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ABSTRACT

Lens flare rendering in computer games has always been lacking. While physically motivated solutions based on
real camera systems exist, their inherent complexity makes them inappropriate for widespread use. Developers are
not trained to work with these complicated imaging systems, and even if they were, artists and designers prefer
intuitive parameters over these complicated optical system descriptions. More support is needed to start adopting
to these advanced models, and to show that with an appropriate tool the situation can be vastly improved. This
paper describes OpenLensFlare, an open-source C++ framework for rendering convincing physically-based lens
flare effects. Additionally, a supporting optical system editor is also provided, which is capable of producing and
visualizing optical systems and showing an example usage of the run-time library. Together, these two systems can

be used to replace the existing naive algorithms, with small effort and low integration complexity.
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1 INTRODUCTION

Rendering realistic and plausible images has been a hot
topic of research ever since the birth of computer graph-
ics. A subset that is of special interest, which has been
gaining popularity in recent years, is proper simulation
of the aberrations in a camera system. Working with
real optical systems is a challenging task, since it is
hard to see what happens to a ray once it enters the lens
housing. Supporting tools are needed to aid working
with these systems.

This work focuses on one particular aberration, which
is often referred to as lens flare. Lens flare is a phe-
nomenon in photography that is due to the incoming
light taking undesired paths while passing through the
lens system of the objective. The two most prominent
effects that lead to the birth of these flares are the inter-
nal reflections between the lens elements which causes
ghost patches to appear, and the diffraction of the in-
coming light that is most visible on the starburst pat-
terns at the locations of bright light sources on the im-
age.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
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Although lens flare is a very subtle effect, its presence is
just as important, since it plays a very important role in
keeping up the illusion of a non-simulated world. Ren-
dering these effects in real-time, at interactive frame
rates is a problem that has existing solutions, but they
tend to be very complex and do not enjoy widespread
adoption. Softening their limitations is another open
problem today, and one that demands more research
work to be done.

In this paper an OpenGL-based C++ lens flare render-
ing library is introduced, named OpenLensFlare. De-
signed to be modular and extensible, it can serve as
both a starting point into learning more about these re-
cent advancements, but may also be used as the ren-
dering solution of real-time applications. The library
provides all the components needed to render plausible
lens flare effects, while at the same time also granting
the required customization and freedom.

A multipurpose supporting tool is also described, capa-
ble of not only managing the accompanying data of the
run-time library, but also visualizing the various prop-
erties of the lens systems and their generated lens flare.
The editor also serves as an integration example and
can be used to further simplify the process of using lens
flare for enhancing the visual quality of our renderings.

The main goal of this work is to help with the adoption
of advanced lens flare rendering methods, while at the
same time also providing an environment that is useful
for designing and testing future, improved versions of
the algorithms in question.
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The paper is structured as follows: Section 2 gives an
overview of similar tools and summarizes the results of
the research done in the field of lens flare rendering.
In Section 3 the rendering algorithms implemented in
the framework are described in detail. Section 4 out-
lines the main features of the proposed framework. Sec-
tion 5 describes the design choices of the library and
explains some of the potential issues of implementing
such a library. Section 6 discusses the various valida-
tions and testings performed on the implementations.
Lastly, Section 7 sums up this work and talks about pos-
sible future improvements for the library.

2 RELATED WORK
2.1 Special Effect Frameworks

Code reusability has always been one of the core prin-
ciples in computer programming. The advantages of
using a well tested system are nearly endless. Real-
time rendering is an area where this is especially true,
thanks to the poor debugging support and vast amount
of graphics APIs that should be supported. This sec-
tion outlines a few existing frameworks, each similar in
spirit to the proposed solutions.

The GameWorks [1] initiative by NVIDIA is one of
the largest library collections, aimed at providing game
developers with the best material needed for creating
their products. The development kit has a whole sec-
tion devoted to rendering, named VisualFX, covering a
wide range of effect rendering needs for most games.
These implementations have been used in many games
throughout the years, with great success and positive
feedback from the developers [6].

