

Evaluation of Space Partitioning Data Structures

for Nonlinear Mapping

Myasnikov E.V.

Samara State Aerospace University,
Image Processing Systems Institute of the Russian Academy of Sciences

Samara, Russia

mevg@geosamara.ru

ABSTRACT
Nonlinear mapping (Sammon mapping) is a nonlinear dimensionality reduction technique operating on the data

structure preserving principle. Several possible space partitioning data structures (vp-trees, kd-trees and cluster

trees) are applied in the paper to improve the efficiency of the nonlinear mapping algorithm. At the first step

specified structures partition the input multidimensional space, at the second step space partitioning structure is

used to build up the list of reference nodes used to approximate calculations. The further steps perform

initialization and iterative refinement of the low-dimensional coordinates of objects in the output space using

created lists of reference nodes. Analyzed space partitioning data structures are evaluated in terms of the data

mapping error and runtime. The experiments are carried out on the well-known datasets.

Keywords
Dimensionality reduction, nonlinear mapping, Sammon mapping, multidimensional scaling, MDS, space

partitioning, space decomposition, vp-tree, kd-tree, cluster tree

INTRODUCTION
Nonlinear mapping algorithm [Sam69] also known as

a Sammon mapping is one of the most well-known

explorative data analysis techniques. It belongs to a

more broad class of nonlinear dimensionality

reduction techniques operating on the data structure

preserving principle.

Nonlinear mapping is widely used in scientific

research, and in many areas of production activities.

In signal and image analysis nonlinear mapping has

been applied in creation of navigation systems for

image and multimedia collections. For example, for

digital image collections feature information based on

visual characteristics of images is extracted at first.

Then the nonlinear mapping algorithm is used to map

the images from multidimensional feature space to

the navigation space (2 or 3 dimensional). Similar

images are placed close to each other in this

navigation space and a user can browse the collection

due to visual characteristics of images.

Another application of nonlinear mapping is

automated segmentation and thematic classification

of multispectral satellite image. In this case separate

pixels are first clusterized due to its feature

information and then the clusters are mapped into

two-dimensional space using nonlinear mapping

algorithm. In this space similar clusters are placed

close to each other that allows user to merge clusters

belonging to same segments. Such merged clusters

can be later semantically labeled to perform thematic

classification of an image.

Nonlinear mapping performs projection from some

input multidimensional space to output low-

dimensional space for a given set of objects (are often

referred to as data points) },...,,{ 21 NoooO  . We

consider the preservation of the data structure as the

preservation of the pairwise distances between the

objects.

That is the distances),(*
ji ood between pairs of

objects oi and oj in the output low-dimensional space

should approximate corresponding distances

),(ji ood in the input multidimensional space. It is

obvious that such a projection cannot preserve

distances exactly and the following data

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 109 ISBN 978-80-86943-65-7

representation error allows to estimate the quality of

the mapping:

 


 










ji

Ooo ji

jiji

ji

Ooo

ji
ji

ji

ood

oodood

ood
,

2*

,

),(

),(),(

),(

1
 (1)

Applying gradient descent approach to minimize the

data representation error we obtain the following

iterative equation for coordinates yi of object oi in the

output low-dimensional space:

 



Oo

jiii

j

oomtt),()()1(ςyy (2)

where









ji

Ooo

ji

ji

ood

m

,

),(

2 
,

  ji

jiji

jiji
ji

oodood

oodood
oo yyς 






),(),(

),(),(
),(

*

*

 (3)

Here t is the number of iteration,  is some

coefficient that affects the convergence of the

algorithm. The notations in the above equations are

different from the ones usually used in literature to

simplify the further description.

An example of a nonlinear mapping for a synthetic

dataset is shown on fig. 1. The dataset consists of a

set of points obtained from the text depicted on a

cylinder in 3D space (fig. 1.a). Fig 1.b shows the

results obtained using the principal component

analysis (PCA). Dataset is mapped on the first two

principal components. The results of the described

above nonlinear mapping algorithm is shown on the

fig. 1.c. As it can be seen the local data structure

appears.

