
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s Thesis

EEG/ERP Portal
Security in New Technologies

Pilsen, 2012 Jiří Novotný

Declaration of Authorship

I hereby declare that this master’s thesis is completely my own work and that I used
only the cited sources.

Pilsen, 17 May 2012

Jiří Novotný

Abstract

Security needs to be assured in EEG/ERP Portal for technical and legal reasons.
The application stores sensitive data and has to be resistant against malicious ac-
tions. This thesis describes improving security by using features introduced in new
technologies and by patching exploitable weaknesses. First, background informa-
tion including legal aspects, project description and security principles are provided.
Then the process of technology migration is described, including tools introduced
to enable the transition. Following a security analysis, the authentication process is
restructured and revealed authorization shortcomings are fixed. The final configu-
ration is tested and evaluated to make sure the portal is suitable for wide use.

Contents

1. Introduction 1

I. Theoretical Background 2

2. Legal Aspects of Storing Neuroinformatic Data 3
2.1. EU Directive . 3

2.1.1. Special Categories . 4
2.1.2. Data Controllers . 5
2.1.3. Security Of Processing . 5

2.2. Czech Law Definitions . 6
2.3. Personal Data Protection in the U.S. 7

3. EEG/ERP Portal 8
3.1. Features . 8
3.2. Users . 8
3.3. Architecture . 9

3.3.1. Data Tier . 9
3.3.2. Application Tier . 10
3.3.3. Presentation Tier . 10

4. Authentication and Authorization Solutions 12
4.1. Authentication . 12

4.1.1. Remember Me . 13
4.1.2. Password Storage . 13
4.1.3. Third Party Login . 14

4.2. Authorization . 14
4.2.1. Page-level Security . 15
4.2.2. Individualized Views . 15

i

Contents

5. Frameworks Used in EEG/ERP Portal 17
5.1. Spring . 17

5.1.1. New Features in Spring 3.0 . 18
5.1.2. Backward Compatibility . 18

5.2. Spring Security . 19
5.2.1. New Features . 19
5.2.2. Backward Compatibility . 20

5.3. Hibernate . 20

II. Design and Implementation 22

6. Migration Plan 23
6.1. Blocks to a Direct Update . 23

6.1.1. Library Structure . 23
6.1.2. Absence of Tests . 24

6.2. Introducing Maven . 24
6.2.1. Tool Description . 26
6.2.2. Artifact Repositories . 27

6.3. Migration Steps . 28

7. Technology Update 29
7.1. Project Directory Structure Changes 29
7.2. Unifying Dependencies . 30
7.3. Storing Custom Libraries . 31
7.4. Porting JSON Plugin . 33
7.5. Building in Major IDEs . 33
7.6. Command Line Support . 34

8. Analyzing Security Loopholes 35
8.1. Password Storage . 35
8.2. Error Stack Traces . 35
8.3. Unverified Address Inputs . 36
8.4. Transport Layer Security . 36
8.5. Authorization Issues . 36
8.6. Cookies Accessible to Scripts . 37

ii

Contents

9. Restructuring Authentication Mechanism 38
9.1. Unifying Account Manipulation . 38
9.2. Securing Database Password Storage 38
9.3. Email as Primary Identification . 40
9.4. Single Login Page . 41
9.5. Removing Plain Text Passwords . 42

10.Fixing Authorization and Mitigating Risks 43
10.1. Page Access . 43

10.1.1. Proposed Design Improvement 43
10.2. Conditional Rendering . 44
10.3. Protecting URL Parameter Input . 45
10.4. Specifying Default Error Behavior . 45
10.5. Transport Layer Security . 46
10.6. HTTPOnly Cookies . 46

11.Testing 47
11.1. Test Types . 47
11.2. Unit Tests . 48

11.2.1. Fixing Existing Tests . 48
11.2.2. New JUnit Tests . 50

11.3. Integration Tests . 50
11.3.1. Mechanism . 51
11.3.2. Testing Authentication Setup 51
11.3.3. User Authorization Tests . 52

12.Evaluating Application Security 53
12.1. Web Application Security Scanners 53
12.2. Comparing with Previous Evaluation 55

13.Conclusion 57

List of Abbreviations 58

Bibliography 60

CD Contents 63

iii

1. Introduction

Security is of key importance in web applications. That is particularly true for a
publicly accessible system storing personal and medical data, like EEG/ERP Portal
developed at the University of West Bohemia. The application is designed to man-
age measurement and experiment data created while using electroencephalography
(EEG) and event related potentials (ERP) in attention research.

The project is in active development for three years. Legal compliance, security
and resistance against common attacks were already evaluated in a thesis by Jiří
Vlašimský [1]. However, due to time constraints and technical limitations, not all
possible measures for improving security were taken and new issues were revealed
since. This thesis starts where the last one left off. Proposed changes form the basis
for new tasks to be done, while other objectives arise from the current needs.

Two main goals are to be met: Upgrading project technologies and enhancing secu-
rity design. Update of frameworks used by EEG/ERP Portal alone would potentially
increase resistance against common threats, as vulnerabilities were found in older
versions of the libraries. But possibly more importantly, new technology solutions
were introduced in the current versions. Those can be used to improve application
security, in some cases even rendering previously dangerous attacks impractical.

The thesis will first evaluate aspects of storing neuroinformatic data under the leg-
islation of European Union with emphasis on the Czech law, and the same in the
United States. Then the EEG/ERP Portal application is introduced. Another
chapter will describe authentication and authorization solutions available in frame-
works utilized by the project. Also current generations of the frameworks will be
introduced, emphasizing new features. The realization phase will focus on migrat-
ing to new technologies, analyzing security shortcomings, improving authentication,
authorization and other security features, testing and evaluating the results.

1

Part I.

Theoretical Background

2

2. Legal Aspects of Storing
Neuroinformatic Data

Large amounts of data are produced during research in the field of neurology. Re-
strictions and limitations exist for data analyzing and processing, the nature of
which is not only technical, but also legal. As personal details and medical records
are used, data handling must be compliant with personal data protection laws.
EEG/ERP Portal introduced later in chapter 3 is an application storing this kind
of information. It is therefore important to ensure compatibility with the legislative
in personal data protection and other aspects.

A thorough legal analysis of storing medical data is both outside the thesis author’s
professional abilities, and outside the scope of this chapter. With that in mind, only
selected paragraphs relevant for the described domain will be cited to clarify, what
is defined as personal and sensitive information, what actions must be taken before
such information is processed and what rules need to be followed when storing the
data.

Legal aspects will be discussed using an EU directive implemented in the legal
systems of member countries and by listing applicable Czech laws. Practices based
in U.S. legislation will be included for comparison.

2.1. EU Directive

Directive 95/46/EC on the protection of individuals with regard to the processing
of personal data and on the free movement of such data offers a definition of the
personal information [2, Article 2]:

’Personal data’ shall mean any information relating to an identified or
identifiable natural person (’data subject’); an identifiable person is one

3

2.1 EU Directive

who can be identified, directly or indirectly, in particular by reference to
an identification number or to one or more factors specific to his physical,
physiological, mental, economic, cultural or social identity

Personal data may be processed only if certain conditions are met. Among others,
that can be when [2, Article 7]:

The data subject has unambiguously given his consent; or

Processing is necessary for the purposes of the legitimate interests pur-
sued by the controller or by the third party or parties to whom the data
are disclosed, except where such interests are overridden by the interests
for fundamental rights and freedoms of the data subject which require
protection under Article 1

A person can take part in the EEG research as a test subject only after signing a
written consent with processing personal data (the agreement text can be found in
[1]), so there is no conflict with the principle in EEG/ERP Portal.

