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Highights 

 

 CaZnSO and SrZnSO are p-type semiconductors. 

 Influence of substitution Ca by Sr on the photocatalytic properties is investigated. 

 The absorption edge moves from λ=387.4 → λ=253.1 nm.  

 The direct optical band gap shfit from 3.2 eV to 4.9 eV.  

 

Abstract 

    The photocatalytic, structural and transport properties of the newly synthesized sulfide 

oxide CaZnSO and SrZnSO compounds are comprehensively investigated by means of 
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first and second-principles calculation in order to explain the semiconductor's 'photo-

excitation' state mechanism in CaZnSO and SrZnSO. At the same time, the influence of 

the substitution of Ca2+ by Sr2+ on the structural properties and, hence, on the 

photocatalytic properties, are investigated. The optical conductivity and the absorption 

level exhibit an obvious enhancement from the ultraviolet to the visible light region when 

we move from Ca to Sr. This shows that the absorption edge moves from λ=387.4 → 

λ=442.7 nm, which corresponds to the direct optical band gap of 3.2 eV → 2.8 eV, which 

is well matched with the solar spectrum and the sufficient negative conduction band 

potential for reduction of H+/H2. The calculated electronic band structure and the angular 

momentum character of various structures confirm that CaZnSO and SrZnSO possess a 

direct fundamental energy band gap of about 3.7 eV (CaZnSO)→ 3.1 eV (SrZnSO), and 

the electronic charge distribution reveals a clear map of the electronic charge transfer and 

the chemical bonding. Furthermore, the carrier concentration ( n ) as a function of 

chemical potential at three constant temperatures (T) and n  as a function of T at fixed 

chemical potential were calculated. It was found that n  increases exponentially with 

increasing T and reveals that the CaZnSO and SrZnSO are p-type semiconductors. Based 

on these results, one can conclude that CaZnSO and SrZnSO satisfied all requirements to 

be an efficient photocatalyst. This will greatly improve the search efficiency and greatly 

help experiments to save resources in the exploration of new photocatalysts with good 

photocatalytic performance. 

 

Keywords: Photocatalytic; CaZnSO; SrZnSO; Transport properties; DFT; non-centro-

symmetric 

 

1. Introduction 

       Due to control of the electronic communication between the oxide and chalcogenide 

layers in a transition metal, the layered oxychalcogenides exhibit novel and unusual 

properties which is not possible to access in the oxides or chalcogenides [1]. The ordering 

of two anions in the crystal results in a layered crystal structure, which causes significant 

influence on the electronic properties [2,3]. It has been reported that the local electric 

polarity of CoS3O, FeS3O and ZnS3O tetrahedra which was observed in transition metal 

oxychalcogenides CaCoSO, CaFeSO and CaZnSO, respectively, can influence the linear 
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and nonlinear optical properties and the magnetic properties  [3-6]. Recently, Sambrook 

et al. [3], have synthesized pure CaZnSO in a non-centrosymmetric hexagonal space 

group (P63mc) with two formula per unit cell. They reported that lattice constants are 

a=3.75726(3) Å and c=11.4013(1) Å, and that replacing Ca2+ with Sr2+ in CaZnSO causes 

the introduction of a different chemical pressure which in turn influences the polarity of 

the crystal structure, energy band gap and hence the optical properties. At the same time, 

they asserted that it is not possible to synthesize SrZnSO [3]. Very recently, Liu et al. [2] 

succeeded in synthesizing a novel polar SrZnSO in a non-centrosymmetric hexagonal 

space group (P63mc) with lattice constants a=3.90442(6) Å and c=11.6192(2) Å).  They 

found that the SrZnSO is isostructural to CaZnSO, but is less polar than CaZnSO. They 

described the structural properties of SrZnSO.  Therefore, as a natural extension to the 

work of Liu et al. and Sambrook et al., we have addressed ourselves to investigating the 

electronic band structure, density of states, electronic charge density distribution, 

photophysical and photocatalytic properties and thermoelectric properties of SrZnSO and 

CaZnSO using the first and second-principles methods. It has been reported that ZnS [7-

11] and ZnO [12-17] are promising photocatalytic H2 production materials under visible 

light irradiation. Therefore, we have addressed ourselves to investigating the 

photocatalytic performance of SrZnSO and CaZnSO as ZnS and ZnO-containing 

materials. It is well known that ZnS and ZnO generate electron-hole pairs by 

photoexcitation immediately and their extraordinary photostability is due to the highly 

negative reduction potentials of those excited electrons. 

