εq0ε +
εq1εi+ εq2εj+ εq3εk. The norm ‖Qd‖ of a dual quaternion Qd is a dual scalar and
it is defined as

‖Qd‖ =
√
(q0 + εq0ε)2 + (q1 + εq1ε)2 + (q2 + εq2ε)2 + (q3 + εq3ε)2

=
√
Q∗

dQd. (2.41)

Definition 2.36. Let Qd ∈ Hd. A dual quaternion is called unit dual quaternion if

‖Qd‖= 1. (2.42)

The set of all unit dual quaternions is denoted by Hd1
.

Theorem 2.37. A dual quaternion Qd is unit if and only if

‖Q‖= 1 ∧ Q · Qε = 0. (2.43)

Proof. See Prošková (2009) for more details.
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Division is defined as an inverse operation to multiplication. If the norm has
a nonvanishing real part, then the dual quaternion Qd has the inverse. This is
an important difference from complex numbers, because every non-zero com-
plex number has the inverse.

Theorem 2.38. Let Qd ∈ Hd, Qd = Q + εQε and Q 6= 0. Then there exists a
unique inverse dual quaternion Q−1

d satisfying QdQ−1
d = Q−1

d Qd = 1 which can be
obtained as

Q−1
d =

Q∗
d

‖Qd‖2 . (2.44)

Proof. See Prošková (2009).

Theorem 2.39. Let Qd,Pd ∈ Hd, Qd = Q+ εQε and Pd = P + εPε. Then

(PdQd)
∗ = Q∗

d P∗
d . (2.45)

Proof.

(PdQd)
∗ = {PQ+ ε (PεQ+ PQε)}∗

= (PQ)∗ + ε{(PεQ)∗ + (PQε)
∗}

= Q∗ P∗ + ε (Q∗ P∗
ε +Q∗

ε P∗)

= Q∗
d P∗

d .

Theorem 2.40. Let Qd,Pd ∈ Hd. Then ‖PdQd‖=‖Pd‖‖Qd‖ .

Proof. Theorem 2.39 is used.

‖PdQd‖2= (PdQd)
∗ (PdQd) = Q∗

d P∗
dPdQd =‖Pd‖2 Q∗

dQd =‖Pd‖2‖Qd‖2 .

Analogously as in the quaternion case we can represent dual quaternions by
matrices, see Suleyman (2007) for more details.

Definition 2.41. The 8 × 8 matrix representation of the dual quaternion Qd has
the form

Qd =

[
Q Qε

0 Q

]
, (2.46)

where Q and Qε are the matrix forms of the type (2.15).

The 8 × 8 matrix representation of the dual conjugate dual quaternion Q∗
d has

the form

Q∗
d = Q∗ − εQ∗

ε =

[ Q∗ −Q∗
ε

0 Q∗

]
. (2.47)

This representation is often used in computer processing, see Bi et al. (2010).
The well-known relations for the quaternion units or the dual unit are included
in this matrix form.
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2.2.3 Rigid motions using dual quaternions

In this section we study the operations of rotation and translation therefore
the notion of rigid transformations is recalled. Rigid transformations combine
the operations of rotation and translation into a single matrix multiplication.
We begin by introducing the special Euclidean group which is a group of rigid
transformation.

Definition 2.42. The special Euclidean group is defined as

SE(3) =
{

A|A =

[
R t
0 1

]
, R ∈ SO(3), t ∈ R

3
}

, (2.48)

i.e., SE(3) is the set of all rigid transformations in three dimensions.

A new method to represent the rigid transformations is based on using dual
quaternions, see Prošková (2009). Dual quaternions capture in their inner struc-
ture basic information about these transformations – namely the axis of rotation
along with the rotation angle about the axis and the translation along it. The
composition of these transformations corresponds to the multiplication of dual
quaternions.

Definition 2.43. The associated unit dual quaternion Pd to a vector p = (p1, p2, p3)
is defined as

Pd = 1 + ε(p1i + p2j + p3k). (2.49)

The geometric interpretation of a quaternion can be expressed in the form
Q = cos θ

2 + n sin θ
2 , where n denotes the axis vector and θ the angle of rota-

tion, see Theorem 2.12. Now, we generalize this idea for dual quaternions.

Theorem 2.44. Let θd ∈ D and Vd ∈ Hd1
, where θd = θ + εθε and Vd = bi + cj +

dk + ε(bεi + cεj + dεk). Then

Qd = cos
θd

2
+ Vd sin

θd

2
(2.50)

is a unit dual quaternion. Conversely, for every Qd ∈ Hd1
there exist θd ∈ D and

Vd ∈ Hd1
with the zero scalar part which fulfills formula (2.50).

Proof. See Daniilidis (1999).

Hence, every unit dual quaternion Qd, e.g. (2.50) can be described with
the following parameters θ, θε,V ,Vε, where V ,Vε are the components of the unit
dual quaternion Vd = V + εVε. Parameters θ, θε are the components of the dual
angle, i.e., θd = θ + εθε, where θ is the angle of rotation and θε is the distance.
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If θ = 2cπ, where c ∈ Z, then V corresponds to a translation vector v. The unit
dual quaternion Qd can be written as

Qd = cos
θd

2
+ Vd sin

θd

2
= cos

θ + εθε

2
+ (V + εVε) sin

θ + εθε

2
. (2.51)

Geometric interpretation (2.51) can be considered as a screw motion and
therefore every rigid transformation can be described using dual quaternions,
see Murray et al. (1994).

The angle θ
2 is the angle of revolution and the unit vector v which corresponds

to V describes the axis of rotation. The distance θε
2 is the amount of translation

along vector V and Vε is the moment of the rotation axis which describes the po-
sition of the axis in three dimensional space. The moment can be described as
Vε = P ×V , where P corresponds to the vector p from the origin to an arbitrary
point on the axis. Therefore the dual quaternions can represent rotation with
an arbitrary axis, see e.g. Kavan et al. (2006) or Kavan et al. (2007).

Theorem 2.45. Suppose that p = (p1, p2, p3) is the position vector of a point P,
t = (t1, t2, t3) is a translation vector and Q = (cos θ

2 , n sin θ
2) is a unit quaternion,

see Fig. 2.4. Then we can compute the image of the point P after this translation and
this rotation as

P̂d = Qd Pd Q∗
d, (2.52)

where Pd, Qd are the unit dual quaternions and T is the pure quaternion fulfilling

Qd = Q+ εQε = Q+ ε
T Q

2
and T = t1i + t2j + t3k. (2.53)

Proof. The composition of the rotation and translation can be described as fol-
lows. Let Q ∈ H1 denotes the rotation and Td ∈ Hd1

denotes the translation of
the dual quaternion Pd ∈ Hd1

:

Td(QPdQ∗)T ∗
d = (TdQ)Pd(Q∗ T ∗

d ) = (TdQ)Pd(Q∗T ∗
d ) = (TdQ)Pd(TdQ)∗.

(2.54)
The multiplication TdQ can be expressed as

TdQ =
[
1 +

ε

2
(t1i + t2j + t3k)

]
Q, (2.55)

= Q+ ε
T Q

2
where T = t1i + t2j + t3k. (2.56)

Similarly for (TdQ)∗ we get (TdQ)∗ = Q − ε
Q∗T ∗

2
= Q∗ − εQ∗

ε .

Moreover, the unit dual quaternions naturally represent rotation if the dual part
Qε = 0, see (2.19).
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nt0

P

θ

P̂

o

Figure 2.4: Transformation of a position vector p representing of
the point P given by the translation vector t and the rotation angle θ

along the axis o given by the vector n.

Now we rewrite (2.52) to the 8 × 8 matrix form. The unit dual quaternions
Qd and Q∗

d are expressed as (2.46) and (2.47). If we multiply the unit dual
quaternions P̂d = Qd Pd Q∗

d in 8 × 8 matrix form, we get the 8 × 8 matrix

P̂d =




1 0 0 0 0 p̂1 p̂2 p̂3
0 1 0 0 −p̂1 0 −p̂3 p̂2
0 0 1 0 −p̂2 p̂3 0 −p̂1
0 0 0 1 −p̂3 −p̂2 p̂1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




, (2.57)

where

p̂1 = q2
0 + q2

1 − q2
2 − q2

3 + 2[q1(p2q2 + p3q3)− q1q0ε + (2.58)

q0q1ε − q0(p3q2 − p2q3) + q3q2ε + q2q3ε],

p̂2 = p2(q2
0 − q2

1 + q2
2 − q2

3) + 2[q1q2 + p3(q2q3 − q0q1)− q2q0ε + (2.59)

q3(q0 + q1ε) + q2ε − q1q3ε],

p̂3 = p3(q2
0 − q2

1 − q2
2 + q2

3) + 2[p2(q0q1 + q2q3)− q3q1ε − (2.60)

q2(q0 + q2ε) + q1(q3 + q2ε) + q0q3ε].

This unit dual quaternion can be written as P̂d = 1 + ε(p̂1i + p̂2j + p̂3k), i.e.,
the point P with the position vector p = (p1, p2, p3) is rotated and then translated
to the point P̂ with the position vector p̂ = (p̂1, p̂2, p̂3).
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Burša–Wolf geodetic datum

transformation model

The main aim of this chapter is to show one application of dual quater-
nions in one of the challenging problem of geodesy. The Burša-Wolf
similarity transformation model is presented as a seven parameter
model for transforming co-located 3D Cartesian coordinates between
two datums. The transformation involves three translation parame-
ters, three rotation elements and one scale factor. We will show that
mathematical modelling based on dual quaternions is an elegant math-
ematical method which can be used to represent rotation and transla-
tion parameters. Finally, a compact formula is derived for Burša-Wolf
model.

3.1 Motivation

In this section, we will present a particular application of dual quaternions in
the field of geodesy. A coordinate transformation allows us to take the coor-
dinates of a point in one coordinate system and find the new coordinates of
the same point in a second coordinate system. This mathematical operation is
mainly used in geodesy, but we can find its using also in photogrammetry, Geo-
graphical Information Science (GIS), computer vision and other research areas.

Spatial data are connected to the geographical location which is expressed by
coordinates based on a coordinate system. The basis of the coordinate system is
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called a geodetic datum which defines the size and shape of the Earth, and the
origin and orientation of the coordinate systems used to map the Earth. There
are many datums because different countries have used their own different da-
tums. We can mention, for instance, that in geodesy datum transformations are
used to convert coordinates related to the Czech national reference frame S-JTSK
to the new reference frame WGS 84 1 (World Geodetic System).

