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Abstract

We present a technique for realistic rendering of corroded objects. We employ a physio-chemically based stochastic
model to determine the deterioration level of different points on an object, given its material characteristics and the
vigor of the environment. Guided by values from the ISO standard, our model predicts shape degradation. This
shape degradation is then applied to the object in the form of surface displacements and weathered appearance. The
appearance degradation is hard to physically model accurately due to its dependence on a large number of unknown
parameters as well as its high sensitivity to errors in modeling them. Hence, we instead sample from photographs
of real objects to generate similar appearance for the rendered surface, but consistent with the simulated corrosion
levels. We demonstrate our technique using several simulation results as well as different input photographs. We
also evaluate the fidelity of the generated output to the simulation as well as to the sample texture patterns and
validate our work with the help of data published in the corrosion literature. Our framework is generic and can be
extended to a variety of corrosion scenarios. Ours is an important step towards predictive analysis of material loss

and weathering phenomena for real objects.
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1 INTRODUCTION

Corrosion is a stochastic process impacted by non-
linear combination of factors like material property,
environment, exposure time, etc. The complexity of
corrosion makes it difficult to accurately predict the
complete state of weathering objects, or even to mea-
sure all the causal factors. Simulation and rendering
of weathered 3D objects is necessary for many appli-
cation, games, movies, aesthetic design, and even un-
weathering of already weathered objects. Predictive
models of weathering can also be used to estimate struc-
tural damage. We extend the model presented in [20] to
general weathering and demonstrate its effectiveness in
estimating corrosion. Such estimation of the physio-
chemical state of an object undergoing corrosion has
applications across diverse fields such as arts, engi-
neering, aerospace, etc. Predictive analysis for an ob-
ject undergoing corrosion is an important part of taking
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protective measures against both appearance and shape
damages.

Corrosion can be decomposed into two basic building
blocks including acceleration process due to an auto-
catalytic chemical reaction followed by deceleration
due to physical formation of semi-passive porous layer.
Corrosion as a process results in both state change re-
sulting in aesthetic degradation as well as material loss
resulting in structural damage of the exposed layer. We
model corrosion as a stochastic process influenced by
the probabilities dependent on material and environ-
mental conditions. The simulation works on a vox-
elization of the input object undergoing corrosion. In
addition to our model being agnostic to the object size,
shape intricacies and voxel resolution, the in-built con-
tinuous functions ensure that the model structure itself
is generic and independent of specific material type or
environment corrosivity, allowing them to be provided
as inputs. The model allows each voxel to progressively
reach higher corrosion states before being ultimately re-
moved, exposing inner layers. To replicate actual corro-
sion process we also ensure the additive effect of highly
corroded neighborhood and decelerating impact caused
by creation of semi-porous layer of inert oxides.

Because of applications of corrosion study across do-
mains, there has been significant effort to measure and
simulate corrosion reported in the literature [14]. How-
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Figure 1: Simulation and Rendering Pipeline : The first block is the stochastic model, which includes voxelization and the
corrosion simulation. The second block is the rendering pipeline, which generates different maps and combines them to create

the final rendered corroded object.

ever, an accurate prediction of the shape of a corroded
object has remained elusive. On the other hand, effects
like failure time, pit depth, material loss etc., over time
have been measured and simulated [21]. We extend the
pitting corrosion model of Jain et al. [20] to compute
the shape of the object at any given time. The simula-
tion is driven by measured material loss included in ISO
standard [14]. We demonstrate that data from the ISO
standard can be used to effectively guide the stochastic
parameters of the model to ensure that the predicted ma-
terial loss closely follows the expected material loss. At
the same time, our robust rendering framework ensures
that the resulting shapes are realistic. The simulation
additionally produces the degree of corrosion (normal-
ized between 0 and 1) for every point on the surface at
a given time interval. In order to create a realistic ren-
dering, the reflectance properties of each corroded point
needs to be derived.

