
View-dependent Triangle Mesh Simplification using
GPU-accelerated Vertex Removal

Thomas Odaker
Ludwig-Maximilians-

Universitaet
Muenchen, Germany

odaker@a1.net

Dieter Kranzlmueller
Ludwig-Maximilians-

Universitaet
Muenchen, Germany

kranzlmueller@ifi.lmu.de

Jens Volkert
Johannes Kepler

University
Linz, Austria
jv@ica.jku.at

ABSTRACT
We present an approach to view-dependent triangle mesh simplification based on vertex removal, which focuses
on allowing the execution of a large number of operations in parallel. The individual vertex removal operations are
designed to be applied without any need for communication or synchronisation between operations, thus allowing
an efficient implementation on modern GPUs to reduce the computation time for the coarse mesh.
Since we cannot compute the entire simplification in a single step and have to perform several iterations of parallel
vertex removal, we aim to maximize the number of vertices removed from the mesh in each iteration to efficiently
use the available hardware and reduce the number of necessary iterations. The removal operation is based on the
half edge collapse and avoids mesh foldovers and topological inconsistencies at each step.

Keywords
mesh simplification, level of detail, half edge collapse, computer graphics, view-dependent simplification, real-
time rendering

1 INTRODUCTION
Simplification of triangle meshes is a commonly used
approach to reduce geometric data and the performance
necessary for processing a mesh. Ever since it was first
introduced in [Cla76a], a wide variety of techniques and
algorithms that compute a coarse mesh have been pre-
sented.

In [Oda15a] we introduced our approach to view-
dependent simplification that is designed for an
execution on a GPU. In this paper we introduce further
developments and improvements to this approach that
increase parallelism and quality of the simplification.
This leads to a significant reduction of the number of
necessary iterations and shorter processing times.

2 RELATED WORK
We classify simplification algorithms into those used in
a preprocessing step and algorithms executed at run-
time. Creating a coarse mesh in a preprocessing step
eliminates the need for fast processing times and allows
higher quality simplifications. Creating a coarse mesh

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

in real-time before rendering each frame enables view-
dependent simplification that minimizes visible arte-
facts for a given camera position, but calls for fast run
times not to slow down the overall rendering process.

A variety of simplification operators have been defined,
some of which have been adapted for real-time usage
and even execution on modern GPUs to further speed
up the simplification process. We now present the three
operators most important to us:

Vertex clustering First presented in [Ros92a] this op-
erator superimposes a number of cells over the vol-
ume of a mesh. All vertices within a cell are col-
lapsed into a single vertex and the model data is up-
dated accordingly. This approach can be used for
fast processing times, but it may create low qual-
ity simplifications since the topology of the mesh is
not preserved. In [DeC07a] a GPU-accelerated algo-
rithm based on this operator designed for real time
simplification is presented.

(Half) Edge collapse The edge collapse originally
presented in [Hop93a] is the replacement of an edge
and its two endpoints with a single vertex. The
half edge collapse is a more restricted version that
replaces the edge with one of its endpoints. The
edge collapse is widely used. One common example
for an algorithm relying on the edge collapse is
progressive meshes ([Hop96a]). An improved
version of this algorithm (modified for execution

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 51 ISBN 978-80-86943-58-9



on a GPU and real-time execution) is presented in
[Hu09a] and [Hu10a].

Vertex removal This operator presented in [Sch92a]
removes a vertex from the mesh and retriangulates
the resulting hole. Different algorithms for retrian-
gulation are available, one of them being the half
edge collapse. For a vertex to be removed, one of
the edges to a neighbouring vertex is chosen and a
half edge collapse executed on it. The replacement
position is the neighbouring vertex.

In [Oda15a] we presented our approach to triangle
mesh simplification, with further discussion of details
and results in [Oda15b]. All vertices of a given triangle
mesh are analysed and classified as to be removed or
to remain in the mesh. A parallel vertex removal tech-
nique based on half edge collapses is used to remove as
many vertices as possible in parallel. Additionally we
introduced a set of per-vertex boundaries that prevent
mesh foldovers and topological inconsistencies despite
the parallel execution.