Similarity transformation is a type of transformation, where the scale factor is
the same in all directions. The seven parameter2 similarity transformation is
widely used for the datum transformation since it, more or less, satisfies sim-
plicity, efficiency, uniqueness and rigor. This transformation is composed of
three translation parameters, one scale factor, and three rotation parameters,
see Fig. 3.1. Therefore, coordinates from a three dimensional coordinate frame
can be transformed into coordinates in another frame by translating the origin,
applying rotation and modification of the scale. In practice, the seven transfor-
mation parameters are not always known. However, if the coordinates from two
coordinate frames are known for some control points we can estimate the trans-
formation parameters mentioned above. We can say that common coordinates at
three points are sufficient for the solution of the seven parameters transforma-
tion. There are some popular seven parameter similarity transformation models
such as the Burša-Wolf, which we deal with or Molodenskii model, see Molo-
denskii et al. (1962). The similarity transformation model is often simplified to
a linear one because its parameters can be easily computed, see Leick (2003).

Existing solutions of seven parameter models solved by traditional algorithms
based on rotation angles or recently quaternions are replaced by new model
based on dual quaternions. We will briefly present how to represent and im-
prove datum transformation by dual quaternions.

3.2 Burša-Wolf similarity transformation model

One of the most commonly used transformation methods in the geodetic appli-
cations is the Burša-Wolf similarity transformation model. The similarity trans-
formation is popular due to small number of parameters involved and simplicity
of the model. Our goal is to estimate all required parameters from co-located co-
ordinates on two different datums. Burša-Wolf similarity transformation model
can be written as

si = t + kRpi, (3.1)

1Dating from 1984 and last revised in 2004.
2This transformation is also known as 3D similarity transformation or Helmert transforma-

tion.

28



Chapter 3. Burša–Wolf geodetic datum transformation model

Datum B

P

Datum A

P̂

θ

o

k

t

n

Figure 3.1: Datum shift between two geodetic datums. Apart from dif-
ferent ellipsoids, the centers or the rotation axes of the ellipsoids do not
coincide. Transformation of a point P into P̂, i.e., rotation by the angle θ

along the axis o given by vector n and translation about vector t with
scale k.

where si = (s1i, s2i, s3i)
T ∈ R3, pi = (p1i, p2i, p3i)

T ∈ R3, i = 1, . . . , n are two sets
of the co-located coordinates in the two different systems, t = (t1, t2, t3)

T ∈ R3

denotes the three translation parameters, k denotes the scale parameter and
R ∈ SO(3) is the rotation matrix containing three rotation parameters. In order
to determine the mentioned parameters, the number of the co-located coordi-
nates si, pi must be greater than or equal to three.

3.3 Quaternion algorithm

First, we remind one of the newest approach which is used for solving this
problem. In this case, the solution of Burša-Wolf transformation model is based
on quaternions. Since they are widely used to express the rotation which is
included in this model. Lets us therefore start with reminding this procedure.
For a deeper discussion of this method we refer the reader to Shen et al. (2008).

We define centrobaric coordinates △si = (△s1i ,△s2i,△s3i)
T,△pi =
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(△p1i ,△p2i,△p3i)
T, i = 1, . . . , n for the sets of the co-located coordinates as

△si = si −
1
n

n

∑
i=1

si, and △pi = pi −
1
n

n

∑
i=1

pi, (3.2)

Notice, that the centrobaric coordinates satisfy the equality

n

∑
i=1

△si =
n

∑
i=1

△pi = 0. (3.3)

If we substitute equation (3.2) into (3.1), we obtain

△si = t + kR

(
△pi +

1
n

n

∑
i=1

pi

)
− 1

n

n

∑
i=1

si (3.4)

= △t + kR△pi, where △t = t + kR
1
n

n

∑
i=1

pi −
1
n

n

∑
i=1

si. (3.5)

Equation (3.4) is over-determined therefore we denote the residual vector
vi ∈ R3, i = 1, . . . , n as

vi = △si −△t − kR△pi. (3.6)

Now we get the following optimization problem to solve required parameters

min
k,△t,R

n

∑
i=1

vT
i vi = min

k,△t,R

n

∑
i=1

(△si −△t − kR△pi)
T(△si −△t − kR△pi) (3.7)

= min
k,△t,R

[
n△tT△t +

n

∑
i=1

(△si − kR△pi)
T(△si − kR△pi)

]
. (3.8)

Subsequently, it must be satisfied

△t = 0, i.e., t =
1
n

n

∑
i=1

si − kR
1
n

n

∑
i=1

pi. (3.9)

Equation (3.7) is modified and re-arranged

min
k,R

[
n

∑
i=1

△sT
i △si − 2k

n

∑
i=1

△sT
i R△pi + k2

n

∑
i=1

△pT
i △pi

]
. (3.10)

It should be noted that necessary condition for an extremum of the function
F(k, x1, . . . , xn) = k2 A − kB(x1, . . . , xn) with A constant is an extremum of
the function B and 2kA − B = 0, i.e., k = B/2A. Therefore, we get the new
optimization problem

max
R

n

∑
i=1

△sT
i R△pi (3.11)
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and new equation which allows us to determine the scale parameter k

k =
n

∑
i=1

△sT
i R△pi/

n

∑
i=1

△pT
i △pi. (3.12)

As we have mentioned before, quaternions can represent rotation. Therefore,
we substitute quaternion Q = (q0 + q) to represent the rotation matrix R. Then
the maximization problem can be solved as

max
R

n

∑
i=1

△sT
i R△pi = max

Q

n

∑
i=1

(q0, qT)N
(

q0
q

)
, (3.13)

where

N =
n

∑
i=1

[ △si△pi −△sT
i C(△pi)

−C(△si)△pi △si△pT
i + C(△si)C(△pi)

]
, (3.14)

and C(q) is the skew-symmetric matrix

C(q) =




0 −q3 q2
q3 0 −q1
−q2 q1 0


. (3.15)

The matrix N is real-symmetric and it contains four real-valued eigenvalues
and their corresponding eigenvectors. Then the solution of the maximization
problem of equation (3.13) is equal to the eigenvector corresponding to the maxi-
mal eigenvalue of N. Thus we get the solution of the unit quaternion Q, i.e.,
the unit quaternion representing the best rotation is the eigenvector associated
with the eigenvalue of a symmetric matrix. This quaternion is determined
uniquely up to its sign. Then we compute the rotation matrix R as

R =
[

q2
0 − qTq

]
I + 2[qqT + q0C(q)], (3.16)

where I denotes the 3 × 3 identity matrix. The rotation angles can be computed
by using

θx = arctan
r23

r33
, θy = arcsin(−r13), θz = arctan

r12

r11
, (3.17)

where rij is the element of the rotation matrix R in the i-th row and j-th column
and θx, θy, θz are the rotation angles around corresponding coordinate axes. Then
the scale parametr k is computed using equation (3.12). Finally, translation pa-
rameters are obtained by equation (3.9).
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3.4 Improved algorithm using dual quaternions

We use dual quaternions for description of datum transformation, where ma-
trix representations of dual quaternions help us to simplify manipulations of
equations, see Section 2.2.3 for a deeper understanding of matrix form.

Previous model based on quaternions is now adjusted with using dual quater-
nions. The dual quaternion transformation algorithm can be summarized in
the following steps:

Algorithm 1 Dual quaternion transformation algorithm
Input: Cartesian coordinates of n stations given in a local and a global reference

system.
1: Compute centrobaric coordinates △si = (△s1i ,△s2i,△s3i)

T, △pi =
(△p1i ,△p2i ,△p3i)

T using (3.2).
2: Express the dual unit quaternion Vdi

with the parameters
q0, · · · , q3,△t1,△t2,△t3, k using (3.19) and determine corresponding
vector vi = (v1i, v2i, v3i)

T .
3: Compute required parameters q0, · · · , q3,△t1,△t2,△t3, k by (3.24) deter-

mined by conditions (3.25).
4: Compute rotation matrix R using (3.16) and then rotation angles θx, θy, θz

using (3.17).
5: Compute translation vector t using modified equation (3.5).

Output: Three rotation parameters θx , θy, θz, three translation parameters
t1, t2, t3 and the scale parameter k.

It is possible to express residual vector vi in the form of dual quaternions. First,
we modify (3.6). The scale parameter k ∈ R is a constant, therefore

vi = △si −△t − kR△pi

= △si −△t − Rk△pi

= −(△li + R△ri), where △li = △t −△si and △ri = k△pi. (3.18)

Equation (3.18) expresses a rotation of the vector △ri and then a translation
given by the translation vector △li. We can express this equation according to
(2.52) using dual quaternions in the form

Vdi
= −Qdi

Rdi
Q∗

di
, (3.19)

where Rdi
is a dual unit quaternion

Rdi
= 1 + ε(△r1ii +△r2ij +△r3ik) = 1 + kε(△p1i i +△p2ij +△p3ik), (3.20)
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and Qdi
is a dual unit quaternion

Qdi
= Q+ εQε = Q+ ε

LiQ
2

, where Q = q0 + q1i + q2j + q3k (3.21)

and Li = (△t1 −△s1i)i + (△t2 −△s2i)j + (△t3 −△s3i)k. (3.22)

The quaternion Q is a unit quaternion and L is a pure quaternion. Since Qdi
is

a dual unit quaternion, we must apply the conditions (2.43), i.e.,

‖Q‖= 1 ∧ Q · Qε = 0. (3.23)

From equation (3.19) we get the dual unit quaternion of the form Vdi
= 1 +

ε(v1ii + v2ij + v3ik) corresponding to the vector vi = (v1i, v2i, v3i)
T, where terms

v1i, v2i, v3i contains eight parameters to be solved, i.e., q0, · · · , q3,△t1,△t2,△t3, k.
Further, the transformation parameters can be determined by solving this opti-
mization problem

min
q0,··· ,q3,△t1,△t2,△t3,k

n

∑
i=1

vT
i vi = (v1i, v2i, v3i)

T(v1i, v2i, v3i), (3.24)

‖Q‖ = 1 ∧ Q · Qε = 0. (3.25)

We can use nonlinear method to solve this minimization problem, i.e., Lagrange
multipliers. This method can also accommodate multiple constraints. Thus
the problem (3.24) under the condition (2.43) can be expressed as minimizing
the following Lagrange function

L(q0, · · · , q3,△t1,△t2,△t3, k, α, β) =
n

∑
i=1

vT
i vi + α(

√
QQ∗− 1)+ β(Q·Qε), (3.26)

where α and β are the Lagrange multipliers to be determined. The solution by
minimizing the Lagrange function (3.26) is equivalent to solving the following
non-linear system of equations

∂L
∂q0

= 0,
∂L
∂q2

= 0,
∂L

∂△t1
= 0,

∂L
∂△t3

= 0,
∂L
∂k

= 0,

∂L
∂q1

= 0,
∂L
∂q3

= 0,
∂L

∂△t2
= 0,

∂

∂α
= 0,

∂L
∂β

= 0, (3.27)

where q0, · · · , q3,△t1,△t2,△t3, k, α, β denotes unknown parameters to be
solved. Because equation (3.27) is non-linear, we can find the solution numerica-
lly, e.g. by using CAS system Mathematica. Finally, the translation vector t can
be determined by using (3.5).
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3.5 Computed example and application

We consider Cartesian coordinates of seven stations given in the local and
global reference systems (WGS 84) as in Table 3.1 and Table 3.2. The Fig. 3.2
shows the principle of transformation between two systems via dual quater-
nions. Values of this stations are taken from Garfarend and Awange (2008).
The seven parameters of datum transformation are desired. Numerical example
is presented to demonstrate the functionality of the designed method. The va-
lues of these stations are frequently used as in Shen et al. (2008) or Zeng and Yi
(2011).