Optical properties of the surface can vary in largely
unpredictable fashion due to corrosion. Mostly in
game development tools the textures are hand modeled
and do not incorporate the actual corrosion process.
Also, coexistence of multiple dynamic states due to
the material’s interaction with the environment results
in complex and dynamic appearance, which a real
photograph can best capture. Hence, instead of simu-
lating it physio-chemically, we sample the appearance
from parts of real photographs of other corroded
objects, assuming that they exhibit the appearance of a
variety of differently — some slight, others significant —
corroded areas. Using these areas as examples then, we
generate the appearance of the simulated object. We
first normalize the photographs and subtract the effect
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of lighting to derive the underlying albedo [5]. Similar
to [24], we then allow a user to mark corrosion degrees
for a few pixels in the albedo map. The appearance
manifold technique of [24] is then employed to derive
the corrosion degree of all the un-marked pixels. This
albedo map is then used to create reflectance values
for the corroded material. This novel integration of
physical simulation and appearance synthesis produces
plausible results.

Ours is a more holistic approach than, say, predicting
only material thickness or material loss, given a partic-
ular combination of factors (corrosion level and time).
It predicts actual shape changes as well as the degree of
corrosion, before imposing the reflective properties of
the corroded material that is consistent with the corro-
sion.

2 RELATED WORK

Corroded objects have compound construction and
their structure dynamically changes under the effect
of varied physio-chemical conditions. These physio-
chemical conditions are influenced by the interaction
of changing environment and the deteriorating ob-
ject. This results in making corrosion a complicated
stochastic process where even a given material may
deteriorate differently given its state and environmental
conditions.

Given its relevance in varied fields including civil engi-
neering, aerospace, heavy industries and art, extensive
work has been done to understand corrosion phenom-
ena [10] [16]. Though these work try to predict physical
loss of material, not much work has been done on es-
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timating structural in conjunction with aesthetic degra-
dation.

Corrosion damages can be broadly categorized into lo-
calized and uniform corrosion [23]. Pitting corrosion is
a severe form of localized corrosion that causes small
cavities on the surface. Jain et al. present a model for
pitting corrosion [20], which we generalize in this pa-
per. Their work is limited to pitting corrosion with no
notion of real time, resulting in lack of comprehensive
predictive modeling. Our basic model uses there model
as core but is tightly coupled to real time, thus open-
ing the possibility of predictive analysis of corrosion
for major materials including steel, copper and zinc.

We simulate uniform corrosion to validate our results
given the lack of weight loss data for other forms of
corrosion. Uniform corrosion is a generic form of cor-
rosion where the attack proceeds evenly throughout the
surface. There are a few models for simulation of gen-
eral corrosion. Guessasma et al. [11] simulate the cor-
rosion phenomena under potentiostaic conditions to the
behavior of the process. They generate the simulation
on a 3D grid and study the current density and exposed
area. They simulate the corrosion process but do not
produce real shape degradations.

There have been other studies on corrosion of differ-
ent materials [9] [22]. It is observed that different
materials behave differently and the subsequent surface
degradation is discrete. Mérillou et al. [19] predict the
changes due to corrosion with time. They best fit the
ISO standard [14] [15] experimental data for steel and
use the weight loss information to remove material from
a three dimensional corrosion map grid. They do not
simulate the actual process on a three dimensional ob-
ject. Also they modify the BRDF model to affect the
porosity and roughness of the surface in the final shad-
ing model. This is not based on any physical evidence.
Our model gathers all the degradation effects from the
actual stochastic simulation of the corrosion phenom-
ena.

General corrosion analysis consists of predicting the
extent of attack with time, under specific atmospheric
conditions. ISO standards [15] list the weight loss in
grams per meter square for specific materials under cer-
tain atmospheric conditions over time. They catego-
rize environment corrosivity levels and catalog material
weight loss under different conditions. We validate our
results by generating similar weight loss from objects
in our simulation.