2.1.1. Special Categories

Certain data types are, by default, not allowed to process [2, Article 8, Paragraph
1]:

Member States shall prohibit the processing of personal data revealing
racial or ethnic origin, political opinions, religious or philosophical be-
liefs, trade-union membership, and the processing of data concerning
health or sex life.

However, the restriction does not apply in several cases, one of which is again an
explicitly given consent [2, Article 8, Paragraph 2]:

Paragraph 1 shall not apply where:

a) The data subject has given his explicit consent to the processing of
those data, except where the laws of the Member State provide that the
prohibition referred to in paragraph 1 may not be lifted by the data sub-
ject’s giving his consent

4

2.1 EU Directive

2.1.2. Data Controllers

Persons or entities collecting and processing personal data are referred to as data
controllers. It is the controller’s responsibility to ensure, that the following is com-
plied with - Personal data must be [2, Article 6, Paragraph 1]:

a) Processed fairly and lawfully;

b) Collected for specified, explicit and legitimate purposes and not further
processed in a way incompatible with those purposes. Further processing
of data for historical, statistical or scientific purposes shall not be con-
sidered as incompatible provided that Member States provide appropriate
safeguards;

c) Adequate, relevant and not excessive in relation to the purposes for
which they are collected and/or further processed;

d) Accurate and, where necessary, kept up to date; every reasonable step
must be taken to ensure that data which are inaccurate or incomplete,
having regard to the purposes for which they were collected or for which
they are further processed, are erased or rectified;

e) Kept in a form which permits identification of data subjects for no
longer than is necessary for the purposes for which the data were collected
or for which they are further processed. Member States shall lay down
appropriate safeguards for personal data stored for longer periods for
historical, statistical or scientific use.

2.1.3. Security Of Processing

Secure data handling is not only a practical aspect. It is also a legal requirement,
as [2, Article 17, Paragraph 1] states:

Member States shall provide that the controller must implement appropri-
ate technical and organizational measures to protect personal data against
accidental or unlawful destruction or accidental loss, alteration, unau-
thorized disclosure or access, in particular where the processing involves
the transmission of data over a network, and against all other unlawful
forms of processing.

5

2.2 Czech Law Definitions

2.2. Czech Law Definitions

Directive [2, Article 28] requires the member states to form supervisory authorities
with the mission to protect individuals with regard to processing of personal infor-
mation. In the Czech Republic, the role is fulfilled by The Office for Personal Data
Protection (Czech: Úřad pro ochranu osobních údajů, ÚOOÚ).

The Czech legal system makes a clear distinction between personal and sensitive
data. Stated in the Personal Data Protection Act [3, Article 4]:

a) "personal data" shall mean any information relating to an identified or
identifiable data subject. A data subject shall be considered identified or
identifiable if it is possible to identify the data subject directly or indirectly
in particular on the basis of a number, code or one or more factors
specific to his/her physical, physiological, psychical, economic, cultural
or social identity;

b) "sensitive data" shall mean personal data revealing nationality, racial
or ethnic origin, political attitudes, trade-union membership, religious
and philosophical beliefs, conviction of a criminal act, health status and
sexual life of the data subject and genetic data of the data subject; sensi-
tive data shall also mean a biometric data permitting direct identification
or authentication of the data subject;

Analogically to the directive, personal and sensitive data may be processed when
given an explicit consent. Detailed in [3, Article 5]:

When giving his consent the data subject must be provided with the in-
formation about what purpose of processing, what personal data, which
controller and what period of time the consent is being given for. The
controller must be able to prove the consent of data subject to personal
data processing during the whole period of processing

A practical implication of the text is, that the test subject’s written consent should
also be archived.

6

2.3 Personal Data Protection in the U.S.

2.3. Personal Data Protection in the U.S.

The term used to describe personal data in the context of storing them is personally
identifiable information, abbreviated PII. The Office of Management and Budget
defines PII [4] as:

any information about an individual maintained by an agency, including

(1) any information that can be used to distinguish or trace an individ-
ual‘s identity, such as name, social security number, date and place of
birth, mother‘s maiden name, or biometric records; and

(2) any other information that is linked or linkable to an individual, such
as medical, educational, financial, and employment information.”

Protection of health information is governed by The Health Insurance Portability
and Accountability Act of 1996 [5]. Unless specific privacy rule requirements are
met, access to protected health information (PHI) requires written authorization.
The authorization must be written in plain language, a signed copy must be provided
to the individual and it must contain the following core elements [5]:

• Description of the PHI to be used or disclosed

• Identity of individuals or organization who may disclose PHI

• Purpose of the use or disclosure

• Identity of person or organization to whom PHI may be disclosed

• Expiration date or event

• Signature (dated) of patient or guardian

However, when identifying elements are stripped from the PHI, the resulting data
can be used or disclosed without such authorization [5]1.

1Using this clause, enough data must be removed to ensure, that the chance to identify an
individual is very small [5].

7

3. EEG/ERP Portal

A research group at the Department of Computer Sciences and Engineering is fo-
cused on research of attention, particularly in the case of drivers and injured people.
EEG and ERP are used as the main research methods. Experiments produce large
measurement and related data files. The EEG/ERP Portal was created as a solution
allowing long-term storage and management of these experiments [6].

My enrollment in the project has been, so far, exclusively limited to activities de-
scribed in this thesis - technology upgrade, improving security, fixing known issues
and testing.

3.1. Features

Current portal features are, as listed in [7]:

1. New user registration

2. Storage, update and download of experimental data and metadata

3. Sharing data a metadata between groups

4. Displaying download history for groups admins or system supervisors

5. Adding global articles for system supervisors

6. Adding groups articles for groups admins

7. Article comments

8. Fulltext and advanced search in EEG database

3.2. Users

Users are categorized by their roles, which can be one of the following:

8

3.3 Architecture

• Anonymous: Any user which is not authenticated. The only accessible pages
are homepage with the login form and registration page. Anonymous is the
only user category not tied to any database entity.

• Reader: User with minimal rights, created by a third person when adding
experiment stakeholders. Reader can log in to the application, access public
experiments, scenarios, articles and join groups.

• User: Can do everything what the Reader can, plus create or join groups and
apply for a higher role. Creating and storing experiments is not permitted for
accounts with this role.

• Experimenter: Has the right to insert and manage his own experiment and
scenarios. An User becomes Experimenter after applying for the role in an
application form, if the request gets accepted by a Supervisor.

• Group Admin: Any registered user, which created a research group, or was
assigned this role by another Group Admin after joining. Can manage group
users including changing user roles, write articles and see download history of
experiments solved by the members.

• Supervisor (Admin): Global application administrator. Has the right to man-
age user accounts and has access to all data stored in the application.

3.3. Architecture

The portal is a three tier web application written in Java. MVC (Model-View-
Controller) paradigm is used for separation of concerns in processing server re-
quests. The architecture is supported by common JavaEE (Java Platform, En-
terprise Edition) and XML (Extensible Markup Language) frameworks and tech-
nologies. Figure 3.1 shows a sum up of the structure.

