Connected even factors in the square of essentially 2 -edge-connected graph

Jan Ekstein*
University of West Bohemia, Pilsen, Czech Republic
ekstein@kma.zcu.cz

Baoyindureng Wu^{\dagger}

Xinjiang University, Urumgi, Xinjiang, P.R.China
baoyin@xju.edu.cn

Liming Xiong ${ }^{\ddagger}$
School of Mathematics and Statistics
Beijing Institute of Technology
Beijing, P. R. China
lmxiong@bit.edu.cn

Submitted: Aug 5, 2015; Accepted: Aug 22, 2017; Published: Sep 8, 2017
Mathematics Subject Classifications: 05C38, 05C48

Abstract

An essentially k-edge connected graph G is a connected graph such that deleting less than k edges from G cannot result in two nontrivial components. In this paper we prove that if an essentially 2 -edge-connected graph G satisfies that for any pair of leaves at distance 4 in G there exists another leaf of G that has distance 2 to one of them, then the square G^{2} has a connected even factor with maximum degree at most 4 . Moreover we show that, in general, the square of essentially 2 -edgeconnected graph does not contain a connected even factor with bounded maximum degree.

Keywords: connected even factors; (essentially) 2-edge connected graphs; square of graphs

1 Introduction

We consider only finite undirected simple graphs. For terminology and notation not defined in this paper we refer to [15]. Let G be a connected graph. For vertices x, y of G,

[^0]let $N_{G}(x)$ denote the neighborhood of x in $G, d_{G}(x)=\left|N_{G}(x)\right|$ the degree of x in G, and $\operatorname{dist}_{G}(x, y)$ the distance between x, y in G. The square of a graph G, denoted by G^{2}, is the graph with same vertex set as G in which two vertices are adjacent if their distance in G is at most 2. Thus $G \subseteq G^{2}$. There are several papers (e.g. see [2], [4], [5], [6], [7], [8], [9], and [10]) about hamiltonian properties in the square of a graph. This paper deals with connected even factors which generalize some previous known results.

A factor in a graph G is a spanning subgraph of G. A connected even factor in G is a connected factor in G in which every vertex has positive even degree. A $[2,2 s]$-factor of G is a connected even factor of G in which every vertex has degree at most $2 s$. Some results for the existence of such kind factors by using forbidden subgraphs have been appeared, for examples see [1], [11], and [13]. Since a hamiltonian cycle is a [2, 2s]-factor with $s=1$, the minimum s in a $[2,2 s]$-factor of a graph can be seen as a measure for how close a graph is to become hamiltonian. Furthermore we know from [14] that it is NP-complete to determine whether the square of a graph is hamiltonian. Therefore the determination of minimum s in a $[2,2 s]$-factor in the square of a graph is also NP-complete.

The result by Fleischner in [6] concerning the existence of a hamiltonian cycle (a [2,2]-factor) in the square of 2-connected graph is well known. Recently, Müttel and Rautenbach in [12] gave a shorter proof of this result.

Theorem 1. [6] If G is a 2-connected graph and v_{1} and v_{2} are two distinct vertices of G, then G^{2} contains a hamiltonian cycle C such that both edges of C incident with v_{1} and one edge of C incident with v_{2} belong to G. Furthermore, if v_{1} and v_{2} are neighbors in C, then these are three distinct edges.

Theorem 1 was a base for proving the following theorem by Abderrezzak et al. in [4] using forbidden subgraphs. The graph $S(H)$ is obtained from a graph H by subdividing each edge of H exactly once.

Theorem 2. [4] If G is a connected graph such that every induced $S\left(K_{1,3}\right)$ has at least three edges in a block of degree at most 2, then G^{2} is hamiltonian.

Theorem 2 was generalized by Ekstein et al. in [2] for [2, 2s]-factors.
Theorem 3. [2] Let s be a positive integer and G be a connected graph such that every induced $S\left(K_{1,2 s+1}\right)$ has at least three edges in a block of degree at most two. Then G^{2} has $a[2,2 s]$-factor.

Let G be a connected graph. Recall that a graph G is essentially k-edge connected if deleting less than k edges from G cannot result in two nontrivial components. In this paper, we shall answer the question how it is for the existence of a $[2,2 s]$-factor in the square of a graph with 2-edge (or essentially 2-edge)-connectivity instead of (vertex) connectivity of a graph.