Realistic rendering of corroded objects is vital in the
field of computer graphics [7] [6][8]. Wang et al. [24]
produce the optical appearance of a weathered surface
by generating an “appearance manifold”“. They ap-
ply appearance sampling, but only approximately fol-
low the general trend of corrosion variance across the
surface. Also they use a 7D feature vector which is
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cumbersome to gather. They apply stochastic mod-
els to deteriorate color but are unrelated to the actual
corrosion process. Bandeira et al. [1] create weath-
ering effects based on chroma and luminance values.
They introduce the concept of appearance maps similar
to [24] but they do not address rough geometry varia-
tions. Their method works only on images and they do
not present any three dimensional procedure. Hwang
et al. [13] propose a method for creating a weather-
ing gallery based on time dependent appearance mani-
folds(TDAMs). They create these TDAMs from sam-
ple videos clips. The major difficulty in their pro-
posed method is collection of sample videos which cov-
ers presents a good weathering phenomena with least
change in camera position and illumination characteris-
tic.

Textures have also been used [26] to capture realistic
surface effects in this domain, y-ton tracing [3], is a par-
ticle based surface-centric model of corrosion. It does
not handle severe geometry degradation that follows
corrosion statistics. Clément et al. [4] generate aging
textures by taking as input a target aging mask from the
user. They employ elimination and reproduction tech-
niques for producing the final texture. Their process is
simple but requires a lot of user intervention and thus
the user needs significant domain knowledge to achieve
realistic results. Wojtan et al. [25] generate weathering
by increasing or decreasing the surface of the object but
the results produced are quite synthetic and do not ap-
pear real. Kamata et al. [17] describes a model for tex-
ture regeneration of peeling of preservative coatings of
surfaces. They show the effects of peeling using geo-
metric and environmental maps. Their model produces
this effect by striking the surface with water drops and
calculating the amount of accumulated droplets on the
surface which leads to peeling. Neither do they incor-
porate the actual corrosion phenomena nor do they have
a real time assessment of the corrosion process.

We propose a time variant voxel-based model to sim-
ulate and render generic corrosion on different materi-
als. Our model produces geometric results based on the
stochastic simulation and color changes based on tex-
ture synthesis, onto the object to produce photo-realistic
effects. We validate our results based on ISO stan-
dard [15]. The validation is strengthened by observ-
ing the weight loss from different materials at different
time-steps, which is similar to the standard. We demon-
strate surface degradation with respect to time for dif-
ferent materials.

3 MODELING OF CORROSION

Corrosion is the deterioration of an object with specific
material properties under dynamic environmental con-
dition. Due to the dynamic change in intensity as well
as the number of factors influencing the shape and aes-
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thetics of an object undergoing corrosion, it is hard to
accurately predict object state with elapsed time.

Jain et al. [20] simulate pitting corrosion as a two-step
stochastic process. The first step nucleates pits and the
second step grows them. The division of simulation into
these two steps is based on the physio-chemical nature
of the pitting corrosion process. Their model is qualita-
tive in nature and does not account for the real weight
loss in the object after a given time elapses. There is
no real-time scale. Their stochastic model of corrosion
growth, however, is inspired by the physio-chemistry
of corrosion process. We improve their model in this
paper and apply it to general corrosion with real time
scale.

In order to introduce the notion of real time-scale, we
take recourse to the standardized observations of the
corrosion phenomena [15] to predict the actual weight
loss in a given time for a particular material in a type of
environment. We employ the stochastic aging process
to obtain a single step corrosion model and modulate it
to produce the observed weight losses in a given time
period as cataloged in the ISO standard.

3.1 Corrosion Rate Categorization

Atmospheric condition such as rural, urban, industrial,
marine, chemical, etc., varies and is one of the ma-
jor contributors to corrosion. The complex inter-play
of various factors such as metallic properties, environ-
mental factors and operating conditions make accurate
prediction of detailed corrosion behavior of different
materials nearly impossible to track. The ISO stan-
dard [15] classifies the character of corrosion attack into
five “corrosivity” levels as shown in Table 1. Corrosiv-
ity is a measure of the ability of the atmosphere to cause
corrosion in a given corrosion system. For different ma-
terials (e.g., Steel, Copper, Aluminium, etc.) exposed
to each class, ISO lists the average weight lost per unit
surface area in each year of exposure, We call this the
“corrosion rate.”

