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NUMERICAL SIMULATION OF QUASI-STATIC MODEL OF
IONIC TRANSPORT THROUGH DEFORMABLE POROUS

MEDIA
J. Turjanicová1, E. Rohan2

Abstract: The paper deals with the computational model of quasi-static transport of 2-component electrolyte solution transport
trough deformable porous medium respecting material microstructure. The multiscale approach is used to derive effective
tensors describing macroscopic homogenized body. Numerical simulation are performed in order to test the derived model on
the simple microscopic and macroscopic geometries.
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Introduction
Transport of an electrolyte solution through porous media is widely studied problem with numerous

applications in geoscience or the research of fuel cells. In the context of geoscience it was explored by
authors [3], [4] as a means to model clay swelling.

However, this approach can be also used in modeling of biological tissues, namely the cortical bone
tissue. The cortical bone has strictly hierarchical structure with multiple scales. On the canaliculo-
lacunar scale it consist of system small interconnected channels saturated by bone fluid, which can be
considered as a incompressible solvent of sodium cations and chloride anions. The bone tissue matrix
can be consider deformable and it exhibits a small negative charge. At interface between these two
phases a separation of positive and negative charge components occurs. This effects lead to a formation
of so-called electrical double layer (EDL), which describes the ionic charge distribution in electrolyte in
proximity of charged pore surface. Due to the motion or the loading of the bone tissue, there occurs the
ionic transport inside the canaliculo-lacunar network. Thus, the ionic transport models are suitable to the
modeling of electro-mechanical coupling in the cortical bone tissue.

The aim of this paper is to develop computational model of quasi-static transport of 2-component
electrolyte solution transport trough deformable porous medium respecting material microstructure,
which may be applied easily to cortical bone tissue modeling in future.

Mathematical model
Mathematical model of the ionic transport through porous media is based on the description of pro-

cesses in the fluid and solid phases and on their interface. After the literature research of available
mathematical models we adopted the model published in [1], which deals with the stationary case and
then modified to quasi-stationary case.

Porous medium occupies a bounded domain Ω with characteristic dimension Lc an it is composed of
fluid and solid phases. The fluid phase Ωf consists of the pore space saturated by an electrolyte solution.
The solid matrix is then defined as Ωs = Ω \ Ωf and solid-fluid interface as Γ = ∂Ωs ∩ ∂Ωf . The
subscripts ts and tf will also appear in the rest of the text to denote constants and variables belonging
to the respective phase.

For the purpose of the multi-scale modeling we consider macroscopic domain Ω generated as a lattice
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of periodically repeated cell (RPC) Y with characteristic dimension l. It has a composition similar to the
Ω, i.e. it is divided into two sub domains Ys and Yf with interface ΓY , such that

Y = Ys ∪ Yf ∪ ΓY , Yf = Y \ Ȳs, ΓY = Ȳs ∩ Ȳf . (1)

The geometry of the RPC Y should reflect the idealized microstructure of domain Ω. It is usually
assumed to have a unit side length, i.e. it has the measure |Y | = 1.The ration between macroscopic and
microscopic scale defines so-called scale parameter ε = l/Lc, 0 < ε � 1 and represents the smallest
zoom, by which the microstructure becomes visible from the macroscopic point of view.

Processes in fluid phase

The fluid phase is assumed to be an electrolyte solution of two ionic species (further indexed by
α = 1, 2) with different valencies z1 = −1, z2 = 1 and characterized by different concentration cα. the
solvent is considered to be incompressible. The pore surface is charged by small surface charge −Σ.

Transport of the ions is influenced by three processes. The first one is the convective movement
characterized by convective velocity w, the second one is the diffusion of ions in the solvent proportional
to diffusivity of the α-th ionic species Dα and the third one is the effect on the movement of electrically
charged particles in the electrical field of solid-phase E. There is no ionic exchange between the phases,
thus the migration-diffusion fluxes jα are zero on the solid-fluid interface.

