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ABSTRACT 
This paper presents a novel 3D point cloud gesture recognition system, based on an existing low-cost, accurate 
and easy to implement 2D point cloud gesture recognition system called $P. Our work improves recognition 
rates and lowers algorithmic complexity. We develop new 3D gestures, such as the GUN gesture and the 
SHAKE gesture, while also developing 3D poses like the L pose, OK pose, ROCK pose and PEACE pose for the 
LeapMotion Device. We demonstrate proposed gesture and pose methods on various 3D environments including 
a Monsoon mini-game, a cave painting interaction and a target practice scene. The average recognition rates for 
3D gestures and poses were compared against the 2D, 3D and 3D+ recognition systems. The results indicate that 
most gestures in the proposed system were improved in comparison to the existing ones. 
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1. INTRODUCTION 
Gesture recognition refers to determining when a 
gesture has occurred and to the general process of 
determining when a gesture has started and stopped 
[Yin14]. Natural gestures can be grouped into 
manipulative and communicative gestures. 
Manipulative gestures are about moving or 
interacting with objects, such as pressing a button or 
rotating an object around, while communicative 
gestures have the intent of conveying information to 
others. Communicative gestures can be an 
interpretation or movement via a symbol or via an 
act. A gesture via a symbol is often conveyed with a 
static hand pose and a gesture via an act is 
determined by the movement of the hand itself. 
While natural gestures work in the real world, 
determining when the user is making a gesture 
requires our computer implementation to take on a 
more structured approach of flow and form gestures. 
A flow gesture could be a continuous gesture, where 
it progresses over a period of time or series of 
moments of time. The form gesture can be defined by 
determining whether the gesture follows a distinct 
path (such as scrolling a webpage based on position 
of words) or if it is based on a pose. This research 

uses the flow and form gestures as a guide to develop 
our own discrete and continuous gestures to allow the 
user a range of possibilities. 
Hand gesture interaction should be simple enough to 
understand, while distinct enough so that the user 
understands which gesture has occurred. For 
example, uWave is an interactive application using 
gestures for various mobile devices that have a very 
small custom gesture recognition system to allow 
maximum space on the device [Liu09]. We expand 
this idea for maximum recognition rates while using 
only a small dataset. 
This paper presents gesture recognition techniques 
that aim to allow better recognition of 2D and 3D 
gestures by extrapolating gesture sets using similar 
classifiers. We develop new gesture recognition 
algorithms that provide a seamless and effective 
natural interaction at various distances and screen 
resolutions. The contribution of our paper is as 
follows. 
• New gesture recognition algorithms for fingertip 
interactions. The gesture pattern recognitions are 
identified in a simpler and faster way than the 
available techniques that use databases to store 
gesture templates for matching, such as [Ren11]. 
• An expansion of a 2D gesture recognition system 
[Vat12] into 3D, based on utilising LeapMotion 
device as input for the gesture recognition system. 
• An evaluation of the developed system in terms of 
user experience and its effectiveness. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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2. RELATED WORK 
Kinect devices have been useful for medical practices 
for doctors and staff to interact with patient 
information without the requirement of the typical 
mouse and keyboard and the more inaccurate voice 
recognition [Ebe13]. Using third party libraries such 
as OpenNI [Pri16] and Libfreenect [Ope16] they 
were able to implement finger gestures into the 
OsiriX system [Ebe13]. This was achieved by taking 
the Kinect depth image, collecting the closest objects 
to the sensor then approximating the hand and fingers 
based on this blob. Once the hand and fingers have 
been recognised from the blob, each point around the 
hand is recorded and over time is checked with a 
database of other hands already recorded. However, 
the use of the Kinect V1 in [Ebe13] restricts the 
range of the interaction due to the limitations of the 
depth camera on these devices. The other major 
limitation of their system is the lack of explanation of 
the gestures to the user.  
Another major work develops a new Kinect hand 
recognition system using the ‘golden’ energy 
function [Sha15]. It renders all possible poses of the 
hand and selects the pose, whose corresponding 
rendering best matches the input image while 
accounting for the prior probability of poses. The 
technique uses regions of interest (RoI) to determine 
the approximate hand position from the depth image 
stream and a learned pixel-wise classifier [Sho13]. 
When used with 3Gear [3Ge16] and LeapMotion 
device, this technique achieves a better percentage of 
3D hand detection than those described previously. 
This system requires extremely large FingerPaint 
datasets of 3.2GB of storage space [Sha15] that could 
make portability and memory management an issue. 
High memory latency and a high end GPU are 
required when accessing the dataset in the memory in 
real time. In addition, the inability to work with both 
hands and the lack of a gesture recognition system 
for fingers could limit the utilisation. 
Tang [Tan11] introduced a method for identifying 
grasping and pointing gestures in which a person’s 
hand model was estimated based on a skeletal 
tracker. This is limited in terms of tracking resolution 
and inability to track at a close distance. Chen and 
Wong introduced an interactive sand art drawing 
using Kinect [Che14]. Four key gestures were 
detected by the system, including sing-point finger 
for single point erosion, single splicing and leaking, 
V-shape 2 fingers for pinch spilling and pinch 
erosion. Lee and Tanaka used databases for fingertips 
and hand shapes to enable gesture cognition with any 
finger in the palm as well as two fingers (thumb and 
index finger) [Lee13]. The interaction techniques 
were applied to sample applications for finger 
painting and mouse controlling. Song et al proposed 
an algorithm for gesture recognition algorithm based 