In this paper we present further development and im-
provements to this algorithm that aim to increase paral-
lelism, decrease runtime and improve the quality of the
coarse mesh.

3 PREVIOUS WORK
This paper is based on our previous work presented in
[Oda15a]. We further discussed details and results of
this approach in [Oda15b]. In this section, we present
an overview of our previous approach that we improved
on.

The algorithm executes three steps: classification, par-
allel removal and reclassification (Fig. 1).

Classification

Parallel removal

Reclassification

Figure 1: Algorithm steps

Classification This step analyses all vertices of a tri-
angle mesh and marks them as to be removed or
to remain. A simple metric that relies on the aver-
age distance between the tangential plane of a vertex
and the neighbours is used to compute a vertex er-
ror, which is used for classification. This metric was
primarily chosen for short computation times. Ad-
ditionally, to prevent all vertices from being selected

for removal, we introduced a layered error manipu-
lation, artificially increasing the vertex error of some
vertices to guarantee that they remain in the mesh.
This leads to improved parallelism and guarantees
the functionality of the algorithm.

Parallel removal We define any vertex that is selected
for removal with at least one neighbour that is to
remain as a removal candidate. A parallel removal
step tries to remove all current removal candidates
simultaneously, using a set of per-vertex boundaries
to prevent foldovers and topological inconsistencies.
The removal of vertices changes edges of the mesh
which results in a new set of removal candidates be-
ing created.

Reclassification After each removal step, the classifi-
cation of all vertices still selected for removal is up-
dated to adapt to changes to the mesh and improve
the quality of the coarse mesh.

Several iterations of parallel vertex removal and reclas-
sification are executed. Due to how removal candidates
are defined, only a part of vertices selected for removal
can usually be processed in a single iteration. When a
vertex is removed from the mesh, one or more edges
are changed. If a vertex V is removed by a half edge
collapse, any neighbour of V selected for removal be-
comes a removal candidate. This approach allows all
vertices selected for removal to be processed over the
course of several iterations.

We also addressed the issue of deadlocks. The per-
vertex boundaries are designed to allow the removal
of neighbouring vertices without any communication
and can block valid combinations of half edge col-
lapses. This potentially causes a situation, where multi-
ple neighbouring vertices block each others’ removal.
Due to the parallel nature of the algorithm, it is not
possible to identify deadlocks until the subsequent it-
eration. This can result in additional iterations being
necessary to resolve deadlocks and delaying the com-
pletion of the simplification.

While our original approach worked well and resulted
in fast processing times, we identified several shortcom-
ings of the algorithm that limited parallelism and poten-
tially the quality of the simplification. In this paper we
present an improved algorithm that is based on our pre-
vious work and focuses on improving the classification
and overall parallelism.

4 OVERVIEW
We identified several limiting issues with our original
approach that we want to improve on:

Vertex error manipulation During the vertex classi-
fication we introduced a vertex error manipulation

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 52 ISBN 978-80-86943-58-9



based on points arranged in a grid to avoid all ver-
tices being selected for removal. While this guaran-
teed that the algorithm could remain functional at all
times, it ignored irregular triangle sizes and did not
always suit the given mesh well.

Removal candidates We defined a removal candidate
as a vertex selected for removal that has at least one
neighbour that is to remain in the mesh. In each it-
eration, all removal candidates are processed. This
results in a potentially large number of vertices se-
lected for removal being ignored, since they cur-
rently have no neighbour that is to remain in the
mesh, which reduces parallelism.

Replacement positions Only vertices selected to
remain in the mesh are defined as valid replacement
positions, potentially ignoring neighbours that
would be better suited as a replacement position.

For the improved algorithm we rely on the vertex error
we presented in [Oda15a]. The layered error manipula-
tions used in our original approach helped to guarantee
the functionality of the algorithm and improve the par-
allelism. In this paper we still rely on error manipula-
tion to guarantee that some vertices are always selected
to remain in the mesh. This is, however, not done us-
ing regularly spaced points in multiple layers. Instead
a number of vertices is selected based on the minimum
number of edges between them and their vertex error
is set to a very high value to guarantee they are always
selected to remain in the mesh.