A vertex of degree 1 is called a leaf. A cut vertex y is trivial in G, if y is not a cut vertex in $G-M$, where M is a set of all leaves adjacent to y, otherwise is non-trivial. If $M=\{x\}$ and the neighbor of x is a trivial cut vertex of G, then x is called a bad leaf. A

Figure 1: In this graph, c_{1}, c_{2} are trivial cut vertices, c_{3}, c_{4} are non-trivial cut vertices, x is a bad leaf, y_{1}, y_{2}, z are leaves, b_{1} is a bad bridge, b_{2}, b_{3}, b_{4} are trivial bridges, b_{5} is a non-trivial bridge, and B_{1}, B_{2}, B_{3} are cyclic blocks.
trivial bridge is a cut-edge of G containing a leaf, otherwise is non-trivial. A bad bridge is a trivial bridge of G adjacent to a bad leaf. For illustration see Fig. 1.

Firstly, we look at the graph in Fig. 2, from which one may see the following result.
Theorem 4. For any fixed positive integer s, there exists an infinite class of essentially 2-edge-connected graphs G such that G^{2} has no $[2,2 s]$-factor, even if the resulting graph obtained from G by deleting its all leaves is 2-connected.
Proof. Note that the graph G in Fig. 2 is an essentially 2-edge-connected graph. Since every leaf v_{i} of G has degree exactly 3 in G^{2}, at least one edge of $v_{i} x, v_{i} y$ have to be used in any possible $[2,4]$-factor of G^{2}. Therefore, G^{2} has no [2,2s]-factor since G has $4 s+1$ such leaves.

On the other hand, we may show the following result, which is the main result of this paper.

Theorem 5. Let G be a connected graph without non-trivial bridges and without any two bad leaves at distance exactly 4. Then G^{2} has a $[2,4]$-factor.

The following corollaries are immediate consequences of Theorem 5.
Corollary 6. If G is a 2-edge connected graph, then G^{2} contains a $[2,4]$-factor.
Corollary 7. If G is an essentially 2-edge connected graph without bad leaves, then G^{2} contains a $[2,4]$-factor.
Corollary 8. Let G be a connected graph without non-trivial bridges. If any two bad leaves have distance at least 5 in G, then G^{2} has a $[2,4]$-factor.

Note that the graph in Fig. 2 also shows that the distance 5 in Corollary 8 can not be replaced by distance 4 .

Figure 2: Essentially 2-edge connected graphs G such that their square contains no [2, 2s]factor, where G_{1} and G_{2} are any essentially 2 -edge connected graphs.

2 A Useful lemma

Before presenting this lemma, we need some additional notation. Block graph of a graph G, denoted by $B C(G)$, is the graph whose vertex set consists of all blocks and cut vertices of G, and two vertices are adjacent in $B C(G)$ if one of them is a block of G and the second one is its vertex. It is easy to see that $B C(G)$ is a tree for a connected graph G. Note that for any tree, we may choose any vertex as its root. Hence without loss of generality, we may assume that B_{1}, \ldots, B_{t} be all blocks of G such that B_{1} corresponds to the root of $B C(G)$. For a cut-vertex v of G, the parent block of v is the block containing v and its corresponding vertex in $B C(G)$ has the smallest distance to the root of $B C(G)$. The remaining blocks containing v are called children blocks of v with respect to the root of $B C(G)$.

The following lemma, we call it a Useful lemma, is a key for the proof of our main result (Theorem 5).

Lemma 9. (Useful lemma) Let G be a connected graph without non-trivial bridges and without bad leaves (except $K_{1,2}, K_{1,3}$) and u be a vertex of G that is neither a cut vertex nor a leaf (if any).
Then G^{2} has a $[2,4]$-factor F such that
a) $d_{F}(x)=2$ for any vertex x that is not a cut vertex of G;
b) both edges of F incident with u belong to G;
c) for each cut vertex y of G it holds that $d_{F}(y)=4$ and at least two edges of F incident with y belong to G, moreover if y is a trivial cut vertex, then these two edges are trivial bridges;
d) for any cut vertex y of G, the two edges incident with u in F are distinct from the two edges incident with y in F as specified in (c);
e) for any two cut vertices y_{1} and y_{2} of G, the two edges of F incident with y_{1} as specified in (c) are distince from those with y_{2} as specified in (c).