on depth information from a Kinect device [Son13]. 
Cook et al also introduced a real-time finger-gesture 
interaction system using Kinect v2 that identifies 
finger gestures at close range [Coo15]. However, 
vision-based systems are often limited in terms of 
accuracy, occlusion and inconsistency when 
changing the environment, such as dark light and 
rough background.   

3. GESTURE RECOGNITION 
Our gesture recognition system was developed based 
on gestures as point clouds approach [Vat12], to 
address the problems identified in Section 2. The 
Point-Cloud Recogniser ($P) is a gesture recognition 
system designed for quick and simple recognition of 
two dimensional gestures from a user’s input. $P 
works by collecting a bunch of pre-determined points 
already created in the system, i.e. the database of 
gestures that the system can recognise. When ready 
to, it takes the users current points as an input to 
determine the closest matching set of user points to 
data points using a nearest neighbour classifier. 
We expanded the recognition system from 2D to 3D 
that improved recognition accuracy and performance. 
The enhancement includes additional classifiers to 
the dataset to improve comparisons and collections of 
points by segmenting cloud stroke points based on 
certain parts of the hand and fingertips. 

Gesture Recognition Systems 
Gesture recognition systems that use $P include 
single stroke ($1) and multi stroke ($N) systems. A 
single stroke system can handle only one stroke on a 
canvas for comparisons. A multi stroke system can 
handle more than one stroke. $P uses the $1s 
algorithm for nearest neighbour matching and gesture 
recognition, while also using $Ns algorithm for 
allowing multiple strokes to be recognised. The 
benefit of the dollar family gestures is how users can 
add their own variations to the data set to be used for 
future recognition [Wob07].  
The uni-stroke recogniser ($1) developed by 
[Wob07] is the first gesture recognition system 
developed in the $ family. Its implementation is 
similar to the $P system, which uses the nearest 
neighbour and Euclidean scoring systems. $1 is an 
extension of an existing recognition system called 
SHARK2 [Kri04]. It performs extremely well with 
recognising gestures even when given a low amount 
of training samples to compare user input. 
The multi-stroke recogniser ($N) is a solution to $1’s 
problem of not being able to use multiple strokes to 
determine a gesture [Ant10]. $N was designed so that 
the input of strokes would be stroke and direction 
invariant. This was achieved by recording all distinct 
directional behaviours of the gesture to compare the 
user data. $N has an immensely increased complexity 
by loading all of these permutations. This issue could 
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be improved by removing multiple stroke types and 
directional changes when comparing single stroke 
gestures [Ant10]. Protractor uses a closed-form 
template-matching method eliminating the simplicity 
and complexity of the Golden Section Search 
algorithm [Ant12]. 
We adopted multi-stroke recognition system that 
could handle multiple start and stop points. The 
system needs to be fast without the need to remember 
any permutations in the strokes as the stroke order is 
not important for our gesture recognition. This rules 
out $N and $N-Protractors complex algorithms 
leaving $P. $P does have one drawback with its 
implementation, where the point clouds are rotation 
variant. This means that each gesture is not rotated 
when comparing point clouds. To overcome this 
problem, when we developed the database we added 
gestures of different angles to the training set to 
compensate for this drawback. 