Each of the ionic species (indexed by α = 1, 2) fulfills the Eulerian mass conservation law,

∂cα
∂t

+∇ · (jα + wcα) =
∂cα
∂t

+∇ ·
(
−cαDα

kBT
(
kBT

cα
∇cα + ezα∇Ψ) + wcα

)
= 0 in Ωf ,(2)

jα · n = 0 on Γ, α = 1, 2, (3)

where n is the unit exterior normal to Ωf .
The electrokinetics of the fluid phase is characterized by electrostatic potential Ψ, which is given as

a solution to the Poisson problem,

E∇2Ψ = −e
N=2∑
β=1

zβcβ in Ωf , (4)

E∇Ψ · n = −Σ on Γ. (5)

where E is dielectric coefficient of the solvent. The corresponding electrical field is E = −∇Ψ.
The fluid velocity v is governed by the equilibrium equation for the fluid,

−∇ · σf = f in Ωf , (6)

σf = −pI + 2ηfe(v) + E
(

E⊗E− 1

2
|E|2I

)
, (7)

∇ · v = 0 in Ωf , (8)

where f is the external body force, σf is the stress tensor of the fluid phase, e(v) = 1
2

(
∇v + (∇v)T

)
,

p is the fluid pressure and ηf is the dynamic viscosity of the electrolyte.
Let us note that, in the quasi-stationary problem, the convective velocity takes into account the solid

deformation u extending to the fluid part. Thus, it is defined as w = v − ∂tu.

Processes in solid phase

The porous body is considered to be deformable, with usual assumptions of linear elasticity, small
displacement u and small deformations. As the pores are saturated by electrolyte solution, the continuity
of stresses in both the phases on solid-fluid interface has to be ensured. This can be expressed by the
following system of equations,
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−∇ · σs = f in Ωs, (9)

σs = Ae(u), (10)

v = ∂tu on Γ, (11)

σf · n = σs · n on Γ, (12)

where e(u) = 1
2

(
∇u + (∇u)T

)
is strain tensor and A = {Aijkl} is the symmetric positive definite

tensor of elasticity.

Homogenization
Before we perform homogenization procedure, it is beneficial to transform the system of equation

2-12 in its dimensionless form. That can be achieved by the suitable choice of characteristic quantities
and by spacial scaling of the operator ∇. The dimensionless scaled quantities are further denoted by tε
and forcing terms are further denoted by t∗.

The dimensionless system of equations then needs to be linearized. This is possible under the as-
sumption of sufficiently small applied fields Ψext,∗ and f∗. Then the system is only slightly perturbed
from equilibrium and all the unknowns can be rewritten in terms of their solutions in equilibrium and
their perturbations denoted by δ, so that (for any dimensionless quantity ϕε)

ϕε(x) = ϕeq(x) + δϕε(x), (13)

where teq indicates equilibrium quantities corresponding to f∗ = 0 and Ψext,∗ = 0.
It can be shown ([2]), that equilibrium quantities are

weq,ε = 0, peq,ε =
N=2∑
j=1

cbβ exp(−zjΨeq,ε), (14)

ceq,ε
α (x) = cbα exp(−zjΨeq,ε(x)). (15)

Since the concentrations have Boltzmann distribution, in equilibrium, they can be computed from
the equilibrium potentials. The problem of computing equilibrium potential can be transfered onto the
microscopic cell and it needs to be solved before computing cell problems.

The linearization not only simplifies nonlinear terms, but also enables us to solve the three homog-
enization problems separately: homogenization of electrokinetic system, homogenization of potential
perturbation and homogenization of displacement perturbation.

The unfolding homogenization method is used for derivation of the cell problems. This method
assumes the periodic microstructure and enables us to translate the problem from domain Ω into the RPC
Y . We shall obtain so-called cells problems with solutions constitued by seven families of responses:

• response to the macroscopic pressure gradient (ω0,k, π0,kθ0,k
j ),

• response to macroscopic diffusive flux (ωi,k, πi,k, θi,kβ ),

• response on displacement velocity (ωu,k, πu,k, θu,kβ ),

• auxiliary cell problem with solution $β

• elastic response on deformation wij

• response to the pressure wP

• elastic response to the potential perturbation wi

Having obtained the responses on RPC Y as the solutions of thecell problems, we may finally quantify
effective tensors.
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Macroscopic problem

The homogenization procedure provides the effective tensors. The tensors relevant to the ionic trans-
port are the permeability K, the migration-diffusion tensors Ji, the Onsager tensors Li, the diffusivity
tensors Dij and two new tensors U and M which ensure the stronger coupling between electrokinetic
system and elasticity. Further, the modified Biot’s poroelasticity coefficients are obtained, the elasticity
tensor AH , the Biot’s tensor BH , and the ionic potential tensor CH .