Proof. If G is $K_{1, s}$, for $s \geqslant 4$, then G^{2} is a complete graph and the result is obvious. Now we assume that G contains at least one cyclic block and $G^{\prime}=G-M$, where M is a set of all leaves adjacent with all trivial cut vertices of G.

Let $\mathbb{O}=B_{1}, B_{2}, \ldots, B_{k}$ be an ordering of all blocks of G^{\prime} such that either $u \in V\left(B_{1}\right)$, if any, or we choose arbitrary cyclic block as B_{1}, satisfying the following properties:

- for any cut vertex v of G^{\prime}, all children blocks of v with respect to the root r of $B C\left(G^{\prime}\right)$ corresponding to B_{1} appear consecutively in \mathbb{O} such that bridges containing v are in \mathbb{O} before cyclic blocks containing v;
- $\operatorname{dist}_{B C\left(G^{\prime}\right)}\left(r, v_{i}\right)<\operatorname{dist}_{B C\left(G^{\prime}\right)}\left(r, v_{j}\right)$ implies $i<j$, where v_{i}, v_{j} are vertices of $B C\left(G^{\prime}\right)$ corresponding to B_{i}, B_{j}, respectively.

Then G^{\prime} is a connected graph without non-trivial bridges and without bad leaves and we prove by induction on k that $\left(G^{\prime}\right)^{2}$ contains a $[2,4]$-factor F^{\prime} such that

1) $d_{F^{\prime}}(x)=2$ for any vertex x that is not a cut vertex of G;
2) both edges of F^{\prime} incident with u, if any, belong to B_{1};
3) for each cut-vertex y of G^{\prime}, it holds that $d_{F^{\prime}}(y)=4$ and at least two edges of F^{\prime} incident with y belong to G^{\prime}. Moreover,

- if y belongs to exactly two blocks of G^{\prime}, then at least two edges of F^{\prime} incident with y are edges from the children block of y with respect to r (the root of $B C\left(G^{\prime}\right)$ corresponding to $\left.B_{1}\right)$;
- if y belongs to more than two blocks of G^{\prime}, then at least two edges of F^{\prime} incident with y are edges from two different children blocks of y with respect to r.

For $k=1, G^{\prime}=B_{1}$ and $\left(G^{\prime}\right)^{2}$ even has a hamiltonian cycle C such that both edges of F^{\prime} incident with u, if any, belong to B_{1} by Theorem 1.

Let $k>1$ and assume that Lemma 9 is true for all integers less than k. By the definition of G^{\prime} and \mathbb{O}, B_{k} is an end cyclic block of G^{\prime} and let v_{0} be the cut vertex of G^{\prime} with $v_{0} \in V\left(B_{k}\right)$.

If $B_{k-1}=v_{0} l$ (i.e. B_{k-1} is a bridge) and B_{k-1}, B_{k} are only children blocks of v_{0} with respect to r, then we set $G_{1}=G^{\prime}-\left\{V\left(B_{k}\right) \cup\{l\} \backslash\left\{v_{0}\right\}\right\}$, otherwise we set $G_{2}=G^{\prime}-\left\{V\left(B_{k}\right) \backslash\left\{v_{0}\right\}\right\}$. Hence G_{1}, G_{2} are connected graphs without non-trivial bridges and without bad leaves and have $k-2, k-1$ blocks, respectively. Hence by the induction hypothesis, $\left(G_{1}\right)^{2},\left(G_{2}\right)^{2}$ have a $[2,4]$-factor F_{1}, F_{2} with properties 1), 2), and 3), respectively.

By Theorem 1, there is a Hamiltonian cycle C in $\left(B_{k}\right)^{2}$ such that two edges f_{1}, f_{2} of C incident with v_{0} belong to B_{k} and thus belong to G^{\prime}.