In recent years, due to the improvement of computational technologies, it has 

been proven that the first-principles calculation is a strong and useful tool to predict the 

crystal structure and properties related to the electron configuration of a material before 

its synthesis [18-26]. It is well known that the DFT approaches have the ability to 

accurately predict the ground state properties of the materials, and the developed analysis 

tools are vital to investigating their intrinsic mechanism. It is anticipated that first-

principle material approaches will greatly improve the search efficiency and greatly help 

experiments aimed at saving resources in the exploration of new materials with good 

performance [18-26]. For instance, several researchers have used the DFT calculation for 

exploration of new photocatalysts and found good agreement with experimental results 
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[27-33]. We would like to mention that, in our previous work [34-37], we have calculated 

the photocatalytic properties and the energy band gaps using the full-potential method for 

several systems whose photocatalytic and energy band gaps are known experimentally, 

and a very good agreement with the experimental data was obtained. Thus, we believe 

that our calculations reported in this paper will produce very accurate and reliable results. 

The aim of this work is to focus on the photocatalytic activity of non-centro-symmetric 

CaZnSO and SrZnSO as new, green and efficient photocatalysts. 

 

2. Structural aspects and methodology 

       The crystal structure of CaZnSO (SrZnSO) has polar layers in the ab plane of S 

atom-vertex-sharing ZnS3O tetrahedral that are separated by Ca (Sr) ions of the (CaS3O3) 

(SrS3O3) octahedral [2], see Fig. 1. Sambrook et al. [3] reported that the substitution of 

Ca2+ (radii=180 pm) by larger Sr2+ (radii=200 pm) in CaZnSO introduces a different 

chemical pressure, which can change the structural polarity and reduce the fundamental 

energy band gap from 3.7 eV [3] to 3.1 eV [2], resulting in enhancing the optical activity. 

Therefore, to investigate the suitability of CaZnSO and SrZnSO for use as active 

photocatalysts, ab initio first-principle calculations are performed utilizing the full-

potential method (wien2k code [38]) within the generalized gradient approximation 

(PBE-GGA) [39] to optimize the experimental lattice constant and the experimental 

atomic positions [2]. The lattice constants and the atomic positions obtained are listed in 

Table S1 and S2 (supplementary materials) in comparison with the available 

experimental data [2,3]. The recently modified Becke-Johnson potential (mBJ) [40] is 

used to calculate the ground state properties. The thermoelectric properties of CaZnSO 

and SrZnSO are obtained from the ground state within the limits of Boltzmann theory 

[41-43] and the constant relaxation time approximation as implemented in the BoltzTraP 

code [44]. 

         In order to achieve energy eigenvalue convergence, the wave functions in the 

interstitial region are expanded using plane waves with a cutoff of RMT×Kmax = 7.0, where 

Kmax is the plane wave cut-off, and RMT is the smallest of all atomic sphere radii. The 

charge density was Fourier expanded up to 1

max 12 (a.u.)G  . The maximum l  value for 

the wave function expansion inside the atomic spheres was confined to lmax = 10. Self-
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consistency is obtained using 4000 k


 points in the irreducible Brillouin zone (IBZ).  The 

self-consistent calculations are converged since the total energy of the system is stable 

within 0.00001 Ry. The electronic properties are calculated using 50000 k


 points in the 

IBZ. The input required for calculating the total and partial density of states (DOS) are 

the energy eigenvalues and eigenfunctions which are the natural outputs of a band 

structure calculation. Therefore, from the band structure calculation the DOS are 

calculated by means of the modified tetrahedron method [45]. 