What the GameWorks libraries lack though is proper
tooling support. The components themselves are well
documented, but managing their settings can be unin-
tuitive at times, making it hard to use them correctly.
More focused frameworks come with easy-to-use ed-
itors, debuggers and visualizers, allowing for a better
user experience. Examples of these systems include
PopcornFX [11] and the Houdini tools [8]. Although
the complexity of these specialized frameworks is much
higher, developers still have an easier time creating the
desired effects, all thanks to the superior editing capa-
bilities of their accompanying toolsets.

2.2 Other Related Software

Tooling support for working with real camera systems
is lacking. The only existing software that is relevant
to this field is OpticStudio [16], which is a professional
optical system editor for optical engineers, developed
by Zemax. Despite its good camera visualization capa-
bilities, usage of an external tool that is so loosely cou-
pled with our system is also a tedious process. Further-
more, since OpticStudio was designed with a different
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set of features in mind, it lacks any rendering support,
making it an inappropriate choice for simulating lens
flare.

2.3 Lens Flare Algorithms

Lens flare can be divided into two main components: a
starburst pattern, that is due to the diffraction that oc-
curs when the light passes through the aperture of the
imaging system, and a varying number of ghosts, each
of which corresponds to a unique sequence of inter-
reflections between the optical elements. This section
gives a broad overview of the most recent advance-
ments in rendering these effects properly.

Texture Composition The most basic approach to
the problem is additive composition with pre-rendered
ghost and starburst textures. The starburst texture can
be positioned at the center of the light source on the
screen, while the ghosts are usually placed on a line
that passes through it. Although not physically moti-
vated, the algorithm is still often favored, all thanks to
its low rendering and integration costs.

Starburst Texture The look of these starburst tex-
tures can be improved greatly by taking into consider-
ation the diffraction that occurs in the optical system.
Algorithms describing how to do this for the human
eye exist [12], and an analogue technique can be imple-
mented for camera systems as well. In fact, the most ad-
vanced starburst rendering method invented by Hullin
et al. [4] is still based on texture rendering, but instead
of artificially generating something that looks similar to
a real-world effect, they attempt to mimic the looks of
the phenomena by manual texture composition, as dic-
tated by the underlying diffraction theorem.

Ghost Patches A more sophisticated ghost rendering
solution can be given by involving a real camera sys-
tem. Efficiently rendering with such a system has been
a topic of hot research lately [5, 2, 13, 17], and has been
the main idea of the work done by Hullin et al. [4] and
Lee et al. [10] in the field of lens flare ghost image
rendering. The premise of their invented algorithms is
that today’s graphics units are very well suited for trac-
ing a vast amount of rays in parallel, under heavy time
constraints. Therefore, images that closely match these
ghost effects can be rendered by constructing an envi-
ronment appropriate for imitating a real imaging sys-
tem.

3 MATHEMATICAL BACKGROUND

In the last section we have already seen the core ideas
behind the related lens flare rendering algorithms. This
section gives the reader the required definitions and
principles to understand design choices and inner work-
ings of the proposed framework.
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3.1 Rendering Starburst Patterns

One of the two parts that make up the lens flare effect is
the starburst pattern. The main source for this interest-
ing flare shape is from the diffraction that occurs when
the incoming light passes through the iris aperture in the
optical system, causing the light to bleed into otherwise
shadowed areas.

To render a plausible starburst effect, a pregenerated
texture is drawn at the location of each bright light
source on the image, using the f-number of the cam-
era to control the size and intensity. As shown by
Ritschel et al. [12] and Hullin et al. [4], this texture can
be generated by using the far field Fraunhofer diffrac-
tion formula [3]. For this first a mask image T (x,y)
needs to be provided, which represents the iris shape.
From this mask the corresponding Fourier power spec-
trum F (u,v) is computed by taking its squared Fourier
transform. The starburst texture S(x,y) is then gener-
ated by iterating through the visible color spectrum and
blending together the corresponding scaled copies of
the power spectrum as:

n—1
S(xy) =Y AiF (ui,vi)

=0
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n
() = (1) 7

where Ay, A, and n are user defined parameters for the
starting, ending wavelengths (in nanometers) and the
number of wavelength steps, respectively. Note that
the way (u;,v;) is computed slightly derives from what
Ritschel et al. suggested, but that is because they used a
mixture of Fraunhofer and Fresnel diffraction, however
as they have also shown, the quality gains are marginal
and thus very similar outputs can be rendered by only
relying on the Fraunhofer formula, as presented above.

