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ABSTRACT 
Nonlinear mapping (Sammon mapping) is a nonlinear dimensionality reduction technique operating on the data 

structure preserving principle. Several possible space partitioning data structures (vp-trees, kd-trees and cluster 

trees) are applied in the paper to improve the efficiency of the nonlinear mapping algorithm. At the first step 

specified structures partition the input multidimensional space, at the second step space partitioning structure is 

used to build up the list of reference nodes used to approximate calculations. The further steps perform 

initialization and iterative refinement of the low-dimensional coordinates of objects in the output space using 

created lists of reference nodes. Analyzed space partitioning data structures are evaluated in terms of the data 

mapping error and runtime. The experiments are carried out on the well-known datasets. 

Keywords 
Dimensionality reduction, nonlinear mapping, Sammon mapping, multidimensional scaling, MDS, space 

partitioning, space decomposition, vp-tree, kd-tree, cluster tree 

INTRODUCTION 
Nonlinear mapping algorithm [Sam69] also known as 

a Sammon mapping is one of the most well-known 

explorative data analysis techniques. It belongs to a 

more broad class of nonlinear dimensionality 

reduction techniques operating on the data structure 

preserving principle.  

Nonlinear mapping is widely used in scientific 

research, and in many areas of production activities. 

In signal and image analysis nonlinear mapping has 

been applied in creation of navigation systems for 

image and multimedia collections. For example, for 

digital image collections feature information based on 

visual characteristics of images is extracted at first. 

Then the nonlinear mapping algorithm is used to map 

the images from multidimensional feature space to 

the navigation space (2 or 3 dimensional). Similar 

images are placed close to each other in this 

navigation space and a user can browse the collection 

due to visual characteristics of images.  

Another application of nonlinear mapping is 

automated segmentation and thematic classification 

of multispectral satellite image. In this case separate 

pixels are first clusterized due to its feature 

information and then the clusters are mapped into 

two-dimensional space using nonlinear mapping 

algorithm. In this space similar clusters are placed 

close to each other that allows user to merge clusters 

belonging to same segments. Such merged clusters 

can be later semantically labeled to perform thematic 

classification of an image. 

Nonlinear mapping performs projection from some 

input multidimensional space to output low-

dimensional space for a given set of objects (are often 

referred to as data points) },...,,{ 21 NoooO  . We 

consider the preservation of the data structure as the 

preservation of the pairwise distances between the 

objects.  

That is the distances ),(*
ji ood  between pairs of 

objects oi and oj in the output low-dimensional space 

should approximate corresponding distances 

),( ji ood  in the input multidimensional space. It is 

obvious that such a projection cannot preserve 

distances exactly and the following data 
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representation error allows to estimate the quality of 

the mapping: 
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Applying gradient descent approach to minimize the 

data representation error we obtain the following 

iterative equation for coordinates yi of object oi in the 

output low-dimensional space: 
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Here t  is the number of iteration,   is some 

coefficient that affects the convergence of the 

algorithm. The notations in the above equations are 

different from the ones usually used in literature to 

simplify the further description. 

An example of a nonlinear mapping for a synthetic 

dataset is shown on fig. 1. The dataset consists of a 

set of points obtained from the text depicted on a 

cylinder in 3D space (fig. 1.a). Fig 1.b shows the 

results obtained using the principal component 

analysis (PCA). Dataset is mapped on the first two 

principal components. The results of the described 

above nonlinear mapping algorithm is shown on the 

fig. 1.c. As it can be seen the local data structure 

appears.  

Fig. 2 shows a mapping of a set of multi-spectral 

values (4 spectral bands) of pixels in 3x3 

neighborhoods (total 36 attributes) in a LANDSAT 

satellite image [LAN]. Different classes are shown in 

different color.  

To obtain a solution one should initialize the 

coordinates )0(iy  and iteratively refine coordinates 

of all the objects in accordance to (2) until the 

coordinates become stable. 

Unfortunately, this simple iterative procedure given 

above has a significant drawback. If the set O 

contains N objects then the computational complexity 

is O(N
2
) per iteration (the computational complexity 

for the data representation error is roughly the same).  