To improve parallelism, we introduce the concept of
auxiliary vertices (see subsection 5.1). For a mesh a
set of auxiliary vertices is precomputed. An auxiliary
vertex, that is not currently a removal candidate, can
be used as a replacement position for neighbouring ver-
tices, potentially greatly increasing the parallelism of
the algorithm.

After computing the classification for all vertices of
a mesh, the initial removal candidates are computed.
We modify the definition of a removal candidate to in-
clude vertices selected for removal, that have at least
one neighbouring auxiliary vertex, that is not currently
a removal candidate. We execute the parallel removal
step based on the half edge collapse using the per-vertex
borders from [Oda15a] to prevent foldovers and topo-
logical inconsistencies.

The last step is the reclassification of vertices. It up-
dates the vertex error of vertices selected for removal,
that have not yet been removed. This step is used to
adapt the classification to changes made in the previ-
ous parallel removal step and improve the quality of the
simplification.

5 CLASSIFICATION
The classification step in [Oda15a] computes an error
value for each vertex of a mesh. This error represents
the difference between the mesh before and after a ver-
tex removal operation. The original metric computes
the error based on the geometric data and then scales it
using the view vector and position of the camera. All
vertices with a scaled error below a user-defined thresh-
old are selected for removal. In our previous work we
identified a problem with this approach: all vertices be-
ing selected for removal prevent the execution of our
algorithm. Additionally a low number of vertices re-
maining in the mesh results in few removal candidates,
which reduces parallelism. In order to avoid these prob-
lems we introduced a manipulation of the vertex error.
A small number of vertices is assigned a very large ver-
tex error to guarantee, that they always remain in the
mesh.

V1

V2

V3

Figure 2: Minimum number of edges between vertices

The approach to selecting vertices for the error manip-
ulation we propose in this paper is based on a minimum
number of edges between two vertices with a manipu-
lated error value. An example for the minimum num-
ber of edges between vertices is shown in Fig. 2. The
vertices V1 and V2 have a minimum of 1 edge, while
V1 and V3 have a minimum of 2 edges between them.
The amount of vertices selected by this algorithm de-
termines the maximum simplification and is controlled
by the number N of edges. This value is chosen by the
user. The number N can be used to influence the grade
of the maximum simplification as well as the process-
ing time: smaller N can reduce the number of necessary
iterations for the simplification and improve processing
times, while larger N allow the removal of additional
vertices and can create a coarser mesh. Vertices are se-
lected based on the maximum curvature of the surface
to better maintain the shape of the object.

The first step to find vertices for error manipulation is
to calculate the principal curvatures and store the max-
imum curvature of the surface in each vertex. We want
to determine a set G of vertices that are guaranteed to
remain in the mesh.

Initially, the vertex with the maximum curvature is se-
lected and added to G (G = {g0}). It is the first vertex
selected for error manipulation and the starting point for
the further steps of the algorithm. Given the maximum
curvature for each vertex and the value N, the vertices
are selected as follows:

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 53 ISBN 978-80-86943-58-9



1. Find all vertices C = {c0,c1, ...,cn} that have a min-
imum of N edges to any vertex in G and a maximum
of N edges to at least one vertex in G.

2. Find the vertex ci with the maximum curvature of all
vertices in C.

3. Add ci to G.

These three steps are repeated until no more vertices
can be found in step 1. Then all vertices in G are as-
signed a very large error value to guarantee that they
remain in the mesh.

g0

c1

c2c3

c5

c4

c0 g0

g1

c0

c1

c2

c3

c4c6

c7

c8

Figure 3: Vertex selection for error manipulation

Fig. 3 shows an example for this approach. On the left
side the top left vertex (g0) has been selected as the ini-
tial vertex in G and the list C has been filled in step 1
of the first iteration (C = {c0,c1,c2,c3,c4}). For this
example N has been set to 2. The right side illustrates
the mesh after the first iteration is completed. The cen-
tral vertex (g1) has been selected and added to G. The
set C has been updated in step 1 of the second iteration,
resulting in a new set of candidates C for error manipu-
lation.