$P in a 3D world space ($P3D) 
Extending $P into a 3D implementation was done by 
following the same algorithms in 3D space, such as 
Protractor [Kra11]. We utilise the practicality, 
simplicity and usability of the $P algorithm, 
extending it to operate with three-dimensional 
gestures.  
We take the existing method for gathering and 
assigning points with each gesture created and 
change the creation method depending on the data. 
Because the protractor recogniser takes the Euclidean 
distance between points in 2D to determine the 
distance, they take the Z position of the set of points 
when applicable. The result means that the distances 
between points when classifying gestures will be 
slightly more between 2D and 3D gestures because 
of the added axis. 
The 3D centroid formula determines the centre of the 
3D data points which is defined by equation 1. We 
used a 32-point sampling resolution (N) [Kra11] to 
define the insignificant change in accuracy. 
Translating the data requires the 3D centroid position 
to be equal to the subtraction of each of the data 
points with the centroid. The new translated data 
points will make the centroid be at position (0, 0, 0). 
This translating makes it possible to centre the data 
for recognition. 

Cx=� xi

N-1

i=0

N� , Cy=� yi

N-1

i=0

N� , Cz= � zi

N-1

i=0

N�          (1) 

  

Where Centroid C = (𝐶𝐶,𝐶𝐶,𝐶𝐶) and N is the 
sampling resolution. 
Resampling the data points is the most crucial of the 
pre-processing techniques. It requires multiple 
calculations to convert the data from any number of 

points to the sampling resolution of 32 that we want 
for 1:1 conversions between user data and gesture 
data. We extended the 2-dimensional method to 
create the linear interpolation (LERP) point as 
equation 2, where a new 3D point (P) was calculated 
by LERP point (∂), first point (ƒ) and current point 
(p). 

𝛼 =   (𝐼−𝐷)
𝐷

   𝑤ℎ𝑒𝑒𝑒 𝐷 ! =  0 

𝜕 = �
𝜕    𝑖𝑖    𝛼 > 0.0   𝑎𝑎𝑎  𝛼 < 1.0

1.0    𝑖𝑖    𝛼 ≥ 1.0
0.0    𝑖𝑖    𝛼 ≤ 0.0

 

𝑃. 𝐶 = (1.0 − 𝜕) ∗  ƒ. 𝐶 + 𝜕 ∗  𝑝. 𝐶 
𝑃.𝐶 = (1.0 − 𝜕) ∗  ƒ. 𝐶 + 𝜕 ∗  𝑝.𝐶 

                 𝑃. 𝐶 = (1.0 − 𝜕) ∗  ƒ. 𝐶 + 𝜕 ∗  𝑝. 𝐶            (2) 

