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ABSTRACT 
This paper presents a solution of remote sensing data verification problem. Remote sensing data includes digital 

image data and metadata, which contain parameters of satellite imaging process (Sun and satellite azimuth and 

elevation angles, creation time, etc.). The solution is based on the analysis of special numerical characteristics, 

which directly depend on the observation parameters: sun position, satellite position and orientation. These 

characteristics are based on model-oriented descriptor, proposed by one of the co-authors of this paper. We 

propose two fully automatic algorithms for remote sensing data analysis and decision-making based on data 

compatibility: the first one uses vector data of the imaged area as a prior information, the second doesn't. After 

algorithms description we provide results of conducted experiments and explain appliance limits of the proposed 

algorithms. 
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1. INTRODUCTION 
Widely used in the modern world remote sensing 

data (RSD) consist of two main components: a digital 

image and its metadata, which describe the process 

and the observation parameters. During RSD 

transmission from source to destination, this data can 

be distorted accidentally (due to errors) and 

intentionally (by hackers). When this happens, the 

satellite image itself and/or its metadata can be 

changed. The problem of forgery detection in digital 

images, when observation parameters and image 

metadata are not used or unknown, is being solved in 

[Chr12a, Glu11a, Far09a, Far09b, Kuz14a]. 

Nowadays, there are papers devoted to the analysis of 

light parameters inconsistency for local parts of a 

single object in digital images [Mya12a]. These 

algorithms use only image data during analysis, 

because additional information about observation 

parameters is absent (the research is carried out for 

digital images obtained by ordinary cameras that do 

not store observation information). Due to the lack of 

this data, there is nothing to compare with angles and 

lengths of shadows in the analyzed image. Metadata 

of satellite images and imaged area vector maps 

allow to analyze the consistency of objects and their 

shadows. During literature analysis there were not 

found any papers aimed at the detection of 

inconsistency in shadows and objects in satellite 

images. 

In this paper we propose a new solution for detection 

of digital satellite image and observation parameters 

inconsistency using model-oriented descriptors, 

proposed in papers [Mya12a, Mya12b] by one of the 

co-authors of this work. 

2. PROBLEM DEFINITION 
To identify irrelevance between an image and its 

metadata, we will analyze the shadows of tall objects 

on the image. There will be used buildings with 

height of at least 12 meters (for example, houses with 

5 floors and more), which have a simple rectangular 

form on a satellite image received by nadir 

observation. The length of the analyzed shadows of 

such a building is 10-15 m - if the length exceeds this 

value the shadows may be imposed on neighboring 

buildings (in dense urban areas), which may impair 

analysis quality. It is better to identify objects and 

their shadows with such linear characteristics on 

high-resolution images (0.5-1 m). This is why we 

will use Geoeye-1 satellite images (spatial resolution 

– 0.5 m). This parameters characterize the restrictions 
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wherein the performed algorithms will work 

correctly. 

Image metadata contains the following observation 

parameters of the satellite image: 

1. image coordinates  Tksss ,...,, 21s , where 

 iii yxs ,  is a reference point of a satellite 

image, k is a number of reference points; 

2. satellite position coordinates  altelaz h,,p , 

where az  is the azimuth incidence angle of a 

satellite’s sensor, el  is the elevation incidence 

angle of a satellite’s angle, alth  corresponds to the 

altitude value of a satellite; 

3. Sun position coordinates  Telaz  ,α , where 

elaz  ,  are azimuth and elevation incidence Sun 

angles respectively. 

Fig. 1 shows the relative position of azimuth and 

zenith angles of Sun and spacecraft. 

3. AMPLITUDE-PHASE MISMATCH 
Model oriented descriptor of a digital image was 

proposed in [Mya12a, Mya12b]. It is a new 

descriptor type, which is formed on the basis of 

differential and probabilistic properties of the local 

neighborhood of the analyzed image [Mya12b]. 

At the heart of the model-oriented descriptor is the 

use of gradient field probability distribution that 

describes the model of the analyzed image fragment. 

Descriptor’s components for a particular image area 

are calculated as the values of the probability density 

of a specific gradient field or its individual 

components. Such specificity of the proposed 

descriptor calculation allows to classify it as a model-

oriented and to use it as a part of some classifier’s 

decision rule or as a numerical characteristic of an 

image local area. For some image processing 

problems solution it is convenient not to use 

descriptor components, but its derivative values, 

called descriptor features, which were introduced in 

[Mya12b]. As it is shown in this work, all the 

proposed descriptor features have a useful property – 

their possible values lie in the range [0, 1]. This 

means that larger values correspond to greater 

similarity of particular image part (and, as a 

consequence of its gradient field) to the potentially 

possible realizations of the gradient field (the model). 