3.2 Rendering Ghosts

To render convincing ghost flares, a set of rays have
to be traced through the optical system. As the time
needed to perform this would be immensely long, some
simplifications and optimizations are needed to make it
a suitable method for real-time applications. Hullin et
al. showed that this is indeed possible to do [4] with
some carefully made considerations. Their method re-
lies on the fact that rays originating from the front el-
ement reach the sensor in a continuous manner, so in-
stead of tracing a dense set of rays through the system,
a sparse set of rays suffices just as well, with some in-
terpolations.

The algorithm starts by enumerating the various light
paths that each correspond to a single ghost patch on

Short Papers Proceedings

CSRN 2702

Computer Science Research Notes
http://www.WSCG.eu

the image. Knowing that the ray is propagating for-
ward, this can be done by listing the optical system in-
dices from which the light is reflected, and assuming
that transmission on every other surface touched by the
ray. With the unique paths computed, the ghosts are
rendered independently, one after the other.

To perform the ray-tracing, the lenses are virtually
treated as analytic surfaces (spheres and planes) in
3D. The interfaces are then iterated over one by one,
taking the intersection of the traced ray and the optical
element, computing the normal and angle of incidence,
and continuing with the reflected and refracted ray,
as needed. Once all the rays are traced through the
system and their positions on the sensor is computed,
the sparse grid is triangulated and filled by interpolat-
ing the various attributes that were generated while
following the ray, such as the ratio of reflected energy.

To get the intensity of the ghost, the Fresnel reflectivity
equation for unpolarized light can be used [3]:

1 [/ njcosO; —nycos6; 2 nycos0y —nycosH, 2
2 \ njcos6) +nycos6, 2 \ njcos6, + nycosO;

T=1-R

where n; and n, corresponds to the refractive indices of
the two participating media, and 6; and 6, are the an-
gles of light in the two media relative to the normal. As
mentioned above, this equation is evaluated per ray at
each interface where the light undergoes reflection, and
multiplied together to compute the ratio of the reflected
light amount.

To consider dispersion, a wavelength-dependent refrac-
tive index has to be computed and used during the ray-
tracing process. The lens patents typically only contain
the index of refraction at the Fraunhofer D-line (n,) and
the corresponding Abbe-number (V,;). Considering the
definition of the Abbe-number:

—1
v, =

ng —nc

and knowing that Ap, Ar, and A¢ are fixed, substituting
these into the two-term form of Cauchy’s equation we
get the following:

A)=1.50459+ —
n(4) Ot 0.004215

which can be used to provide the wavelength-dependent
refraction indices (note that the wavelengths are mea-
sured in micrometers). Using these indices, the fi-
nal ghost images are rendered by performing the ray-
tracing process for multiple wavelengths, as outlined
above, and blending the results together.
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4 PROPOSED SOLUTION

The main issue of integrating a physically-based lens
flare rendering algorithm into our application is the re-
quirement of a proper optical system prescription. Such
prescriptions are hard to both acquire and edit, which is
why even the largest companies have stayed away from
adopting them. Artists and game designers cannot be
expected to work with these complex systems, and so it
is a reasonable move on the developers’ side. But the
situation is not hopeless, as with proper support even
the largest systems become manageable.

This work focuses on a framework that is capable of
rendering proper lens flare and managing all the data
needed to achieve that goal. The framework is made
up of two components: a run-time library implementing
the rendering algorithms and holding the corresponding
data, and an editor tool to design custom optical sys-
tems and lens flare effects. An example image of this
editor in action can be seen on Figure 1. This section
explains the various parts and features of the proposed
framework and gives an overview of how it attempts to
ease the process of using these large optical systems for
creating custom lens flare.