Table 3.1: Coordinates for local system (system A).

System A
Station name X(m) Y(m) Z(m)
Solitude 4157870.237 664818.678 4775416.524
Buoch Zeil 4149691.049 688865.785 4779096.588
Hohenneuffen 4173451.354 690369.375 4758594.075
Kuehlenberg 4177796.064 643026.700 4761228.899
Ex Mergelaec 4137659.549 671837.337 4791592.531
Ex Hof Asperg 4146940.228 666982.151 4784324.099
Ex Kaisersbach 4139407.506 702700.227 4786016.645

Table 3.2: Coordinates for WGS 84 (system B).

System B
Station name X(m) Y(m) Z(m)
Solitude 4157222.543 664789.307 4774952.099
Buoch Zeil 4149043.336 688836.443 4778632.188
Hohenneuffen 4172803.511 690340.078 4758129.701
Kuehlenberg 4177148.376 642997.635 4760764.800
Ex Mergelaec 4137012.190 671808.029 4791128.215
Ex Hof Asperg 4146292.729 666952.887 4783859.856
Ex Kaisersbach 4138759.902 702670.738 4785552.196

Now we compute the transformation parameters θx, θy, θz, t1, t2, t3, k from the lo-
cal geodetic system to WGS 84. We use the CAS system Mathematica where
it is convenient to express dual quaternions in the 8 × 8 matrix form to find
the transformation parameters. The optimization problem was solved using La-
grange multipliers. The quaternion Q and the translation △t are shown in Ta-
ble 3.3. The final list of results given from (3.17), (3.5), and Lagrange multipliers
are listed in Table 3.4.
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Table 3.3: Quaternion and translation parameters.

Quaternion Q Translation △t
q0 −0.9999999987474 △t1 −6.649 × 10−10

q1 −0.0000024204319 △t2 −3 × 10−13

q2 0.0000021663738 △t3 2.658× 10−10

q3 0.0000024073178

System B

P

System A

P̂

0
0R, t, k

Figure 3.2: The principle of transformation from a local datum (Sys-
tem A) into the WGS 84 datum (System B) via the dual quaternion algo-
rithm.

Table 3.4: Final results of dual quaternion transformation algorithm.

Rotation angles Translation t Scale k
θx −0.99850′′ t1 641.8908m
θy 0.89370′′ t2 68.6570m k 1.0000055825199
θz 0.99309′′ t3 416.4101m

In addition to this transformation, we compute the residual value to each point,
i.e., the difference between coordinates of the system A and the new coor-
dinates of the system A′. The coordinates of the system A′ are determined
using the computed transformation parameters R, t, k and the substitution (3.1).
Residuals and new values of the stations are given in Table 3.5 in the next
section. Transformation parameters and transformed coordinates are equal to
the parameters described by Garfarend and Awange (2008) and Shen et al. (2008).
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3.6 Algorithm test

In this part, we will focus on testing two various approaches to solve datum
transformation model. We found new formula for Burša-Wolf transformation
model in Section 3.5 and our purpose is to compare this algorithm based on
dual quaternions, with the algorithm based on quaternions.

Table 3.5: Transformed Cartesian coordinates of System A into System B (Ta-
ble 3.1) using the seven datum transformation parameters of Table 3.4 computed
by the dual quaternion algorithm.

Station name X(m) Y(m) Z(m)
System A: Solitude 4157870.237 664818.678 4775416.524
System B 4157222.543 664789.307 4774952.099
Transformed value: A′ 4157870.143 664818.543 4775416.384
Residual 0.0940 0.1351 0.1402
System A: Buoch Zeil 4149691.049 688865.785 4779096.588
System B 4149043.336 688836.443 4778632.188
Transformed value: A′ 4149690.990 688865.835 4779096.574
Residual 0.0588 −0.0497 0.0137
System A: Hohenneuffen 4173451.354 690369.375 4758594.075
System B 4172803.511 690340.078 4758129.701
Transformed value: A′ 4173451.394 690369.463 4758594.083
Residual −0.0399 −0.0879 −0.0081
System A: Kuehlenberg 4177796.064 643026.700 4761228.899
System B 4177148.376 642997.635 4760764.800
Transformed value: A′ 4177796.044 643026.722 4761228.986
Residual 0.0203 −0.0221 −0.0875
System A: Ex Mergelaec 4137659.549 671837.337 4791592.531
System B 4137012.190 671808.029 4791128.215
Transformed value: A′ 4137659.641 671837.323 4791592.536
Residual 0.0919 0.0139 −0.0055
System A: Ex Hof Asperg 4146940.228 666982.151 4784324.099
System B 4146292.729 666952.887 4783859.856
Transformed value: A′ 4146940.240 666982.145 4784324.154
Residual −0.0118 0.0065 −0.0546
System A: Ex Kaisersbach 4139407.506 702700.227 4786016.645
System B 4138759.902 702670.738 4785552.196
Transformed value: A′ 4139407.535 702700.223 4786016.643
Residual −0.0294 0.0041 0.0017
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3.6.1 Descriptive statistic

This section provides a simple view at the descriptive statistics obtained from
3070 tested points by the algorithm mentioned above, i.e., dual quaternion algo-
rithm (DQ algorithm) and quaternion algorithm (Q algorithm). Tested points were
given in local and global systems. To find the difference or distance between two
set of coordinates we use Euclidean metric.

Comparison of algorithms can be summarized in the following steps, which are
the same for both of them:

Algorithm 2 Differences between systems
Input: Cartesian coordinates of 3070 stations given in the local (system A) and

the global (WGS 84–system B) reference system.
1: Compute rotations, translations and scale parameters using DQ/Q algo-

rithm.
2: Compute new coordinates A′ of the system A. The coordinates of the system

A′ are determined using computed transformation parameters R, t, k and
substitution (3.1).

3: Compute difference between system A and system A′ using Euclidean met-
ric.

Output: Set of values which indicates the difference between the system A and
the system A′ for both algorithms.

Furthermore, we get the set of values for DQ algorithm and for Q algorithm.
To get some information about these data, we use descriptive statistic. Overview
of these values can be found in Table 3.6. We can see from the descriptive statis-
tic that we are not dealing with normally distributed data but rather the log-
normally distributed data and this is the reason why we apply nonparametric
test, a sign test, see Beaver et al. (2009) for more details.

3.6.2 Sign test – DQ and Q algorithm

The sign test is used to test the null hypothesis about a median Z̃ of a continuous
distribution.

The observations in a sample of size n are Z1, Z2, . . . , Zn. Observations are ob-
tained as a difference d(A′

Q, A)− d(A′
DQ, A)3, where A′

Q and A′
DQ are new sets

of points in WGS 84 and A is the original set of points in WGS 84. The null hy-
pothesis is that the median Z̃ is equal to 0. Suppose that Z+ is a sum of values,

3Euclidean distance between two points A, B is denoted as d(A, B).
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Table 3.6: Descriptive statistics.

DQ algorithm Q algorithm
minimum 0.2708 0.3333
maximum 9.2231 8.7695

average 3.4163 3.2243
sample standard deviation 1.7049 1.6847

sample variance 2.9075 2.8390
sample quantile05 1.0087 0.9058
sample quantile25 2.1176 1.8654
sample quantile50 3.2470 3.0371
sample quantile75 4.3874 4.3317
sample quantile95 6.7545 6.3291

where Zi > 0 and Z− is a sum of values, where Zi < 0. Values of Z which are
exactly equal to 0 are ignored. The sum Z+ + Z− may therefore be less than n.
Null hypothesis H0 : Z̃ = 0 is tested that two set of values are of equal size, i.e.,
there is no significant difference between the methods. We choose to ignore not
only values of Z that are exactly equal to zero but even values in interval [−1, 1],
i.e., we want to use only values that we consider as a significant difference. We
get ∑ Z+ = 580 and ∑ Z− = 487. In fact these values counts the number of times
where one of methods gives better results.

One-sided alternative hypotheses:

• For one-sided alternative hypothesis H1 : Z̃ > 0, we obtained FZ+(x) =
0, 9978. While 0, 9978 > 0, 05 ⇒ we do not reject H0 on the significance
level 0, 05. It means that there is no significant difference between the
methods.

• For one-sided alternative hypotheses H1 : Z̃ < 0, we obtained FZ−(x) =
0, 0022. While 0, 0022 < 0, 05 ⇒ we reject H0 on the significance level 0, 05
and we accept H1 that DQ algorithm is better if we take into account only
significant differences.

3.7 Light detection and ranging (LiDAR) point

cloud

LiDAR (Light Detection and Ranging) is a remote sensing technology that
collects three dimensional point clouds of the Earth’s surface. This sys-
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tem includes a Global Positioning System (GPS) and an Inertial Measurement
Unit (IMU), which complement the LiDAR data with position and orientation
information respectively. This technology is used for a wide range of applica-
tions including for example high-resolution topographic mapping or three di-
mensional surface modeling. The pairs of conjugate points from the two neigh-
bor point clouds are given as an input. The transformation parameters need to
be determined. In this solution, dual-number quaternions are used to represent
the transformation between two pairs of conjugate points, see Wang et al. (2014).

The representative work on dual quaternions was first introduced by Walker
et al. (1991). By minimizing a single-cost function associated with the sum of
the orientation and position errors, the rotation matrix and the translation vector
were derived simultaneously. However, the scale parameter in the process of
transformation was not considered. Therefore, the scale parameter was directly
introduced into the coordinate transformation in registration of LiDAR points in
work Wang et al. (2014). We briefly show the slightly different approach which
is used for solving the transformation model, more details can be found in Wang
et al. (2014).