For a number of standard models of the random 

gradient field there were obtained explicit 

expressions for model-oriented descriptor features 

[Mya12b]. One of these models and the 

corresponding feature (amplitude-phase mismatch) 

are used later in this work [Mya12a, Mya12b]. 

The base of a model-oriented descriptor is the use of 

probability distribution of the gradient field, which 

characterizes the model of the analyzed image 

fragment. Values of descriptor’s components for a 

particular image fragment are calculated as the values 

of probability density of the argument in the form of 

a specific gradient field or some of its components. 

For a formal definition of this descriptor, we 

introduce some notation. Let D  be an analyzed 

image area (area of some real object’s shadow), for 

which the function  21,tt  is defined. The values of 

this function define orientation (angle) of a 

brightness difference line (along shadow’s 

boundaries) in the corresponding position  21, tt . 

We will call the following equation as an amplitude-

phase mismatch (APM)   for an image area D : 

 1,0,  
SGM

SGD
, (1) 

where SGD and SGM are represented in the form: 
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At this point  21, ttg  is a concrete implementation 

of the gradient field for the given image fragment, 

 21, ttg  and   21,arg ttg  are its modulus and 

direction (phase) respectively. It is obvious that the 

closer APM’s value   to 1, the more image area D  

matches a template, represented by  21,tt  function. 

APM, in fact, shows how far is the real gradient 

direction value from  21,tt  direction. 

Figure 1. Arrangements of the angles for Sun 

and spacecraft (VAA – azimuth angle, VZA – 

zenith angle, SAA – azimuth Sun angle, SZA – 

zenith Sun angle, g – phase angle). 
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4. PROPOSED SOLUTION 

Image and observation parameters 

verification procedure with imaged area 

vector map use 
Let us consider a situation when there is a priori 

information about the imaged area – a vector map of 

this area. By carrying out a geometric calibration of a 

snapshot and putting it on a vector map of the imaged 

area, it is possible to determine positions of physical 

objects on the space image. Depending on the angle 

el  the roofs of the objects in the image can be 

displaced according to the spacecraft inclination 

angle, whereas the vector objects correspond to the 

foundation of these buildings and are situated as it 

would be for nadir satellite imaging. The example of 

combining the space image received from Geoeye-1 

(0.5 m) satellite and the vector map of the imaged 

area is presented in Fig. 2. 

From now on we will neglect geolocation accuracy 

for the proposed solution description and conducted 

experiments. 

Using semantic data of the buildings vector layer we 

select only those buildings, which height is more than 

10 meters 10bh (buildings height values are listed 

in the semantic data of the vector layer). The contour 

of each building is described by four points 

        44332211 ,,,,,,, yxyxyxyx . The distance 

between any two points will be denoted as: 

   22

jiji

j

i yyxxd  . 

Let us define the Sun position in the satellite image 

coordinate system  sunsun yx ,  so, that 

jijidd j
i

ji

sun
i  ,4,1,,max

,
. 

For the analyzed building it is necessary to determine 

the pair of its sides for which the thrown shadow 

angle remains right (the angle whose vertex is the 

farthest from the Sun, e.g., B’A’C’): 

sun

i
i

di
4,1

max maxarg


 . 

There is shown an example (Fig. 3) of an object 

ABDC and its thrown shadow with length s (we 

assume that the imaging process was carried out at 

nadir point). The shadow is thrown by the sides AB 

and AC. 

Let us determine the length of the shadow of the 

object s as elbtghs  . We then can determine the 

buffer zone of the shadow boundaries – geometric 

locus at the edge of the shadow thrown by a building 

side (there is allocated a buffer zone for the shadow 

edge A'C' in Fig. 3). In the shown in Fig. 3 case the 

buffer zone is a parallelogram with two sides parallel 

to AC, and the other two belong to a line lying at the 

shadow inclination angle s  (calculated with respect 

to the direction of the X axis of the rectangular 

coordinate system of the analyzed image). We will 

call the shadow angle of the longer side of the 

parallelogram as the direction of the buffer zone 

boundary. The buffer zone for the whole building 

shadow lies along the polyline BB'A'C'C and consists 

of 4 parts: along BB', B'A', A'C' and C'C. 