Figure 1: Interface of the editor component. (a) optical
system editor; (b) optical system visualizer; (c) preview
lens flare rendering.

4.1 Optical System Design

To render physically-based lens flare effects, first the
description of a real imaging system has to be supplied.
This description should include the various parameters
of each of the lens interfaces present in the system, such
as the material properties, physical height and radius
of curvature of the interface, but it should also contain
attributes global to the entire system, such as the focal
length of the system, or the dimensions of its sensor.

These descriptions may be acquired from patent
databases or special books [9, 14], however, designing
a custom lens system is often desired, to improve
the looks of the generated imagery. Since tweaking
values in a text file or directly in the source code to
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achieve this would be a painful process, the proposed
framework contains a component designated solely for
editing these systems and exploring the characteristics
of their generated flare effects by visualizing the
optical system, the flare and various other aspects that
contribute to the birth of the phenomenon. Figure 1
shows what this component looks like in action, using
areal camera system to show the proposed editor.

To manage the aforementioned parameters, the run-
time library contains a special object designed to hold
the various optical system attributes. The lens editor
component exposes these to the user in a tree struc-
ture, which contains both the global imaging parame-
ters and all the lenses with their accompanying descrip-
tions. Figure 2 shows a closeup image of the tree widget
as it looks in the editor. The user is then able to assign
custom values to these parameters, and immediately see
the effects of the changes on the visualization widgets.
The process of creating an optical system that has the
desired imaging properties is vastly simplified this way.
Once finished, the optical system can be exported and
later reloaded by both the designer component and the
rendering library.

t ¥ X0
MName Value ~
Attributes
Mame canon-zoom-long
F-number 28
Focal Length 200
Field of View 12
Film Width 36
Film Height 24
Element #1
Type Lens (Spherical)
Height 38
Thickness 28
Radius 311,919
Refractive Index 1,7495
Abbe Mumber 35
Coating Wavelength 0
Coating Refractive Index 0
Mask Texture
Mask Texture FT
Element #2
Type Lens (Spherical) v

Figure 2: The optical system editor widget of the lens
designer tool. This is used to create and edit the lens
system used for rendering lens flares.

4.2 Data Compilation

To achieve acceptable rendering performance, some
preliminary computations need to be performed. For
most algorithms, these do not take a significant amount
of time and can be carried out in the initialization step of
the application. However, computing everything that is
needed for rendering lens flare can easily take as long
as an hour, even for a camera of average complexity.
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Preparing all this data with an external tool is thus de-
sired, so that they can be just loaded in at run-time,
when they are needed.

OpenLensFlare was designed with pre-computation in
mind. All the algorithm implementations support ex-
tracting the data they have computed and loading them
back later. Thus, a full optical system coupled with
ghost and starburst rendering parameters can be pre-
pared and loaded in a matter of milliseconds. Every-
thing is provided in native C++ and OpenGL objects,
meaning the user is not locked to a single serialization
strategy, but may choose the used methods as they will.

The editor contains a reference implementation for sav-
ing and loading the desired objects. The provided so-
lution can be used to serialize the whole optical system
and the rendering algorithm states - along with all of
their generated data - into a set of XML and image files.
This way the lens attributes can be calibrated once, and
either used by us, in our product, or shared with others.
Listing 1 shows the structure of one of these XML files
- the one describing the optical system. Using the code
provided with the framework, the user has out of the
box support for generating run-time data and injecting
it into their software.

CSRN 2702

<?xml version="1.0" encoding="UTF-8"?>
<opticalSystem>
<name>ExampleOpticalSystem</name>
<fnumber>11</fnumber>
<!—— Other camera attributes...
<elements>
<element>
<type>lensSpherical</type>
<height>24.0</height>
<thickness>9.6</thickness>
<radius>65.220001</radius>

——>

<!-— Other lens attributes... ——>
</element>
<!-- More elements...——>
</elements>
</opticalSystem>

Listing 1: Structure of an XML file that describes an
optical system, as generated and understood by the pro-
vided reference serialization implementation.