3.3.1. Data Tier

Storage of all application data is managed by Oracle 11g database. The database is
accessed by object-relational mapping framework Hibernate. Individual tables are
mapped to POJO (Plain Old Java Object) Java entities, with annotations defining

9

3.3 Architecture

Figure 3.1.: EEG/ERP Portal Architecture

constraints and mapping properties. Entities are manipulated by DAO (Data Access
Object).

3.3.2. Application Tier

Spring Framework is used to achieve loose coupling throughout the application tiers
and individual classes. Beside the Spring Core, MVC, Security and AOP (Aspect
Oriented Programming) modules are integrated.

In a typical flow, user actions checked by validators are handled by controller classes.
A controller calls a DAO1 to load or store data, and fills a data transfer object (DTO,
in Spring called Command Object) to be displayed in the view.

3.3.3. Presentation Tier

JSP (Java Server Pages) technology is used to render the view to standard HTML
web pages. Thus, the application can be accessed from any location by a web
browser, without any additional plugins. Embedding code in the view to prepare

1In case of more complex actions shared by multiple controllers, a service class is called instead,
which might in turn call the respective DAO

10

3.3 Architecture

data for display is done exclusively via JSTL (JavaServer Pages Standard Tag Li-
brary).

Figure 3.2 demonstrates the user interface, showing home page after user login with
no listed data.

Figure 3.2.: Application front end

11

4. Authentication and
Authorization Solutions

Assuring proper functioning of authentication and authorization is crucial to ap-
plication security. This chapter will provide a basic overview of the principles and
technical solutions in this field, to be used later in the realization phase.

In each section, the concept will first be introduced. Then, several major aspects are
covered, explaining solutions available in the framework used by EEG/ERP Portal,
Spring Security.

4.1. Authentication

The goal of authentication is to identify and verify valid users [8]. Submitted iden-
tification is checked and paired with a record stored in the system. This can be
then used to selectively display data relevant for each individual user or to access
protected areas, if authorized to do so.

Typically, part of any system will be accessible by unauthenticated users, further on
referred to as anonymous. Such public areas do not require to log in, do not display
any sensitive information and do not change the overall state of the system or its
data [9]. Every page displayed before logging into the system also belongs to this
type.

Authentication methods in general, including form-based login1 used in the EEG/ERP
Portal was already covered in [1]. This section will therefore focus more on specific
solutions and features accompanying the login.

1Collecting user credentials using data posted in a HTML form.

12

4.1 Authentication

4.1.1. Remember Me

Users can avoid the need to present username and password for every login by using
a remember me feature. A cookie created by encrypting user data is stored in the
browser. Next time, instead of needing to present username and password, the
cookie is read and the user will be automatically logged into the application [9].

Users authenticated with the remember me feature can be distinguished from those
who provided full credentials by access rules as shown in Listing 4.1. This is suitable
for situations, where the users should verify their identity in order to make important
changes like account manipulation. In the EEG/ERP Portal, fully authenticated
access is enforced in account creation and modification, including Facebook Connect,
accessing web services and deleting lists.

Listing 4.1 Forcing user logged in with remember-me to reauthenticate

<int e r c ep t−u r l pattern="/account /∗ . j s p "
a c c e s s="IS_AUTHENTICATED_FULLY"/>

4.1.2. Password Storage

In case full user credentials are stored in the application, design of such system
should ensure security of the login data, most importantly the password2. Even if
the user database is compromised, passwords can be stored in a way that would
require an impractical time to decode.

Chapter 4 in [9] lists general rules for storing passwords in a database:

• Passwords must not be stored in cleartext (plain text)

• Passwords supplied by the user must be compared to recorded passwords in the
database

• A user’s password should not be supplied to the user upon demand (even if the
user forgets it)

Such approach is fully supported by Spring Security. Encrypting a password dur-
ing the authentication process is defined by different password encoders and can

2Revealing a password can lead not only to gaining access to our application, but also to other
(possibly critical) systems, should the user reuse the same password [10]

13

4.2 Authorization

be set up directly in the configuration. Currently available implementations, listed
in Table 4.1, use one-way hash functions to produce encoded strings. The frame-
work also supports hash salting, which is a method protecting against attacks using
precomputed hash values to reveal the original password.

Table 4.1.: PasswordEncoder implementations in Spring Security 3.1

Name Hashing function
PlaintextPasswordEncoder none (plain text)

Md4PasswordEncoder MD4
Md5PasswordEncoder MD5
ShaPasswordEncoder SHA, SHA-256

LDapShaPasswordEncoder SHA
BCryptPasswordEncoder BCrypt

4.1.3. Third Party Login

User authentication can be delegated to a trusted third party. A so called single
sign-on solution verifies the user to be used in multiple services. When logging in
using a single sign-on, the application does not need to check user credentials - after
one is identified and matched with a local record, authentication is complete.

Build-in providers supported by the security framework are listed in Table 4.2. This
can be further extended by Spring Security Extensions, adding support for SAML
(Security Assertion Markup Language) and Kerberos, or by specialized modules like
Spring Social.

Table 4.2.: External authentication providers in Spring Security 3.1

Name Authentication system
CASAuthenticationProvider Central Authentication Service
LdapAuthenticationProvider Lightweight Directory Access Protocol
JaasAuthenticationProvider Java Authen. and Author. Service

OpenIdAuthenticationProvider OpenID

4.2. Authorization

Authorization means allowing different levels of access to data and system resources
[8]. While some authenticated users might have minimal rights to see only basic

14

4.2 Authorization

information, others with administrative rights can be set up to access the whole
system configuration and dataset. This is achieved by mapping users to different
roles/authorities. A group of similar users are typically assigned the same role.
Roles or individual permissions are then used to check access to secured resources
like internal web pages.

Following paragraphs will cover access control in the presentation tier. Business
code can also be secured, a topic detailed in [9].

4.2.1. Page-level Security

With Spring Security, authorization rules based on URL patterns or individual web
pages can be defined in the global XML configuration. Access rules either directly
list roles needed to access a resource, or use special values for checking authorization
levels like in Listing 4.1. A new feature in the current framework version is the use
of an expression language3, which can substitute the constants and provide a more
flexible configuration (listed in comparison with the constant based configuration in
Table 4.34). Multiple rules of a single type can be combined.

4.2.2. Individualized Views

Access control is not limited to whole pages and application resources. Authorization
rules can and should also be used to selectively display parts of individual views.
One way to do it is to check the user authorities in business tier and conditionally
render page content. But because such checks are common in a typical application
and would result in a lot of repeated code, frameworks like Spring Security provide
support to define access rules on page level among presentation code.

There are three possible approaches for conditionally rendering page content using
authorize tag in JSP or similar pages. A code example is in Listing 4.2.

1. Using expressions: Rules listed in Table 4.3 can also be used to decide, whether
to output code enclosed by the tag

2. Listing roles: Same as the previous, only directly listing roles needed without
using expression language.

3Using expression language has to be explicitly enabled in the security configuration file
4Methods with no parameters can be accessed as pseudo-properties, omitting the parentheses and
prefix [9]. For example isAnonymous() can be written as anonymous.