Figure 3. Shadow buffer zone for one side of 

the building. 

 

Figure 2. Satellite image and vector map 

combination for analyzed objects, 35el . 
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Let L be the buffer zone height (see Fig. 4), then the 

length of the parallelogram sides, which limit the 

shadow side of the buffer zone A'C ', is calculated as 

follows: 

,
sin

'

' 

L
Hd

A

A



  

where s  . 

Shadow buffer zone borders, parallel to the side AC, 

will be separated by the distances 
2

H
s   and 

2

H
s   

from the side AC. Coordinates of the buffer zone 

corners are calculated in a trivial way. 

Doing similar calculations for the other three shadow 

borders, we get coordinates of the corners of their 

buffer zones. The result of the building shadow 

buffer zone construction (D) is shown in Fig. 5. 

For each of the buffer zones we will calculate APM 

values (1), which characterize correspondence of the 

real object’s shadow in the satellite image (according 

to the orientation of the buffer zone) to the value, 

calculated using metadata parameters. 

Image and observation parameters 

verification procedure without imaged 

area vector map use 
If there is no vector map of the imaged area we need 

to detect buildings and corresponding shadows using 

only image analysis methods. We will use high 

resolution images for analysis as in the previous 

algorithm. In this paper we propose the algorithm 

that allows to identify the corresponding buildings 

corners and shadows thrown by these corners using 

Canny detector [Gas03a, Can86a]. This method 

provides precise detection results for noisy images 

and detected edges are one pixel in width, which 

enables to trace them further [Ren02a]. 

Let us take the following image for analysis (see 

Fig. 6): 

     NnMmnmf ,0,,0,,  , 

where M,N are image linear dimensions of the image. 

Before its analysis it is necessary to make some pre-

processing steps: 

1) convert the image to grayscale (if it is 

multichannel); 

2) filter noise to smooth the edges. 

The image  nmf ,  is a result of the above 

preprocessing operations. 

Figure 4. Shadow buffer zone edge calculation 

for a building side. 

 

Figure 6. Analyzed image part. 

Figure 5. Shadow buffer zone for buildings. 
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After that we apply Canny edge detection algorithm 

to the preprocessed image (by means of OpenCV). 

For detector configure there are used two parameters: 

the first one is used to select the most significant 

boundaries ( 1th ), the second one is used to combine 

edge segments into contours ( 2th ). In this paper we 

use empirically selected parameters for edges 

detection 120,50  21 thth . These values provide 

the best precision for edges detection. The result of 

Canny edge detector will be denoted as  nmс f ,' . 

The algorithm of Canny edge detection result 

 nmс f ,'  for image verification consists of two steps: 

1) detection of corresponding angles of buildings 

roofs and shadows thrown by them; 

2) detection of shadows edges parts that are collinear 

with shadow inclination angle, calculated using the 

values of analyzed image metadata. 

The first step of the proposed algorithm include 

detection of angles between the edges that are close 

to 90 . The closeness of these values will be 

determined by a threshold parameter rightAngle . Each 

building has a right angle of the roof, which 

corresponds to a right angle of its shadow. For each 

edge pixel  bb yx ,  we produce eight-connected 

tracing procedure [Ren02a] in opposite directions 

and estimate the angle   between these traced edge 

parts. If the following condition 









 rightAnglerightAngle

2
,

2


  is satisfied, then 

 bb yx ,  point is placed in the list of points, which 

may be a building roof angle or a shadow angle. 

Then the points list is filtered and only those pairs of 

points    2211 ,,, yxyx  are selected for which the 

following condition is fulfilled: 

suns
xx

yy
arctg2 
















21

21 . 

There is also taken into account the minimum and 

maximum possible heights of buildings, which 

depend on the length of objects shadows. 

The result of detection of buildings roofs and thrown 

shadows corresponding angles is presented in Fig. 7. 

The second step of the proposed algorithm is to 

identify edges of the shadows, which direction 

coincides with shadow inclination angle, calculated 

using the values of analyzed image metadata. In the 

basis of this operation also lies the tracing of 

 nmс f ,' . Let sK  be a restriction on the maximum 

pixel length of the traced edge. When we determine a 

list of sK  points for a given point, we approximate it 

a line [Gas03a] using Line2DFitting function of 

OpenCV. As a result we obtain a point  lineline yx ,  

belonging to this line and line direction vector 

 yx dd , . The result of this operation is presented in 

Fig. 8. 

