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IDENTIFICATION OF MATERIAL PARAMETERS USING
HOMOGENIZATION APPROACH AND SFEPY SOFTWARE

V. Luke§!, H. Zem&ik?

Abstract: The finite element solver SfePy and Python modules are used to identify the material parameters of the carbon fibers
and the epoxy matrix which constitute a unidirectional long-fiber composite. The mathematical model of the heterogeneous
structure is base on two-scale homogenization method using the linear material models. The computed responses are compared
to the experimental data in an optimization loop in order to obtain the elastic modules and the Poisson’s ratios of the composite
constituents. The geometry of the unit cell representing the material microstructure is generated artificially using an event-
driven algorithm.
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Introduction

The material parameters of the constituents of industrially manufactured composites are usually not
provided or are defined approximately. The numerical simulations of the mechanical behavior of het-
erogeneous structures are essential part of research and development of new modern mechanical com-
ponents and appliances. To achieve an agreement between experiments and numerical simulations, the
exact knowledge of the material parameters of the constituents is crucial.

This contribution is focused on the identification of the material parameters of composite structures
consisting of unidirectional long fibers and a matrix. The volume fractions of structure components are
determined with help of a scanning electron microscope. These values are used to generate equivalent
artificial periodic reference cell representing the geometrical arrangement of the fibers at the microlevel
of the structure. The reference cell is employed in the multi-scale model which is used to describe the
mechanical behavior of a composite sample. The multi-scale analysis is embedded in an optimization
loop in order to identify elastic modules and Poisson’s ratios of the matrix and unidirectional fibers.

The multi-scale finite element analysis is implemented in the Python based package SfePy, see [1],
and the identification procedure uses Python optimization functions from the Scipy module.

Generating a unit cell

The volume fraction of the unidirectional fiber composite was determined using the images of the
microstructure obtained with a scanning electron microscope. Based on the determined volume ratio, an
artificial geometry representing the composite structure is built up with the event-driven algorithm de-
scribed in [4]. The starting point for the algorithm is a square domain and a finite number of small circles.
The circles are moving along straight lines, interfering with each other and growing until the required
volume fraction is achieved. If any circle reaches the border of the square domain, it passes through
that border and appears at the opposite side. This process results in the periodic structure with randomly
distributed circles representing the composite fibers. The artificially generated periodic geometry is the
input to the GMSH mesh generator, see [3], which creates the finite element mesh for the multi-scale
numerical simulation.
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Figure 1: Top left — the electron microscope scan of the composite structure, the light parts are the fibers,
the dark part is the matrix; Top right — the generated periodic geometry with the randomly distributed
fibers; Bottom — the periodic finite element mesh representing the composite microstructure.

Two-scale linear elastic model

We assume that the geometry of the composite structure can be characterize by a periodically re-
peated representative cell constituted by the carbon fibers and epoxy matrix. To describe the mechanical
behavior of such a heterogeneous structure we use the two-scale homogenization method applied to the
linear elastic problem. The method based on the two scale convergence or the unfolding operator tech-
niques, see [2], can be used for the asymptotic analysis of the problem for ¢ — 0, where ¢ is the scale
parameter reflecting the size of a periodic unit. The homogenization procedure results in the decoupled
local microscopic and the global macroscopic subproblems. At the microscopic level, the problem for
the so-called characteristic responses is solved. The responses are used to evaluate the homogenized
elastic coefficients that are employed in the homogenized problem to solve the macroscopic responses.

The heterogeneous linear elastic medium with a periodic lattice occupies an open bounded domain
Q0 C R? and its microstructure is represented by the periodic cell Y which is decomposed into the
fibers Yy and matrix Y;,,, see Fig. 2. The microscopic problem is expressed in terms of the characteristic
response x"°: find x"* € Hx(Y') such that:

/Dijklezl(xrs)e?j(w) dY = /Dijklezl(ﬂm)e%(w) dY,  Vwe Hy(Y), (1)
v ¥y

where II7® = y40,4, y is the microscopic coordinate, ¢ is the Kronecker delta symbol, €Y is the linear
strain tensor, D = D(y) is the elasticity tensor (with respect to ¢ coordinate) and H(Y") is the Sobolev
space of Y -periodic functions. Using the characteristic functions, the homogenized elasticity tensor D
can be express as:

1 o
Dijut = 77 / Dygrsells(TF¥ — x*)el, (IT7 — x7) Y. @)
Y
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Figure 2: Domain (2 representing the macroscopic sample and the microscopic domain Y (representative
cell) decomposed into fibers Y and matrix Y;,, subdomains.

The macroscopic problem is solved for the unknown macroscopic displacements u® € H (2):

/ngleil(uo)e%(v)d\/ = /Uiti ds, Vv € Hy(Q), 3)
Q T

where e” is the macroscopic linear strain tensor and Hy(£2) is the set of admissible displacements with a
zero value at the Dirichlet boundary.

The two-scale mathematical model presented above is implemented in the Python based finite ele-
ment solver SfePy, see [1].

Identification of material parameters

We consider linear transversely isotropic material model for the carbon fibers. This model is de-
scribed by five material parameters which are: Young’s modulus E{ in the fiber axis direction, Young’s
modulus Eg in the radial direction, shear modulus G{Q in the planes parallel to the fiber axis, Poisson’s
ratio 1/{2 in the planes parallel to the fiber axis and Poisson’s ratio 1/53 in the planes perpendicular to
the fiber axis. For the epoxy matrix, the linear isotropic model with only two material parameters, i.e.
Young’s modulus E"* and Poisson’s ratio v", is used.

Several composite specimens with different fiber orientations (0, 10, 20, 30, 40, 50, 60, 70, 80 and 90
degrees) were subjected to the tensile test in order to obtain force-elongation dependencies, see [5], [6]
and Fig. 3. The slopes kéxp, i € {0,10,...90}, of the linearized experimentally detected dependencies
were used in the objective function of an optimization procedure. The identification algorithm is im-
plemented in the Python language with help of optimize.fmin_tnc() function from the Scipy optimization
module. The following objective function is minimized in the optimization process:

Komp()
dx)= Y (“m) , )

1€{0,10,...90} exp

where kfmmp is the computed slope of the force-elongation tangent lines for a given fiber orientation and
X = [E{c , Eg , 1/{2, G{Q, E™, 1™ is the vector of the unknown material parameters. The Poisson’s ratio
1/{3 = 0.4 is given by the manufacturer.

The each iteration step of the optimization loop includes the following operations: 1) solution of the

microscopic subproblem, evaluation of the homogenized elasticity tensor; 2) solution of the macroscopic
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Figure 3: Left — loading of the composite sample; Right — linearized tensile dependencies for the differ-
ent fiber orientations.

problems for different fiber orientations (this is done by rotation of the elasticity tensor); 3) evaluation
of the objective function. The objective function values and the sought material parameters during the
optimization process are depicted in Fig. 4. In Tab. 1, the initial and optimized parameters are presented.

| B{ [GPa] | B [GPa] | v],[-] | G{, [GPa] | E™ [GPa] | v™ []
initial 150 50 0.2 50 50 0.4

optimized | 164.29 18.95 0.197 50.10 3.23 0.369

Table 1: The initial and optimized material parameters.

Conclusion

The presented approach and the employed software tools seem to be suitable for the identification of
the material parameters of heterogeneous structures. The calculated elastic modules and Poisson’s ratios
of the carbon fibers and epoxy matrix are in expected ranges.
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Figure 4: Evolution of the objective function values and the sought material parameters during the
optimization process.
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