$P3D+ 
While $P3D generally provides good gesture 
recognition in 3D, its effectiveness normally depends 
on datasets and user inputs.  We added to the $P 
system a set of classifications and ordering the 
LeapMotion data so that each finger and palm 
position was its own stroke and followed its previous 
position. Our goal is to improve the 3D recognition 
system by eliminating the need to search all the 
gestures within the database. We also improved pre-
processing gestures by assigning stroke IDs to point 
clouds to remove inaccuracies. The enhancements are 
as follows. 
Removing Redundant Point Clouds 
We limited the complexity of the gesture recognition 
by only selecting gestures that reach a certain 
classification. These classifications would remove 
the ambiguity of searching through all possible 
gestures and instead focus on the range. We 
developed three classifiers in the $P3D system. The 
first classifier determines whether the recorded 
gesture was in 3D or 2D. This classifier only worked 
when there was a 2D gesture being recognised. The 
second classifier is for identifying whether the 
gesture is a pose or not. A pose gesture features the 
input to contain very little movement to no 
movement whereas a normal gesture requires much 
more movement over a series of time. The third 
classifier determines which left or right hand that the 
gesture is used with. This implementation aims to 
remove ambiguity and noise when comparing 
gestures from the left hand that could increase 
recognition when using the right hand. For example, 
a left PEACE pose matches well with a right OK 
pose and vice versa. 
Assigning and Ordering Stroke IDs to the Hand 
$P was designed for a 2D drawing scenario that was 
inputted one stroke at a time and it did not take the 
stroke ID into consideration. While this is normally 
fine when the user draws the gesture one stroke at a 
time, it could be a problematic when recording 
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different strokes currently. This is because the system 
thinks the entire gesture is made of single strokes.  
$P does not take into consideration the stroke order, 
stroke direction and stroke permutations as in $N/$N-
Protractor solutions [Ant10, Kra11]. It implements 
the stroke system for pre-processing, resampling and 
calculating the path length for the gesture. We 
assigned the palm and the fingers with their own 
stroke IDs. The IDs of Palm, Thumb, Index finger, 
Middle finger, Ring finger, and Little finger were 
numbered 0 to 5 respectively. The order of stroke 
indexes of the hand and fingers was used to improve 
the matching rate between these point clouds. This 
improvement provides a closer approximation on 
how to interpret the data where inaccuracies can be 
reduced to produce a closer match to determine the 
correct gesture. 

4. INTERACTION WITH 
LEAPMOTION – A CASE STUDY 
The LeapMotion is a controllable device that tracks 
hand and finger movements using LEDs and infrared 
cameras. While the Kinect can track skeletons from 
long distances with its sensors, the LeapMotion is 
dedicated to tracking hands and fingertips with a 
shorter range and more accurate than the Kinect. 

Capturing the 3D Point Clouds 
In order for the LeapMotion to be recognised by the 
point cloud gesture recognition system, we created 
the training set that was used in the classifications of 
the gestures. The chosen data from the LeapMotion 
system to determining these gestures were the 
stabilised palm position and the stabilised tip position 
of all the fingertips. Other points such as the wrist 
and distal bone positions were not considered for the 
training set because these details were not used for 
the recognition system. 

Environment Building 
We used Unity 3D game engine to develop our 
interaction environment. Unity provides an excellent 
framework for developing tools and applications 
within its integrated development environment 
(IDE). Unity’s IDE allows for 2D or 3D applications 
with a variety of different tools that will improve a 
user’s experience with the system.  
It is crucial for first time users to learn about the 
system interactively. We developed a tutorial system 
to illustrate all the different elements of our 
environment in such a way that is easy to follow and 
understand. The system also allows the user to revisit 
old lessons when required. Once completing the 
tutorial, we provide a showcase scene where users 
can collaborate and manipulate objects within the 
scene using these new abilities learnt. 

Monsoon Minigame 
We developed a simple minigame to help the users 
be familiar with the interaction using the 
LeapMotion. The game revolves around the user 
trying to catch as many boxes, barrels, orbs and 
traffic cones as they can. The objects are spawned 
above the user and trickle down every second. It is up 
to the user whether they want to hold these objects or 
to play around with them (See Figure 1). This 
minigame serves as an initial learning task for 
beginners and a challenge for the experts who want 
the highest score. 

Tutorial System 
The tutorial system was developed to help the users 
understand the systems. They included 2D drawing, 
2D gesture recognition, moving the camera, 3D pose 
recognition and 3D gesture recognition. Each of 
these systems is also a state within the tutorial system 
that the user can cycle through. Each state has its 
own visual, written and interactive way of showing 
the user the current state. 
2D Drawing 
This state trains the user how to draw 2D objects on a 
canvas. The drawing system requires the use of the 
LeapMotion and a set of criteria needs to be met to 
begin drawing (see Figure 2). To begin with, the only 
hand that the drawing system recognises is the 
primary hand selected by the user in the first tutorial 
state. The index finger is chosen for drawing. When 
the user wants to stop drawing, they can either move 
all their fingers back from the sensor, or open their 
thumb out without the need of moving. If a user 
makes a mistake and wishes to undo the previous 
stroke on the canvas, they can do so by swiping right. 
2D Gesture Recognition 
The 2D gesture recognition scenes goal is to help the 
user with recognising 2D shapes. While this process 
could have been combined with the drawing state, 
our experiences show that learning to draw first with 
the added gesture recognition was too steep a 
learning curve for first time users. Once users are 