Assuming that point P̂ from local system is determined with quaternion P̂ .
Point P from WGS 84 system is the new location of point P̂ and it is determined
with quaternion P . Then the dual quaternion based transformation process can
be expressed as follows

P = W(Q)TQε + kW(Q)TU(Q)P̂ , (3.28)

where

W(Q) =

[
q0 −qT

q q0I − C(q)

]
and U(Q) =

[
q0 −qT

q q0I + C(q)

]
(3.29)

and k is scale parameter. The sum of the square distances between points Pi and
P′

i is
fi = (Pi −P ′

i)
2. (3.30)

The following equation can be derived if we substitute equation (3.28) into (3.30)

fi = (Pi −P ′
i)

2 = [W(Q)TQε]
2 + [kW(QT)U(Q)P̂i ]

2 + P ′T
i P ′

i

+2k[W(Q)TQε]
T[W(Q)TU(Q)P̂i ]− 2(P ′

i)
T[W(Q)TQε]

−2k(P ′
i)

T[W(Q)TU(Q)P̂i ]. (3.31)

The previous equation (3.31) can be rearranged as

fi = (Pi −P ′
i)

2 = QT
ε Qε + k2P̂T

i P̂i +P ′T
i P ′

i + 2kQT
ε W(P̂i)Q

−2QT
ε U(P̂i)Q− 2kQTU(P ′

i)
TW(P̂i)Q. (3.32)
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Therefore the error norm, i.e., equation (3.7) for the similarity measurement of
the proposed algorithm can be expressed as follows

min
k,△t,R

n

∑
i=1

vT
i vi = kQTC1Q+ nQT

ε Qε + kQT
ε C2Q+QT

ε C3Q+ k2C4 + C5, (3.33)

where

C1 = −2
n

∑
i=1

U(P ′
i)W(P̂i), C2 = 2

n

∑
i=1

W(P̂i), C3 = −2
n

∑
i=1

U(P ′
i),

C4 =
n

∑
i=1

(pT
i pi), C5 =

n

∑
i=1

(p’T
i p’i). (3.34)

The conditions (2.43) are used, therefore we get the following equation

L(Q,Qε, k, α, β) = kQTC1Q+ nQT
ε Qε + kQT

ε C2Q+QT
ε C3Q+ k2C4 + C5

+α(
√
QQ∗ − 1) + β(Q · Qε), (3.35)

where α and β are the Lagrange multipliers. This equation (3.35) provides
the optimal solution for the parameters. Considering that C2 and C3 are both
skew-symmetric matrices, we obtain the following equation

AQ = αQ, (3.36)

where

A =
1

4n
(k2C22 + C33)I +

k
2

[
1
n

CT
2 C3 − (C1 + CT

1 )

]
(3.37)

and I denotes the 3 × 3 identity matrix. According to Walker et al. (1991),
the quaternion Q is an eigenvector of the matrix A and α is the corre-
sponding eigenvalue. Thus four solutions are derived for this equation but
according to the matrix A which is real and symmetric, all the eigenvalues
and eigenvectors are real and all the eigenvectors are orthogonal. Therefore
the error will be minimized if we select the eigenvector corresponding to the
largest positive eigenvalue. Detailed description of the method can be found
in Wang et al. (2014).
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Secondary protein structure

This chapter introduces an application of dual quaternions to one in-
teresting problem in structural biology, i.e., the description of protein
structure. The secondary protein structure is a specific geometric shape
and the description uses Chasles’ theorem which states that any rigid
body displacement can be described by a screw motion.

4.1 Motivation

The quaternions have been widely used in many branches of biology in recent
years. We can find an interesting application in parts concerning proteins. Pro-
teins are very important in almost all biological processes. Their importance
can be seen in maintaining the structural integrity of the cell, transport of small
molecules or the immune system. Therefore, there has been an effort to deter-
mine their structure experimentally and numerically.

A protein molecule is formed from subunits called amino acids, or to be precise,
amino acid residues. An amino acid consists of a central carbon atom (Cα) and
an amino group (NH2). To the carbon are attached a hydrogen atom (H) a car-
boxyl group (COOH) and a side chain (R) that characterizes the amino acid.
The amino acids of a protein are connected in sequence with the carboxyl group
of one amino acid forming a peptide bond with the amino group of the next
amino acid. Proteins are made out of 20 amino acids and therefore, they can be
described by a string over a 20-letter alphabet. There exist four levels of protein
structure: primary, secondary, tertiary and quaternary. The primary structure
of a protein is the sequence of amino acids and the secondary structure occurs
when the sequence of amino acids is linked by hydrogen bonds. The tertiary
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structure results from long-range contacts within the chain. The quaternary
structure is the organization of protein subunits, or two or more independent
polypeptide chains. The protein chains vary and thus have different chemical
properties.

The peptide bond is a chemical bond formed between the carbonyl carbon (C)
and the amide nitrogen (N). In protein structures, the atoms in a peptide unit
are fixed in a plane with bond lengths and angles. Essentially, each peptide
unit has only two degrees of freedom, given by rotations around its N − Cα

and Cα − C bonds. The angle φ refers to the rotation around the N − Cα bond,
and the angle ψ refers to the rotation around the Cα − C bond. There are many
excellent sources for further details, see e.g. Branden and Tooze (1999) or Lesk
(2001).

This protein structure plays one of the main role in determining the functional
properties of proteins. The results can be applied in medicine, pharmaceutics,
bioinformatics, etc. Another important task in biology could be determining
the secondary protein structure. Many papers dealing with this problem can be
found and some of them solve it by quaternion application. Complete theory
dealing with the secondary protein structure may be obtained by Stryer (1988),
Kabsch and Sander (1983) or Kundrot and Richards (1987). The best general ref-
erence can be found in Barlow and Thornton (1988) or Thomas (1994). Specifi-
cally, the problem of predicting the tertiary structure of a protein molecule exists,
see Huliatinskyi and Rudyk (2013).

Papers, Kneller and Calligari (2006) and Kneller and Calligari (2012), where
the application to structural biology can be found, are intended as the moti-
vation for this work. In this thesis method ScrewFit, which is useful for the
study of localizing changes in protein structure was introduced. This method
is based on quaternions, see Kneller and Calligari (2012). The main goal of this
algorithm is to determine relationships between sets of atoms.

A part of kinematics dealing with rigid transformation is known as Chasles’ the-
orem, see Murray et al. (1994) for more details. Chasles’ theorem states that any
rigid transformation can be described by a screw, i.e., a rotation about an axis fol-
lowed by a translation in the direction of this axis. Therefore, there is a conside-
rable motivation to use extensions of quaternions, i.e., dual quaternions.
This mathematical structure was invented by William Kingdon Clifford (1845–
1879) in the nineteenth century Clifford (1882) to represent rigid transformations
in space.

As in the above referred, dual quaternion algebra has been applied in various
fields. We will briefly mention the transformation model of secondary protein
structure. Then the method ScrewFit, which is based on quaternions will be
recalled, see Kneller and Calligari (2006). The motivation behind the use of dual
quaternions is to provide a better and a more stable approach and attempt to
expand dual quaternions to other fields and find their advantages. The main
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contribution is the simplification of the original solution of this transformation.
The following part is devoted to a practical application of dual quaternions.
We will see that the designed method yields surprisingly exact results.

4.2 Dual quaternion model of protein secondary

structure

This section shows how dual quaternions can be efficiently used for the descrip-
tion of the secondary protein structure.

C

C

C

N

N

N

R

R

R

Cα

Cα

Cα

O

O

Figure 4.1: The transformation that sends one peptide plane to another
one is a screw motion.

First, we remind some basic fundamentals about proteins. Secondary structure
is a part of the structural biology. Proteins are biological polymers composed
of amino acids, where amino acids are linked together by peptide bonds. They
have complex shapes that include various folds, loops, and curves. Each shape
has a particular functional property. By secondary structures of proteins we are
referring to structures which describe three dimensional form of proteins.

We can mention some of the well-known secondary structure prediction
methods as the Chou-Fasman method which uses a combination of statistical and
heuristic rules, see Chou and Fasman (1974). The GOR method on the basis
of information theory framework, see Garier et al. (1978) or the Lim method as
a stereochemical rule-based approach for predicting secondary structure in glo-
bular proteins, see Lim (1974).
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Nevertheless, these predictions were limited by the small number of proteins
with solved structures and these methods were shown to be only between 56%
and 60% accurate, see Kabsch and Sander (1983).

The most common protein secondary structures are α-helices. Linus Pauling
(1901–1994) was American biochemist who, as the first, predicted the existence
of α-helices, which was confirmed with the determination of the first three di-
mensional structure of a protein, myoglobin. An example of an α-helix is shown
in Fig. 4.1. The protein chain can be described by local screw motions relating the
(C − O − N) atoms in successive peptide bonds. This method, based on screw
motions, will be modified with dual quaternions. The main aim of the prediction
of secondary protein structure is to find relationship between peptide bonds, i.e.,

(C − O − N)j → (C − O − N)j+1. (4.1)

The general transformation model between this peptide planes can be written as

x′i = t + Rxi, (4.2)

where xT
i = (x1i, x2i, x3i) ∈ R3, x′Ti = (x′1i, x′2i, x′3i) ∈ R3, i = 1, 2, 3 are two sets of

coordinates corresponding (C − O − N) planes, R ∈ SO(3) is a rotation matrix
and tT = (t1, t2, t3) ∈ R3 is a translation vector.

4.3 ScrewFit - Quaternion method

The well known method for describing secondary protein structure is called
ScrewFit. This method is based on Chasles’ theorem. Therefore, quaternions
are used in this method because they can represent rotation and they allow to
determine precious rotation angle of secondary protein structure from

x′i = Rxi. (4.3)

The translation vector is determined as a difference between atoms C, i.e.,

t = Cj+1 − Cj, (4.4)

where Cj+1 and Cj denote the positions of the C atom in peptide planes (C −
O− N)j and (C −O− N)j+1, respectively. The rotation angle ϕ can be computed
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to solve the following equations

q0 = cos
ϕ

2
, (4.5)

q1 = n1 sin
ϕ

2
,

q2 = n2 sin
ϕ

2
,

q3 = n3 sin
ϕ

2
,

where nT = (n1, n2, n3) is the vector of the axis of rotation.

Furthermore, some important parameters which can be used to define helical
structure are mentioned.