 

(a) 

 

(b) 

 

(c) 

Figure 1. Mapping for synthetic dataset: 

(a) synthetic 3D data;  (b) mapping on the first 

two principal components;  (c) nonlinear mapping 

(data representation error is  = 0.0046) 

The algorithm becomes time consuming for relatively 

small sets of objects containing hundreds and 

thousands of objects. The problem becomes more 

significant for sets containing some tens thousands of 

objects as the memory needed to store precomputed 

distances between the objects in the input 

multidimensional space is N*(N-1)/2 (having account 

that the distance matrix is symmetrical). For example, 

for a set of 20 000 objects we need about 1,5 Gb of 

operational memory to store the distances as a 8 byte 

floating point values. Recomputing the distances 

makes the optimization process even more time 

consuming and dependent on the dimensionality of 

the input space. As an example, the time needed to 

compute the error in accordance to (1) for a MNIST 

dataset containing 60 000 objects used in this paper 

for an experimental study takes more than one hour. 
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Figure 2. Nonlinear mapping for the  

Landsat Satellite dataset  

(data representation error is  = 0.0177) 

One of the most effective and promising approaches 

to reduce the computational complexity is to perform 

hierarchical partitioning of space. In the case of the 

considered problem such partitioning can be 

performed using different space partitioning 

structures. This study is devoted to the comparison of 

several space partitioning structures in terms of the 

quality of mapping, as well as in terms of operating 

time. 

Related works 
To address the problem of a computational 

complexity of the nonlinear mapping the number of 

techniques has been proposed. For this purpose the 

triangulation [Lee77], and linear transformation 

[Pek99] are used. 

Later the performance of the nonlinear mapping has 

been improved by extending data representation error 

using left [Sun11a] and right [Sun11b] Bregman 

divergence. 

Taking into account that nonlinear mapping belongs 

to the multidimensional scaling techniques it is worth 

mentioning the methods based on the stochastic 

optimization [Cha96].  

The idea of a hierarchical space partitioning to reduce 

the computational complexity has originated from 

physics where it is widely used in modelling systems 

consisting of a huge number of objects (n-body 

simulations).  

The partitioning of the space has been implemented 

in graph drawing, for example, in [Fru91] (regular 

decomposition) and [Qui01] (hierarchical 

decomposition) to approximate the forces acting on 

the vertices of the graph. 

In dimensionality reduction the hierarchical 

partitioning of the input multidimensional space 

similar to Barnes-Hut [Bar86] algorithm has been 

implemented in [Mya12] to improve nonlinear 

mapping. The hierarchical partitioning of the output 

low-dimensional space using Barnes-Hut algorithm 

has been implemented in [Van13, Yan13] to 

accelerate stochastic neighbor embedding algorithm 

(t-SNE). In [Vla14] another widely used fast 

multipole method [Gre87] has been applied to speed 

up elastic embedding algorithm. 

Approximate computations 
The main idea of speeding up computations using the 

space partitioning techniques is to divide the whole 

set of objects O to some subsets ,..., 21 ss  so that all 

objects ki so   from some subset ks  should possess 

similar characteristics. That is all objects from some 

subset ks  are situated close to each other in the given 

space. In this case objects in a subset ks  can be 

analyzed not individually, but as a single object under 

some circumstances. Assume that the subset ks  is 

situated far from the object io . Then the exact 

summation  
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can be approximated as follows  
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where ks  is the number of objects in the considered 

subset, ),( ki sod  is the distance from the object oi to 

the center of the subset ks  in the input space, 

),(*
ki sod  is the distance from the object io  to the 

center of the subset in the output space, 
ksy  is the 

coordinates of the center of the group in the output 

space. 

Now if all the objects of the original set O are divided 

into subsets Ssk  , then (2) takes the form  
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It is obvious that the equation (4) allows to 

approximate (2) with a certain accuracy that depends 

on how well objects are divided into subsets. 

For this reason, there is a question about how to 

perform such a decomposition.  
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Description of the Methods  
The base scheme for the method described below is 

taken from [Mya12] with some modifications. In 

general the considered method consists of the four 

following steps: 

1. Partitioning of the input space 

2. Construction of reference nodes lists 

3. Initialization in the output space 

4. Iterative optimization 

The above stages are discussed below in more detail. 

Partitioning of the input space 

The first step of the original method assumed the 

hierarchical clustering to partition the input space. 

This lead to the O(N
2
) complexity in the case of 

effective agglomerative clustering. In the case of 

divisive method based on the neural network (WTA) 

that was implemented in [Mya12] the runtime of 

hierarchical clustering is highly dependent on the 

parameters of the algorithm.  

At the same time there are a number of space 

partitioning trees that can be built in less time and 

that used widely in multimedia databases, geographic 

information systems, information retrieval, computer 

graphics and so on. The review of such data 

structures is beyond the scope of this paper. A 

comprehensive work on space partitioning trees can 

be found, for example, in [Sam06]. 