15

4.2 Authorization

Table 4.3.: URL Access configuration

Expression Language
Method

Configuration Without
Expressions

Description

hasRole(role) ROLE_NAME User must have a granted
authority matching
ROLE_NAME

hasAnyRole(roles) ROLE_1, ...ROLE_N Any of the listed roles will
be accepted

hasIpAddress(address) - Only a certain IP address
is accepted

permitAll IS_AUTHENTICATED
_ANONYMOUSLY

Access is always granted,
even to anonymous users

denyAll specifying nonexistent
role or with other

mechanisms

Access is always denied

isRememberMe() IS_AUTHENTICATED
_REMEMBERED

Checks if user is
authenticated using the
remember-me function

isAnonymous() - Checks if user is
anonymous

isAuthenticated() - Checks if user is
authenticated

isFullyAuthenticated() IS_AUTHENTICATED
_FULLY

Checks, if user provided
login credentials (is not

anonymous or remembered)

3. Checking URL access: Part of the page will get rendered if the user has access
to a certain URL. This provides a way to reuse the global configuration, for
example by showing only links to pages, which one is authorized to visit.

Listing 4.2 Conditionally displaying messages by checking roles and URL access

<se cu r i t y : au tho r i z e ifAnyGranted="ROLE_USER">
Hel lo user

</s e c u r i t y : author i ze>
<s e cu r i t y : au tho r i z e u r l ="/ i n v o i c e s . j sp ">

<a hr e f ="/ i n v o i c e s . j sp ">Would you l i k e to see company i n v o i c e s ?
</s e c u r i t y : author i ze>

16

5. Frameworks Used in EEG/ERP
Portal

The portal is built on top of several architecturally significant frameworks. This
chapter will provide a basic introduction1 to the three most important, then focusing
on features introduced in the newest versions and backward compatibility. Features
used by EEG/ERP Portal will be highlighted.

5.1. Spring

Spring is an open source framework aiming to simplify enterprise application devel-
opment. That is achieved mainly by using loosely coupled POJO based components,
instead of Enterprise Java Beans (EJB). Setting dependencies is done via a mecha-
nism called Dependency Injection2. Instead of initializing dependencies in the code
of each class, wiring is done by an Inversion of Control container. Individual man-
aged classes (Spring beans) do not need to be aware of the application context and
avoid boilerplate initialization code.

Spring incorporates several modules covering a range of services. The following are
used in EEG/ERP Portal:

• Core - Container, that defines, how the beans in a Spring-enabled application
are created, configured, and managed [11]. This part is used by all other
Spring modules.

• AOP module - Support for aspect-oriented programming. By using aspects,
cross-cutting concerns like logging and security can be decoupled from objects

1Apart from dedicated books, description of the frameworks can be also found in [1]
2A software pattern for setting dependencies during runtime or by configuration, instead of
compile-time. Such an approach increases flexibility and enables implementation swapping
for the purposes of testing, aspect-oriented programming and others.

17

5.1 Spring

they affect.

• Data Access - Includes support for both Java Database Connectivity (JDBC)
and Object-relational mapping (ORM). Manages transactions and creates an
abstraction layer on top of data access exceptions.

• Web and remoting - Servlet-based MVC framework and Java API for XML
Web Services (JAX-WS) support are extensively used throughout the portal.

• Security - Described in section 5.2. Not bundled with Spring distribution by
default.

• Testing - Provides support for unit tests and integration tests, which can make
use of initialized application context.

5.1.1. New Features in Spring 3.0

Important features introduced in the current version are [11][12]:

• REST (Representational state transfer) support and a new namespace for
simplifying configuration in Spring MVC

• New expression language

• Annotations in Spring MVC for retrieving cookies and request headers

• Declarative model validation with annotations introduced by JSR-303 (Java
Specification Request 303)

• JSR-330 dependency injection specification

• Support for embedded databases

• Java based metadata allowing configuration to be stored in bean code instead
of XML

• Object to XML mapping functionality was moved to Spring core

5.1.2. Backward Compatibility

Java 1.4 is no longer supported by the current Spring version. But with that ex-
ception and a trivial need to change XML namespaces, Spring 3.0 is fully backward
compatible.

18

5.2 Spring Security

5.2. Spring Security

Started in 2003 and originally called The Acegi Security System for Spring, the
project gradually became adopted as standard security solution for Spring based
applications [9]. The framework can handle authentication and authorization on
the web request level using servlet filters, but can also provide access control in
individual methods by leveraging Spring AOP support.

Configuration is stored in XML format using a security specific namespace. Spring
Security has build-in support for mapping database users to security principals, form
login and logout, all of which is used for authentication in the EEG/ERP Portal.
Properties like user name and authorities are accessible directly in the view.

5.2.1. New Features

Important changes were introduced in version 3.0 over the second edition [9]:

• Spring Expression Language can now be used in access declarations

• More configuration options and hooks in the authentication process

• Pre and post invocation method access declarations in annotations

• Session access management and concurrency control (handling same user logged
in multiple sessions)

• Revised ACL (Access control list) module

• Added support for Kerberos and SAML single sign-on with the Extensions
project, improved OpenID support

Furthermore, several features were added in Spring Security 3.1 [13]:

• Support for multiple http elements, stateless authentication, HttpOnly cook-
ies, hasPermission expression, disabling UI security in testing and nested user
switching

• Credentials can be erased after successful authentication and cookies cleared
on logout

• Improved LDAP, CAS and JAAS support

• Added Basic Crypto Module

19

5.3 Hibernate

5.2.2. Backward Compatibility

Spring Security 3.1 mandates migration to Spring Core 3.0, in turn breaking com-
patibility with Java 1.4. Build-in support for NTLM (NT LAN Manager) authen-
tication was removed. XML configuration was partially restructured and improved
with the new namespace, but it is possible to find a setup directly matching one of
Spring Security 2.

Package structure and class names were refactored in 3.0 (renaming of individual
packages is detailed in [9]3). EEG/ERP Portal utilizes directly only several Spring
Security API classes, as shown in Table 5.1, so refactoring should not be an obstacle.

Table 5.1.: Imported Spring Security classes

Spring Security class / interface Used in
AbstractAuthenticationToken Facebook authentication

Authentication Facebook registration
AuthenticationException Login page

GrantedAuthority User details retrieval, Facebook authentication
GrantedAuthorityImpl Facebook registration

PasswordEncoder Password manipulation
SecurityContextHolder User details retrieval, Facebook registration

UserDetails User details retrieval

To sum up, while Spring Security 3.1 is not fully backward compatible with the
previous versions, assuring compliance after migration in EEG/ERP Portal is not
expected to become a major issue.

5.3. Hibernate

Hibernate is an open source ORM framework. The project aims to be a complete
solution to the problem of managing persistent data in Java [14]. By mapping
database records to object-based entities, the framework creates an abstraction layer
is on top of a database, allowing developers to focus on the business logic, instead
of tuning data exchange with the database management system.

3The corresponding chapter is also available online at http://www.packtpub.com/article/migration-
to-spring-security-3

20

http://www.packtpub.com/article/migration-to-spring-security-3
http://www.packtpub.com/article/migration-to-spring-security-3

5.3 Hibernate

Mapping between objects and tables is accomplished by XML or annotations based
configuration and might include cascade operations ensuring data integrity on up-
date actions. Custom queries are written using Hibernate Query Language (HQL),
an SQL-like language for manipulation with entity objects.