 

3. Results obtained and discussion of details  

     Since CaZnSO and SrZnSO crystallize in a non-centro-symmetric structure, it is very 

interesting to highlight that the non-centro-symmetric structure induces a spontaneous 

polarization due to the displacement of the center of the positive and negative charges in 

a unit cell [46]. Due to the fact that their positive and negative charges have different 

centers of symmetry, the non-centro-symmetric materials are among the ferroelectric 

materials that have a macroscopic polarization which induces the accumulation of 

charges at the surfaces [47]. Thus, a spontaneous polarization can be screened by free 

electrons ( e ) in the conduction band (CB) and free holes ( h ) in the valence band (VB), 

and/or by ions adsorbed on the surface from the solution forming a Stern layer [48]. A 

positive charge in positive fields is screened by internal and external mechanisms [49]. 

The internal mechanism forms a negatively charged region below the surface, and the 

external mechanism consists of the adsorption of foreign negatively charged ions at the 

surface. In contrast, the opposite reactions take place in negative fields, and the adsorbed 

foreign ions are positively charged. This charge reallocation generates an electric field 

around the charge region [50]. A polarization field is compensated for at equilibrium by 

the screening mechanisms. Therefore, the photogenerated electrons can easily migrate to 

the surface and give rise to oxidation and reduction products at different locations [51]. 

This in turn enhances the photocatalytic activity. We should emphasize that the unique 

photochemistry of the non-centrosymmetric materials may be utilized to launch some 

new photoreaction pathways. The Zn−O, Zn−S, Ca(Sr)−S and Ca(Sr)−S units possess 

strong electron cloud overlap and prefer to attract h and repel e , thus facilitating 

separation of the photogenerated e h  pairs. This in turn enhances the photocatalytic 
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activity. It is interesting to highlight that the polarizability cause to lower the potential 

energy of charged particles and transition states regardless of whether these particles are 

negatively or positively charged [52].  

        For photocatalytic water splitting, the optical band gap of the photocatalyst material 

must be sufficiently large to overcome the endothermic character of the water-splitting 

reaction, i.e. larger than 1.23 eV [53]. The other important factor for a photocatalyst is the 

range of light absorbed; the optical absorption induces the transfer of e

 from the VB  to 

CB , generating the e h   pairs which can thence migrate to the surface to participate in 

oxidation and reduction reactions, respectively [53,54]. The appropriate band gap width 

and suitable conduction band edge position together contribute to the optimal H2 

production activity under light irradiation. Therefore, we calculated the absorption 

spectrum (Fig. 2 a,b) in order to estimate the optical energy band gap value. The optical 

energy band gap ( ( )g opticalE ) can be obtained as follows: the square of the absorption 

coefficient, 2[I( )] , is linear with energy ( E ) for direct optical transitions in the 

absorption edge region, whereas the square root of the I( ) is linear with E  for indirect 

transitions [27,28]. Data plots of CaZnSO and SrZnSO for [ I( ) ]2 vs. E  in the 

absorption edge region are shown in the inset of Fig. 2a and 2b, which show that the 

[ I( ) ]2  vs. E  plot is nearly linear. These features suggest that the absorption edges of 

CaZnSO and SrZnSO are caused by direct transitions. The absorption level of CaZnSO 

and SrZnSO exhibited an obvious enhancement from the ultraviolet to the visible light 

region when we move from Ca to Sr. This shows that the absorption edge moves from 

λ=387.4 → λ=442.7 nm, which corresponds to the direct optical band gap of 3.2 eV → 

2.8 eV, which is well matched with the solar spectrum and the sufficient negative 

conduction band potential for reduction of H+/H2 [55-57]. Therefore, CaZnSO can be 

used in active photocatalytic water splitting solar-to-hydrogen energy conversion in the 

UV light region, while SrZnSO can be used in the visible light region. When a 

photocatalyst absorbs radiation from sunlight, it produces electron and hole pairs. The 

electrons of the valence band becomes excited when illuminated by light. The excess 

energy of this excited electron promotes the electron to the conduction band, thereby 

creating an e  and h  pair (Fig. 2c).  
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Usually, the locations of the top of the VB ( TVB ) and bottom of the CB ( BCB ) 

determine the oxidation and reduction capabilities of photogenerated h  and e , 

respectively [58]. The reduction potential level of the electron-accepters should be 

energetically below the BCB , whereas the oxidization potential level of the electron-

donors should be above the TVB  [59].  The photocatalytic oxidation of the materials is 

mainly attributed to the participation of superoxide radicals (O2
•−), hydroxyl radicals 