Fig. 2 shows a mapping of a set of multi-spectral

values (4 spectral bands) of pixels in 3x3

neighborhoods (total 36 attributes) in a LANDSAT

satellite image [LAN]. Different classes are shown in

different color.

To obtain a solution one should initialize the

coordinates)0(iy and iteratively refine coordinates

of all the objects in accordance to (2) until the

coordinates become stable.

Unfortunately, this simple iterative procedure given

above has a significant drawback. If the set O

contains N objects then the computational complexity

is O(N
2
) per iteration (the computational complexity

for the data representation error is roughly the same).

(a)

(b)

(c)

Figure 1. Mapping for synthetic dataset:

(a) synthetic 3D data; (b) mapping on the first

two principal components; (c) nonlinear mapping

(data representation error is  = 0.0046)

The algorithm becomes time consuming for relatively

small sets of objects containing hundreds and

thousands of objects. The problem becomes more

significant for sets containing some tens thousands of

objects as the memory needed to store precomputed

distances between the objects in the input

multidimensional space is N*(N-1)/2 (having account

that the distance matrix is symmetrical). For example,

for a set of 20 000 objects we need about 1,5 Gb of

operational memory to store the distances as a 8 byte

floating point values. Recomputing the distances

makes the optimization process even more time

consuming and dependent on the dimensionality of

the input space. As an example, the time needed to

compute the error in accordance to (1) for a MNIST

dataset containing 60 000 objects used in this paper

for an experimental study takes more than one hour.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 110 ISBN 978-80-86943-65-7

Figure 2. Nonlinear mapping for the

Landsat Satellite dataset

(data representation error is  = 0.0177)

One of the most effective and promising approaches

to reduce the computational complexity is to perform

hierarchical partitioning of space. In the case of the

considered problem such partitioning can be

performed using different space partitioning

structures. This study is devoted to the comparison of

several space partitioning structures in terms of the

quality of mapping, as well as in terms of operating

time.

Related works
To address the problem of a computational

complexity of the nonlinear mapping the number of

techniques has been proposed. For this purpose the

triangulation [Lee77], and linear transformation

[Pek99] are used.

Later the performance of the nonlinear mapping has

been improved by extending data representation error

using left [Sun11a] and right [Sun11b] Bregman

divergence.

Taking into account that nonlinear mapping belongs

to the multidimensional scaling techniques it is worth

mentioning the methods based on the stochastic

optimization [Cha96].

The idea of a hierarchical space partitioning to reduce

the computational complexity has originated from

physics where it is widely used in modelling systems

consisting of a huge number of objects (n-body

simulations).

The partitioning of the space has been implemented

in graph drawing, for example, in [Fru91] (regular

decomposition) and [Qui01] (hierarchical

decomposition) to approximate the forces acting on

the vertices of the graph.

In dimensionality reduction the hierarchical

partitioning of the input multidimensional space

similar to Barnes-Hut [Bar86] algorithm has been

implemented in [Mya12] to improve nonlinear

mapping. The hierarchical partitioning of the output

low-dimensional space using Barnes-Hut algorithm

has been implemented in [Van13, Yan13] to

accelerate stochastic neighbor embedding algorithm

(t-SNE). In [Vla14] another widely used fast

multipole method [Gre87] has been applied to speed

up elastic embedding algorithm.

Approximate computations
The main idea of speeding up computations using the

space partitioning techniques is to divide the whole

set of objects O to some subsets ,..., 21 ss so that all

objects ki so  from some subset ks should possess

similar characteristics. That is all objects from some

subset ks are situated close to each other in the given

space. In this case objects in a subset ks can be

analyzed not individually, but as a single object under

some circumstances. Assume that the subset ks is

situated far from the object io . Then the exact

summation

  







kj so
ji

jiji

jiji

oodood

oodood
)

),(),(

),(),(

*

*

yy

can be approximated as follows

  
ksi

kiki

kiki
k

sodsod

sodsod
s yy 





),(),(

),(),(
*

*

where ks is the number of objects in the considered

subset,),(ki sod is the distance from the object oi to

the center of the subset ks in the input space,

),(*
ki sod is the distance from the object io to the

center of the subset in the output space,
ksy is the

coordinates of the center of the group in the output

space.