4.3 Rendering

Understanding an optical system is only half of the
problem. We still need to find a way to simulate how
the ghosts would be formulated on the captured image,
and render one that looks similar to that of the original.
As it turns out the problem is so complex that existing
algorithms are very hard to grasp and providing a fully
functional implementation is troublesome.

The proposed framework tries to ease the process of
generating eye-catching lens flare imagery by giving
the developers the necessary tools to render ghosts and
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starburst images. All the rendering algorithms reside in
the lower, run-time layer. Currently the framework im-
plements the algorithms presented by Hullin et al. [4],
as described earlier in Section 2. The user is free to
select, configure and combine these algorithms in any
way that fits their requirements, allowing to adopt to
the running environment.

The rendering aims to be fully customizable. It is possi-
ble to specify intensity scaling factors, list of ghosts to
render, ray grid resolutions, anti-reflection coating pa-
rameters, ray culling factors and iris shape smoothing.
Furthermore, the library expects the rendering context
to be pre-configured, thus enabling the use of custom
render targets and blend modes.

Large optical systems can imply high rendering times,
which might be unacceptable for certain applications.
The library has options for resolving this issue. Ac-
celeration can be achieved by using the output of the
precomputation process discussed in Section 4.2. The
generated ghost data can be edited to reduce the number
of rays used for rendering, decreasing the overall pres-
sure on the graphical unit. Additionally, intensity and
bounding information can be used to cull ghosts with
a low impact on the render, saving additional time for
other tasks.

4.4 Visualization

In computer science, visualization of the data is a key
step of understanding a problem. Data that might take
the developer days to fully learn, can easily be per-
ceived in a matter of hours with the use of images.
That being said, data visualization has been one of
the most important motivating factors for making this
framework.

As it has been outlined above, lens prescriptions are
hard to understand. For the untrained eye, their param-
eters are totally meaningless and difficult to fully grasp.
To help us better understand these raw camera parame-
ters, the editor provides a view of the lenses and their re-
lations to one another. First the optical axis is rendered
in the center of the viewport. The elements are then
drawn on top of it one by one, as either a simple section
(flat surfaces and sensor), an arc (spherical surfaces) or
a section with a hole in the middle (iris aperture). The
elements themselves are not connected together, since
the optical system descriptions do not contain the infor-
mation needed to reassemble the physical lenses from
the provided surface parameters.

The usefulness of this optical system sketch is further
improved by showing how a set of example rays travel
through the system, with or without involving inter-
reflection paths between the lens elements. Each ray is
traced through the whole optical system independently,
computing and storing their intersections with each in-
terface and updating the ray directions by following the
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reflected or refracted ray, as needed. The intersection
points that correspond to the same ray are then con-
nected, forming a set of lines that either reach the sensor
or show the points where their rays are fully blocked or
miss an interface. This kind of exploration of the op-
tical systems is a common practice among optical en-
gineers as well, since it allows to better examine the
performance and imaging characteristics of the system.
Figure 3 shows an example output generated with the
proposed lens editor, visualizing rays that correspond
to normal, and reflected ray paths, respectively.

A /] \v\
SRS

il

Figure 3: Example visualization of rays taking the nor-
mal path, converging in a single point on the sensor
(blue) and rays corresponding to ghost, spreading out
on the camera sensor (red).

Another important aspect of data visualization is pre-
viewing the output of rendering lens flare with our op-
tical system. Immediate feedback of the changes done
to the lenses is very important, as the whole purpose of
the work done on designing these lens systems is to use
them for lens flare rendering. To provide the user this
wisdom, the editor component has an embedded flare
previewer widget that is updated on the fly as the opti-
cal system is being modified, to display what the flares
generated by the current configuration would look like.
This preview rendering is performed by the run-time li-
brary component, to make sure the looks of the sample
render fully matches the final image in the embedding
application.