The layered approach also has the goal to create addi-
tional removal candidates. Besides Layer 0 with ver-
tices that always remain in the mesh, additional layers
are created. Vertices selected in these have their ver-
tex error increased to have additional vertices remain
in the mesh at certain distances between the object and
the camera. While this approach increases parallelism
and reduces processing times, it can result in a simpli-
fied mesh, where the vertices are arranged in a grid like
structure. Fig. 4 shows an example for a simplification
of the Stanford Bunny illustrating this phenomenon. In
this paper we replace the layered error manipulation
with the concept of auxiliary vertices. In a preprocess-
ing step a number of vertices with an unmodified vertex
error is selected and marked as auxiliary vertices. Dur-
ing the simplification process any auxiliary vertex, that
is not currently a removal candidate, can be used as a
replacement position for neighbouring vertices marked
for removal. Auxiliary vertices can be selected for re-
moval. They are no longer considered auxiliary vertices
and become removal candidates once they have a neigh-
bour that is to remain in the mesh.

Figure 4: Simplified mesh with vertices arranged in a
grid-like structure

After the vertices for error manipulation have been se-
lected, we determine the auxiliary vertices.

5.1 Auxiliary vertex computation
Since auxiliary vertices can be replacement positions
for neighbouring vertices selected for removal, we
modify the definition of the removal candidates. In
[Oda15a] any vertex selected for removal, that has at
least one neighbour that is to remain in the mesh, is
a candidate. In this paper, we include the auxiliary
vertices in this definition so that a removal candidate is
any vertex of a given mesh that:

• is selected for removal.

• has at least one neighbour, that is to remain in the
mesh, or has at least one neighbour, that is an auxil-
iary vertex, which is not currently a removal candi-
date.

The idea of the auxiliary vertices is to make sure that as
many vertices selected for removal as possible can be
processed in any iteration. Since auxiliary vertices are
determined in a preprocessing step and the classifica-
tion is done at runtime, we do not know which vertices
are to remain in the mesh when selecting the auxiliary
vertices (with the exception of vertices in G).
For the purpose of computing auxiliary vertices, we as-
sume that all vertices in G are to remain in the mesh
and all other vertices are selected for removal. Given
this assumption, we want all vertices of the mesh to be
either vertices selected to remain in the mesh, auxiliary
vertices or removal candidates. Based on this we com-
pute auxiliary vertices as follows:

1. Find removal candidates First the list of removal
candidates is determined, taking into account all ver-
tices in G selected to remain in the mesh as well as
the current list of auxiliary vertices (empty list ini-
tially).

2. Auxiliary vertex candidates The list of candidates
C = {c0,c1, ...cn} for the auxiliary vertices is se-
lected. It contains all vertices chosen for removal,
that have a neighbouring removal candidate and are
not currently a removal candidate or an auxiliary
vertex.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 54 ISBN 978-80-86943-58-9



3. Auxiliary vertex selection Selection of one of the
candidates in C as auxiliary vertex. This is done us-
ing the candidate with the maximum curvature.

These steps are repeated until all vertices of the mesh
not in G are either removal candidates or auxiliary ver-
tices. This approach allows a greater number of re-
moval candidates and therefore increases parallelism
and prevents a large number of vertices selected for re-
moval from being ignored during the parallel removal
step.

g0

g1 g1

g0

a0

Figure 5: Auxiliary vertex selection

Fig. 5 shows an example of the selection of the auxil-
iary vertices. On the left side the vertices in the upper
left (g0) and bottom right corner (g1) are in G. Their
neighbours are assumed to be removal candidates. On
the right side the center (a0) vertex has been chosen as
an auxiliary vertex. Additional removal candidates are
available. The steps 1-3 are repeated until no more aux-
iliary vertices can be created.