Now if all the objects of the original set O are divided

into subsets Ssk  , then (2) takes the form

 



Ss

kiii

k

somtt),(~)()1(ςyy , (4)

  
ksi

kiki

kiki
kki

sodsod

sodsod
sso yyς 






),(),(

),(),(
),(~

*

*

, (5)

It is obvious that the equation (4) allows to

approximate (2) with a certain accuracy that depends

on how well objects are divided into subsets.

For this reason, there is a question about how to

perform such a decomposition.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 111 ISBN 978-80-86943-65-7

Description of the Methods
The base scheme for the method described below is

taken from [Mya12] with some modifications. In

general the considered method consists of the four

following steps:

1. Partitioning of the input space

2. Construction of reference nodes lists

3. Initialization in the output space

4. Iterative optimization

The above stages are discussed below in more detail.

Partitioning of the input space

The first step of the original method assumed the

hierarchical clustering to partition the input space.

This lead to the O(N
2
) complexity in the case of

effective agglomerative clustering. In the case of

divisive method based on the neural network (WTA)

that was implemented in [Mya12] the runtime of

hierarchical clustering is highly dependent on the

parameters of the algorithm.

At the same time there are a number of space

partitioning trees that can be built in less time and

that used widely in multimedia databases, geographic

information systems, information retrieval, computer

graphics and so on. The review of such data

structures is beyond the scope of this paper. A

comprehensive work on space partitioning trees can

be found, for example, in [Sam06].

In this work several binary space partitioning trees

were used and compared for input space partitioning:

kd-tree [Ben75], metric tree (vp-tree) [Uhl91, Yia93],

and binary tree based on the simplification of minmax

distance clustering approach [Tou74] (further “cluster

tree”).

Such choice is motivated to study structures that are

different in their properties. Kd-tree is one of the old

and well-known space partitioning structures based

on the recursive splitting a space with hyperplanes

orthogonal to the coordinate axes. Vp-tree is another

well-known space partitioning structure based on the

hypersherical partitioning of a space. Cluster tree is

the distance based structure that partitions a space

with hyperplanes orthogonal to a pair of chosen

distant points.

All the mentioned structures can be built in

O(N log N) operations (if the tree is balanced) that is

more suitable for the considered task. As the

construction algorithms for the first two structures are

well known only the algorithm for latter structure is

given below by a pseudo code.

Function CreateTree(SetOfObjects O) returns Node
begin
 Create new node S
 if Number of objects in O is less than threshold then

 begin
 S.Children = O
 return S
 end
 Find mean vector value in O
 Find o1 object farthest from mean
 Find o2 object farthest from o1
 Create new SetOfObjects s1
 Create new SetOfObjects s2
 for each object o in O begin
 if (d(o1, o) < d(o2, o))
 add o to s1
 else
 add o to s2
 end
 Node n1 = CreateTree(s1)
 Node n2 = CreateTree(s2)
 add n1 to S.Children
 add n2 to S.Children
 return S
end

Let us assume that using some partitioning method

(e.g. using function given above) we get the tree-like

data structure (fig. 3), containing the objects of the

initial set O as leaves (terminal nodes).

Figure 3. The structure of a binary space

partitioning tree

The tree created at the first step of an algorithm can

be used in optimization process immediately in the

following way. We iteratively update low-

dimensional coordinates for each object Ooi  in

accordance to (4), using top-level nodes of the tree if

such nodes are far enough from the object io , and

low-level nodes of the tree or the objects of the initial

set O in the other case.

However, the constructed tree is not used directly in

the optimization process in this paper. Instead of it

the special data structure is used in optimization,

which is described in the next subsection. The details

of the optimization process are given in “Iterative

optimization” subsections.