In this work several binary space partitioning trees 

were used and compared for input space partitioning: 

kd-tree [Ben75], metric tree (vp-tree) [Uhl91, Yia93], 

and binary tree based on the simplification of minmax 

distance clustering approach [Tou74] (further “cluster 

tree”).  

Such choice is motivated to study structures that are 

different in their properties. Kd-tree is one of the old 

and well-known space partitioning structures based 

on the recursive splitting a space with hyperplanes 

orthogonal to the coordinate axes. Vp-tree is another 

well-known space partitioning structure based on the 

hypersherical partitioning of a space. Cluster tree is 

the distance based structure that partitions a space 

with hyperplanes orthogonal to a pair of chosen 

distant points. 

All the mentioned structures can be built in 

O(N log N) operations (if the tree is balanced) that is 

more suitable for the considered task. As the 

construction algorithms for the first two structures are 

well known only the algorithm for latter structure is 

given below by a pseudo code. 

 
Function CreateTree( SetOfObjects O ) returns Node   
begin 
 Create new node S 
 if Number of objects in O is less than threshold then  

 begin 
  S.Children = O 
  return S 
 end 
 Find mean vector value in O 
 Find o1 object farthest from mean 
 Find o2 object farthest from o1 
 Create new SetOfObjects s1 
 Create new SetOfObjects s2 
 for each object o in O begin 
  if ( d(o1, o) < d( o2, o ) )  
   add o to s1 
  else 
   add o to s2 
 end 
 Node n1 = CreateTree( s1 ) 
 Node n2 = CreateTree( s2 ) 
 add n1 to S.Children 
 add n2 to S.Children 
 return S 
end 
 

Let us assume that using some partitioning method 

(e.g. using function given above) we get the tree-like 

data structure (fig. 3), containing the objects of the 

initial set O as leaves (terminal nodes). 

 

Figure 3. The structure of a binary space 

partitioning tree 

The tree created at the first step of an algorithm can 

be used in optimization process immediately in the 

following way. We iteratively update low-

dimensional coordinates for each object Ooi   in 

accordance to (4), using top-level nodes of the tree if 

such nodes are far enough from the object io , and 

low-level nodes of the tree or the objects of the initial 

set O  in the other case.  

However, the constructed tree is not used directly in 

the optimization process in this paper. Instead of it 

the special data structure is used in optimization, 

which is described in the next subsection. The details 

of the optimization process are given in “Iterative 

optimization” subsections. 

Construction of reference nodes lists 

It is worth noting that as the partitioning is performed 

in the input multidimensional space then the 
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partitioning tree is constant in the optimization 

process.  

That is why in [Mya12] it was proposed to calculate 

and to store the set of nodes and the objects which are 

involved in the optimization process (called the list of 

reference nodes) for each object Ooi   of the initial 

set. The use of the lists of reference nodes requires 

additional memory but allows to avoid recalculating 

the partitioning criterion during the optimization 

process and allows to store precomputed distances to 

reference nodes that makes the optimization process 

independent on the input dimensionality. 

The straightforward algorithm for creation of 

reference nodes is recursive and described below by 

pseudo code. 

Procedure CreateRefList( Object o, Node s, RefNodeList rl) 
begin 
 if o far from s then  
  add s to rl 
 else if s contains objects then  
  for each object a in s  
   add a to rl  
 else    /* s contains subtrees */ 
  for each node d contained in s  
   CreateRefList( o, d, rl ) 
end 
To avoid recursive calls the iterative implementation 

using special pointers in tree nodes was used in the 

experiments. 

The described above algorithm is slightly different 

compared to [Mya12] by removing the notion of 

incomplete node. The use of incomplete nodes allow 

to slightly accelerate calculations by aggregating 

some portion of objects in decomposed nodes of the 

tree but it requires extra memory to store information 

about aggregated objects.  

The first condition “o is far from s” defines the 

decomposition criterion of the given node s with 

respect to the object o. Different decomposition 

criterions were described in physics literature (e.g. 

[Sal94]). And here we adapt (as in [Mya12]) simple 

decomposition criterion based on the radius R of the 

given node s. That is we decompose the node of the 

space partitioning tree under the following condition:  

 TsRosd )(/),(   

where T is a predefined threshold parameter. 

Otherwise we add the node s of the tree to the list of 

the reference nodes. 