• The number of amino acids per turn τ:

τ =
2π

ϕ
. (4.6)

• If the move of a set of points x, i.e., the atoms in protein structure, is screw
motion then this transformation can be expressed as

x̂ 7→ Rx + t, (4.7)

where x ∈ R3, t ∈ R3 is translation vector and R ∈ SO(3) is rotation matrix
with fixed origin. Let us remind that the rotation matrix R has a unique
axis n and angle ϕ. The axis of a rotation R is a set of all points which are
invariant under this transformation, i.e., straight line which is fixed under
the transformation. If we restricted to this line then the screw rotation is
a translation along the line. The line has direction n and a point on the
fixed line can be found by restricting equation (4.7) to the plane which
goes through the origin perpendicular to n and finding the fixed point of
the resulting two-dimensional rotation, see Quine (1999). The vector from
the origin to a point on the axis of rigid transformation is

r =
1
2

(
t − (n · t)n + cot

ϕ

2
n × t

)
, (4.8)

where t‖ = (n · t)n and t⊥ = t − t‖. Therefore, the helix radius ρ can be
expressed as

ρ =‖ r ‖ . (4.9)

• The pitch p:
p = t · nτ. (4.10)

• The handedness h:
h = sgn(n · t). (4.11)
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4.4 Improved method using dual quaternions

We denote the residual vector vi ∈ R3, as

vi = t − x′i + Rxi. (4.12)

Now, we get the following optimization problem to solve required parameters

min
t,R

n

∑
i=1

vT
i vi. (4.13)

It is possible to express the residual vector vi in the form of dual quaternions.
First, we modify (4.12) as

vi = li + Rxi, where li = t − x′i. (4.14)

Equation (4.14) expresses a rotation of the vector x′i and then a translation given
by the translation vector li. We can express this equation according to (2.52)
using dual quaternions in the form

Vdi
= Qdi

Rdi
Q∗

di
, (4.15)

where Rdi
is a unit dual quaternion

Rdi
= 1 + ε(x′1ii + x′2ij + x′3ik), (4.16)

and Qdi
is a unit dual quaternion

Qdi
= Q+ ε

LiQ
2

, where Q = q0 + q1i + q2j + q3k and (4.17)

Li = (t1 − x1i)i + ( t2 − x2i)j + (t3 − x3i)k. (4.18)

Since Qdi
is a unit dual quaternion, we must apply the conditions (2.43), i.e.,

‖Q‖= 1 ∧ Q · Qε = 0. (4.19)

From equation (4.15), we get the unit dual quaternion of the form Vdi
= 1 +

ε(v1ii + v2ij + v3ik) corresponding to the vector vT
i = (v1i, v2i, v3i), where terms

v1i, v2i, v3i contain seven parameters to be solved, i.e., q0, . . . , q3, t1, t2, t3. Further,
the transformation parameters can be determined by solving this optimization
problem

min
q0,...,q3,t1,t2,t3

n

∑
i=1

vT
i vi, (4.20)

‖Q‖= 1 ∧ Q · Qε = 0. (4.21)

We can use a nonlinear method to solve this minimization problem, i.e., La-
grange multipliers. Further, we compute the remaining rotation and translation
parameters. Then equations (4.6), (4.8) and (4.11) are used to compute the
remaining parameters. The CAS system Mathematica could be used to find
the transformation parameters.

46



Chapter 4. Secondary protein structure

4.5 Computed examples and applications

In this part of the thesis we will focus on the algorithm based on dual quater-
nions designed in the previous section. This algorithm is applied to determine
the local helical structure of polypeptides and proteins. We consider Cartesian
coordinates of model structures of polypeptides which have been taken from
the Image Library of Biological Macromolecules in Jena (Institute of Molecular
Biotechnology, Jena; http://www.imb-jena.de/IMAGE.html). Numerical exam-
ple is presented to demonstrate the functionality of the designed method.

Table 4.1: A comparison of results obtained from different papers. Parameters
for α-helix, where τ is number of residues per turn, ρ is the radius of a helix and
p is the pitch.

α-helix τ ρ p
Pauling et al. (1951) 3.65 2.3 5.5
Arnott and Wonacott (1966) 3.59 2.3 5.5
Barlow and Thornton (1988) 3.54 2.3 5.4

Table 4.2: A comparison of results obtained from different papers. Parameters
for 310-helix, where τ is number of residues per turn, ρ is the radius of a helix
and p is the pitch.

310-helix τ ρ p
Pauling et al. (1951) 3.0 1.8 6.0
Arnott & Wonacott (1966) 3.1 1.9 5.8
Barlow and Thornton (1988) 3.2 2.0 5.8

The triplet (O − C − N) represents the rigid bodies so called peptide planes.
The dual quaternion parameters are obtained from the fit of the (O − C − N)
triangle of peptide bond j onto triangle of peptide bond j + 1. From each set
of dual quaternion parameters we can compute the direction n of the rotation
axis, the rotation angle ϕ and the translation vector t. The translation vector is
computed from equation (4.20). The rotation angle ϕ can be computed to solve
equations (4.5). Equations (4.6), (4.8) and (4.11) are used to compute the rest
parameters.
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Table 4.3: A comparison of quaternion and dual quaternion algorithm for
different model structures. Here, τ is number of residues per turn, ρC is the ra-
dius of a helix with C atom on peptide plane, ρCα is the radius of a helix with Cα

atom on peptide plane, p is the pitch and h is the handedness.

α-helix
Algorithm τ ρC ρCα

p h
DQ algorithm 3.66076 1.72595 2.32996 5.30804 +
Q algorithm 3.62 1.71 2.27 5.56 +

π-helix
DQ algorithm 4.21244 1.80627 2.59915 5.23702 +
Q algorithm 4.16 1.78 2.58 5.58 +

310-helix
DQ algorithm 3.31652 1.47488 2.04676 5.62225 +
Q algorithm 3.28 1.46 2.03 5.89 +

β-strand
DQ algorithm 2.03773 0.553559 0.927563 6.65063 -
Q algorithm 2.03 0.55 0.93 6.71 -

Extended helix
DQ algorithm 2.00017 0.37281 0.546598 7.24884 -
Q algorithm 2 0.37 0.55 7.25 -

The parameters concerning this secondary structure are shown in Table 4.3. Pri-
marily, α-helix and 310-helix were used. Naturally, the algorithm was applied
to other known helices as π-helix, β-strand or extended helix. β-strand is a
special type of helix, for more details see Kneller and Calligari (2006) or Aydin
(2008). Helix radius depends on the reference point which lies on the helix.
When the atom C is used then the radius is marked via ρC, when the carbon
Cα atom is chosen instead then the radius is marked ρCα

. Values for pitch p or
handedness h are also presented in Table 4.3. The parameters concerning this
secondary structure of available helices, i.e., α-helix and 310-helix from Pauling
et al. (1951), Arnott and Wonacott (1966) and Barlow and Thornton (1988) are
shown in Table 4.1 and Table 4.2.

In the following part we will show results of Dual quaternion algorithm for
proteins which fall into the six mentioned type of helix. The SCOP (Structural
Classification of Proteins) database is one of the most relevant protein classifica-
tion schemes is the structural classification of proteins. It is based on similarities
of their structures and amino acid sequences. Unfortunately, the dynamic of
classification of new proteins is much slower than the dynamic of discovering
novel protein structures in the protein data bank (PDB). We selected represen-
tative protein for each type of helix. Every part contains graphical model of
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secondary protein structure of an appropriate protein and graphical representa-
tion of main computed result, i.e., radius ρ. Graphical model of each protein is
created in program Jmol, which is used as a molecule viewer for researchers in
chemistry and biochemistry1. The vertical green stripes indicate α-helices found
by the SrewFit method based on quaternions and the horizontal lines indicate
the reference values from the dual quaternion method given in Table 4.3 with
selected range 0.5.

Example 4.1. α-helix: Carbonmonoxy-myoglobin (PDB code 1A6G), which is
included in sperm whale and belongs to the all-α class, see Vojtěchovský et al.
(1999).

Figure 4.2: Model of secondary protein structure of the main chain of
carbonmonoxy-myoglobin.
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Figure 4.3: Dual quaternion description of the main chain of
carbonmonoxy-myoglobin. The horizontal lines indicate the reference
values from dual quaternion method given in Table 4.3 with selected
range 0.5.

1Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
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Example 4.2. π-helix: Monooxygenase hydroxylase is π-helix, which can be
found in Methylococcus capsulatus (PDB code 1MTY), see Fodje and Al-Karadaghi
(2002). Although once thought to be rare, short π-helices are found in 15% of
known protein structures and are considered to be unstable. The dual quater-
nion algorithm is shown only for selected part of this protein to have a imagina-
tion about this structure.

Figure 4.4: Model of secondary protein structure of the main chain of
monooxygenase hydroxylase.
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Figure 4.5: Dual quaternion description of part of the main chain of
monooxygenase hydroxylase. The horizontal lines indicate the reference
values from dual quaternion method given in Table 4.3 with selected
range 0.5.

Example 4.3. 310-helix: The 310-helix accounts for about 4% of amino acid
secondary structure states. An example of this helix is dienelactone hydrolase
(PDB code 1DIN), see Vieira-Pires and Morais-Cabral (2010).
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Figure 4.6: Model of secondary protein structure of the main chain of
dienelactone hydrolase.
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Figure 4.7: Dual quaternion description of the main chain of dienelac-
tone hydrolase. The horizontal lines indicate the reference values from
dual quaternion method given in Table 4.3 with selected range 0.5.

Example 4.4. β-strand: One of the known β-strand is protease inhibitor ecotin
(PDB code 1ECY), see Kneller and Calligari (2006).
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Figure 4.8: Model of secondary protein structure of the main chain of
protease inhibitor ecotin.
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Figure 4.9: Dual quaternion description of the main chain of protease
inhibitor ecotin. The horizontal lines indicate the reference values from
dual quaternion method given in Table 4.3 with selected range 0.5.

Example 4.5. Extended helix: The protein crystal 5PTI of bovine pancreatic
trypsin inhibitor (PDB code BPTI) was selected as an example of extended helix,
see Hu and Jiang (2012).

52



Chapter 4. Secondary protein structure

Figure 4.10: Model of secondary protein structure of the main chain of
bovine pancreatic trypsin inhibitor.
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Figure 4.11: Dual quaternion description of the main chain of bovine
pancreatic trypsin inhibitor. The horizontal lines indicate the reference
values from dual quaternion method given in Table 4.3 with selected
range 0.5.
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Interpolations by rational spline

motions

Interpolation by rational spline motions is an important part of tech-
nical practice, e.g. robotics or computer graphics. Rational spline
motions are characterized by the property that the trajectories of
the points of the moving object are rational spline curves. We will
focus on the most simple examples of the piecewise rational motions
with the first and second order geometric continuity, in particular
a parabolic G1 Hermite interpolation and a cubic G2 Hermite inter-
polation. We will briefly introduce a new approach to rational spline
motion design which uses dual quaternions.

5.1 Motivation

In the computer graphics and animation, the rotational and translational mo-
tions have several important applications. In this thesis we discuss the following
interpolating problem: Let be given some positions of a moving object in the
three dimensional space, then a continuous motion interpolating these positions
shall be found. The solution of this problem is required also in robotics, e.g. for
the path planning of robot manipulators. Often, techniques for solving this
problem deal separately with the positions and orientations. As an innovation,
we try to combine these two parts in one step.

Recently used algorithms solving this interpolation problem were based on,
e.g. Euler angles but then the trajectory of the moving object is a non-rational
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Chapter 5. Interpolations by rational spline motions

curve. Another approach is to interpolate rotations using normalized quaternion
curves, see Shoemake (1985) or Pletinckx (1989).

This thesis introduces dual quaternions as a tool for representing the three di-
mensional transformation of a rigid body. This transformation can be uniquely
specified by a continuous path qd(t). Dual quaternions were invented to repre-
sent rigid transformations. Therefore, the dual quaternions prove to be very
useful tool in computer graphics. Recently, the problem of the rational spline
motion has been solved by Hermite interpolation based on quaternions, see Jak-
lič et al. (2013). This approach seems to be very interesting and efficient and
therefore we modify it by dual quaternions because of their unifying properties.