Corrosivity 1 year | 5years | 10 years
Very Low (C1) 10 23 33
Low (C2) 200 464 668
Medium (C3) 400 928 1334
High (C4) 650 1508 2167
Very High (C5) | 1500 3480 5001

Table 1: Corrosion rate for steel for different standardized
corrosivities [15] for different exposure times

Table 1 shows the corrosion rate in grams per m?> of
steel when exposed to different standardized corrosivi-
ties [15] for different exposure times. By fitting a func-
tion to the table entries, we can compute the amount
of material lost in different environment types (namely,
corrosivity categories C1, C2, C3, C4, C5 and interme-
diate levels) during different time periods. The corro-
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Material k n m
Steel 13.84 2.9621 | 0.5257

Copper | 0.97416 | 2.4492 | 0.67018
Zinc 0.7 2.7355 | 0.8169

Table 2: Constants for different materials for Equation 1

sion standard has similar corrosion rate tabulation for
different materials. We best fit the values in these ta-
bles to generate a function that gives weight loss per
unit area for a particular material, given the atmospheric
corrosivity, for a given elapsed time ¢. The following
form fits all materials and conditions:

Q=kxC" %™ (1)

where, Q is the corroded weight per unit area, C is the
corrosivity level and &, n, and m are constants whose
values are given in Table 2 (with different values for
different materials). Our stochastic corrosion model is
now guided by Equation 1.

3.2 Model Building Blocks

We start with a voxelization of the corroding object as
in [20]. As a result of this parametric voxelization, the
voxels in the object space are warped cubes [2]. Voxels
account for the geometric structure of a solid object.
In this paper, we incorporate physical properties of the
voxel, i.e., each voxel is assigned a mass based on its
volume and material density.

We follow the framework of [20] as the core of our
model, which we describe first. Each voxel has six
face neighbors. A voxel with at least one face exposed
is a boundary voxel. The simulation processes only
the boundary voxels. Each voxel maintains a corrosion
level (), which accounts for the actual decay state of
the voxel. It ranges from O to 1. At level 0, an exposed
voxel is fresh material. At 1, the voxel is fully corroded
and removed from the simulation, exposing voxels be-
hind it. At each step of the simulation, the corrosion
level of each exposed voxel is incremented by a con-
stant factor 6 based on a probability distribution func-
tion and the average level of corrosion around it.

We borrow the following intrinsic parameters of the
simulation employed by [20].

e v: It controls the influence of the immediate neigh-
borhood. This aggravates the corrosion due to the
flow of anions in the medium.

e : A constant value that accounts for material
strength resistance to get corroded. When y at a
point exceeds @, the voxel is removed.

e §: This is the factor by which y of a voxel is in-
creased at a simulation step, it is selected for up-
grade by the probability distribution function.
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Figure 2: Basic cylindrical pipe

Fig. 1 describes our simulation and rendering pipeline.
Corrosion is a generic phenomena, which broadly de-
pends on the material properties of the object and the
environmental conditions it is exposed to. The input
parameters of the model are as follows:

e M : material type (steel, copper, zinc etc.)
e (: corrosivity level of the environment (1-5)

e ¢ : elapsed time for which corrosion the process is to
be simulated

We describe the simulation scheme using cylindrical
pipes. Let us consider a pipe with interior radius r, exte-
rior radius R and height H, as shown in Fig. 2. Our sim-
ulation is agnostic to the voxel size. Let the thickness of
the exposed layer (voxel width) be Ad. p is the density
of the metal and ‘A’ is the total area exposed (2ITRH as-
suming the outer surface of the pipe is exposed). So the
volume exposed is A * Ad. The weight of the exposed
volume (o) is given by A * Ad * p. Equation 1 gives
us the value of Q, the expected weight loss (in g/m?)
in the given elapsed time. The expected weight loss in
grams () is thus:

E=QxA 2)

The probability of a voxel to be removed can now be
calculated as the ratio of the expected weight loss to the
weight of the exposed volume. It is given by:

'3 QxA  kxC'xt"

T o AxAdxp  Ad#p )

U plays a vital role in the propagation of the corrosion
phenomena. This is explained in detail in section 3.3.
The material weight loss computation is agnostic to the
area exposed and shape dependencies (Equation 3). The
proposed model is independent of the the voxel resolu-
tion (as seen in Equation 3). The probability of removal
of a voxel is also independent of the total exposed area.