 
Figure 1. Mosoon Minigame monsoon state. 
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familiar with the drawn shapes, they can move their 
hand by positioning all the fingers forward on the 
LeapMotion device. The system then classifies the 
gesture using $P and returns the best scoring point 
cloud for each gesture. The implemented gestures in 
this tutorial stage are Circle, Rectangle, Triangle and 
Cross. The user can create shapes and then grab, 
move or throw them away. 
Moving the Camera 
This tutorial follows the main principle where users 
can move around the play area with their secondary 
hand by closing it into a fist. This scene is used as a 
breaker from the 3D gesture recognition. 
3D Pose Recognition 
The 3D pose recognition scene teaches users how to 
hold their secondary hand when performing a pose. 
To perform a pose, the user positions their hand so 
that it forms a symbolic gesture and hold that pose 
until it is recognised. The Pose recognition system 
can use 4 different poses including the L Pose, the 
ROCK Pose, the OK Pose and the PEACE Pose (See 
Figure 3). 
Poses are recognised within the gesture recognition 
system through the use of velocity within the 

LeapMotion device. We use this data to find the 
minimum x, y or z value from the hands and fingers 
velocity data. We then check if the hand has stopped 
moving with a velocity of under a minimum value. 
Once this occurs, the gesture recognition system 
records the position information from the fingers and 
palm for that frame. This process repeats until either 
the hand is moving quicker than the minimum 
velocity and our data points need to be reset, or the 
user holds their hand over the minimum number of 
frames required, 75 frames in our implementation.  
Making users wait while performing a pose could be 
an issue if there is no hint or indication. To overcome 
this, a pose gesture indicator was presented showing 
the progression of a pose gesture until the pose 
recognition system can determine the pose.  
3D Gesture Recognition 
The 3D gesture recognition follows the 3D pose 
recognition state where we want to teach the user 
how to do gestures in the environment. To perform 
gestures, the user uses their secondary hand and 
makes a quick movement. As opposed to poses that 
require little to no movement, gestures requires a 
sudden movement that when slowed down is 
recognised as a gesture. We implemented two sample 
gesture recognitions in our system including SHAKE 
and GUN.  
To recognise a gesture, the system gathers the same 
velocity data from the palm and fingers as with the 
pose recognition system but determines the 
maximum velocity from the x, y and z values instead. 
It then waits until the velocity from the palm or 
fingers is greater than the maximum velocity of 500 
millimetres and then it starts recording the gesture. 
Once this happens, each frame is recorded until the 
hand or fingers velocity has fallen under 500 
millimetres or the number of gesture frames is over 
our sampling resolution of 32 points. A gesture 
indicator was also created to assist the interaction. 

Practice Systems 
We developed two practice systems to complement 
the lessons taught in the LeapMotion tutorial 
environment. The first system is a target practice 
scene that uses 2D drawings to create objects for the 
user to fling around and 3D poses for altering those 
shapes properties. This scene also uses 3D gestures 
for users to interact with the environment as opposed 
to just the shapes. The second system is a Cave 
Painting system that emulates how users could use 
the 2D recognition system in a creative and fun way 
with an image matching game. 
Target Practice System 
The target practice system is the showcase scene for 
our LeapMotion environment. It contains a number 
of gestures in both 2D and 3D and offers an open 

 
Figure 2. Tutorial state default template. 

 
 

 
 

 

 
Figure 3. L Pose, ROCK Pose, OK Pose and 

PEACE Pose respectively. 
 