During classification auxiliary vertices are treated as
any other vertex and can be classified as to remain in
the mesh or to be removed. If the vertex is selected to
remain in the mesh, it is a valid replacement position
for neighbouring removal candidates and no longer an
auxiliary vertex. If it is selected for removal, it remains
an auxiliary vertex until it has a neighbour that is se-
lected to remain in the mesh and it becomes a removal
candidate.

6 VERTEX REMOVAL
Compared to [Oda15a] the removal step remains mostly
unchanged. All removal candidates are processed in
parallel. For each candidate the possible replacement
positions are determined, the per-vertex boundaries
(which block any half edge collapse that may cause a
mesh foldover or topological inconsistency) computed
and one half edge collapse is executed.

We do, however, change the definition of possible re-
placement positions. Our original approach only used
vertices that were selected to remain in the mesh. This
was chosen to make sure that each vertex was moved to
its final position and allow for an efficient implementa-
tion. With the introduction of auxiliary vertices a vertex
can be moved to the position of a neighbour that has to
be removed in a later iteration.

V1 V2

Figure 6: Possible replacement positions

We therefore change possible replacement positions for
a vertex to include every neighbour that is not currently
a removal candidate. This definition differs from that of
the removal candidates, since it also includes vertices,
that are selected for removal but are neither auxiliary
vertices nor removal candidates. Fig. 6 shows an exam-
ple. V1 is to remain in the mesh, V2 is a removal can-
didate. The remaining vertices are selected for removal
but currently not removal candidates. In our previous
approach, only V1 is considered a possible replacement
position, while the improved algorithm can move V2 to
any of its neighbouring vertices. The definition of a re-
moval candidate is chosen to guarantee that each vertex
that is processed has at least one possible replacement
position and to avoid vertices that cannot be removed.
At the same time we want to allow the most amount of
freedom when choosing a replacement position.
In [Oda15a] we discuss the problem that our per-vertex
borders can block combinations of half edge collapses
when applied to neighbouring vertices. This can lead
to multiple neighbouring vertices blocking each others’
removal, causing a deadlock and delaying completion
of the simplification process. Allowing any neighbours
that are not removal candidates to be chosen as a re-
placement position has the potential to avoid blocked
replacement positions, reduce deadlocks and improve
the quality of the coarse mesh.

7 RESULTS
We devised an implementation of our improved algo-
rithm using Nvidia CUDA and ran multiple tests on a
Geforce GTX 670 GPU with 1 344 cores. Several mod-
els from the Stanford 3d Scanning Repository (Stanford
Bunny, Armadillo, Dragon and Happy Buddha) were
chosen for testing purposes.
Fig. 7 shows simplifications of the Stanford Bunny and
Armadillo and compares them to the original meshes
(from left to right: Stanford Bunny original, Stanford
Bunny simplified, Armadillo original, Armadillo sim-
plified). Fig. 8 shows the same comparison for Dragon
and Happy Buddha. For these examples about 90% of
the triangles of the original meshes have been removed.
The models vary in terms of vertex and triangle count
and were chosen to analyse how the improved algo-
rithm scales with an increasing number of vertices.
Table 1 shows the number of vertices and triangles the
models we used for testing contain.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 55 ISBN 978-80-86943-58-9



Figure 7: Comparison: Original (left) and simplified (right) mesh for Stanford Bunny and Armadillo

Figure 8: Comparison: Original (left) and simplified (right) mesh for Dragon and Happy Buddha

Model Vertices Triangles
Stanford Bunny 35 947 69 451
Armadillo 172 974 345 944
Dragon 437 645 871 414
Happy Buddha 543 652 1 087 716

Table 1: Number of vertices and triangles in the models
used for testing

For testing purposes a simplification was computed for
each model that removed a majority of the triangles of
the original mesh. The most important factor to us is
the overall runtime of the simplification process. As
described earlier, the maximum simplification is deter-
mined by the number N for the vertex error manipula-
tion. We chose this number separately for each model
to incorporate its vertex count.