5.2 Rational spline motions using quaternions

Rational spline motions are defined by the property that the trajectories of
the points of the moving object are rational spline curves. A rigid body motion
is described by the trajectory c(t) = (c1(t), c2(t), c3(t)) of the moving system and
by the 3× 3 rotation matrix R. The trajectory of the point P given by the vector p
is then described by the following equation

p̂(t) = c(t) + R(t)p. (5.1)

It is possible to use quaternions to describe rational spline motions. Then the ro-
tation matrix R in the previous equation is expressed with quaternion terms.

Theorem 5.1. Let Q = (q0, q1, q2, q3) ∈ H and c(t) = (c1(t), c2(t), c3(t)) be the tra-
jectory of the rigid body motion. Then the trajectory of a point P given by the vector
p = (p1, p2, p3) can be described with equation (5.1), where

R =
1

‖Q‖




q2
1 + q2

0 − q2
2 − q2

3 2q0q2 − 2q0q3 2q1q3 + 2q0q2
2q0q3 + 2q1q2 q2

0 − q2
1 + q2

2 − q2
3 −2q0q1 + 2q2q3

−2q0q2 + 2q1q3 2q0q1 + 2q2q3 q2
0 − q2

1 − q2
2 + q2

3


 . (5.2)

Proof. The matrix R denotes the unitary matrix of rotation. We leave it to
the reader to verify it by using equation (2.20).

The trajectory of the point can be expressed as a quaternion curve, see e.g. Myung-
Soo and Kee-Won (1996) for more details.

Definition 5.2. The quaternion rational Bézier curve is defined by n + 1 control
points Ri ∈ H as

q(t) =
n

∑
i=0

Bn
i (t)Ri , t ∈ 〈0, 1〉, (5.3)
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where Bn
i (t) are Bernstein polynomials

Bn
i (t) =

(
n
i

)
ti(1 − t)(n−i), i = 0, . . . , n. (5.4)

Rational spline motions are obtained by rational spline functions qi(t) and ci(t),
where qi(t) represent the coordinates of the quaternion and (c1(t), c2(t), c3(t)) is
the trajectory of the moving frame’s origin. Rational splines can be classified by
the degree of their trajectories. If the quadratic polynomials qi(t) are used then
the rational spherical motions are of degree four or higher, see Lenarčič and
Stanišić (2010). For a purpose to get the rational spline motion (5.1) of degree
four or higher the part ci(t) should be chosen as

ci(t) =
di(t)
‖Q‖ , i = 1, 2, 3, (5.5)

where di are polynomials of degree four or higher.

In describing a shape using curves or surfaces, it is common to use several curve
segments which are joined together with some degree of continuity. There are
two types of continuity, i.e., parametric continuity and geometric continuity.
The parametric continuity of order k is denoted by Ck. The geometric conti-
nuity of order k is denoted by Gk. Two curves which are parametric continuous
of a certain degree are also geometric continuous of the same degree but not
vice versa. We can say that parametric continuity means smoothness both of
the curve and of its parametrization. Now we recall some basic facts about
continuity of curves.

As we mentioned above the parametric continuity is described by the notation
Ck, which is the k-th degree parametric continuity. This means that the two
curves which are connected have identical the k-th degree parametric derivatives
as well as all lower derivatives. If we focus on the parametric continuity C0 of the
curves then we can say that the curve segments at a joint are connected, i.e., the
point at which one curve segment ends is the same point where the next segment
starts. The parametric continuity C1 means that the two curves share a common
endpoint and they have the same tangent vector at their shared endpoint. We can
generalize this in the following definition of the parametric continuity or order k
of two trajectories.

Definition 5.3. Let us have two trajectories of the point P given by the vector p

p̃(t) = c̃(t) + R̃(t)p,

p̄(s) = c̄(s) + R̄(s)p,

where p̃(t) and p̄(s) are the values in the intervals [t0, t1] and [s0, s1], respectively.
Then p̃(t), p̄(t) are C0 continuous, if

p̃(t1) = p̄(s0). (5.6)
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If for all i ≤ k, the i-th derivatives at p̃(t1) and p̄(s0) are equal, then it is said
that the curves are Ck continuous at the point p̃(t1) = p̃(s0).

The geometric continuity conditions for quaternion curves that imply geometric
continuity of motions are recalled according to Farin et al. (2002), where more
details can be found.

Definition 5.4. Consider two trajectories of the point P given by the vector p

p̃(t) = c̃(t) + R̃(t)p,

p̄(s) = c̄(s) + R̄(s)p,

where p̃(t) and p̄(s) are the values in the intervals [t0, t1] and [s0, s1], respectively.
It is said that the curves are Gk continuous at the point p̃(t1) = p̄(s0) if there
exists a regular reparametrization

φ : [t0, t1] 7→ [s0, s1], where φ′
> 0, φ(t1) = s0, (5.7)

such that
djp̃
dtj (t) =

dj(p̄ ◦ φ)

dtj (t), j = 1, . . . , k for t = t1. (5.8)

Subsequently, it can be written for c̄ and R̄ the following equations (5.9)
and (5.10) which are equal to the condition given by equation (5.8).

djc̃
dtj (t) =

dj(c̄ ◦ φ)

dtj (t), j = 1, . . . , k for t = t1, (5.9)

djR̃
dtj (t) =

dj(R̄ ◦ φ)

dtj (t), j = 1, . . . , k for t = t1. (5.10)

Theorem 5.5. Let q̃(t), q̄(s) be two quaternion curves describing the rotations then
the motions given by R̃ and R̄ are G0 continuous at the point R̃(t1) = R̄(s0) if and only
if

q̃(t1) = λ(t1)q̄(φ(t1)) and λ 6= 0, (5.11)

where λ : [t0, t1] 7→ R is a scalar function.

Proof. The Gk continuity conditions for a spherical , i.e, equations (5.9) and (5.10)
are equivalent to equation (5.11) because of equivalence relation in the three
dimensional projective space. See Ferjančič et al. (2016) for more details.

Therefore the geometric continuity conditions are the same as the well known
conditions for rational curves which are expressed in homogeneous coordinates.
Equation (5.11) can be extended for derivatives as

djq̃(t)
dtj =

dj(λ(t)q̄(φ(t))
dtj , j = 1, . . . , k for t = t1. (5.12)
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Theorem 5.6. Let q̃(t), q̄(s) be two quaternion curves describing the rotations then
the motions given by R̃ and R̄ are G1 continuous at the point R̃(t1) = R̄(s0) if and only
if there exists a regular reparametrization

φ : [t0, t1] 7→ [s0, s1], where φ′
> 0, φ(t1) = s0, (5.13)

such that

q̃′(t1) = λ′(t1)q̄(φ(t1)) + λ(t1)φ
′(t1)q̄

′(φ(t1)) and λ 6= 0, (5.14)

where λ : [t0, t1] 7→ R is a scalar function.

Proof. By using Faa di Bruno’s formula, the conditions, i.e., equation (5.12), can
be rewritten and after its simplification the G1 continuity is determined.

It is possible to determine the condition for G2 continuity as well, see the
following Theorem 5.7.

Theorem 5.7. Let q̃(t), q̄(s) be two quaternion curves describing the rotations then
the motions given by R̃ and R̄ are G2 continuous at the point R̃(t1) = R̄(s0) if and only
if there exists a regular reparametrization

φ : [t0, t1] 7→ [s0, s1], where φ′
> 0, φ(t1) = s0, (5.15)

such that

q̃′′(t1) = λ′′(t1)q̄(φ(t1)) + 2λ′(t1)φ
′(t1)q̄

′(φ(t1))

+ λ(t1)φ
′(t1)

2q̄′′(φ(t1)) + λ(t1)φ
′′(t1)q̄

′(φ(t1)) and λ 6= 0, (5.16)

where λ : [t0, t1] 7→ R is a scalar function.

Proof. See Jaklič et al. (2013) for further details.

5.3 Hermite interpolation by rational G1 motions

This part of the thesis is focused on the G1 Hermite interpolation. The main
purpose of Hermite interpolation is to generate curves well fitted to given sam-
ple data. Firstly, we can mention the interpolation using a parabolic biarc in
connection with the standard algorithm for a construction of the G1 Hermite
interpolation which can be found in Jaklič et al. (2013) and then we modify it
with the help of dual quaternions.
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5.3.1 G1 Hermite interpolation using quaternions

This method from Jaklič et al. (2013) is based on quaternions therefore the rota-
tion part of the spatial motion is solved via this algorithm. This leads to the sepa-
ration of the rational spline motion into two independent parts, i.e., the rotation
and the translation.

Let Q0 and Q1 be two unit quaternions and U0 and U1 their velocities, respec-
tively. We would like to construct a quaternion interpolant q : [0, 1] → R4

interpolating these data. If the quaternions U0,U1 and Q1 −Q2 are linearly in-
dependent then it is necessary to use so-called additional quaternion QA, which
helps us to construct two interpolant quaternion curves q0 : [0, 1] → R4 and
q1 : [0, 1] → R

4. The quaternion curve q0 interpolates U0,Q0,QA and q1 inter-
polates U1,Q1,QA which are essentially parabolic biarcs, see Fig. 5.1. There is
ensured the G1 continuity at QA. We can show that these two curves can be

Q0

U0

QA

Q1
U1

Figure 5.1: Hermite interpolation using a parabolic biarc.

written in the Berstein–Bézier form as

q0(t) = Q0B2
0(t) + B0B2

1(t) +QAB2
2(t), (5.17)

q1(t) = QAB2
0(t) + B1B2

2(t) +Q1B2
2(t), (5.18)

where B2
0, B2

1 and B2
2 are the Bernstein polynomials and B0 and B1 are two un-

known quaternions, see Definition 5.2.

The unknown quaternions B0 and B1 can be found by using conditions for the G1

continuity. These conditions can be written as

q′0(0) = λ
(1)
0 Q0 + φ

(1)
0 U0, (5.19)

q′1(1) = λ
(1)
1 Q1 + φ

(1)
1 U1, (5.20)

q0(1) = λ
(1)
A QA + φ

(1)
A q′1(0), (5.21)

where the parameters λ
(1)
0 , λ

(1)
1 and λ

(1)
A have to be positive. From the properties
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of Bézier curves we get

q′0(0) = 2(B0 −Q0), q′0(1) = 2(QA − B1), (5.22)

q′1(0) = 2(B1 −QA), q′1(1) = 2(Q1 − B1), (5.23)

then the following equations help us to determine unknown quaternions B0 and
B1 in the form

B0 = Q0 +
1
2
(λ

(1)
0 Q0 + φ

(1)
0 U0), (5.24)

B1 = Q1 −
1
2
(λ

(1)
1 Q1 + φ

(1)
1 U1), (5.25)

2(QA −B0) = λ
(1)
A QA + 2φ

(1)
A (B1 −QA). (5.26)

Let us denote

Di =
|A(i)|(U0)

|A| , i = 1, . . . , 4, (5.27)

where |A| denotes the determinant of the matrix A = (Q0,QA,Q1,U1). Next
A(i)(U0) denotes the matrix A with the i-th column replaced by the quaternion
U0. Then Theorem 5.8 can be formulated (see Jaklič et al. (2013)).