The effective tensors related to electrokinetic system read, as follows:

Jαlk =∼
∫
Yf

ωα,k(y) · el dV, (16)

Dαβ
lk =∼

∫
Yf

(
ωα,k(y) +

zβ
Peβ

(
ekδαβ +∇yθα,kβ (y)

))
· el dV, (17)

Klk =∼
∫
Yf

ω0,k(y) · el dV, (18)

Lαlk =∼
∫
Yf

(
ω0,k(y) +

zβ
Peα
∇yθ0,k

α (y)

)
· el dV, (19)

Ulk =∼
∫
Yf

ωu,k(y) · el dV, (20)

Mα
lk =∼

∫
Yf

ceq
β (y)

(
ωu,k(y) +

zβ
Peβ

(
−hcek +∇yθ,̆kj (y)

))
· el dV. (21)

Symbol Πij denotes the so-called transformation vectors Πij = (Πij
k ), i, j, k = 1, . . . , d, (d = 3),

which can transform the macroscopic deformation δu0(x) from Ω into the coordinate system of RPC Y ,
as follows Πij

k = yjδik.
Effective tensors related to extended Biot poroelasticity read

AHijkl =∼
∫
Ys

A∗∇(wij + Πij) : ∇(wkl + Πkl) dV, (22)

BH
ij = − ∼

∫
Ys

A∗∇(wP : ∇Πij) dV, (23)

Cαij =∼
∫
Ys

A∗∇(wα) dV +
N=2∑
β=1

zβI ∼
∫
Yf

c0
β(y)

(
$β(y) + δαβ

)
dV+

+ ∼
∫
Yf

1

γ
(∇yΨeq ⊗∇y$α +∇y$α ⊗∇yΨeq −∇yΨeq · ∇y$αI) dV. (24)

Now we can state the dimensionless macroscopic homogenized system of equations, where all ex-
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(a)
(b)

Figure 1: (a): Geometry of RPC Y used in numerical simulations; (b): Boundary and initial conditions
used in numerical simulation

ternal forces are omitted: Find (P 0,Φ0
β, δu

0), β = 1, 2, such that

∫
Ω

K∇xP 0∇xq dV −
N=2∑
β=1

∫
Ω

Jβ∇xΦ0
β∇xq dV +

∫
Ω

Uδu0∇xq dV = 0, (25)

|Yf |
|Y |

∫
Ω

∂tc
eq
α +

∫
Ω

Lα∇xP 0∇xs dV −
N=2∑
β=1

∫
Ω

Dαβ∇xΦ0
β∇xs dV +

∫
Ω

Mαδu0∇xsdV = 0, (26)

∫
Ω

AHex(δu0) : ex(r) dV +

∫
Ω

B̂HP 0 : ex(r) dV −
N=2∑
j=1

∫
Ω

CβΦ0
β : ex(r) dV = 0, (27)

for any test functions q ∈ L2(Ω), s ∈ L2(Ω) and r ∈ H1(Ω)d and where B̂H = |Yf |I−BH .

Numerical simulations
The numerical implementation of the homogenization procedure and the homogenized model com-

pleted by suitable choice of initial and boundary conditions was made in python based FEM software
SfePy. For the homogenization, the simple geometry of RPC Y was used as to represent interconnected
system of channels through cortical bone, see Fig.1a. Computed effective tensors were then used in
implementation of the macroscopic problem.

Macroscopic equations were completed by a set of boundary and initial conditions, which can
be found in Fig.1b. Macroscopic problem was computed on the simple cuboid geometry. Resulting
macrosopic fields (P 0,Φ0

β, δu
0), β = 1, 2 are shown in Fig.2. It is evident that the shape of function

ϕ(x) prescribed as initial condition of Φ0
2 influences the resulting shape of pressure P 0 and potential Φ0

1

as well. The visualization of macroscopic displacement u0 shows swelling in response to the potential
Φ0

2 distribution.

Conclusion
Based on the literature research, suitable model considering rigid porous medium which can be

easily expanded to the case of deformable porous medium was adopted. Mathematical model was trans-
formed into dimensionless form and then linearized, which simplified the homogenization procedure.
Then, unfolding homogenization method was used to derive effective tensors and macroscopic problem
equations.
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(a) Distribution of displacement u0, 108× en-
larged

(b) Distribution of global pressure P 0

(c) Distribution of ionic potential Φ0
1 (d) Distribution of ionic potential Φ0

2

Figure 2: Solution of homogenized macroscopic problem

The local microscopic as well as the macroscopic problems were implemented in the open source
software SfePy. The simple geometrical representation of microstructure was used so that homogeniza-
tion results can be easily interpreted. The resulting effective coefficients were used in the solution of
Dirichlet boundary macroscopic problem.
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