3.3 Model Simulation

At every simulation step, the state of each voxel is pri-
marily influenced by three main factors: the time of ex-
posure, the the level of corrosion in its vicinity and the
exposure of the voxel.

Corrosion rate has been measured to be an exponen-
tially decreasing function of time [12]. We model the
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corrosion probability to decay with time according to
Equation 4.

X =Ao*exp(—Ai *1) “4)

with some constants Ay and A;. To achieve the expected
Q, we assign Ay = v from Equation 3 to calculate x for
updating y. This controls the aggregate material loss
in the simulation. Our simulation has fixed @ = 1. The
pace of corrosion is hence controlled by A;. This can in-
crease or decrease the probability of material loss. [20]
does not have any such control over the speed of the
complete simulation.

For each exposed voxel, the average neighborhood ()
is the average of y values of its neighbors. Now, the
corrosion simulation steps are listed below for each ex-
posed voxel ‘a’

1. Choose a random number r uniformly distributed
between 0 and 1.

2. Ifr<y,y(a)+=9

3. If B(a) >v,y(a)+=8

4. If y(a) > o, remove the voxel. Distribute y(a)
equally among the now exposed voxels in its neigh-
borhood.

5. For all exposed voxels, repeat steps 1-3 until the to-
tal material loss reaches Q for a given elapsed time
t given in Equation 3 .

If a voxel has been exposed longer, the chances of its
corrosion is high. Closeness to a highly corroded region
also accelerates the corrosion process of a voxel.

4 RENDERING

Corroded objects exhibit a wide spectrum of appear-
ances, which may be nearly impossible to replicate us-
ing conventional rendering techniques. The dynamic
conversion of one state to another depending on the in-
teraction between the environment and the material fur-
ther complicates rendering. To best represent the ac-
tual state of the object, we propose a general render-
ing framework, which imparts the final color to the cor-
roded object derived from actual high resolution pho-
tographs of real objects. Our simulation results in the
set of surface voxels whose exposure is primarily gov-
erned by material-environment interaction over a cer-
tain period of time. We estimate their appearance by
that of similarly corroded points in the input photo-
graph. We start with a parameterization of the origi-
nal surface to be simulated. This allows us to map the
model voxels back to that parameterization at any stage
of the simulation.
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Figure 3: Real photograph sample (a), Albedo Map (b) and
its corresponding weathering degree map (c)

Then, instead of re-surfacing the model voxels, we di-
rectly render the original surface with the removed vox-
els encoded in a displacement map, following [20]. The
displacement map value is directly equal to the depth of
the exposed surface from the original surface in the di-
rection normal to that surface. The simulation also gen-
erates the current level of corrosion for every exposed
voxel in a “weathering degree” map (W,). We use this
weathering degree map also, to compute a bump-map.

Finally, we compute the color by example of a corroded
material of the same type. We first eliminate the illumi-
nation from the photograph [5], getting a map of albedo
values for each pixel, /;. Employing the user-in-the-
loop technique of Wang et al. [24], we then construct
a degree map of the photograph: the estimated corro-
sion level of the material at each pixel. Fig. 3 shows an
example of a photograph, its albedo map and the final
weathering degree map for the real photograph.

We then generate the final albedo map I, of the simu-
lated object using these three maps:

1. Example weathering degree map W; constructed
from the photograph

2. Simulated weathering degree map W, generated
from our simulation

3. Example albedo map /; constructed from the photo-
graph

Let I; and W; each be of size M x N and let I, and W,
be of size P x Q.