Construction of reference nodes lists

It is worth noting that as the partitioning is performed

in the input multidimensional space then the

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 112 ISBN 978-80-86943-65-7

partitioning tree is constant in the optimization

process.

That is why in [Mya12] it was proposed to calculate

and to store the set of nodes and the objects which are

involved in the optimization process (called the list of

reference nodes) for each object Ooi  of the initial

set. The use of the lists of reference nodes requires

additional memory but allows to avoid recalculating

the partitioning criterion during the optimization

process and allows to store precomputed distances to

reference nodes that makes the optimization process

independent on the input dimensionality.

The straightforward algorithm for creation of

reference nodes is recursive and described below by

pseudo code.

Procedure CreateRefList(Object o, Node s, RefNodeList rl)
begin
 if o far from s then
 add s to rl
 else if s contains objects then
 for each object a in s
 add a to rl
 else /* s contains subtrees */
 for each node d contained in s
 CreateRefList(o, d, rl)
end
To avoid recursive calls the iterative implementation

using special pointers in tree nodes was used in the

experiments.

The described above algorithm is slightly different

compared to [Mya12] by removing the notion of

incomplete node. The use of incomplete nodes allow

to slightly accelerate calculations by aggregating

some portion of objects in decomposed nodes of the

tree but it requires extra memory to store information

about aggregated objects.

The first condition “o is far from s” defines the

decomposition criterion of the given node s with

respect to the object o. Different decomposition

criterions were described in physics literature (e.g.

[Sal94]). And here we adapt (as in [Mya12]) simple

decomposition criterion based on the radius R of the

given node s. That is we decompose the node of the

space partitioning tree under the following condition:

 TsRosd )(/),(

where T is a predefined threshold parameter.

Otherwise we add the node s of the tree to the list of

the reference nodes.

Fig. 4 illustrates this process. The node s1 will be

divided into two nodes if TsRosd )(/),(11 . The

node s2 will be considered as a single node if

TsRosd )(/),(22 .

Figure 4. Illustration to the construction of reference

nodes list

It is worth noting that the number of the nodes in the

list of the reference nodes is dependent on the

distribution of the data. Assuming that the list of

reference nodes contains on average L nodes the

memory needed to store the lists is O[LN].

Initialization in the output space

The third step of the original method performs an

initialization of the low-dimensional coordinates of

the objects. Only two first principal components are

computed to initialize objects in the output space and

then input multidimensional coordinates are projected

to the plane formed by these components. This

approach allows to reduce the computation time

compared to random initialization as the next step of

iterative optimization process starts with the better

initial conditions.

Although principal components finding by the

covariance matrix is dependent on the dimensionality

of the input space D and can be estimated as O(D
2
)

per iteration the overall process can be time

consuming as covariance matrix finding is O(ND
2
)

and depends not only on the dimensionality but on

the number N of objects also. To reduce the

computational time we use only a small subset of

randomly selected objects of the initial set O making

the overall complexity independent on the number of

objects. There are other solutions, e.g. use of neural

network approach based on generalized Hebbian

(Sanger) learning rule [San89] used in [Mya12].

Iterative optimization

After initializing low-dimensional coordinates of

objects the optimization procedure is performed to

find sub optimal coordinates of objects in output low-

dimensional space. It consists of iterative refinement

of output coordinates of all objects in accordance

with

 




iik Ss
ikiii somtt),(~)()1(ςyy

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 113 ISBN 978-80-86943-65-7

where set Si is the list of reference nodes for object oi,

and subsets sik are reference nodes for object oi.

The computational complexity of the optimization

stage of the method can be estimated as O(LN) on

average where L is the average length of lists of

reference nodes.