(•OH) and photogenerated holes [60], see Fig. 2c and Fig. 2d. In order to understand the 

photocatalytic mechanism in XZnSO, the reduction and oxidation potentials of the CB 

and VB edges at the point of zero charge can be calculated following the equations given 

in Ref. 61:  

( / 2)C

CB gE E E                                                                  (1) 

VB CB gE E E  ,                                                                           (2)    

where CBE and VBE , respectively, are the potentials of CB and VB edges, EC is the free 

energy corresponding to the hydrogen scale, and the value is ~4.5 eV [61], gE  and χ  are 

the band gap and the electronegativity of semiconductors, respectively. The χ  is defined 

as the geometric mean of the absolute electronegativities of the constituent atoms. The 

absolute electronegativity of an individual atom is the arithmetic mean of the atomic 

electron affinity and the first ionization energy [61]. The CBE and VBE  values of the 

CaZnSO and SrZnSO are shown in Fig. 2d. It can be clearly seen that the CB edge 

potential of CaZnSO is more negative than that of SrZnSO, indicating that the CaZnSO 

has stronger reduction power for H2 production than the SrZnSO. A semiconductor with a 

more negative CB edge potential has stronger reduction power for the H2 production 

from water [61]. Generally, an appropriate band gap width and suitable CB edge position 

together contribute to the optimal H2 production activity under light irradiation. 

Therefore, a balance between the light absorption capacity and the reduction power in the 

investigated materials leads to a higher efficiency of light-driven photocatalytic H2 

production. This stage is referred to as the semiconductor's 'photo-excitation' state. To 

explain this mechanism in CaZnSO and SrZnSO, we calculated the optical conductivity 

(  
 4 k 

 


 ), which is directly related to the energy band structure of solids [62], 
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and deep insight into the electronic structure of the materials can be further obtained from 

the optical conductivity. Furthermore, from the imaginary part of the optical conductivity, 

the values of the plasma energy can be obtained: these are  p  =7.850 eV  and 

 p II = 8.830 eV. The calculated optical conductivity (Fig. 3 (a, b)), depicts the 

conduction induced by the electrons which move from valence band to the conduction 

band upon absorption of incident light. Since the optical conductivity appears as a result 

of absorption, the features of the curves in Fig. 2 (a, b) and Fig. 3 (a, b) are closely related 

and the peaks represent optically induced electronic transitions between different states of 

the occupied valence band and the unoccupied conduction band. 

       In further investigation, we calculated the electronic electrical conductivity as shown 

in Fig. 3 (c, d). In general, the electronic electrical conductivity (  ne ) is related to 

the density of charge carriers ( n ) and their mobility ( */e m  ), where   represents the 

mobility, e the charge of  carriers,   the relaxation time and *m  the effective mass. It 

was noticed that from the electronic band structure (Fig. 2c), the high k- dispersion bands 

around Fermi level (EF) possess low effective masses, and hence, high mobility carriers 

(Table 1), which favors the enhancement of the charge transfer process, and the effective 

mass provides essential information to understand the photocatalytic mechanism. The 

mobility of the photogenerated carriers significantly influences the photocatalytic 

efficiency [63,64]:  the higher photogenerated carrier mobility favors the enhancement of 

the photocatalytic performance [65]. Furthermore, we calculated the effective mass 

difference ( * */e hD m m ) between e  and h , as shown in Table 1 [66-69]. Recently, Li et 

al. [70] reported that the recombination of photogenerated electrons and holes is much 

faster than the transport from bulk to the surface reactive site and the catalytic reaction. 

Thus, in most cases, fast mobility favors the charge migration to the surface of the 

photocatalyst to participate in the reaction. In contrast, slow mobility of electrons and 

holes is more prone to result in charge recombination. It is clear from Table 1 that the 

effective mass of h  is bigger than that of e , resulting in a significant difference in the 

mobility between e  and h ; thus, we can deduce that the photogenerated carriers can 

transfer fast along different directions. The mobility of photoexcited carriers can be 

ACCEPTED M
ANUSCRIP

T



 9 

indirectly assessed by their effective mass ( */e e ee m   and */h h he m  ). The large 

mobility difference is useful to the separation of e  and h , reduction of the e  and h  

recombination rate, and improvement of the photocatalytic activity.  