Finally, there are some other characteristics of both the
camera system and the rendering algorithms that are
worth exploring. Examples of these include the bounds
on the front element that correspond to rays reaching
the sensor, or the UV coordinates of the rays when pass-
ing through the aperture iris. An example output of such
a simulation can be seen on Figure 4, which visualizes
the aforementioned front element bounds. While these
may not always have a visual impact on the rendering,
they usually affect the average render times of the sys-
tem. The run-time library can render this data directly
on its own, by only setting a few flags on the rendering
objects. This way these visualizations can not only be
shown in the editor, but are also available in the embed-
ding product. Such hidden information not only allows
the designer improve the run-time performance of the
rendering, but also helps developers to perform debug-
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ging tasks and better understand how a specific ghost
image is rendered.

Figure 4: Visualization of rectangles on the front ele-
ment bounding the rays that can reach the sensor. The
black section corresponds to the front element surface,
on which each colored rectangle denotes a single ghost
(note that they may overlap). It is clearly apparent that
limiting the ray-tracing to these areas can vastly im-
prove the quality and performance of the ghost render-
ings.

S IMPLEMENTATION

The main goals of the framework have been discussed
in the previous section. The following subsections pro-
vide some insight into the design process that the library
went through and some of the issues with alternative so-
lutions that have been tested.

5.1 API Design

The library was designed with extensibility in mind and
aims to provide an environment suitable for implement-
ing any physically-based lens flare algorithm. The fun-
damental terms are all fully represented with separate
classes describing all of their relevant attributes. Ex-
amples of these core abstraction classes include optical
systems with their elements, ghosts, ghost enumerators
and abstract light sources.

The rendering implementations are all built on top of
these foundation classes. They fall into two main cate-
gories, which correspond to the division of the phenom-
ena described in Section 2.3. The user is free to choose
any number of these as they will. It is possible to dis-
tribute the rendering of the same set of ghosts between
multiple instances, by using a heuristic, for example.

The library also provides a tight abstract interface for
the algorithms. These can be used where starburst or
ghost rendering is required, without having to refer to
concrete algorithm classes after initialization. This fea-
ture proved useful when implementing the visualizer
components, and should also simplify the customiza-
tion process for end-users as well. An usage example
can be seen on Listing 2.
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// Lens system for rendering, assumed

// to be loaded by the application

OpticalSystemx pSystem =
loadOpticalSystem() ;

// Initialize a diffraction starburst

// algorithm, with a size of 0.1

// and intensity of 1.0

DiffractionStarburstAlgorithmx sb = new
DiffractionStarburstAlgorithm (pSystem
, 0.1f, 1.0f);

// Create a 1024x1024

// that merges scaled copies from 380

starburst texture

// to 780 nm, using a step size of 5 nm
sb->generateTexture (1024, 1024, 380.0f,
780.0f, 5.0f);

// Create a ray renderer

// that renders all ghosts and traces

// the parameter wavelengths

RayTraceGhostAlgorithmx ghost = new
RayTraceGhostAlgorithm (pSystem,
GhostList (pSystem), { 650.0f, 510.0f,

475.0f }, 1.0f);
// Compute optimal rendering parameters
ghost->computeGhostAttributes () ;

traced ghost

Listing 2: An example C++ code, showcasing the
initialization process of the rendering objects.

5.2 Graphics API

The choice of graphics API is mostly irrelevant for a
tool, but the supported APIs play a crucial role when se-
lecting a rendering library. Since OpenGL is so widely
supported, it seemed natural to use it for both the flare
algorithms and the editor interface. All objects — in-
cluding the algorithms and the optical system descrip-
tions — expect OpenGL handles when working with ob-
jects in their interfaces. The rendering implementations
also make heavy use of OpenGL and require a valid
context to be active when calling any of their rendering
functions.

An alternative solution is the usage of an API abstrac-
tion layer. While it has the benefit that in theory it
could work with every API in existence, it is not true
in practice. There are holes in the feature matrix, and
certain object types are not available everywhere. An-
other possibility is a third party library, of which the
most commonly chosen one is bgfx [7]. While it could
solve some the aforementioned issues, it has another set
of deficiencies, such as the lacking capability of gener-
ating shaders at run-time, which is required to function
correctly by some of the planned algorithms.