In practice it may be reasonable to control the data

mapping error along the process of optimization as it

can indicate the divergence of the process or it may

be used in a stop criterion. The computation

complexity of the data mapping error (1) is roughly

the same as the complexity of one step of the base

version of the optimization process (O[N
2
]). Using

the lists of reference nodes data mapping error can be

estimated in O(LN) on the average:

 


 









iik

i

iik

i

Ss
Oo iki

ikiiki

Ss
Oo

iki

sod

sodsod

sod
),(

),(),(

),(

1~
2*

It is worth noting that the above equation may give

greatly underestimated values of the data mapping

error especially in case when approximation based on

the input multidimensional information becomes too

coarse. For example, this can take place due to poor

configuration of objects in the low-dimensional

space.

In the present work this equation was used to control

the optimization process. When the estimated error

value was increasing then the  coefficient was

decreasing until the process became convergent. Also

this equation was used to stop the optimization

process when the relative decrease in estimated error

for a given number of iterations did not exceed the

predefined value.

Experimental study
Two well-known datasets were used in the presented

study. The first one is the MNIST database of

handwritten digits [MNI]. The second one is the

Corel Image Features Data Set [COR].

The first database contains digital grayscale images

of handwritten digits. The database is divided in two

sets: a training set containing 60 000 instances, and

test set containing 10 000 instances. Images of the

training set with size 28x28 pixels are treated as

vectors in 784-dimensional space in the experiments.

The second dataset contains features, calculated from

the digital images of the Corel image collection

(http://corel.digitalriver.com/). The Corel Image

Features Data Set contains 68 040 instances.

The following features have been used in the

experiments:

- color histograms [Swa91] constructed in the HSV

color space. Color space was divided into 8 ranges of

H and 4 ranges of S. The dimensionality of the

feature space is 32.

- color moments [Sti95]. Three features were

calculated for each color component: mean, standard

deviation, and skewness. The dimensionality of the

feature space is 9.

- texture features based on co-occurrence matrices

[Har73]. Four co-occurrence features (second angular

moment, contrast, inverse difference moment, and

entropy) were computed in four directions

(horizontal, vertical, and two diagonal). The

dimensionality of the feature space is 16.

To evaluate the effectiveness of the methods a

number of characteristics has been measured and

calculated:

- building time of the binary space partitioning tree,

- building time of the list of reference nodes,

- length of the list of reference nodes,

- initialization time of the low-dimensional

coordinates,

- per iteration execution time of the optimization

procedure,

- multidimensional data representation error.

All the described methods were implemented in C++.

The studies with the MNIST dataset have been

carried out on PC based on Intel Core i5-3470 CPU

3.2 GHz. The studies with the COREL dataset have

been carried out on laptop based on Intel Core i3

M370 CPU 2.4 GHz.

The work of the methods stopped when the relative

decrease in estimated error for ten iterations did not

exceed 0.01. In all cases, the dimension of the target

space has been set equal to two (two-dimensional

data mapping).

Some results are shown in fig. 5-7.

Fig. 5 shows the dependence of the qualitative and

temporal characteristics on the threshold parameter T

at which the algorithm moves to the child nodes of

the corresponding partitioning structure (metric (vp-)

tree, kd-tree or cluster tree).

As it can be seen from these results, the small values

of T (especially T<1) leads to the expected

deterioration of the mapping quality due to a coarser

approximation, which is reflected in the higher values

of the multidimensional data representation error 

(see fig. 5d). The time it takes to perform a single

iteration, increases with increasing T (see fig. 5c), due

to the large number of the processed reference nodes

of the corresponding hierarchical structure (see fig.

5b).

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 114 ISBN 978-80-86943-65-7

(a)

(b)

(c)

(d)

Figure 5. Dependencies on the threshold

parameter T (MNIST dataset): (a) average

building time of the list of reference nodes (LRN);

(b) average length of the list of reference nodes;

(c) average time per one iteration of the

optimization process; (d) multidimensional data

representation error 

Dependencies of quality and temporal characteristics

on the number of objects is shown in the fig. 6 and 7.

The quality of mapping, measured by the

multidimensional data representation error  (see fig.