Major features introduced between version 3.3.1 and the current release 3.6.7 include
[15]:

• Support for JPA 2 (Java Persistence API 2, defined by JSR 317)

• Hibernate Annotations, Entity Manager, Envers and Java Management Ex-
tensions (JMX) became part of the core project4

• Infinispan was added as standard second-level cache

• Support for JDBC 4

• Improved Annotations and Type support

As for backward compatibility, relevant changes are dropping support for Java 1.4,
Document Type Definition (DTD) namespace change and mapping properties con-
figured with type=”text” to JDBC LONGVARCHAR instead of CLOB type. Also,
when using materialized_clob or materialized_blob properties, an environment vari-
able hibernate.jdbc.use_streams_for_binary must be set to true on Oracle and false
on PostgreSQL.

4The change simplifies version configuration, as finding a suitable combination of the modules no
longer requires use of a compatibility matrix.

21

Part II.

Design and Implementation

22

6. Migration Plan

Main goal of project realization is to improve security of the EEG/ERP Portal,
while using new versions of already integrated frameworks. Because an update using
currently used structures faces a number of issues, upgrade to the new framework
will be preceded by introducing a tool for improving project management. Reasons
for such a step and relevant technologies are explained in the following sections,
concluded by a list of actions planned during the realization.

6.1. Blocks to a Direct Update

As was explained in chapter 5, backward compatibility should not slow down the
framework update considerably. There are however other issues, which are likely to
affect complexity of the process.

6.1.1. Library Structure

Project libraries are stored in a directory structure of JAR (Java Archive) files.
Apache Ant puts these on project classpath when building the project1. This situ-
ation became problematic as the project size increased, for two main reasons:

1. There is no central record of individual library versions. Assuring compatibil-
ity, when adding a new library to the project is difficult. Even if the library’s
dependencies are fully known, conflict with transitive dependencies cannot be
easily detected.

2. Some libraries are stored more than once in the directory structure2. There-
fore, it is not possible to determine, which version will be used by the Class

1When assembling the application, the libraries are copied to lib directory in WAR archive
2A typical situation causing this misconfiguration is adding a new framework with all dependencies
as a directory, not checking if some of the JARs are already included in the project.

23

6.2 Introducing Maven

Loader during runtime. If there is an interoperability problem between a li-
brary and a specific range of other’s library versions, the issue is very difficult
to debug (one of the conditions informally described as Jar Hell3).

To avoid creating an unstable configuration, libraries will either need to be manually
reviewed and compatible versions found to match with the new framework, or a new
build system tracking dependency versions be deployed.

6.1.2. Absence of Tests

Although tests were previously added to the project [1][16], they are not maintained
and none of Unit tests are currently working. Code has to be tested manually from
the user viewpoint. That makes it difficult to test small incremental changes and
scan the code base for regressions, when library setup is updated.

6.2. Introducing Maven

As explained in section 6.1, managing dependencies is a major issue complicating
future expansion of the project. It is theoretically possible to manually sort out the
conflicts by checking each library’s compatibility and storing dependency versions
matching the new frameworks, but the setup would need to be revised every time a
new library is added.

A better solution would be to manage the dependencies automatically. That is
possible with a variety of tools, two of the most widely used are:

1. Apache Ivy: A subproject of Apache Ant, this tool introduces dependency
management, while integrating with Ant-based builds

2. Apache Maven: Build automation and project management tool, originally
created to solve maintenance issues inherent to Ant-based projects [17].

A short comparison of properties relevant to EEG/ERP project framework migration
is listed in Table 6.1. Ivy would enable dependency management similar to Maven,
and because it leverages existing Ant build, it would be fairly easy to integrate with

3Derived from the so called DLL Hell, where incompatibilities between dynamically linked libraries
plagued older versions of Microsoft Windows.

24

6.2 Introducing Maven

Table 6.1.: Comparison of build tools

Ant + lib dir Ant+Ivy Maven
Standardized build process X
Dependency management X X

Build completely IDE-independent X
Simple build customization X X

Migration effort - small large

the project. Also, Ant build files are easy to customize, as they define each step of
the build, following the tradition of Unix makefiles.

Maven advantages are, however, important enough for it to be chosen as the new
build system:

1. Standardized build means every project and Maven build is similar. Ant and
other build systems let the developer define each build step, leading to ver-
bose and functionally different buildfiles even for projects with identical build
targets (code compilation, unit testing, packaging as web application...). In
contrast, Maven build file defines only project properties like name and depen-
dencies4. Assuming the project has a predefined structure, the build system
can automatically assemble all needed targets. Once a developer learns Maven,
it is easy to understand the structure of any other Maven project, manage and
build it, as it uses a common set of commands. As a result, all project members
can understand and extend the configuration and build, as opposed to only
the author in the case of a complex Ant/Make script, an important feature to
an academic project, whose members might potentially change every semester.

2. Dependency on a particular IDE (Integrated development environment) has
long been seen as a problem for the project. Build files are now tailored
to one environment and IDE specific configuration files are needed to start
working on the project. Developers joining the project can’t use their preferred
IDE, needing to wait for their license keys and then adopt the supported
environment. Also, IDE vendor cannot be switched if licensing conditions
cease to be acceptable. In contrast, Maven based projects can be loaded by all
major IDEs and because the configuration is fully defined in the single build
file, no specific project files and directories are needed to load and use the

4In case there is no way around executing a custom code during a build, it is possible to write
plugins and hook them to the project lifecycle.

25

6.2 Introducing Maven

codebase.

For a longer time, migration to the new build system was considered by the project
members. Framework upgrade provided a good initiative and timing to make the
changes right away. The build system switch will be described in chapter 7.

6.2.1. Tool Description

Using a formal definition from [18]:

Maven is a project management tool which encompasses a project object
model, a set of standards, a project lifecycle, a dependency management
system, and logic for executing plugin goals at defined phases in a lifecy-
cle.

An important concept used by Maven is convention over configuration: Describing
the build process and configuration is not needed, if the project uses predefined
setup. The tool will assume reasonable defaults, like a standard build compiling the
sources in src/main/java (Figure 6.1), combining them with resources and placing
the assembled artifact in the target directory5.

Figure 6.1.: A minimalistic application following the standard directory structure

Metadata, dependencies, settings and other project properties are described in the
Project Object Model (POM), which is represented by a XML file pom.xml in the
project base directory.

5The complete standard directory layout can be viewed at
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-
layout.html

26

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

6.2 Introducing Maven

Project compilation, assembly and distribution process is defined by the build life-
cycle, essentially a set of sequentially executed phases. When an action is to be
executed during a certain phase, all preceding phases are passed through first.

Main phases6 of the default lifecycle are listed in Figure 6.2.

Figure 6.2.: Project Lifecycle

All the functionality beyond a few core tasks is covered by a system of plugins. These
execute at defined phases in the lifecycle and fulfill goals ranging from running unit
tests, to generating a website or starting a web server. Plugins can be updated
individually to make use of the latest features.

6.2.2. Artifact Repositories

In Maven, build artifacts like assembled JARs are stored in repositories. In principle,
repository is a locally or remotely accessible directory tree with artifacts stored on
the following path:

/<groupId>/<artifactId>/<version>/<artifactId>-<version>.<packaging>

6The list is not exhaustive, for a complete table of default lifecycle phases including description
see [18]

27

6.3 Migration Steps

When a project is assembled, Maven will use repositories to fetch all needed depen-
dencies. There are two repository types:

1. Local repository: A cache of artifacts downloaded from remote repositories,
located in the filesystem of each machine7. Once cached in the local repository,
Maven does not need to refetch the artifacts from remote repositories.