5.3 Shaders

Almost every external resource is configurable in the in-
terface, but the use of shaders needed special attention.
Since a large section of the rendering logic resides in
shaders, they are long enough to require separation into
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their own files. Accessing them is not as trivial as it may
first seem, since their presence should ideally be hidden
in the interface. Additionally, since a rendering library
should function properly with limited file system privi-
leges, direct file system access is also ruled out, further
complicating the situation.

A different approach has been taken to solve the prob-
lem. Instead of accessing files at run-time, the shader
sources are compiled into the binary files upon compi-
lation, as raw string literals. When using these shaders,
the implementations can directly refer to their source
codes in a special namespace, with the same name as
they were on the disk before compilation. This way
the application can run under limited file system ac-
cess rights and the library remains functional, saving
the user from the trouble of distributing and managing
external file dependencies.

5.4 Rendering

Rendering of the starbursts and ghosts is done on-
demand, when initiated by the user. The embedding
application is expected to configure the rendering
objects, as described in 5.1, and call their appropriate
methods to perform the rendering. These objects rely
on embedded shaders as described in the previous
section, and assembles them under the hood into the
required OpenGL shader programs.

Before rendering with the optical system, the lens pa-
rameters are locally transformed into an optimal format
that is faster to access during rendering. These values
are then uploaded to the GPU into a set of uniform ar-
rays, consumed by the corresponding shader programs.
The rendering is then carried out by issuing the ap-
propriate draw calls for the selected ghosts and star-
bursts. The ray-tracing needed for ghost rendering is
performed in the vertex shader and finalized in a ge-
omery shader, outputting triangles to the hardware ras-
terizer for automatic interpolation.

5.5 Lens Editor

The lens editor tool is based on Qt 5 [15]. An alter-
native and natural solution would be using an immedi-
ate mode GUI library, but it proved to be not suitable
for the task. The pre-computations discussed in Section
4.2 allow for important optimizations, but do not work
very well with rapid changes to the optical system. To
display a meaningful image takes a significant amount
of time without examining the data, which needs to be
repeated every frame with immediate mode interfaces.
The interface thus becomes unusable, creating a horri-
ble user experience.

6 RESULTS

Validation A test scene has been created to verify the
library’s applicability and its appropriate performance.
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Many different camera systems and render parameters
were experimented with, to check that the library is ca-
pable of working with imaging systems of varying com-
plexity. Figure 5 shows an example output of a starburst
and many ghosts rendered with the proposed library and
composited onto the test scene, all in real-time, allow-
ing for user interaction.

Figure 5: Lens flare generated by a complex Nikon lens
system, rendered with OpenLensFlare and composited
onto the test scene.

The rendering algorithms are all based on already ex-
isting methods, well tested by their own authors. Thus,
only the correctness of the implementation had to be
verified. This was done by reproducing the environ-
ments used to render the sample images provided in the
original papers, and manually comparing my results to
the reference renderings. The generated starburst tex-
ture, also the shape and intensity of the rendered ghosts
seemed to closely match the reference images, proving
that the implementations are correct. The only differ-
ence is in the colouring of the ghosts, which is due to
the anti-reflective coating parameters used by the au-
thors that cannot easily be reverse engineered. How-
ever, OpenLensFlare gives the user the option to assign
these values to each lens, making it possible to produce
images that also match the colors of the reference ghost
rendering, and also create custom setups as desired.

Performance Performance of the library was tested
with the lens system mentioned above. Table 1 shows
the average render times for a Heliar (US2645156, 8
reflective interfaces, 13 ghosts rendered) and a Nikon
(JPS53131852A, 21 reflective interfaces, 142 ghosts
rendered) lens system (both if which can be found in
Smith’s book [14]), with and without involving a pre-
computation step. The tests concluded that both the al-
gorithms and the implementations are suitable for real-
time applications, and even a complicated optical sys-
tem with many lenses can be simulated at interactive
frame rates.