Model Triangles rem. N Time (ms)
Stanford Bunny 62 100 4 5.2
Armadillo 324 164 6 26.1
Dragon 821 161 7 52.6
Happy Buddha 1 027 314 7 66.5

Table 2: Triangles removed, number N and process-
ing time for the simplification in milliseconds for each
model

Table 2 shows an overview of the results of the simplifi-
cation process. For each model, the number of triangles
removed, the number N chosen and the processing time
in milliseconds are listed. The Stanford Bunny - being
the model with the fewest vertices and triangles - was
simplified in only 5.2 ms with a triangle reduction of
about 90%. The triangle count of the largest model in
these tests (Happy Buddha) was reduced by about 94%
with a runtime of less than 67 ms.
In addition to the overall processing time we measured
the number of necessary iterations.

Model Iterations
Stanford Bunny 7
Armadillo 15
Dragon 18
Happy Buddha 20

Table 3: Number of iterations necessary to complete the
simplification for each model

Table 3 shows the necessary iterations for all models.
The simplification process for the Stanford Bunny took
7 iterations while the coarse mesh for Happy Buddha
was created in 20 iterations. In addition to the num-
ber of iterations, we measured the number of removal
candidates in each iteration for the Stanford Bunny.

Figure 9: Removal candidates per iteration for the Stan-
ford Bunny

Fig. 9 shows the number of removal candidates in each
iteration for the simplification of the Stanford Bunny.
This graph does not show how many vertices were ac-
tually removed in each iteration. Some vertices may
not have a valid replacement position due to the per-
vertex borders and cannot be removed. They remain
in the mesh and are again removal candidates in later
iterations. In the first iteration 13 321 removal candi-
dates are available for processing. This number drops
throughout the process with 1 089 and 555 removal can-

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 56 ISBN 978-80-86943-58-9



didates in the last two iterations. While the later itera-
tions cannot fully utilize all available cores of the GPU
(1 344), the majority of the iterations offers more re-
moval candidates than cores.

In addition to the performance measurements we com-
pared the results to those of our previous algorithm.

7.1 Comparison to previous work
In [Oda15b] we presented the results of our previous
work and compared it to existing algorithms. In this
section we will compare the results of the improved al-
gorithm to those in [Oda15b]. Overall we expected to
see the highest performance gain when simplifying the
models Dragon and Happy Buddha due to the higher
vertex count.

For the performance measurements in this paper we
chose simplifications of the models that result in a simi-
lar number of vertices/triangles to the ones in [Oda15b].
This allows us to directly compare the results of the two
algorithms and easily determine any performance gains.
Since the algorithm in this paper is designed to improve
parallelism and reduce the number of iterations, we ex-
pect to see improved run times and a reduced number
of iterations compared to previous results. At first we
compare the overall runtimes.

Model Impr. alg. [Oda15b]
Stanford Bunny 5.2 ms 5.7 ms
Armadillo 26.1 ms 29.1 ms
Dragon 52.6 ms 80.1 ms
Happy Buddha 66.5 ms 96.1 ms

Table 4: Comparison of runtimes between the improved
algorithm and the results in [Oda15b]

Table 4 shows the runtime comparison for all four mod-
els. The reduction of runtime for the models Stanford
Bunny and Armadillo is about 9%, while the improved
algorithm can greatly reduce the processing time for
models with a larger number of triangles (greater 30%).
This comparison shows that the new algorithm can
greatly reduce the runtime of the simplification.

The second measurement we showed earlier is the num-
ber of iterations and removal candidates in each itera-
tion for the Stanford Bunny. Our new algorithm com-
putes the coarse mesh of the Stanford Bunny in 7 iter-
ations, while the results in [Oda15b] show that 12 it-
erations were necessary. The simplification of Happy
Buddha took 33 iterations using our previous approach,
while the improved algorithm finished after 20 itera-
tions.

Fig. 10 shows the comparison of the number of re-
moval candidates in each iteration between our original
and improved algorithm for the Stanford Bunny. The
12 iterations for our original algorithm processed be-
tween 7 436 and 74 vertices with a very low number of

Figure 10: Comparison: Removal candidates per itera-
tion for the Stanford Bunny

removal candidates in the last iteration (74 compared
to 555 removal candidates for the improved algorithm).
The modified vertex error manipulation and the intro-
duction of auxiliary vertices improve parallelism and
allow a better utilization of the hardware.