Case 1: G_{1} exists.
Let $f_{1}=v_{0} v_{k}$. Then $F^{\prime}=\left(\left(F_{1} \cup C\right) \cup\left\{v_{0} l, v_{k} l\right\}\right) \backslash\left\{f_{1}\right\}$ is the $[2,4]$-factor of $\left(G^{\prime}\right)^{2}$ with properties 1), 2), and 3).
Case 2: G_{1} does not exist and v_{0} is not a cut vertex in G_{2}.
Hence v_{0} belongs to exactly two blocks of G^{\prime} and $F^{\prime}=F_{2} \cup C$ is the [2,4]-factor of $\left(G^{\prime}\right)^{2}$ with properties 1), 2), and 3).
Case 3: G_{1} does not exist and v_{0} is a cut vertex in G_{2}.
Let $f_{1}=v_{0} v_{k}$. We consider two possibilities depending on the property 3).
If exactly two blocks of G_{2} contain v_{0}, then by the induction hypothesis $d_{G_{2}}\left(v_{0}\right)=4$ and there are two edges of F_{2} incident with v_{0} from a children block B_{k-1} of v_{0}. (Note that B_{k-1} is a cyclic block, since G_{1} does not exist.) Let $e_{k-1}=v_{0} v_{k-1}$ be such an edge of F_{2}. Since dist ${ }_{G^{\prime}}\left(v_{k-1}, v_{k}\right)=2$, the edge $v_{k-1} v_{k}$ is an edge of $\left(G_{2}\right)^{2}$. Thus $F^{\prime}=$ $\left(\left(F_{2} \cup C\right) \cup\left\{v_{k-1} v_{k}\right\}\right) \backslash\left\{e_{k-1}, f_{1}\right\}$ is the $[2,4]$-factor of $\left(G^{\prime}\right)^{2}$ with properties 1$\left.), 2\right)$, and 3$)$.

If there are more than two blocks of G_{2} containing v_{0}, then by the induction hypothesis $d_{G_{2}}\left(v_{0}\right)=4$ and there are two edges e_{k-2}, e_{k-1} of F_{2} incident with v_{0} in B_{k-2}, B_{k-1}, respectively. Note that it could be $B_{k-2}=e_{k-2}$ or $B_{k-1}=e_{k-1}$. Let $e_{k-2}=v_{0} v_{k-2}$. Since $\operatorname{dist}_{G^{\prime}}\left(v_{k-2}, v_{k}\right)=2$, the edge $v_{k-2} v_{k}$ is an edge of $\left(G_{2}\right)^{2}$. Thus $F^{\prime}=\left(\left(F_{2} \cup C\right) \cup\left\{v_{k-2} v_{k}\right\}\right) \backslash$ $\left\{e_{k-2}, f_{1}\right\}$ is the $[2,4]$-factor of $\left(G^{\prime}\right)^{2}$ with properties 1$\left.), 2\right)$, and 3$)$.

Now we extend F^{\prime} to a $[2,4]$-factor F in G^{2} with required properties. Note that the properties 1), 2), a nd 3) imply the properties a)-e) in Lemma 9.

Let $u_{1}, u_{2}, \ldots, u_{t}$ be all trivial cut vertices of G and $l_{i}^{1}, l_{i}^{2}, \ldots, l_{i}^{s_{i}}$ be all leaves incident with u_{i}, for $i=1,2, \ldots, t$. Note that $s_{i} \geqslant 2$, otherwise we have a bad bridge in G, a contradiction. For $i=1,2, \ldots, t$, let $C_{i}=u_{i} l_{i}^{1} l_{i}^{2} \ldots l_{i}^{s_{i}} u_{i}$ be cycles in G^{2} and $C^{\prime}=\cup_{j=1}^{t} C_{j}$. Since $d_{F^{\prime}}\left(u_{i}\right)=2$ and $u_{i} l_{i}^{1}, l_{i}^{s_{i}} u_{i}$ are edges from $G, F=F^{\prime} \cup C^{\prime}$ is the $[2,4]$-factor of G^{2} with properties a)-e).

Note that clearly the square of $K_{1,2}, K_{1,3}$ is hamiltonian but there is no [2,4]-factor with a vertex of degree 4 in the square of $K_{1,2}, K_{1,3}$, respectively.

3 Proof of Theorem 5

In this section we prove Theorem 5 .
Proof. Firstly if G is $K_{1,2}$ or $K_{1,3}$, then clearly G^{2} is even hamiltonian.
Now let X be a set of all bad leaves of G and $G^{\prime}=G-X$. For $x_{i} \in X$, we denote $y_{x_{i}}$ or only y_{i} its unique neighbor in G. By Lemma 9 , there is a $[2,4]$-factor F^{\prime} of $\left(G^{\prime}\right)^{2}$ with properties a)-e). Note that $d_{F^{\prime}}\left(y_{i}\right)=2$ for each y_{i}.