To compute I (x,y), one possibility is to individually lo-
cate the value (similar to) W (x,y) in W; and assign the
albedo from /; found at that pixel. This provides unnat-
ural and random looking results. Further, it is possible
to find W(x,y) at multiple locations in W, with large
variance in color values. Hence a coherent look-up pro-
vides a more natural look. However, instead of match-
ing pixels based on their neighborhoods as in [24], we
match entire tiles. Unfortunately, this generates discon-
tinuity at tile boundaries. Hence, we employ overlap-
ping tiles and then combine color from multiple tiles at
each pixel. Further, we do not require a seven dimen-
sional appearance manifold to generate realistic color.
7D input is cumbersome to acquire. We instead use

Full Papers Proceedings 206

|

EZERIE

Iﬂﬂhﬁ
[

w, w,

N Q
() )
Figure 4: Procedure to generate the final diffuse color map
based on least chi-squared distance between histogram distri-
bution of degree values. Each tile (highlighted as yellow) is
m*m sized.

standard RGB photographs and obtain improvements
over the technique in [24] as demonstrated later. We
describe our algorithm next.

We consider m x m tiles in each map. As I} and W are
of the same size, a tile 77 at (x,y) location in I; corre-
sponds to the same (X,y) location in W;. (See Fig. 4(a)
and (c), t; and 77, respectively.) We hence use the same
symbol to denote corresponding tiles in the two maps.
Similarly, we use a common symbol for tiles in W, and
b, (See Fig. 4(b) and (d), #, and T, respectively).

As mentioned, we employ a sliding window approach.
We start with an m x m tile in one corner. The next tile is
offset by one pixel in one of the dimensions, and so the
window slides. The entire map is overlaid with such
overlapping tiles (see Figure 4). For each tile in W,
we compute the best matching tile in Wy using its his-
togram distribution of the degree values as the ‘feature
vector’ for matching.

e (Calculate histogram of each tile in W; and W, using
their degree values.

e For each tile 75 in W, find the best matching tile
T, in Wy, based on least chi-squared distance [18]
between their respective histograms.

e Impart color from the matching tile 7} in /; to 75 in
b.

o Every pixel p € I, lies in multiple (sliding) tiles (see
tiles marked in blue and green in Fig. 5) and has
corresponding color contributions.

e The final color for pixel p is generated by the
weighted average of these color contributions.
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d; ., are normalised distances

Figure 5: Sliding window procedure to impart color to a
pixel p in I. The distribution of colors is dependent on the
spatial distance of pixel p in I from the center of the tile (73
in I). Yellow highlighted part is the pixel for which color
contribution calculation is shown. Blue and green are the tiles
pixel p is part of. For the blue tile p lies at the center, but
for green tile p is at distance d» from the center. The color
contribution from the blue tile at distance d; would be more
than the RGB value from green tile at d5.

The color maps generated using the RGB values em-
ploying the pixel matching technique of [24] produces
blockiness. As can be observed in Fig. 6, our results
produce sharper results. Moreover, our colors have a
higher fidelity to the computed weather map in W;.

Input Images Weathering Map

Output Comparison

[24] results Our results

Error — 609.6905 Error —28.4686

a) b)

Figure 6: Comparison between our diffuse map generation
and texture generated using [24], our results have much less
blockiness and much better spread of colors. Also L2 norm
error is much less.

We perform an error analysis of results from our color
maps and those generated by [24]. This is done by cal-
culating how accurately a color has been assigned for

Full Papers Proceedings

a particular corrosion level. For each pixel in I, we
compute the difference in color from the “nearest sup-
porting color” in I;. We then compare the L> norm er-
ror for both the set of outputs. To compute the nearest
supporting color for »(x,y), we locate all points on the
appearance manifold [24] on /; and W;, which have a
corrosion level of W, (x,y). Among these, I;(x,y) that
is closest (in L? sense) to I (x,y) is considered the near-
est supporting color. Intuitively, the corroboration of a
similar color with the same corrosion level in the input
maps testifies to it being the right choice.