6d, 7d) is weakly dependent on the type of space

partitioning structure. At the same time the average

length of lists of reference nodes is significantly

larger when we use kd-tree (see fig. 6b, 7b). This

confirms that kd-trees are poorly suited for

multidimensional data processing.

(a)

(b)

(c)

(d)

Figure 6. Dependencies on the sample size

(MNIST dataset): (a) average building time of the

list of reference nodes (LRN); (b) average length

of the list of reference nodes; (c) average time per

one iteration of the optimization process;

(d) multidimensional data representation error 

Some results obtained for the base nonlinear mapping

algorithm is shown on fig. 8 (logarithmic scale).

Timings for the case of precomputed distances are

not shown for large sample sizes due to memory

limitations. The multidimensional data representation

error is shown on fig. 7 for comparison.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 115 ISBN 978-80-86943-65-7

(a)

(b)

(c)

(d)

Figure 7. Dependencies on the sample size

(COREL dataset): (a) average building time of the

list of reference nodes (LRN); (b) average length

of the list of reference nodes; (c) average time per

one iteration of the optimization process;

(d) multidimensional data representation error 

As we can see the error values for the base method is

only slightly better than error values obtained using

the studied methods.

Note that the experiments performed on other

datasets described above, show similar results.

Figure 8. Dependency of the average time per one

iteration on the sample size for the base algorithm

(COREL dataset)

Some examples of the nonlinear mapping obtained

using space partitioning structure and the base

algorithm for a subset containing 5000 instances of

the MNIST dataset is shown in fig. 9.

An example of the nonlinear mapping using the

described approach for 60 000 objects of the MNIST

database is shown in fig. 10. The database was

processed in less than 30 minutes including error

estimation at each iteration (19 minutes without error

estimation). The multidimensional data representation

error was equal to 0.14.

Conclusion
In this paper, we conducted a study of several space

partitioning structures namely metric trees (vp-trees),

kd-trees, and cluster trees to speed up the nonlinear

mapping. The study showed that the quality of

mapping is weakly dependent on the type of the

structure but the average iteration time was different

for the considered structures. For kd-tree the number

of reference nodes was significantly larger than for

the other structures, hence the average iteration time

was larger.

Thus for the presented data sets metric trees (vp-

trees) and cluster trees can be efficiently applied to

partition the input space for the considered problem.

Using of the considered data structures made it

possible to generate low-dimensional embeddings for

relatively large datasets in a comfortable time.

At the same time the data representation error for the

base algorithm had slightly lower values. To improve

the quality of the mapping one can use the considered

structures increasing the threshold parameter T or use

the obtained low-dimensional configuration as an

initial configuration for the base method.

ACKNOWLEDGMENTS

This work was financially supported by the Russian

Foundation for Basic Research, project № 15-07-

01164-a.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 116 ISBN 978-80-86943-65-7

(a) (b)

Figure 9. Nonlinear mapping for 5000 instances of MNIST database:

(a) cluster tree, 207 iterations, threshold T = 1, multidimensional data representation error  = 0.14255;

(b) base method, 194 iterations, multidimensional data representation error  = 0.14077

Figure 10. Nonlinear mapping for training set of MNIST database (60,000 examples)

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 117 ISBN 978-80-86943-65-7

REFERENCES
[Bar86] Barnes J., Hut P. A hierarchical O(N log N)

force-calculation algorithm // Nature, 324 (4). –

1986. – pp. 446–449.

[Ben75] Bentley J. L. Multidimensional binary search

trees used for associative searching //

Communications of the ACM, 18 (9). – 1975. –

509

[Cha96] M. Chalmers. A linear iteration time layout

algorithm for visualising high-dimensional data //

In Proceedings of IEEE Visualization. – 1996. –

pp. 127–132.

[COR] https://archive.ics.uci.edu/ml/datasets/Corel+

Image+Features

 [Fin74] Finkel R., Bentley J.L. Quad Trees: A Data

Structure for Retrieval on Composite Keys. –

1974. - Acta Informatica, 4 (1). – pp. 1–9.