The temperature-dependent electrical conductivity (  / ) is calculated at a certain 

value of chemical potential as illustrated in Fig. 3(c, d). It is clear that  /  increases 

with increasing the temperature (T). The rapid increase in  /  with increasing T is due 

to enhancing the charge carrier's concentration ( n ) and the mobility of the electrons in 

the conduction band. Fig. 3(e, f) shows the carrier's mobility as a function of n , which 

clearly shows a significant reduction in the carrier's mobility with an increase in the 

carrier's concentration due to increasing the scattering. To support this statement, we 

have investigated the carrier's mobility as a function of T, as shown in Fig. 3(g, h). It 

clearly shows a significant reduction in the carriers´ mobility with an increase in T, which 

is attributed to the fact that raising T causes an increase in the vibration, and hence, the 

mobility, resulting in an increase in the scattering which leads to suppression of the 

mobility.  

          For further explanation of the semiconductor's 'photo-excitation' state mechanism 

in CaZnSO and SrZnSO, we calculated n  as a function of chemical potential at three 

constant temperatures, as shown in Fig. 3(i, j), which clearly shows the negative electron 

(n-type conductions) and positive hole (p-type conductions) pair. The positive hole ( h )  

breaks apart the water molecule to form hydrogen gas and a hydroxyl radical. Whereas 

the negative electron ( e )  reacts with the oxygen molecule to form a super-oxide anion. 

This cycle occurs continuously in the presence of the light. Furthermore, we investigated 

n  as a function of T at fixed chemical potential, as shown in Fig. 3(k, l). It is clear that 

the n  increases exponentially with increasing T and reveals that CaZnSO and SrZnSO 

are p-type semiconductors. To further understand the semiconductor's 'photo-excitation' 

state mechanism in CaZnSO and SrZnSO, the electronic band structure, the angular 

momentum character of various structures and the electronic charge density distribution 

are calculated so as to investigate the suitability of XZnSO to be used as active 

photocatalysts. The calculated electronic band structures (left panels of Fig. (3 i, j)) reveal 

the band gap nature and the orbitals that form the top of the valence bands and the bottom 
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of the conduction bands.  It was found that CaZnSO (SrZnSO) possesses a direct band 

gap of about 3.7 (3.1) eV, and the Zn-3d/O-2p/S-3p antibonding crystal orbitals lying at 

the top of the valence band can readily accommodate holes generated. Therefore, 

CaZnSO and SrZnSO are p-type semiconductors. To gain deeper insight into the 

electronic structure, the  total density of states and the angular momentum character of 

various structures are calculated and presented in Fig. 4 (a-j). Fig. 4(a,b) explores the 

total density of states of each atom participating in the CaZnSO and SrZnSO structures. 

In order to visualize the contribution and the role of each orbital, the angular momentum 

character of (Ca-4s/3p) Sr-5s/4p/3d, Zn-4s/3p/3d, S-3s/3p and O-2s/2p orbitals are 

plotted, as shown in Fig. 4(c-j), which reveals the strong hybridization between the 

orbitals. It was noticed that there is a strong hybridization between O-2s and (Ca-3p)Sr-

4p, S-3p and O-2p, Zn-4s and Zn-3p, (Ca-4s) Sr-5s and Zn-4s/3p orbitals. The 

hybridization may lead to the formation of covalent bonding and the strength of the 

covalent bonding is related to the degree of the hybridization. We should emphasize that 

the covalent bonding is more favorable for the transport of the carriers than the ionic one 

[71].  