2. Remote repository: All others. A special case is the Central repository at
http://repo1.maven.org/maven2/ , enabled by default and storing a large
amount of public open-source project artifacts.

Locally developed and non-public libraries can be stored in a separate internal repos-
itory8. Publishing and managing such artifacts, together with centralized caching of
the public libraries can be simplified with applications called repository managers.
Such a setup increases control and stability by not relying on external resources [18].

6.3. Migration Steps

To upgrade the technologies and improve security, the following steps will be made:

• Switching to Maven and importing up-to-date frameworks

• Analyzing shortcomings from the security viewpoint

• Improving authentication and authorization based on the revealed flaws

• Fixing and extending automated testing

• Evaluating results with independent tools

Following chapters will describe the process, including reasons for choosing a par-
ticular solution, when more options are available.

7The local repository is stored alongside user settings in .m2 directory
8From the build tool viewpoint, the repository is still remote, even when located on a local
network or filesystem.

28

 http://repo1.maven.org/maven2/

7. Technology Update

Because using any of the features introduced in new framework versions must be
preceded by updating the technologies, migration was planned as the first stage of
realization. Aside from introducing the new frameworks, it should do the following:

1. Change build system

2. Unify and upgrade project dependencies

3. Assure compatibility with multiple IDEs and tools

As the changes break existing build procedures, a new code branch was created in
the used versioning system (Subversion, SVN) and merged with the trunk only after
the project migration was complete, checked and tested1.

7.1. Project Directory Structure Changes

One of the main differences between Maven and Ant is purpose of its configuration.
Ant file defines each build target and steps in make-like fashion and is always tailored
to project specifics. In Maven, the POM describes only project properties like name
and dependencies, Maven uses build-in conventions to execute project goals like
compiling or packaging source code.

One disadvantage is, that by specifying a recommended default behavior, migrating
to Maven requires non-trivial changes to an existing project just to fit for the new
build system. But, by doing so, the project structure and build process becomes
standardized and easily used by any developer with previous Maven experience.

If needed, the default project setup can still be overridden. But because that would
mean losing many of the core advantages of Maven approach, I chose not to do so.

1Testing is described in chapter 11

29

7.2 Unifying Dependencies

Maven defines a standard directory structure, clearly separating sources, tests and
resources. Project directories were changed to adhere to that structure, as shown in
Table 7.1. A complex Ant build file structure 2 could be then replaced by a single
pom.xml file.

Table 7.1.: Original directory structure vs. Maven recommended layout

Logical unit Original path Maven path
Source codes src/java src/main/java
Resources src/java src/main/resources

Published web files web src/main/webapp
Test source codes src/java/cz/zcu/kiv/eegdatabase/test/ src/test/java
Test resources src/java src/test/resources

Compiled classes build target
Build files build.xml, build-before-profiler.xml,

trunk.xml, nbproject/ant-deploy.xml,
nbproject/build-impl.xml,
nbproject/profiler-build-impl.xml,
nbproject/project.xml, .idea/ant.xml

pom.xml

7.2. Unifying Dependencies

For each library a dependency definition was added to POM (as in Listing 7.1).
When two or more versions existed for the same library (for example

• lib\hibernate\hibernate3.jar

• lib\hibernate-search-3.1.1.GA\dist\lib\hibernate-core-3.3.1.GA.jar

both contain the hibernate core, first in version 3.2.5, second 3.3.1), the more up-
to-date version was used. After the project was migrated and tested with library
versions matching the old build configuration, frameworks described in chapter 5
were switched to the most recent, updating the source codes where needed. In total
163 jar files were replaced by 80 dependency definitions3.

2Main build file build.xml used several auxiliary scripts, including Netbeans-generated builds in
/nbproject directory for core tasks. When building with IDEA, the main build file was called
by /.idea/ant.xml.

3Maven tracks dependencies of every project/artifact. As some libraries are not directly referenced
by EEG/ERP Portal, they do not need to be explicitly defined in the POM, but are loaded as
transitive dependencies of the artifacts using them.

30

7.3 Storing Custom Libraries

Finally, JAR files were then removed from SVN, as Maven downloads both the
classes and sources automatically.

Listing 7.1 Dependency definition in pom.xml

<dependency>
<groupId>org . h ibernate </groupId>
<a r t i f a c t I d >hibernate−core</a r t i f a c t I d >
<vers ion >3 .6 . 7 . Final </vers ion>

</dependency>

7.3. Storing Custom Libraries

Most of the application libraries are available in one of public Maven repositories:

1. Maven central repository

2. java.net Repository for Maven

3. JBoss Public Maven Repository Group

However, libraries developed at the university are not publicly available and were
not uploaded to any of the repositories. A similar situation is for libraries having a
restrictive Oracle Binary License, prohibiting unlimited public distribution. Both of
these types (listed in Table 7.2) thus needed to be stored in a separate repository.
The last added type were libraries developed in smaller-scale project located at
custom public repositories, but not the central. Because repository outage could
block project checkouts, these libraries were also to be stored in the new internal
repository.

A standard solution to store the custom libraries would be to use a repository
manager. However, none was available at the time of project realization, neither was
an option to deploy one in the university infrastructure available. A directory-based
repository was therefore created instead and placed on SVN to assure consistency
between all project instances. Because the Maven repository structure is followed,
it can be added as any other remote repository to the build descriptor, substituting
URL for relative directory path (Listing 7.2). All application libraries are thus
tracked, stored and managed by Maven, independent of their location.

The solution has, however, important disadvantages:

31

7.3 Storing Custom Libraries

Table 7.2.: Locally stored libraries

Group ID Artifact ID Reason
com.oracle ojdbc6 Restrictive license
com.oracle orai18n Restrictive license
com.oracle xdb Restrictive license
com.oracle xmlparserv Restrictive license
com.jhlabs imaging Not available in major public repositories
owlapi owlapi-bin Not available in major public repositories

cz.zcu.kiv jenabeanextension In-house developed library
cz.zcu.kiv eegdsp In-house developed library

Listing 7.2 Specifying directory-based repository in pom.xml

<repos i t o ry>
<id>cz . zcu . k iv . eegdatabase . repo . l o c a l </id>
<url>f i l e : // ${ bas ed i r }/ repo</ur l>

</repos i t o ry>

1. Availability of public libraries is dependent on the uptime and free bandwidth
of public repository servers. Should the central repository go down, it would
be needed to distribute project libraries manually by copying local cached
repositories from one machine to another4.

2. Storing custom libraries in versioning systems is not recommended5. Manually
storing a library in the SVN-based repository is counter-intuitive and prone to
errors, because a specific structure and naming need to be respected6. Libraries
stored in the versioning system also slow down project checkout.

For this reasons, it can be recommended to migrate to a local repository manager,
as soon as one is deployed in the university environment.

4Using a Repository Manager would solve this issue as it caches the public libraries, needing to
download the data only once and then distributing them to developer machines on request as
any other repository

5Statement can be found at http://maven.apache.org/guides/introduction/introduction-to-
repositories.html

6Uploading a new library version to SVN, but not updating XML annotations and failing to put
it in an appropriate directory can result in Maven not recognizing the update, using the old
version in all developer’s machines.