 

 
 

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Short Papers Proceedings 63 ISBN 978-80-86943-58-9



sandbox where the user can use all these different 
systems together to interact with the environment. 
The interactable objects within the play area are cube 
walls and targets. Targets generate points based on 
how close an object gets to the centre from the users 
throw and a cube wall acts as a breakable barrier 
which users can break open by using multiple objects 
at once (see Figure 4).  
The types of 3D Poses that our system can recognise 
are: L Pose this turns the gravity off for all created 
objects, OK Pose  changes the colours of all newly 
created objects, ROCK Pose  triples the current 
objects created and the PEACE Pose makes all the 
objects heavier/lighter. The 3D gestures that the 
Target Practice scene can also recognise are SHAKE 
Gesture that shakes the camera around and the GUN 
Gesture that creates a bullet launched from the 
fingertips that explode on impact. 
Cave Painting 
The Cave Paintings goal is to closely match one of 
the 5 popular animals from the Australian outback 
(see Figure 5). The Bat and Turtle contain the fewest 
shapes; the Emu and Lizard are more complicated 
due to their curves and the Kangaroo is the most 
difficult one with both curves and difficult shapes. 
Users are required to trace the animal drawing using 
their finger as close as they can. The system gives the 
users feedback on how close they were to the 
drawing as well as acknowledge their performance. 
These messages do not have negative comments 
written on the drawing to provide an enthusiastic 
approach when trying to draw the animal. 

5. EVALUATION 
We compared the results of three different point 
cloud gesture recognition systems ($P, $P3D and 
$P3D+). Using the training set defined and created 
by using the program, we evaluated the performance 
(time complexity and the average recognition 
percentages) of the original 2D algorithm ($P), the 
added 3D gesture recognition algorithm ($P3D) and 
our improved 3D recognition algorithm ($P3D+). 
The gesture set consists of 15 gestures ranging from 
iconic aboriginal animals, 2D shapes, 3D poses and 

3D gestures. The results in these experiments were 
evaluated based two sample gesture databases.   
The first database consists of all 15 gestures from the 
gesture set, from which each pose per hand has 4 
angle variations that were split into normal, rotated 
forward, rotated left/right (based on what hand was 
used) and rotated back. Each gesture on each left- 
and right-hand has five variations. Each of the 2D 
animal gesture contains three similar variations while 
each 2D shape also has five variations in average per 
shape. Overall, this database totals to 28 poses and 
gestures recorded (300kb) and 35 animal and shape 
drawings (600kb).  
The second database expands the 3D gesture set by 
doubling the number of variations per hand to 10 
each. The 3D poses also receive an increased number 
of variations per hand, from five to six. We also 
exclude all 2D gestures to focus on 3D recognition. 
To create unbiased results, the classification of the 
results uses the 3D poses and gestures from one 
database as the gesture/pose input to compare point 
clouds and determine the minimum distance by using 
another training set. 
We initially used the scoring equation defined in 
[Wob07, Ant10]. However, this scoring method 
produces scores within the 95%-99% margin with 
very few scores ranging outside this segment. Our 
implementation requires the scores to range based on 
our observed minimum distances for the correct and 
incorrect gestures. To overcome this limitation, the 
scores were calculated using a polynomial formula to 
extrapolate the data explained above into a curve to 
map the distance data to the following percentage 
values, particularly 0.5 = 99%, 0.9 = 90%, 1.1 = 
85%, 1.3 = 80%, 1.5 = 75%, 3.5 = 20%, and 4 = 
0%.  
We do not consider the average recognition rate for 
$P on 2D gestures as the recognition average has 
already been conducted by [Ant12]. We test $Ps 
ability to recognise 3D gestures versus $P3D 
recognition system using both databases. 

 
Figure 5. The 2D drawing gestures recognised in 
the Cave Painting scene. (a) Bat, (b) Kangaroo, 

(c) Emu, (d) Turtle, (e) Lizard. 
 