        To support this statement, the bond lengths, bond angles, charge transfer and 

electronic charge density distributions are investigated. To visualize the nature of the 

charge transfer and the chemical bonding, the electronic charge density distribution in (1 

0 0) and (1 0 1) crystallographic planes are obtained, as shown in Fig. 5.  Following the 

Pauling scale, the electronegativity of (Ca) Sr, Zn, S and O are (1.0) 

0.95<1.65<2.58<3.44 [72,73], which indicates that the oxygen atom shows the highest 

electronegativity. This implies that an efficient charge transfer occurs towards S and O 

atoms which are surrounded by uniform spheres of charge density and the maximum 

charge accumulates around S and O atoms, as indicated by the blue color (Fig. 5). The 

blue color indicates the maximum charge intensity (1.0000) as shown by the thermo-scale 

(Fig. 5). The (1 0 0) crystallographic plane of CaZnSO clearly shows ZnS3O tetrahedral 

in which the Zn-S bond is equal to 2.3712 Å, close to the experimental one [3]. For 

SrZnSO, the (1 0 0) crystallographic plane shows one face of the SrS3O3 octahedral in 

which the Sr-O bond is equal to  3.383 Å and the Sr-S=3.181 Å, which is very close to 

the experimental values [2]. The (1 0 1) plane of CaZnSO (SrZnSO) shows both SrS3O3 
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octahedral and ZnS3O tetrahedral where the Zn-O bond is equal to 1.899 (1.893) Å and 

Zn-S = 2.3712 (2.4169) Å, in close agreement with the experimental data [2, 3]. It also 

shows that S and O atoms are surrounded by uniform spheres of charge density and the 

maximum charge accumulates around O and S atoms, as indicated by the blue color.  

For a description of the character of the bonding, the difference of the 

electronegativity (XA-XB) is crucial [74], where XA and XB denote the electronegativity 

of the A and B atoms in general. With an increase in the difference, the ionic character 

(P) of the bonding increases. The percentage of P for the bonding can be obtained by 

following the relation [74]: 

P(%)=16(XA-XB)+3.5(XA-XB)2
                                (3) 

The calculated values of P  are given in Table 2. It is clear that the Zn atom in ZnS3O 

tetrahedral in both compounds forms mostly covalent and partially ionic bonding with S 

and O atoms, see Table 2. Whereas in the  CaS4O3 (SrS4O3) octahedral, the Ca (Sr) atoms 

form mostly covalent and partially ionic bonding with O atoms, and mostly ionic and 

partially covalent bonds with S (see Table 2). The crystallographic planes show that a 

charge transfer towards O and S atoms occurs, as is shown by the blue uniform spheres 

surrounding the O and S atoms indicating the maximum charge accumulated according to 

the thermo-scale (Fig. 4). To provide a comparison of quantities between theoretical and 

experimental values of the bond lengths and angles, we calculated the bond lengths and 

angles for the CaZnSO and SrZnSO single crystals, as shown in Table S3 and S4 

(supplementary materials). It is clear that there is good agreement with the experimental 

data [2,3] and confirms that the Zn-O bond length is shorter than that of the Zn-S; also 

the Ca-O (Sr-O) bond length is shorter than that of the Ca-S (Sr-S). The three angles of 

O-Zn-S in the ZnS3O tetrahedral are equal; the three S-Zn-S angles are also equal (Fig. 

1), which reveals the symmetry of the ZnS3O tetrahedral in good agreement with the 

experimental data [2,3]. The bond lengths and the two crystallographic planes reveal that 

the XZnSO single crystals possess considerable anisotropy.   

 

4. Conclusions 

       To investigate the suitability of CaZnSO and SrZnSO to be used as active 

photocatalysts, an ab initio calculation from first to second-principles calculations were 
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performed utilizing the full-potential method and the BoltzTraP code. The photophysical, 

structure, and photocatalytic and transport properties of the two newly synthesized sulfide 

oxides CaZnSO and SrZnSO were comprehensively investigated by means of first and 

second-principles calculation to explore the semiconductor's 'photo-excitation' state 

mechanism in these compounds. At the same time, we investigated the influence of the 

substitution of Ca2+ by Sr2+ on the structural properties, and hence, on the photocatalytic 

properties. The obtained photophysical properties show that the absorption edge moves 

from λ=387.4 → λ=442.7 nm, which corresponds to the direct optical band gap of 3.2 eV 

→ 2.8 eV, which is well matched with the solar spectrum and the sufficient negative 

conduction band potential for reduction of H+/H2. The calculated electronic band 

structure and the angular momentum character of various structures confirm that CaZnSO 

and SrZnSO possess a direct fundamental energy band gap of about 3.7 eV (CaZnSO)→ 