32

http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/guides/introduction/introduction-to-repositories.html

7.4 Porting JSON Plugin

7.4. Porting JSON Plugin

Part of the build process is a tool for converting messages saved in a Java prop-
erty file to JSON (JavaScript Object Notation) format. The produced file becomes
source of messages for AJAX (Asynchronous JavaScript and XML)-enabled pages,
in particular room booking introduced by [16].

To generate JSON messages during project build, the converter code was packaged
as Ant Task and called in build.xml. Ant build is no longer used, so the maven build
needs to be customized to call the converter. As is stated in [18]:

While Maven 1 emphasized Jelly scripting for customizing builds, Maven
2 favors custom plugins or customization through scripting Plugins or the
Maven Antrun Plugin.

Two of the options are suitable for JSON converter:

1. To use Maven Antrun Plugin executing Ant build target, which in turn will
call the existing Task. A downside to this approach is complicating the build7

and adding a potential source of compatibility problems.

2. To write a custom Maven plug-in using existing converter code and use only
standard methods to integrate the plug-in to the project life-cycle.

Because the converter algorithm was trivial and source code available, I chose the
latter solution. JSonConverter was restructured to follow Maven plug-in conven-
tions8, set to execute in the process-sources phase and saved to the internal Maven
repository.

7.5. Building in Major IDEs

Maven is currently supported on all major IDEs. Because the POM stores project
configuration, an IDE can load Maven projects directly from the versioning system
with minimal additional configuration, as shown in Table 7.3. The project has been
tested on the three listed development environments.

7The build would become Ant/Maven combination, maven directory paths would need to be
passed to Ant Task

8While keeping Ant build file to package it as Ant Task, if needed

33

7.6 Command Line Support

Table 7.3.: Extra configuration files needed to build in IDE

IDE Original ant-based build Maven build
IntelliJ IDEA .idea directory -
NetBeans nbproject directory -

Eclipse + M2E plug-in not supported life-cycle mapping in pom.xml

7.6. Command Line Support

Project can be built without an IDE by using command line options of a local maven
installation. This is illustrated in Table 7.4.

Table 7.4.: Examples of command-line application build and execution

command effect
mvn package Creates a WAR file to be deployed on application server

mvn jetty:run-war Builds and runs project locally on an embedded Jetty server

34

8. Analyzing Security Loopholes

After the upgrade was complete, several security issues were identified. Most were
already known in the time of writing this thesis, but were not fixed because of
technical difficulties or lack of time to implement an appropriate solution.

8.1. Password Storage

User credentials are protected by hashing the password before saving to the database
by MD5 message digest algorithm. In the event of a partial security compromise,
when a malicious user is able to retrieve database user records, plain text passwords
are not immediately visible. Although this might repel a naive attacker, it is not
considered secure. A malicious user can then use a Rainbow table1 (a type of pre-
computed lookup table for reversing cryptographic functions) to retrieve plain text
passwords. An effective method to protect against this kind of attacks is adding a
pseudo-random character sequence called Salt [9][19].

Another issue is, that plain text passwords are sent by email after registration. If
a hacker gets access to an user’s email, he would be able to instantly log in with
his credentials. But possibly even worse, he might just have revealed a password
used for other services. Many users use the same passwords for multiple systems
and retrieving one password can lead to a large security breach [10].

8.2. Error Stack Traces

When the application enters an unexpected state or encounters a programming error,
it prints the error stack trace directly to the HTML output (default behavior). This

1These are publicly available on sites like http://www.freerainbowtables.com and can be used
to retrieve passwords up to eight characters in length. When the character set is limited, the
maximum length can be further increased.

35

8.3 Unverified Address Inputs

makes it a case of information disclosure, revealing implementation details, file paths
etc. to a potential attacker [8].

Unhalted exceptions can be wrapped by a generic Server Error page. Debug infor-
mation would still be accessible to authorized users (developers), as the application
already has an extensive log support recording such events.

8.3. Unverified Address Inputs

This issue was already addressed in [1], although subsequent code changes introduced
other vulnerable URLs.

8.4. Transport Layer Security

Transport Layer Security (TLS)2 can be used to cryptographically secure data trans-
mitted between the browser client and web server [9]. This type of protection is not
set up on the production server, meaning communication with the client is not
encrypted.

When an attacker is located on the same local network as the victim, network
activity can be monitored and logged by packet sniffers. Besides potentially revealing
sensitive information, this becomes even worse during the login procedure, as both
username and password are sent in plain text. An attacker can collect these values
and use them to compromise the application [8].

8.5. Authorization Issues

Personal information of other users is accessible to any group administrator. As
users are allowed to create groups, any user can become a group administrator and
see other user’s personal details.

2TLS is a successor to Secure Sockets Layer (SSL) protocol. As the term SSL became widely
known, it is often used interchangeably with TLS, as the main principle stays the same.

36

8.6 Cookies Accessible to Scripts

8.6. Cookies Accessible to Scripts

Marking cookies as HttpOnly3 is not enforced by the application, making it easy
to read remember-me and session ID cookies by scripting languages. That may be
used to compromise the session in XSS attacks [20].

Snippet in Listing 8.1 shows session ID cookie value when injected to the portal
homepage and clicked. If cookies were marked as HttpOnly, the dialog would be
empty4.

Listing 8.1 Reading cookie with JavaScript

<input type="button " value="Show cook i e "
on c l i c k=" a l e r t (document . cook i e);" >

Still, there are methods to bypass the limitation [21], so the setting should not be
relied upon to eliminate XSS.

3As the name suggests, a HttpOnly cookie can only be accessed by a HTTP request
4Although this code is harmless, it is not hard to create one sending request including the cookie
value to the attacker’s site, as demonstrated in [20] using forged image source address.

37

9. Restructuring Authentication
Mechanism

User authentication was restructured for two main reasons:

1. To fix security problems described in chapter 8.

2. To improve user experience in login, namely to use email as main identification
and to use homepage as a primary login form.

This chapter describes steps needed for the improvements and fixes, as well as rea-
sons for choosing a particular solution.

9.1. Unifying Account Manipulation

Before making any changes to authentication mechanism, code loading and changing
the user credentials was identified (Table 9.1). Four classes contained a full account
creation code.1. To simplify migration and testing, a new PersonService interface and
implementation class were added to unify the account creation algorithms. Other
classes were not changed.

9.2. Securing Database Password Storage

Following the evaluation in section 8.1, previous recommendation in [1] and consul-
tation with the project members, it was agreed to change the password encoding
scheme, despite the update not being transparent to project users2. A new mecha-
nism will need to have:

1This is against the DRY (Don’t repeat yourself) principle, and would increase chance to overlook
or introduce errors during migration and later maintenance.

2Users need to reset their passwords by clicking a “Forgotten password” link

38

9.2 Securing Database Password Storage

Table 9.1.: Manipulation of user credentials

Class name / configuration file Account
creation

Changing
password

Password
verification

AddPersonController X
ChangePasswordController X
ChangePasswordValidator X

FacebookController X
ForgottenPasswordController X

RegistrationController X
WizardAjaxMultiController X

security.xml X

1. A secure one-way hash function. MD5 is no longer considered secure, as prac-
tical collision attacks were demonstrated [22].

2. A suitable salt source. Any string unique for every user3 can be used as salt
source, or it may be randomly generated.