 

 
Figure 4. Target Practice system with multiple 

objects in play. 
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Comparing $P to $P3D 

First Dataset 
From the results on the first dataset (see Figure 6), 
we can see a clear indication that $P could not 
determine any differences between 3D and 2D data. 
It is a surprise that the recognition rate in the L pose, 
$P proved to be more efficient when compared to 
$P3D (84% Range CI = [81, 87] to 77% CI = [74, 
80]). However, the recognition rates for other 
gestures were higher in $P3D in comparison to $P 
particularly the L pose. There is no clear indication 
from the noise of the other gestures like Bat 90% CI 
= [87, 93], Circle 89% CI = [87, 91], Kangaroo 89% 
CI = [85, 93], Lizard 89% CI = [86, 92], Rectangle 
91% CI = [88, 94] that the L pose was the most 
recognised gesture. All other poses and gestures have 
significantly decreased average recognition rates for 
the correct gesture with high recognition rates for the 
wrong gestures. With the ROCK pose, $P does have 
a high average recognition rate of 91% CI = [86, 96], 
but is still beaten by $P3Ds average of 95% CI = [93, 
97]. This indicates our 3D implementation works 
better than the traditional 2D system. 
Second Dataset 
From the second dataset (see Figure 7) with a larger 
3D database, $P performs miserably when 
determining the GUN gesture with an average 
recognition rate (< 50%) as well as an extremely low 
average recognition rate for SHAKE gesture (< 5% 
recognition mark). $P3Ds performs much better 
above the 95% recognition average, for example the 
SHAKE Left Hand (96% CI = [94, 98]), Right Hand 
(98% CI = [97, 99]) and GUN Left Hand (98% CI = 
[97, 99]) and GUN Right Hand (100%). When 
presented with a larger L pose database, the $P 
recognition average actually performs better than 
$P3D with the Left Hand scoring an excellent 90% 
(CI = [89, 91]) versus $P3Ds 85% (CI = [83, 87]) 
recognition average and the Right Hand achieving 
similar results with a 83% (CI = [76, 90]) average 
compared to $P3Ds 78% (CI = [72, 84]). This means 
that while the $P system performs worse on all 
gestures it has the ability to perform well or better 
than $P3D on pose recognition. 

Comparing $P3D to $P3D+ 
With the improvements made to $P3D+, we evaluate 
whether our new $P3D+ performed better than the 
original $P3D. These evaluations follow the above 
comparisons, and T-value tests are used to determine 
if the improvements are statistically significant 
(alpha level of .05 for all statistical tests). 
First Dataset 
Figure 6 shows the GUN gesture has a decreased 
recognition rate from $P3Ds 98% (CI = [97, 99]) to 
$P3D+s 95% (CI = [92, 98]) but there is no statistical 
significant difference between these two systems 

 

 

 

 

 

 
Figure 6. Gesture recognition averages using $P, 

$P3D and $P3D+ on small dataset with L, Ok, 
Gun, Peace, Rock and Shake Respectively. 
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t(38)=1.71, p=0.09. This result means that while 
$P3D+ recognition average is lower than $P3D, there 
is not enough evidence to class both sets of data as 
different. With the PEACE Pose, we found that there 
was a significant difference in recognition averages 
for $P3D 88% (CI = [84, 92]) and $P3D+ 96% (CI = 
[93, 99]) t(22)=3.01, p<0.01. This result suggests that 
the improvements made to increase the recognition 
for the PEACE pose have increased the average 
enough to be statistically significant. 
Second Dataset 
Figure 7 also indicates that our hypothesis of the 
best-case scenario is apparent in the GUN 
(Left/Right) hand. For the Left Handed GUN gesture, 
the $P3D Right Handed GUN recognition average is 
almost the same as the Left Handed average (99% CI 
= [98, 100]) while the $P3D+ system has a lower 
percentage of 98% (CI = [96, 100]) - t(8) = 0.59, p = 
0.57. This means that the $P3D+ system is missing 
the best recognisable gun gesture and that is lowering 
its average. With the Right Handed L pose we can 
also determine that the recognition average is not 
significant between these systems while $P3D+ has a 
significantly increased recognition rate when 
compared to $P3D (92% CI = [82, 100]) and 78% CI 
= [72, 84]) respectfully - t(8) = 1.00, p = 0.35. For 
the Left Handed L pose the difference is extremely 
noticeable. For the $P3D system, the average 
recognition rate is around 85% CI = [82, 88]). The 
$P3D+ system achieves a higher recognition rate of 
98% (CI = [95, 100]) with a significant difference 
between the 3D and 3D+ systems t(6) = 5.97, p < 
0.01. This shows that when the user performs an L 
pose, the $P3D+ system is going to recognise that 
pose easier. 