By the definition, any two bad leaves have a distance at least 3 . Let $X_{0} \subseteq X$ be the set of all bad leaves that has a bad leaf at the distance exactly 3 in G. Then, for all $x_{i} \in X_{0}$, corresponding y_{i} 's induce a subgraph of G^{\prime} in which all components (denoted by $H_{1}, H_{2}, \ldots, H_{s}$) are complete graphs, otherwise we have in G two bad leaves at distance 4, a contradiction.

Let $V\left(H_{i}\right)=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, t_{i}}\right\}, t_{i} \geqslant 2$ for $i=1,2, \ldots, s$. Then we set

$$
M_{i}=\bigcup_{j=1}^{t_{i}-1}\left\{x_{i, j} y_{i, j+1}, x_{i, j+1} y_{i, j}\right\} \bigcup\left\{x_{i, 1} y_{i, 1}, x_{i, t_{i}} y_{i, t_{i}}\right\}
$$

All bad leaves of $X \backslash X_{0}$ are pairwise at distance at least 5 and we divide them into the following three disjoint classes by the following way (see Fig. 3 for illustration):
1)

2)

3)

Figure 3: Three cases in an ordering of all bad leaves of $X \backslash X_{0}$ in G.

1) Let X_{1} be the set of all vertices $x \in X \backslash X_{0}$ such that there exists a vertex z_{x} with $y_{x} z_{x} \in E\left(F^{\prime}\right) \cap E\left(G^{\prime}\right) ;$
2) Let X_{2} be the set of all vertices $x \in X \backslash\left(X_{0} \cup X_{1}\right)$ such that there exists z_{x}, which is not a cut vertex of G^{\prime}, with $y_{x} z_{x} \in E\left(G^{\prime}\right)$ (and $y_{x} z_{x} \in E\left(F^{\prime}\right)$);
3) Let X_{3} be the set of all vertices $x \in X \backslash\left(X_{0} \cup X_{1} \cup X_{2}\right)$ (it means that there exists only a cut vertex z_{x} of G^{\prime} with $y_{x} z_{x} \in E\left(G^{\prime}\right)$ (and $y_{x} z_{x} \in E\left(F^{\prime}\right)$).

Note that by Lemma 9 we have

- $d_{F^{\prime}}\left(z_{x}\right)=2$ for $x \in X_{2}$;
- $d_{F^{\prime}}\left(z_{x}\right)=4$ and at least two edges incident with z_{x} (namely $z_{x} z_{x}^{\prime}, z_{x} z_{x}^{\prime \prime}$) are in $E\left(E^{\prime}\right) \cap E\left(G^{\prime}\right)$ for $x \in X_{3}$.
Now set

$$
\begin{gathered}
E_{0}=\bigcup_{i=1}^{s} M_{i}, \quad E_{1}=\bigcup_{x \in X_{1}}\left\{x y_{x}, x z_{x}\right\}, \quad E_{1}^{\prime}=\bigcup_{x \in X_{1}}\left\{y_{x} z_{x}\right\} \\
E_{2}=\bigcup_{x \in X_{2}}\left\{x y_{x}, x z_{x}, y_{x} z_{x}\right\} \\
E_{3}=\bigcup_{x \in X_{3}}\left\{x y_{x}, x z_{x}, y_{x} z_{x}^{\prime}\right\}, \quad E_{3}^{\prime}=\bigcup_{x \in X_{3}}\left\{z_{x} z_{x}^{\prime}\right\}
\end{gathered}
$$

For all x, z_{x} 's are different, otherwise if $z_{x}=z_{x^{\prime}}$, for $x \neq x^{\prime}$, then $x y_{x} z_{x}\left(=z_{x^{\prime}}\right) y_{x^{\prime}} x^{\prime}$ is a path of length 4 in G joining two bad leaves, a contradiction. Similarly, none of z_{x} 's is a neighbor of a bad leaf in G.

Possibly, $z_{x_{i_{1}}} z_{x_{i_{2}}} \ldots z_{x_{i_{k}}}$ is a path in F^{\prime} for $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\} \subseteq X_{3}$. In order to have different edges in E_{3} and E_{3}^{\prime} we set $z_{x_{j}}^{\prime}=z_{x_{j+1}}$, for $j=i_{1}, i_{2}, \ldots, i_{k-1}$, and $z_{x_{i_{k}}}^{\prime}$ as arbitrary neighbor of $z_{x_{i_{k}}}$ in F^{\prime} and in G different from $z_{x_{i_{k-1}}}$. Note that by 3) and Lemma 9 such a vertex exists and could be some $z_{x_{j}}$, for $j \in\left\{i_{1}, i_{2}, \ldots, i_{k-2}\right\}$.