Fig. 4 illustrates this process. The node s1 will be 

divided into two nodes if TsRosd )(/),( 11 . The 

node s2 will be considered as a single node if 

TsRosd )(/),( 22 . 

 

Figure 4. Illustration to the construction of reference 

nodes list  

It is worth noting that the number of the nodes in the 

list of the reference nodes is dependent on the 

distribution of the data. Assuming that the list of 

reference nodes contains on average L nodes the 

memory needed to store the lists is O[LN].  

Initialization in the output space 

The third step of the original method performs an 

initialization of the low-dimensional coordinates of 

the objects. Only two first principal components are 

computed to initialize objects in the output space and 

then input multidimensional coordinates are projected 

to the plane formed by these components. This 

approach allows to reduce the computation time 

compared to random initialization as the next step of 

iterative optimization process starts with the better 

initial conditions.  

Although principal components finding by the 

covariance matrix is dependent on the dimensionality 

of the input space D and can be estimated as O(D
2
) 

per iteration the overall process can be time 

consuming as covariance matrix finding is O(ND
2
) 

and depends not only on the dimensionality but on 

the number N of objects also. To reduce the 

computational time we use only a small subset of 

randomly selected objects of the initial set O making 

the overall complexity independent on the number of 

objects. There are other solutions, e.g. use of neural 

network approach based on generalized Hebbian 

(Sanger) learning rule [San89] used in [Mya12]. 

Iterative optimization 

After initializing low-dimensional coordinates of 

objects the optimization procedure is performed to 

find sub optimal coordinates of objects in output low-

dimensional space. It consists of iterative refinement 

of output coordinates of all objects in accordance 

with  

 
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where set Si is the list of reference nodes for object oi, 

and subsets sik are reference nodes for object oi. 

The computational complexity of the optimization 

stage of the method can be estimated as O(LN) on 

average where L is the average length of lists of 

reference nodes. 

In practice it may be reasonable to control the data 

mapping error along the process of optimization as it 

can indicate the divergence of the process or it may 

be used in a stop criterion. The computation 

complexity of the data mapping error (1) is roughly 

the same as the complexity of one step of the base 

version of the optimization process (O[N
2
]). Using 

the lists of reference nodes data mapping error can be 

estimated in O(LN) on the average: 
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It is worth noting that the above equation may give 

greatly underestimated values of the data mapping 

error especially in case when approximation based on 

the input multidimensional information becomes too 

coarse. For example, this can take place due to poor 

configuration of objects in the low-dimensional 

space.  

In the present work this equation was used to control 

the optimization process. When the estimated error 

value was increasing then the   coefficient was 

decreasing until the process became convergent. Also 

this equation was used to stop the optimization 

process when the relative decrease in estimated error 

for a given number of iterations did not exceed the 

predefined value. 

Experimental study  
Two well-known datasets were used in the presented 

study. The first one is the MNIST database of 

handwritten digits [MNI]. The second one is the 

Corel Image Features Data Set [COR].  

The first database contains digital grayscale images 

of handwritten digits. The database is divided in two 

sets: a training set containing 60 000 instances, and 

test set containing 10 000 instances. Images of the 

training set with size 28x28 pixels are treated as 

vectors in 784-dimensional space in the experiments.  

The second dataset contains features, calculated from 

the digital images of the Corel image collection 

(http://corel.digitalriver.com/). The Corel Image 

Features Data Set contains 68 040 instances.  

The following features have been used in the 

experiments: 

- color histograms [Swa91] constructed in the HSV 

color space. Color space was divided into 8 ranges of 

H and 4 ranges of S. The dimensionality of the 

feature space is 32. 

- color moments [Sti95]. Three features were 

calculated for each color component: mean, standard 

deviation, and skewness. The dimensionality of the 

feature space is 9. 

- texture features based on co-occurrence matrices 

[Har73]. Four co-occurrence features (second angular 

moment, contrast, inverse difference moment, and 

entropy) were computed in four directions 

(horizontal, vertical, and two diagonal). The 

dimensionality of the feature space is 16. 

To evaluate the effectiveness of the methods a 

number of characteristics has been measured and 

calculated:  

- building time of the binary space partitioning tree, 

- building time of the list of reference nodes, 

- length of the list of reference nodes,  

- initialization time of the low-dimensional 

coordinates,  

- per iteration execution time of the optimization 

procedure,  

- multidimensional data representation error. 

All the described methods were implemented in C++. 

The studies with the MNIST dataset have been 

carried out on PC based on Intel Core i5-3470 CPU 

3.2 GHz. The studies with the COREL dataset have 

been carried out on laptop based on Intel Core i3 

M370 CPU 2.4 GHz. 