Discussion 
When differentiating $P with $P3D, the assumption 
was that $P3D would outperform $P. With the 
majority of gestures, $P3D recognises the 3D point 
cloud with excellent gesture recognition average 
while $P has high averages. The L Pose interestingly 
with the small database and the L and Rock Poses in 
the large database, the $P gesture recognition system 
perform better than the 3D system. 
When comparing $P3D and $P3D+, the improved 
gesture recognition system hypothetically yields 
slightly lower results based on the limitations of the 
training data gathered for testing. Our experiment 
shows that with some gestures, it actually increased 
the recognition rate by a small margin of 4.55%. The 
Left Hand L pose was the best result that achieved an 
increased recognition average of 13.17%. While this 
improvement increased the recognition average, we 
can claim that the confidence interval for the $P3D+ 
gesture recognition average falls way out of the more 
condensed $P3D versions interval as $P3D factors in 

all gestures and gets the best-case scenario for each 
pose/gesture. However, the GUN gesture and the OK 
Pose did follow our hypothesis of having a smaller 
recognition rate compared to the traditional 3D 
gesture recognition. This is because of the small 
difference between left and right hand GUN gestures. 

User Experiences 
We demonstrated the system to several people during 
various events hosted by the Western Sydney 
University. While no formal questionnaires were 
given, we have documented the difficulties and 
differences between users who have used the system 
for the first time and some who have had experience 
with this device before. The users were a variety of 
ages ranging from primary school children, high 
school students, university undergraduates and some 
academic researchers. The users mostly inciated that 
they never used the LeapMotion system before.  
From those who have no prior experience with the 
LeapMotion it was clearly that they found it difficult 
to first locate the LeapMotion system and use it 
properly. The main problem was the simplicity in the 
LeapMotions design causing users to not believe that 
the system could perform 3D hand recognition. 
Another issue was users who would immediately try 
to move their hand as close to the sensor as possible. 
While the LeapMotion can detect hands from a short 
distance, if the hands are too close to the IR cameras 
they could not distinguish the hands properly. Once 
instructed to move their hands upward, users 
understood the distance required for recognition and 
rarely brought their hands too close to the sensor 
again. Users were presented with either the default 
LotsOfBlocks demo or the Monsoon minigame 
developed for the first time users. 
For the users who were presented with the Monsoon 
minigame, comments were made about what they 
were supposed to do while the minigame was 
playing. As the premise for the scene was to catch as 
many objects as possible, users found that the 
LeapMotion could not track their hands very well 
when they were cupped together. Some users decided 
to ignore grabbing the objects but rather tried to fling 
the objects around and as far as they could to see who 
could get the furthest.  
The overall consensus with most individuals who 
used these demos was overwhelmingly positive. 
While some had seen the LeapMotion technology 
before or were not enthusiastic with the devices 
capabilities, the majority enjoyed using the tracking 
system.  

6. CONCLUSIONS 
In this paper, we have presented gesture recognition 
techniques that allowed recognition of both 2D and 
3D gestures using point cloud gesture recognition. 
These techniques extrapolate gesture sets using 
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similar classifiers to recognise when to start looking 
for a gesture. We implemented tools that collected 
gesture data for recognition and processing. We also 
developed new 2D and 3D interactive environments 
that acted as a visual representation of the data.  
We enhanced a 2D point cloud gesture recognition 
system into a 3D gesture recognition system that 
supports the data points from the LeapMotions hand, 
palm and fingers. We implemented four poses and 
two gestures to demonstrate the effectiveness of the 
new 3D gesture recognitions. We used a small 
database system for our gesture set in comparison to 
large database in existing systems. 
Our experimental results showed that the 3D system 
outperformed the traditional 2D system in most cases 
as well as some small improvements on the $P3D+ in 
comparison to the original $P3D.  
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 Figure 7. Gesture recognition averages on a large dataset with L, Ok, Gun, Peace, Rock and 

Shake on both left and right hands respectively. 
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