Hence we conclude that $F=\left(F^{\prime} \cup\left(E_{0} \cup E_{1} \cup E_{2} \cup E_{3}\right)\right) \backslash\left(E_{1}^{\prime} \cup E_{3}^{\prime}\right)$ is a [2,4]-factor of G^{2} 。

4 Conclusion

Now we can answer the question from the Introduction. By Theorem 1 we know that the square of a 2 -connected graph has a $[2,2 s]$-factor for $s=1$. In this paper we proved that the square of a 2-edge-connected graph has a $[2,2 s]$-factor for $s=2$ (Corollary 6) and that the square of a essentially 2 -edge-connected graph without bad leaves has a $[2,2 s]$-factor also for $s=2$ (Corollary 7). In general, there exist essentially 2 -edge-connected graphs whose square have no $[2,2 s]$-factor for every s. This example of G even exists under an additional condition that the graph obtained from G by deleting all leaves is 2-connected (Theorem 4).

References

[1] F. Duan, W. Zhang, and G. Wang, Connected even factors in $\left\{K_{1, \ell}, K_{1, \ell}+e\right\}$-free graphs, Ars Combinatoria, 115 (2014), 385-389.
[2] J. Ekstein, Hamiltonian cycles in the square of a graph, The Electronic Journal of Combinatorics 18 (2011), \#P203.
[3] J. Ekstein, P. Holub, T. Kaiser, L. Xiong, and S. Zhang, Star subdivisions and connected even factors in the square of a graph, Discrete Mathematics 312 (2012), 2574-2578.
[4] M. El Kadi Abderrezzak, E. Flandrin, and Z. Ryjáček, Induced $S\left(K_{1,3}\right)$ and hamiltonian cycles in the square of a graph, Discrete Mathematics 207 (1999), 263-269.
[5] R. J. Faudree and R. H. Schelp, The square of a block is strongly path connected, Journal of Combinatorial Theory, Series B 20 (1976), 47-61.
[6] H. Fleischner, In the square of graphs, Hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte für Mathematik 82 (1976), 125-149.
[7] R. J. Gould and M. S. Jacobson, Forbidden Subgraphs and Hamiltonian Properties in the Square of a Connected Graph, Journal of Graph Theory 8 (1984), 147-154.
[8] G. Hendry and W. Vogler, The square of a $S\left(K_{1,3}\right)$-free graph is vertex pancyclic, Journal of Graph Theory 9 (1985), 535-537.
[9] G. Chartrand, A. M. Hobbs, H. A. Jung, S. F. Kapoor, and C. St. J. A. NashWilliams, The square of a block is Hamiltonian connected, Journal of Combinatorial Theory, Series B 16 (1974), 290-292.
[10] G. L. Chia, S. Ong, and L. Y. Tan, On graphs whose square have strong hamiltonian properties, Discrete Mathematics 309 (2009), 4608-4613.
[11] M. C. Li, L. Xiong and H. J. Broersma, Connected even factors in claw-free graphs, Discrete Mathematics 308 (2008), 2282-2284.
[12] J. Müttel and D. Rautenbach, A short proof of the versatile version of Fleischner's theorem, Discrete Mathematics 313 (2013), 1929-1933.
[13] F. Odile and K. Mekkia, Even factors of larger size, Journal Graph Theory 77 (2014), 58-67.
[14] Paris Underground, On Graphs with Hamiltonian squares, Discrete Mathematics 21 (1987), 323.
[15] D. B. West, Introduction to Graph Theory, Second ed. PrinticeHall, Upper Saddle River, NJ, 2001.

[^0]: *Supported by (i) the European Regional Development Fund (ERDF), Project, NTIS - New Technologies for Information Society, European Centre of Excellence, CZ.1.05/1.1.00/02.0090; (ii) project GA14-19503S of the Grant Agency of the Czech Republic.
 ${ }^{\dagger}$ Supported by NSFC (No.11161046) and by Xinjiang Talent Youth Project (No.2013721012).
 ${ }^{\ddagger}$ Supported by NSFC (No. 11471037 and No.11671037).