The work of the methods stopped when the relative 

decrease in estimated error for ten iterations did not 

exceed 0.01. In all cases, the dimension of the target 

space has been set equal to two (two-dimensional 

data mapping).  

Some results are shown in fig. 5-7.  

Fig. 5 shows the dependence of the qualitative and 

temporal characteristics on the threshold parameter T 

at which the algorithm moves to the child nodes of 

the corresponding partitioning structure (metric (vp-) 

tree, kd-tree or cluster tree). 

As it can be seen from these results, the small values 

of T (especially T<1) leads to the expected 

deterioration of the mapping quality due to a coarser 

approximation, which is reflected in the higher values 

of the multidimensional data representation error  

(see fig. 5d). The time it takes to perform a single 

iteration, increases with increasing T (see fig. 5c), due 

to the large number of the processed reference nodes 

of the corresponding hierarchical structure (see fig. 

5b).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Dependencies on the threshold 

parameter T (MNIST dataset): (a) average 

building time of the list of reference nodes (LRN);  

(b) average length of the list of reference nodes;  

(c) average time per one iteration of the 

optimization process;  (d) multidimensional data 

representation error   

Dependencies of quality and temporal characteristics 

on the number of objects is shown in the fig. 6 and 7. 

The quality of mapping, measured by the 

multidimensional data representation error  (see fig. 

6d, 7d) is weakly dependent on the type of space 

partitioning structure. At the same time the average 

length of lists of reference nodes is significantly 

larger when we use kd-tree (see fig. 6b, 7b). This 

confirms that kd-trees are poorly suited for 

multidimensional data processing. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Dependencies on the sample size 

(MNIST dataset): (a) average building time of the 

list of reference nodes (LRN);  (b) average length 

of the list of reference nodes;  (c) average time per 

one iteration of the optimization process;   

(d) multidimensional data representation error  

Some results obtained for the base nonlinear mapping 

algorithm is shown on fig. 8 (logarithmic scale). 

Timings for the case of precomputed distances are 

not shown for large sample sizes due to memory 

limitations. The multidimensional data representation 

error is shown on fig. 7 for comparison. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7. Dependencies on the sample size 

(COREL dataset): (a) average building time of the 

list of reference nodes (LRN);  (b) average length 

of the list of reference nodes;  (c) average time per 

one iteration of the optimization process;   

(d) multidimensional data representation error  

 

As we can see the error values for the base method is 

only slightly better than error values obtained using 

the studied methods. 

Note that the experiments performed on other 

datasets described above, show similar results. 

 

Figure 8. Dependency of the average time per one 

iteration on the sample size for the base algorithm 

(COREL dataset) 

Some examples of the nonlinear mapping obtained 

using space partitioning structure and the base 

algorithm for a subset containing 5000 instances of 

the MNIST dataset is shown in fig. 9.  

An example of the nonlinear mapping using the 

described approach for 60 000 objects of the MNIST 

database is shown in fig. 10. The database was 

processed in less than 30 minutes including error 

estimation at each iteration (19 minutes without error 

estimation). The multidimensional data representation 

error was equal to 0.14. 

Conclusion 
In this paper, we conducted a study of several space 

partitioning structures namely metric trees (vp-trees), 

kd-trees, and cluster trees to speed up the nonlinear 

mapping. The study showed that the quality of 

mapping is weakly dependent on the type of the 

structure but the average iteration time was different 

for the considered structures. For kd-tree the number 

of reference nodes was significantly larger than for 

the other structures, hence the average iteration time 

was larger. 

Thus for the presented data sets metric trees (vp-

trees) and cluster trees can be efficiently applied to 

partition the input space for the considered problem. 

Using of the considered data structures made it 

possible to generate low-dimensional embeddings for 

relatively large datasets in a comfortable time. 

At the same time the data representation error for the 

base algorithm had slightly lower values. To improve 

the quality of the mapping one can use the considered 

structures increasing the threshold parameter T or use 

the obtained low-dimensional configuration as an 

initial configuration for the base method. 
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(a)      (b) 

Figure 9. Nonlinear mapping for 5000 instances of MNIST database: 

(a) cluster tree, 207 iterations, threshold T = 1, multidimensional data representation error  = 0.14255; 

(b) base method, 194 iterations, multidimensional data representation error  = 0.14077 

 

Figure 10. Nonlinear mapping for training set of MNIST database (60,000 examples) 
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