Theorem 5.8. Let Q0,Q1,U0,U1 and QA be given quaternions such that A is a non-
singular and D4 > 0, see (5.27). Than a two-parametric family of G1 continuous pairs
of parabolic quaternion curves q0(t) and q1(t) defined by equations (5.24), (5.25), (5.26)
and (5.27) exists.

Proof. See Jaklič et al. (2013) for the proof.

The quaternion algorithm above allows us to solve the rotational part of the rota-
tional spline motion only. Nevertheless, the rational spline motion is a combina-
tion of rotations and translations, see equation (5.1). Therefore, the curve needs
to be suitably translated to get the final view od the motion, see Section 5.2 for
more details. The following approach using dual quaternions shows how to use
rotation and translation simultaneously.

5.3.2 Improved method using dual quaternions

Dual quaternions prove to be very useful tool when used in visualization of
moving objects and therefore we present here a representation formula for ratio-
nal spline motions. It has been proved in Jütler (1994) that any rational motion
could be represented just as a rational dual quaternion curve. We briefly summa-
rized some fundamentals of using dual quaternions in Section 2.2 and now we
use them to improve the original method from Jaklič et al. (2013).

Let us firstly recall the definition of dual quaternion curve.
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Definition 5.9. The dual quaternion rational Bézier curve is defined by n+ 1 control
points Rdi

∈ Hd as

qd(t) =
n

∑
i=0

Bn
i (t)Rdi

, t ∈ 〈0, 1〉, (5.28)

where Bn
i (t) are Bernstein polynomials

Bn
i (t) =

(
n
i

)
ti(1 − t)(n−i), i = 0, . . . , n. (5.29)

Any rational spline motion (5.1) consists of two parts, one is rotational and
the second one is translational. In the previous section we showed how the rota-
tional part can be computed. Nevertheless, a construction of the translation part
of the motion left. Therefore, we use dual quaternions to combine the rotation
and the translation parts of the motion in one operation.

We modify equations (5.17) and (5.18) according to dual quaternion descrip-
tion (2.52). Hence, we get two dual quaternion curves

qd0(t) = Qd0 B2
0(t) + Bd0 B2

1(t) +QdA
B2

2(t), (5.30)

qd1
(t) = QdA

B2
0(t) + Bd1

B2
1(t) +Qd1

B2
2(t), (5.31)

where Qd0
,Qd1

,QdA
,Bd0

and Bd1
are unit the dual quaternions and B2

0, B2
1, B2

2 are
again the Bernstein polynomials, see Definition 5.9.

We solve the following interpolation problem: There are given several positions
Pi, i = 0, . . . , m of a rigid body. The position Pi is composed of the position
of the center ci and by the associated rotation matrix. The rotations can be
represented by the unit quaternions Qi. Because we usually have a non-unit
quaternion describing the rotations then this quaternion has to be normalized,
i.e.,

Qi = ∓ Q̂i

‖ Q̂i ‖
, (5.32)

where Q̂i is an arbitrary quaternion which is not unit, in general. The appropri-
ate sign in equation (5.32) is chosen to satisfy

Qi · Qi+1 > 0, i = 0, . . . , m, (5.33)

which provides us that both quaternions lie on the same hemisphere. The trans-
lation can be described by a pure quaternion. We use equation (2.53)

Ti = c1ii + c2ij + c3ik. (5.34)

Due to the dual quaternion description (2.52) we can combine the both quater-
nions and we get the unit dual quaternion

Qdi
= Qi + ε

TiQi

2
, (5.35)
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that will be used in equations (5.30) and (5.31) and so we get two dual quaternion
curves containing the translation and the rotational part. We have to mention
that also Theorem 5.8 can be used to find the rotational part of the dual quater-
nion.

The interpolating algorithm based on dual quaternion curve can be computed
in the following steps, see Algorithm 3.

Algorithm 3 Rational spline motion with continuity G1 using dual quaternion
Input: The rotation motion defined by the quaternion curve q̂(t) and the trajec-

tory c(t) of the center, where ti = i, i = 0, . . . , m.
1: Normalize the rotational quaternions by equation (5.32) to get Qi.

2: Compute velocity Ui as a Ui = Q(1)
i .

3: Compute translation quaternion Ti using (5.34).
4: Verify if Ui,Qi+1 −Qi are linearly independent.
5: Determine dual quaternion curves using (5.30) and (5.31).

Output: Dual quaternion curves qdi
describing the rational spline motion.

5.3.3 Computed example and application

The presented example demonstrates the functionality of the designed G1 Her-
mite interpolation algorithm based on using dual quaternions. Let us consider
a smooth motion defined by the quaternion curve q̂(t). This example is taken
from Jaklič et al. (2013).

q̂(t) =
(

t, t + cos
(

πt
4

)
, sin

(
πt
4

)
, cos

(
πt
10

))T

(5.36)

The trajectory of the centers is given by

c(t) = (3 log(t + 1) cos(t), 3 log(t + 1) sin(t), 3(t + 1))T . (5.37)
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Figure 5.2: Nine positions of a cuboid point of a G1 motion.

Table 5.1: Hausdorff distances between trajectories of an arbitrary point P of
the original motion and the motion computed with Algorithm 3.

h Hausdorff distance Decay exponent

1 9.73262× 10−2 -

1
2 1.09778× 10−1 0.89

1
4 8.45082× 10−2 1.30

1
8 5.51347× 10−2 1.53

1
16 3.27933× 10−2 1.68

1
32 1.84223× 10−2 1.78

1
64 9.97311× 10−3 1.85

1
128 5.26759× 10−3 1.89

1
256 2.73660× 10−3 1.92

1
512 1.41793× 10−3 1.93

Firstly, we apply the individual steps as in Algorithm 3 for the values ti =
0, . . . , 8. We can see nine positions of a cuboid point of a G1 motion in Fig. 5.2
as the result. The different colors show individual arcs of the piecewise curve,
where every second quaternion Q2i+1 is the additional one. The original trajec-
tory and the G1 trajectory using dual quaternions can be seen in Fig. 5.3. Their
distances are described in Table 5.1 which contains measured Hausdorff dis-
tances. The distances are computed for different values h. The decay exponent
describes the ratio of two successive values.
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Figure 5.3: Trajectory of an arbitrary point P of the original (grey) and computed
motion (orange).

5.4 Hermite interpolation by rational G2 motions

This part of the thesis is devoted to the cubic G2 Hermite interpolation. The cubic
geometric interpolation is chosen to show the advantages of the various appli-
cations of dual quaternions considering their properties. Notice, that the main
emphasis is laid on the Hermite interpolation by rational Bézier curves in space.
Further, the method based on quaternions studied in see Jaklič et al. (2013) will
be extended using the dual quaternions. It is easily shown that they are excellent
tool to describe the G2 rational spline motions.

5.4.1 Cubic G2 Hermite interpolation using quaternions

Assume that a curve is determined by two points, i.e., P0 and P1, and two asso-
ciated velocities, i.e., U0 and U1. The objective is to find a cubic Bézier curve r(t)
which interpolates given data as

r(0) = P0, r′(0) = U0, (5.38)

r(1) = P1, r′(1) = U1. (5.39)

The sought curve can be represented as a cubic Bézier curve, see Fig. 5.4

r(t) =
3

∑
i=0

RiB
3
i (t), (5.40)
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R1

R3 = P1R2

R0 = P0

U1

U0

Figure 5.4: Illustrative figure – Hermite interpolation using a cubic.

where R0, R1, R2, R3 are the control points which satisfy R0 = P0, R1 = P0 +
U0
3 ,

R2 = P1 − U1
3 and R3 = P1. B3

i (t) are the Bernstein polynomials of degree 3, i.e.,

B3
i (t) =

(
3
i

)
ti(1 − t)3−i. (5.41)

A cubic Bézier quaternion curve can be used to define a Hermite quaternion
curve which interpolates two end unit quaternions. Let Qi be the unit quater-

nion, Ui = Q(1)
i the velocity quaternion and Vi = Q(2)

i the acceleration quater-
nion at orientation Qi for i = 0, 1.

Then the cubic quaternion interpolation curve q : [0, 1] → H can be found as

q(t) =
3

∑
j=0

BjB
3
j (t), (5.42)

where Bj are the unknown control quaternions and B3
j (t) are the Bernstein poly-

nomials of degree 3.
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The quaternion curve is G2 continuous if the following conditions are satisfied

q(j) = λjQj, (5.43)

q′(j) = λ
(1)
j Qj + λjφ

(1)
j Uj, (5.44)

q′′(j) = λ
(2)
j Qj + 2λ

(1)
j φ

(1)
j Uj + λjφ

(2)
j Uj + λj(φ

(1)
j )2U (2)

j , (5.45)

λ0 = λ1 = 1, (5.46)

where j = 0, 1. The parameters λj and φj correspond to the function λ for j = 0, 1
and the reparametrization φ for j = 0, 1, respectively. The remaining parameters

λ
(n)
j and φ

(n)
j , where n = 1, 2 are the n-th derivatives for j = 0, 1. Moreover,

the following equation has to be satisfied

φ
(1)
0 > 0, φ

(1)
1 > 0, (5.47)

to guarantee the reparametrization φ to be regular. To obtain the following
equations we have to use some basic properties of the Bézier curves mentioned
at the beginning of this section

B0 = Q0, B3 = Q1, (5.48)

3∆B0 = λ
(1)
0 Q0 + φ

(1)
0 U0, (5.49)

3∆B2 = λ
(1)
2 Q2 + φ

(1)
2 U2, (5.50)

6∆2B0 = λ
(2)
0 Q0 + (2λ

(1)
0 φ

(1)
0 + φ

(2)
0 )U0 + (φ

(2)
0 )2V0, (5.51)

6∆2B1 = λ
(2)
1 Q1 + (2λ

(1)
1 φ

(1)
1 + φ

(2)
1 )U1 + (φ

(2)
1 )2V1. (5.52)

The previous set of equations form a system of 24 nonlinear equations for the un-
known control quaternions Bj for j = 0, 1, 2, 3 and unknown scalar parameters

φ
(1)
i , φ

(2)
i , λ

(1)
i , λ

(2)
i for i = 0, 1. The unknowns φ

(1)
0 , φ

(2)
0 have to be positive,

see equation (5.47). The set of 22 equations can be reduced to a system of 8
nonlinear equations, see Jaklič et al. (2013)

(
2
3

λ
(1)
0 +

1
6

λ
(2)
0 + 1

)
Q0 +

(
1
3

λ
(1)
1 − 1

)
Q1 +

1
6
(φ

(1)
0 )2V0

+

(
2
3

φ
(1)
0 +

1
3

λ
(1)
0 φ

(1)
0 +

1
6

φ
(2)
0

)
U0 +

1
3

φ
(1)
1 U1 = 0, (5.53)

(
−2

3
λ
(1)
1 +

1
6

λ
(2)
1 + 1

)
Q1 +

(
−1

3
λ
(1)
0 − 1

)
Q0 +

1
6
(φ

(1)
1 )2V1

+

(
−2

3
φ
(1)
1 +

1
3

λ
(1)
1 φ

(1)
1 +

1
6

φ
(2)
1

)
U1 −

1
3

φ
(1)
0 U0 = 0. (5.54)

Of course Theorem 5.8 can be modified for quaternion cubic interpolation curve.
Let us firstly denote

Di,j =
|A(j)

i (U1−i)|
|Ai|

, j = 1, . . . , 4, and i = 0, 1, (5.55)
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where |Ai| denotes the determinant of matrix A = (Qi,Q1−i,Ui,Vi). Then The-
orem 5.10 can be formulated.