Also, we generate a diffuse texture map, a normal map
and a displacement map, which incorporate the overall
deterioration in the three dimensional object, which is
difficult in their proposed strategy.

Finally, after generating the diffuse texture map, the
normal map and the displacement map, we produce the
final rendering.

S RESULTS AND VALIDATION

Our model results closely follow the weight loss
paradigm of materials including Iron, Copper and Zinc
under environmental conditions ranging from gentle
to highly hostile. We validate our results exhibiting a
comparison of the weight loss from our simulation to
the predicted weight from the ISO standard. Our major
focus is on realistic rendering of corroded objects
and less on the performance statistics. Our model
simulation takes 2-4 minutes (for Figs. 8, 9 and 10).
Texture generation is a two step process. The first step
creates the appearance manifold (which is computed
just once) and the second step generates the final color,
which takes 20-30 seconds for for a texture size of
256 x 256.

Our model simulations are agnostic to voxel size. The
surface layer of depth is specified by the user. The size
of voxels, in real units, is also specified by the user.
For the results shown in Figs. 8, 9 and 10, the thickness
of the pipe is 0.5cm. This depth is divided into six-
teen layers and the average voxel size is 0.00491 cm?.
In Fig. 7(a), we compare time variant simulated re-
sults for carbon steel under various environmental con-
ditions (C1 - C5) with predicted weight loss in grams
per unit area from the ISO standard. As is apparent
from the graph, our model complies with the ISO stan-
dard from various atmospheric conditions at different
elapsed times. The graph clearly depicts that the total
weight loss closely matches the predicted value. Be-
ing agnostic to the type of material, our framework is
able predict the state of other materials like Copper and
Zinc also once the respective material property is pro-
vided as input. We have validated our model with the
actual weight loss in materials such as Steel, Copper
and Zinc. In Fig. 7(a), we compare our results for var-
ious materials including steel, copper and zinc for cor-
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Figure 7: The two charts compare weight loss in grams per
unit area from our simulation at different elapsed times with
predictive weight losses from [15]. The first chart compares
the weight losses for carbon steel at different corrosivity lev-
els. (b) shows the weight losses for different metals at corro-
sivity level C3. The compliance of our model with standard
results is evident.

(b)

Figure 8: Visual comparison of material loss in steel (a)
and copper (b) pipe after one year

rosivity level C3 and observe that the predicted weight
losses are achieved by our simulation effectively.

Our results are validated both with respect to the ex-
pected structural changes as well as color similarity to
input. For example, Fig. 8 showcases the rendered re-
sults within the weight loss band in steel and copper
pipe for the first year as suggested by ISO [15]. For
steel pipe, the weight loss is much more than for copper
after one year. Our model generates a time variant cor-
rosion simulation. Fig. 9 exhibits the state of a copper
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pipe at different time steps impacted by an environment
of corrosivity C3. The color and surface changes for
the copper pipe shows the deterioration of the pipe at
multiple time steps. Fig. 10 shows the impact of differ-
ent corrosivity levels on steel pipe. C5 is much more
aggressive and hostile environment and the surface de-
terioration of the pipe clearly depicts that.

6 CONCLUSION

We propose a physio-chemically based stochastic
model to predict shape degradation of objects under-
going corrosion. Our proposed approach is generic
across different materials and handles different object
sizes and shape intricacies. We allow for material type
and environmental conditions to be given as inputs
making the framework simple yet comprehensive.
In order to generate rendered output we propose a
holistic rendering approach involving mapping of
surface with color seen in actual corroded objects.
We have presented a model that estimates structural
damage due to material loss for uniform corrosion of
various materials. Extending the model to other forms
of corrosion including pitting and crevice corrosion
would be an important avenue for further research.
Our current rendering scheme focuses primarily on
surfaces of revolution. We aim to generate simulation
for general objects in future. Also, further work can be
done to understand the physical and optical properties
of corrosion residue.
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