8 FUTURE WORK
Future work can improve the classification and reclas-
sification steps. As the classification is currently based
on a geometric error value and does not take the re-
moval of neighbouring vertices into account, an unnec-
essary large number of vertices can be selected for re-
moval. All these vertices need to be processed and may
be reclassified. An improved error metric and better
selection of vertices for removal can reduce the num-
ber of vertices selected for removal, reduce the number
of vertices that need to be processed and therefore lead
to an increase in performance. Greatly improving the
classification may even render the reclassification step
obsolete. This can lead to a better quality of the coarse
mesh as well as shorter processing times.

9 CONCLUSION
The improvements made to our original algorithm have
shown the potential to significantly reduce the runtime
of the simplification by increasing the parallelism and
reducing the number of necessary iterations. Especially
when using models with a large number of vertices and
triangles the improvements lead to a reduction in pro-
cessing times of over 30%. The increased parallelism
allows us to better utilize the parallel processing power
of modern GPUs. The modified vertex error manipu-
lation is better suited for models with irregular triangle
sizes that proved to be disadvantageous to our previous
approach as it could lead to a higher number of neces-
sary iterations. Additionally the introduction of auxil-
iary vertices helps to reduce the number of vertices that
cannot be processed in an iteration and improve paral-
lelism.

On the other hand our algorithm still relies on error met-
rics designed for speed, fast update times and the iso-
lated execution of the vertex removal operations. These

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 57 ISBN 978-80-86943-58-9



factors may lead to a decrease in overall quality of the
coarse mesh and be limiting factors for the simplifica-
tion.

10 REFERENCES
[Cla76a] Clark, J. H. Hierarchical geometric models

for visible surface algorithms, Com. of ACM 19,
No. 10, pp.547-554, 1976

[DeC07a] DeCoro, C., and Tatarchuk, N. Real-time
mesh simplification using the GPU, I3D 2007
Proceedings of the 2007 Symposium on Interac-
tive 3D Graphics Vol. 2007, pp.161-166, 2007

[Hop93a] Hoppe, H., DeRose, T., Duchamp, T., Mc-
Donald, J., A., and Stuetzle, W. Mesh optimiza-
tion, ACM SIGGRAPH Proceedings 1993, pp.19-
26, 1993

[Hop96a] Hoppe, H. Progressive meshes, ACM SIG-
GRAPH 1996 Proceedings, pp.99-108, 1996

[Hu09a] Hu, L., Sander, P., V., and Hoppe, H. Par-
allel view-dependent refinement of progressive
meshes, I3D 2009 Proceedings of the 2009 Sym-
posium on Interactive 3D Graphics and Games,
pp.169-176, 2009

[Hu10a] Hu, L., Sander, P., and Hoppe, H. Parallel
view-dependent level of detail control, IEEE
Transactions on Visualization and Computer
Graphics Vol. 16, No. 5, pp.718-728, 2010

[Oda15a] Odaker, T., Kranzlmueller, D., and Volkert,
J. View-dependent Simplification using Paral-
lel Half Edge Collapses, Proceedings of WSCG
2015, pp.63-72, 2015

[Oda15b] Odaker, T., Kranzlmueller, D., and Volkert,
J. GPU-Accelerated Real-Time Mesh Simplifica-
tion Using Parallel Half Edge Collapses, Math-
ematical and Engineering Methods in Computer
Science: 10th International Doctoral Workshop,
MEMICS 2015, pp.107-118, 2016

[Ros92a] Rossignac, J., and Borrell, P. Multi-
resolution 3D Approximations for Rendering
Complex Scenes, Modeling of Computer Graph-
ics: Methods and Applications, pp.455-465, 1992

[Sch92a] Schroeder, W., J., Zarge, J., A., and
Lorensen, W., E. Decimation of triangle meshes,
ACM SIGGRAPH Computer Graphics Vol. 26,
No. 2, pp.65-70, 1992

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 58 ISBN 978-80-86943-58-9