Using the list of corresponding right angles and the 

list of shadow edges closest to them there is formed a 

geometric model of the building shadow for which 

Figure 7. Corresponding angles detection for a 

test building. 

Figure 8. Detection of shadow edges collinear to 

metadata shadow angle. 
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the APM value is calculated, as described in the 

previous subsection. 

5. EXPERIMENTAL RESULTS 
During the algorithm research we define APM 

threshold values, which will be used for a decision 

making of satellite image to observation parameters 

correspondence. To conduct an experiment we 

choose Geoeye-1 satellite images (0.5 m resolution) 

and a set of 26 vector objects, randomly selected 

among the objects belonging to the territory of the 

snapshot. Taking into account the randomness of 

objects selection, some shadow buffer zones 

boundaries may appear in the shadow region of other 

vector objects, or may be blocked by other objects in 

the image.  

APM values are calculated for any image channels in 

two ways: 

1) APM value is calculated for each side of the 

shadow buffer zone of the object, so a training 

sample will consist of 104 variables – 4 values for 

each vector object; 

2) APM value is calculated for the whole shadow 

buffer zone of the object - the size of a training 

sample will be 26 variables.  

Shadow buffer zone boundaries are calculated for a 

given correct shadow inclination angle 75s , 

which was calculated based on the satellite image 

metadata parameters. 

Let L be the volume of a training sample, then the 

APM threshold value for the i-th training sample 

method is defined as follows: 

   2,1,9.0min 


it k
Lk

i  , 

where k  is the APM value for k-th object of a 

training sample, 0.9 is a constant defined 

experimentally. 

Fig. 9 and Fig. 10 show the distribution of APM 

values for both techniques of creating a training 

sample and the corresponding threshold values. 

Thresholds in the figures are as follows 34.01 t  and 

6.02 t . 

Decision making of satellite image to observation 

parameters correspondence is performed as follows. 

There is selected a test sample of 20 buildings (vector 

objects) for the analyzed satellite image. On the first 

stage APM values are calculated for each element of 

the shadow buffer zone and the object doesn’t pass a 

test if: 

1,3,0 tj j      (2) 

During the second stage APM values are calculated 

for the entire shadow buffer zone and the decision is 

made in a similar way: 

2t    (3) 

Satellite image does not pass the validation test, if at 

least one test sample object does not pass a two-stage 

test procedure (2) – (3). 

In order to confirm the correctness of APM threshold 

values 21, tt  selection we take a satellite image and a 

test sample of 20 vector objects, which belong to the 

territory of the snapshot. We then construct a 

relationship between the values of shadow inclination 

angle and the number of objects that did not pass the 

two-stage procedure of satellite image validation (see 

Fig. 11). 

For presented in Fig. 6 buildings the APM value 

93.0,77.0 21    exceeds the threshold APM 

Figure 11. Dependency of test sample objects 

number that failed validation test from shadow 

inclination angle. 

Figure 9. APM values distribution for the first 

creating technique. 

 

. 

 

 

Figure 10. APM values distribution for the 

second creating technique. 

 

. 
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value. This allows to make a decision that this object 

corresponds to observation parameters. 

According to the results of conducted experiments it 

can be concluded that the developed algorithm 

detects inconsistency of a satellite image and its 

observation parameters when the deviation of 

shadow inclination angle from its correct value is 
5

s
 for the calculated APM threshold values 

21 , tt . This is acceptable for the analysis of satellite 

images. 

Both of the proposed algorithms have low 

computational complexity and can be used for real-

time satellite image analysis (Geoeye-1 satellite 

image with size 1000010000  pixels and 1000 

vector objects average analysis time is 5400 ms on 

Intel Core i5 3470, 8Gb RAM). 

6. CONCLUSION 
In this paper we presented new algorithms for 

detecting inconsistencies of satellite image data and 

its observation parameters: with and without the use 

of imaged area vector map. The proposed solution 

makes it possible to detect inconsistencies of objects 

and observation parameters at a deviation angle 

greater than 5 . The paper also provides 

recommendations on parameters choice and detection 

algorithms usage limits. Further we are going to 

compare different shadow detection algorithms as 

one of the steps of the proposed solution and to 

develop an algorithm for buildings with more 

complex geometry. 
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