3.1 eV (SrZnSO), and the electronic charge distribution reveals a clear map of the 

electronic charge transfer and the chemical bonding. The carrier concentration ( n ) as a 

function of chemical potential at three constant temperatures (T) and n  as a function of T 

at fixed chemical potential were calculated. Calculations show that n  increases 

exponentially with increasing T and reveals that both CaZnSO and SrZnSO are p-type 

semiconductors. Thus, the non-centro-symmetric CaZnSO and SrZnSO satisfied all 

requirements to be efficient photocatalysts. This will greatly improve the search 

efficiency and greatly help experiments aimed at saving resources in the exploration of 

new photocatalysts with good photocatalytic performance. 
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Figure captions: 

Fig. 1: (a, b) Crystal structure of CaZnSO and SrZnSO; The crystal structure of CaZnSO 

(SrZnSO) has polar layers in the ab plane of S atom-vertex sharing ZnS3O tetrahedral 

that are separated by Ca (Sr) ions of the (CaS3O3) (SrS3O3) octahedral. 

Fig. 2: (a, b) Data plots of CaZnSO and SrZnSO for [ I( ) ]2 versus energy in the 

absorption edge region are shown in the inset of Fig. 2a and b, which show that the 

[ I( ) ]2  versus energy plot is nearly linear. These features suggest that the absorption 

edges of CaZnSO and SrZnSO are caused by direct transitions. The absorption level of 

(CaZnSO) SrZnSO exhibited an obvious enhancement from ultraviolet to visible  light 

region when we move from Ca to Sr, it shows the absorption edge moves from λ=387.4 

→ λ=442.7 nm, which corresponds to the direct optical band gap of 3.2 eV → 2.8 eV, 

that is well matched with solar spectrum and the sufficient negative conduction band 

potential for reduction of H+/H2 ; (c) Schematic diagrams of charge transfer and 

photocatalytic mechanism of  CaZnSO and SrZnSO; When photocatalyst absorbs 

radiation from sunlight, it produces electron and hole pairs. The electron of the valence 

band becomes excited when illuminated by light. The excess energy of this excited 

electron promoted the electron to the conduction band therefore, creating the negative 

electron ( e ) and positive hole ( h ) pair. This stage is referred as the semiconductor's 

'photo-excitation' state; (d) The schematic diagrams of potential in eV vs. NHE for 

CaZnSO and SrZnSO. 
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Fig. 3: (a, b) The calculated optical conductivity; (c, d) the calculated electronic 

electrical conductivity; (e, f) shows the carriers´ mobility as a function of carrier 

concentration ( n ), which clearly shows a significant reduction in the carriers´ mobility 

with an increase in the carrier concentration due to increasing the scattering; (g, h) the 

carriers´ mobility as a function of temperature. It clearly shows a significant reduction in 

the carriers´ mobility with an increase in the temperature, which is attributed to the fact 

that raising the temperature causes the vibration to increase, and hence, the mobility, 

resulting in an increase in the scattering which leads to suppression of the mobility; (i, j) 

The carrier concentration as function of chemical potential FE   at room temperature 

and other two randomly selected temperatures; (k, l) The carrier concentration as a 

function of temperatures at fixed chemical potential. 

Fig. 4: (a- j) The projected density of states along with the angular momentum character 

of various structures 

Fig. 5: (a-d) The charge density distribution of CaZnSO and SrZnSO in (100) and (101) 

crystallographic planes along with the thermoscale.  
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Fig. 2 
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Fig.3 
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Fig. 5 
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Tables 

Table 1: Calculated effective masses.  

Compound  * /e om m  * /hh om m  * /lh om m  
* */hh eD m m  * */e hhD m m  * */lh eD m m  * */e lhD m m  

CaZnSO 0.00852 0.04097 0.02437 4.80868 0.20795 2.86032 0.34961 

  SrZnSO 0.01031 0.03571 0.03709 3.46362 0.28871 3.59747 0.27797 

 

 

Table 2: The calculated values of the ionic character 

CaZnSO SrZnSO 

Bonds P(%) Bonds P(%) 

Ca-O 59.87 Sr-O 61.54 

Ca-S 34.01 Sr-S 35.37 

Zn-O 39.85 Zn-O 39.85 

Zn-S 17.90 Zn-S 17.90 
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