Finally, performance of the precomputation process has
been also measured. Usage of pregenerated rendering
parameters - such as optimal number of rays or ray
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No Precomputation | Precomputation
Heliar 70,0 ms 4,8 ms
Nikon 458.4 ms 215,3 ms

Table 1: Performance comparison of ghost rendering
with a Heliar and a Nikon lens system, with and without
pre-computated ghost bounding information.

bounding on the front element - is crucial for achiev-
ing both fast render times and convincing renderings.
OpenLensFlare provides a custom algorithm for ap-
proximating them in real time, and also implements a
slower, full-blown ray-traced parametrization process,
which - once editing the imaging system is finished -
can be used to compute the final values, and export
them as outlined in Section 4.2. The parameters used
during this process can also be customized, which di-
rectly affects not only the quality of the generated data,
but more importantly, the run time of precomputation
step. Table 2 summarizes the running times of both the
approximate and precise methods with the lens systems
used in the previous tests, with varying computation
parameters. As it can be seen, a detailed ray-tracing
solution is inappropriate for real-time lens modifica-
tions, however it is perfectly capable of preparing the
final rendering parameters in a short amount of time,
while the approximated values can be used throughout
the process of editing the optical system.

Approximate | 2 passes | 3 passes
Heliar 0,006 s 8s 9s
Nikon 0,011 s 338s 365 s

Table 2: Run time comparison of the approximate and
precise pre-computation processes, computing param-
eters for 181 different incident angles in total. The
number of refinement passes denotes how many itera-
tions were taken per angle per ghost when bounding
the ghosts on the front element.

Limitations As for limitations, the algorithms are
currently implemented with the assumption that the op-
tical system contains exactly one iris, which also has
an accompanying mask texture. Additionally, while the
shaders are well generalized for any number of reflec-
tions, currently they only consider the first two reflec-
tions of any ghost path. These limitations are easy to
come around and are expected to be removed in the fu-
ture, but to ease the implementation and management
process, the decision was made to use these simplifica-
tions in the initial implementation, based to the obser-
vations of the authors of the rendering algorithms.

Furthermore, to keep the rendering times low, the algo-
rithms currently treat each interface of the optical sys-
tem as spherical. Also, only objectives with a field of
view smaller than 90° were tested, since such a field
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of view is used most commonly in computer games.
While in theory the algorithms could handle all types
of optical systems, the ray-tracing is performed with the
assumption that rays reach each interface exactly once,
in the order that they are given, which is often not true
for other types of lens systems (e.g. fisheye lenses).

7 CONCLUSION

Lens flare rendering is often overlooked in rendering
applications of the present. Developers tend to favor
basic algorithms, due to their implementation and main-
tenance simplicity. However, the more advanced algo-
rithms can be made to work in these time-constrained
environments, and the efforts are well worth it. This
paper described an open-source, physically-based lens
flare rendering library and an accompanying editor ca-
pable of providing all the data needed for the runtime to
function correctly. These together can be used to render
physically-based lens flare in games and similar appli-
cations, but may also be useful for optical experts to
explore the lens flares generated by their lens system
designs. Hopefully, these efforts will make develop-
ers realize the potential lying in these algorithms and I
am looking forward to seeing these effects incorporated
into future applications.

As for areas for future work, the user interface of the
editor tool needs more customization options for its vi-
sualization components. Namely, it is currently impos-
sible to select in the software which ghosts should be
previewed, and the looks of the sketch also cannot be
altered. The implementation is capable of doing all of
these tasks, and thus only the corresponding widgets
need to be added, after a slight interface redesign.

Additionally, to make this framework a much more
generic solution, implementations need to be added for
other graphics APIs too. Furthermore, creating bind-
ings to popular game engines could improve the li-
brary’s accessibility. Lastly, implementing custom al-
gorithms based on the solutions mentioned in Section
2.3 could further improve the visual quality of the ren-
derings and give the user more options to choose from.

8 SUPPLEMENTARY MATERIAL

The source code of both the run-time library and the
lens editor components is available for download, at
https://github.com/luorax/OpenLensFlare.
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