Theorem 5.10. Let Q0,Q1,U0,U1,V0 and V1 be given quaternions such that A0 and
A1 are nonsingular and D0,4 < 0, D1,4 > 0. Then there exists a unique cubic inter-
polating quaternion curve q(t) defined by equations (5.42),(5.48), (5.49), (5.50), (5.51)
and (5.52) where

φ
(1)
0 = 2 3

√
D2

0,4D1,4, λ
(1)
0 = −1(3 + 2D1,2

3
√

D2
0,4D1,4), (5.56)

φ
(1)
1 = −2 3

√
D2

1,4D0,4, λ
(1)
1 = (3 + 2D0,2

3
√

D2
1,4D0,4). (5.57)

Proof. See Jaklič et al. (2013) for the proof.

This approach solves only the rotational part but the construction of the ratio-
nal spline motion is the combination of rotations and translations as in case
of G1 Hermite interpolation, see equation (5.1). Therefore, the curve needs to be
translated to get the final view od the motion, see Section 5.2 for more details.

5.4.2 Improved method using dual quaternions

Dual quaternions will be used in this section in a similar way as for G1 Hermite
interpolation due to their amazing properties. All their advantages and suitabil-
ity were introduced in previous part therefore we will focus now on application
part.

We can modify equations (5.42) according to dual quaternion description (2.52).
Then we get the following dual quaternion curve

qd(t) = Qd0 B3
0(t) +Qd1

B3
1(t) +Qd2 B3

2(t) +Qd3 B3
3(t), (5.58)

where Qd0 ,Qd1
,Qd2 ,Qd3 are unit dual quaternions and B3

0, B3
1, B3

2, B3
3 are again

Bernstein polynomials, see Definition 5.9. Of course, Theorem 5.10 can be also
used to find the rotational part of the dual quaternion.

The interpolating algorithm based on dual quaternion curve can be computed
in the following steps, see Algorithm 4.

5.4.3 Computed example and application

The presented example demonstrates the functionality of the designed G2 Her-
mite interpolation algorithm based on using dual quaternions. Let us consider
smooth motion defined by the dual quaternion curve q̂(t) from Example 5.3.3.
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Algorithm 4 Rational spline motion with continuity G2 using dual quaternion
Input: The rotation motion defined by the quaternion curve q̂(t) and

the trajectory c(t) of the center, where ti = i, i = 0, . . . , m.
1: Normalize the rotational quaternions by equation (5.32) to get Qi.
2: Compute velocity Ui as a Ui = Q(1)

i .

3: Compute quaternion Vi as a Vi = Q(2)
i .

4: Compute translation quaternion Ti using (5.34).
5: Determine a dual quaternion curve using (5.58).

Output: Dual quaternion curves qdi
describing rational spline motion.

Figure 5.5: Nine positions of a cuboid point of a G2 motion.

We apply the individual steps as in Algorithm 4 for the values ti = 0, . . . , 8.
The final results are seen in Fig. 5.5 where a nine positions of a cuboid point of
a G2 motion are shown. The different colors show individual arcs of the curve.
Next Fig. 5.6 shows the original trajectory and G2 continuous trajectory using
dual quaternions.

68



Chapter 5. Interpolations by rational spline motions

Figure 5.6: Trajectory of an arbitrary point P of the original (grey) and computed
motion (green).

Table 5.2: Hausdorff distances between trajectories of an arbitrary point P of
the original motion and the motion computed with Algorithm 4.

h Hausdorff distance Decay exponent

1 4.97979× 10−2 -

1
2 2.09772× 10−2 2.37

1
4 6.81707× 10−3 3.08

1
8 1.88756× 10−3 3.61

1
16 4.87794× 10−4 3.87

1
32 1.23491× 10−4 3.95

1
64 3.10488× 10−5 3.98

1
128 7.78217× 10−6 3.99

Their Hausdorff distances can be found in Table 5.2. The distances are computed
for different values h. The decay exponent describes the ratio of two successive
values.
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Summary

The first part of the thesis, i.e., Chapter 1 is devoted to quaternions, dual quater-
nions and their applications. The intriguing history of their discovery can be
found at the beginning. Subsequently, the current state of the art is mentioned
to show the popularity of dual quaternions, i.e., a brief description of current
applications of quaternions and dual quaternions through various fields.

An important possibility of quaternions to represent rotation in SO(3) is men-
tioned in Chapter 2. The following part of this chapter is devoted to dual quater-
nions as an extension of quaternions. This structure uses two quaternions that
are combined to using dual numbers. Therefore, firstly the basic definitions and
properties of dual numbers were briefly mentioned. The resulting structure of
dual quaternions is significant and widely used because of its ability to represent
rigid transformations, i.e., spatial motions in SE(3).

Chapter 3 is devoted to a datum transformation problem of finding parameters
of transformation of two coordinate systems, the local and the world one. This
thesis describes one of the methods for determination of the datum transfor-
mation parameters. We use a nonlinear transformation model where we can
easily use a description by dual quaternions. Main advantages of this approach
are the simplification of the original solution of the datum transformation. The
maximum error of the method can be estimated by the error matrix and it is
similar to other methods, e.g. based on quaternions. This thesis presents one
numerical example to demonstrate the introduced formula. We try to compare
the models and description statistic show that both of them have probably log-
normal distribution. In order to deal with comparing both algorithms, we have
applied a non parametric test, a sign test. By comparing known algorithms it
was found that accuracy of algorithm based on dual quaternions is better if we
take into account only significant differences. Consequently, advantages of the
novel approach lie in the fact that there is not needed a linearization of the non-
linear transformation model and accuracy of this model is better considering
given conditions.
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In Chapter 4, we have presented a new algorithm based on dual quaternions
for determination of the secondary structure of proteins. There is a motivation
for dealing with the problem of finding parameters of transformation of pep-
tide bonds. We used a nonlinear model to represent this transformation. In this
model, we can easily use a description by dual quaternions. Expressing the ro-
tation and translation as a dual quaternion is a convenient way to obtain the
equations relating to various helix parameters. These parameters of interests in
considering protein structure are residues per turn, pitch, radius or helix axis
direction. The main innovation in this thesis is the use of dual quaternions to
make it more efficient to keep track of the axis of rotation and translation. Ad-
vantage of this approach is again the simplification of the original solution. This
thesis presents some numerical examples to demonstrate introduced formula,
describing this transformation.

In the computer graphics, animation and robotics, the rotational and transla-
tional motions have several important applications. Therefore a simple algo-
rithm for the interpolation by the rational spline motion based on dual quater-
nions is presented in Chapter 5. The construction of the algorithm was motivated
by Jaklič et al. (2013) where a G1 Hermite interpolation and G2 Hermite interpo-
lation based on quaternions were investigated. We have modified an algorithm
for rational spline motion using dual quaternion approach. The rational spline
motions are composed of rotational and translational parts, i.e., this motion can
be easily described by dual quaternions. The main advantage of this approach
is that the dual quaternions allow us to use these two transformations in only
one operation, which simplifies the original method. Of course, this chapter
presents some chosen examples to demonstrate the derived algorithm like the
applications in previous chapters.

To sum up, let us address the objectives formulated at the beginning of the thesis.
Recently, studying quaternions has become after years of using them mainly in
physics and robotics again an active research area of applied geometry. New
disciplines as e.g. bioinformatics, geodesy, structural biology and others based
on studying a continuous set of displacements realized an important role that
can be played by the quaternion algebra. However, all the proposed methods
and techniques, we have found, remained only halfway. They use rotations and
translations, but the algorithms exploit solely quaternions describing rotations,
whereas the translations are dealt separately. And this is inefficient, especially
when the dual quaternion algebra is available. Our novel approach discussed
in this thesis is devoted to joining both operations (rotation and translation)
in algorithms to a unique algebraic operation, for which the dual quaternion
algebra is especially useful, and formulating new modified and simplified al-
gorithms. We believe that the goals of the thesis were satisfied. We identi-
fied the latest advances in applications of quaternions and dual quaternions
on selected real-world problems. Some recent methods and techniques based
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on quaternions which are suitable for a reformulation using dual quaternions
were analyzed and modified. New results and algorithms for certain classes of
problems that can be solved using the unifying approach based on dual quater-
nions were designed. The functionality of the novel formulated methods on par-
ticular examples was presented and the advantages of the designed approaches
were discussed. All algorithms were implemented and tested in computer alge-
bra system Mathematica. As far as we are aware of the literature our approach
to the selected problems is innovative, and it can be used also to all other prob-
lems when continuous sets of displacements are investigated.
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Publications in journals indexed on Scopus

Prošková, J. (2017). Interpolations by rational motions using dual quaternions.
Journal for Geometry and Graphics, Accepted for publication in 2017.

Prošková, J. (2014).Description of protein secondary structure using dual quater-
nions. Journal of Molecular Structure, 1076:89– 93.

Cited by:

• Gurses, A. (2015). Introduction to Polymer–Clay Nanocomposites. Pan Stan-
ford.

• Kou, K. I. and Xia, Y. H. (2015). Linear Quaternion Differential
Equations: Basic Theory and Fundamental Results:(I). Available at
https://arxiv.org/pdf/1510.02224.pdf.

• Kyrchei, I. I. (2016) Explicit Determinantal Representation Formulas of W
-Weighted Drazin Inverse Solutions of Some Matrix Equations over the
Quaternion Skew Field. Mathematical Problems in Engineering, 2016:1–13.

• Ramakrishna, K. and Sambasiva Rao, R. (2016). HotIce: Hands-on-tutorial
for intelligent computational Evolution Part 1: Quaternions in Omnimet-
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quaternion-based, closed-form pairwise registration algorithm for point
clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 94:63 – 69.
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Graphics.
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datum transformation. In Journal of Applied Mathematics, 225–237.

• Prošková, J. (2010).Geodetic datum transformation using dual quaternions.
In Proceedings of the 30th Conference on Geometry and Graphics.
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