[Fru91] Fruchterman T., Reingold E. Graph Drawing

by Force-directed Placement. //Software –

Practice and Experience. 1991. vol. 21, no. 11.

pp. 1129-1164.

[Gre87] Greengard L., Rokhlin V. A fast algorithm

for particle simulations. Journal of Computational

Physics, 73. – 1987. – pp. 325–348.

[Har73] Haralick R.M., Shanmugam K., Dinstein I.

Texture features for image classification. IEEE

Trans. on Sys. Man. and Cyb. SMC-3(6), 1973

[LAN] https://archive.ics.uci.edu/ml/datasets/Statlog

+(Landsat+Satellite)

[Lee77] Lee R.C.T., Slagle J.R., Blum H. A

Triangulation Method for the Sequential Mapping

of Points from N-Space to Two-Space //IEEE

Transactions on Computers. – 1977. - V. 26, №3.

- pp. 288-292.

[MNI] http://yann.lecun.com/exdb/mnist/

[Mya12] E.V. Myasnikov A Nonlinear Method for

Dimensionality Reduction of Data Using

Reference Nodes // Pattern Recognition and

Image Analysis, 2012, Vol. 22, No. 2, pp. 337–

345.

[Pek99] Pekalska E., de Ridder D., Duin R.P.W.,

Kraaijveld M.A. A new method of generalizing

Sammon mapping with application to algorithm

speed-up. //Proc. ASCI'99, 5th Annual Conf. of

the Advanced School for Computing and Imaging

- Heijen, The Netherlands. – 1999. - June 15-17. -

P. 221-228.

[Qui01] Quigley A., Eades P. FADE: Graph

Drawing, Clustering, and Visual Abstraction".

//Proceedings of the 8th International Symposium

on Graph Drawing. 2001. pp. 197–210.

[Sal94] Salmon J.K., Warren M.S. Skeletons from

the Treecode Closet // J. Comp. Phys. V.111 –

1994. – pp. 136-155.

[Sam06] Samet, H. Foundations of multidimensional

and metric data structures // Morgan Kaufmann. –

2006. – 1024 p.

[Sam69] Sammon J.W., Jr. A nonlinear mapping for

data structure analysis. //IEEE Transactions on

Computers. – 1969. - V. C-18, No.5. - P.401-409.

[San89] Sanger T.D. Optimal unsupervised learning

in a single-layer linear feedforward neural

network // Neural Networks, 2 (6). – 1989. –

pp. 459–473.

[Sti95] Stricker M., Orengo M. Similarity of color

images // In Proc. SPIE Conf. on Vis. Commun.

and Image Proc., 1995

[Swa91] Swain M., Ballard D. Color indexing.

International Journal of Computer Vision. 7(1),

1991.

[Tou74] Tou J.T., Gonzalez R.C. Pattern Recognition

Principles // Addison-Wesley Publishing

Company. – 1974.

[Uhl91] Uhlmann J. Satisfying General

Proximity/Similarity Queries with Metric Trees //

Information Processing Letters, 40 (4). - 1991.

[Van13] van der Maaten L.J.P. Barnes-Hut-SNE // In

Proceedings of the International Conference on

Learning Representations. - 2013.

[Vla14] Vladymyrov M., Carreira-Perpiñán, M.Á.

Linear-time training of nonlinear low-dimensional

embeddings // 17th International Conference on

Artificial Intelligence and Statistics (AISTATS

2014) – 2014. - pp. 968-977.

[Yan13] Z. Yang, J. Peltonen, and S. Kaski. Scalable

optimization of neighbor embedding for

visualization // In Proc. of the Int. Conf. on

Machine Learning. - 2013.

[Yia93] Yianilos Data structures and algorithms for

nearest neighbor search in general metric spaces //

Proceedings of the fourth annual ACM-SIAM

Symposium on Discrete algorithms. - 1993. -

pp. 311–321.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 118 ISBN 978-80-86943-65-7