In Spring Security SHA-256, a widely used, secure universal hashing function can be
used to store passwords. Due to a number of advantages, another algorithm called
BCrypt was added4 to Spring Security 3.1. Build-in mechanisms for using these two
functions differ and both were considered, as shown in Table 9.2.

After this consideration, BCrypt based solution was chosen as it keeps password
data in a single database column, is simple to use and has a high security margin.
Importance of the first reason lies in the fact that a seemingly unrelated change (for
example changing user email) would affect user authentication - block application
login. Simple usage should grant easier code maintenance in comparison with the
more complex SHA-256 based setup.

Directly revealing salt source to a potential attacker is mitigated by the fact that
computing Bcrypt hash with the used computational cost 10 is, by design, slower
by several factors 5 than SHA-256, rendering dictionary attacks impractical [19].

3A simplistic approach using a single salt would create an undesirable weakness, as only a sin-
gle lookup table would need to be constructed for all such passwords. Also storing identical
passwords will produce the same hash [9].

4Although addition to Spring Security is new, the algorithm itself is subject to peer review since
1999

5When measured on a personal notebook PC, computing a BCrypt hash of an eight character
password takes 0.15 sec, as opposed to 0.000004 sec. in the case for SHA-256

39

9.3 Email as Primary Identification

Table 9.2.: Choosing password storage mechanism

SHA-256 + custom salt BCrypt + generated salt
Hash function Secure Hash Algorithm by

The National Institute of
Standards and Technology,
successor to SHA-1 and
SHA, inspired by MD5
[22], in this case with
digest length 256 bits

Algorithm with adaptable
computational cost created

specifically for storing
passwords [19]

Spring Security
support

Only hash is stored in
database password column,
another user property can
be used as salt source

Random salt is generated
on registration and stored
along with the password

Suitable salt source Registration date or email (stored with password)
Usage in application Encoder and salt source

can be autowired, used
together to verify

passwords

BCryptEncoder can be
instantiated and a single
method called to verify

passwords
Implementation
Disadvantages

Changing value of property
used as salt source disables
user login, verbose setup

Plain text salt value stored
with password, needs

increasing database column
length

9.3. Email as Primary Identification

Having custom usernames as primary user identification is practical from the devel-
oper point of view. First, when any user posts an article or experiment, his username
can be shown freely to others browsing the website. Second, an advanced user or a
tester can simply create multiple accounts using the same email for verification.

The problem is, users tend to forget the username6. This forces them to often use
a password retrieval link instead of just logging in.

Using email address is thus more convenient method to log in. Registration is also
simplified, as one needs to fill one text field less and doesn’t have to worry about
the username being already taken. Users are already familiar with this kind of
identification, as it is used on major websites like Google or Facebook.

Switch to login by email was planned to be rolled out together with the updated
password storage strategy (section 9.2). The following steps were made:

6Unlike email, which is rarely changed

40

9.4 Single Login Page

1. Email was set up to become the principal username loaded by Spring Security
on login and be verified and saved as username to the database on registration

2. Account manipulation forms were updated to use email exclusively

3. Usernames visible for all registered users (as in case article/experiment au-
thors) were replaced by name and surname7

9.4. Single Login Page

Originally, two pages were used for login:

1. home.html, application homepage including a login form (Figure 9.1)

2. login.html, page presented when accessing a protected resource

The latter didn’t include the option to authenticate with Facebook or to be remem-
bered. Two login pages could also be confusing for the users. Therefore, home.html
was set up as the only page for user login.

Figure 9.1.: EEG/ERP Portal homepage with login form

7Name and surname are collected during the registration process, as it was before the change.

41

9.5 Removing Plain Text Passwords

9.5. Removing Plain Text Passwords

Users can be registered by several methods:

• By pairing an account with Facebook

• By registering manually

• Being added by an experiment administrator

Except in the Facebook case, a verification message is sent to the user mail. Origi-
nally, it contained both username and password to log in. While adding a new user
to the experiment generates an user with minimal rights and a random password,
manually registering with the web interface sent the password just provided in the
registration form, raising security issues described in section 8.1.

Password was therefore removed from the message generated while registering through
the web interface.

42

10. Fixing Authorization and
Mitigating Risks

Authorization was updated to reflect current needs for access control and steps
were taken to fix problems found in chapter 8. Following sections will detail the
measures and, in the case of global page access configuration, also recommend further
improvements.

10.1. Page Access

Access to personal details was restricted to the user himself and the administra-
tors. Using interceptions in the security context, permissions were updated in the
following areas:

1. Viewing history

2. Viewing other users

3. Group membership editation

4. Adding people

5. Article settings

None of the listed actions is now permitted for Reader and history pages require
Group Admin or administrative rights.

10.1.1. Proposed Design Improvement

The existing system uses two different mechanisms for handling user roles:

43

10.2 Conditional Rendering

1. User authorities loaded on login by Spring Security from user_role database
column. Those are Reader, User and Supervisor (Admin). The roles can be
used in the security context or JSP views, using all features of the framework.

2. Roles acquired by recieving permission in other database tables1: Experi-
menter and Group Admin. These roles are not loaded by Spring Security
and have to be manually checked when accessing a resource in the Controllers.

Because the second type does not integrate to the model offered by Spring Security,
the roles can’t be specified in the application context. While custom code resolving
permissions on page loads does the necessary checks, it is nontransparent and verbose
compared to the one-lined central definition in security context.

I propose to do the following:

1. Create an UserDetailsService implementation to intercept the authentication
process and wire it to default Authentication Provider

2. In the service, create UserDetails object with roles loaded on login. But instead
of using just one column, do all necesarry queries to resolve all roles and set
them to the object2.

3. All access permissions including the ’dynamic’ roles can be now defined in
the security context and verified using build-in Spring Framework support.
Remove custom role checking code.

Advantages to such approach would include easier maintenance and being less prone
to errors leading to unauthorized access. An important disadvantage is the need
to reauthenticate when an user’s role is changed (for example when one becomes
Group Admin). That can either be done manually by logging out and in again, or
by writting additional code to create new Authentication object on such actions.

10.2. Conditional Rendering

Authority based conditional rendering of page links was already in place in most pro-
tected pages. Tags from the Spring Security JSP library (introduced in subsection 4.2.2)

1For example being specified as owner in a Group entity grants an user the Group Admin role
2Although it would mean running multiple queries for each user, it is done only once on login. The
current implementation needs to run the queries everytime a resource checking Experimenter
or Group Admin roles is accessed.

44

10.3 Protecting URL Parameter Input

with a defined list of accepted roles are used to hide inaccessible content and actions.
This functionality was extended to strengthen access restrictions in areas listed in
section 10.1.

If Experimenter and Group Admin roles were fully integrated to Spring Security as
proposed in subsection 10.1.1, it would be possible to exclusively use authorization
tags checking URL access. Elegance of such solution lies in the fact, that roles would
no longer need to be listed in JSP pages and conditional rendering would always
stay synchronized with page access defined in the security context3.

10.3. Protecting URL Parameter Input

Pages listed in Table 10.1 were found to fail when submitting invalid URL parameter
input. Parameter verification was added to each of those.

Table 10.1.: Pages with unchecked parameter input

Page Unchecked parameter
articles/detail.html articleId
articles/edit.html articleId
articles/delete.html articleId

articles/subscribeGroupArticles.html groupId
scenarios/detail.html scenarioId
scenarios/edit.html id

scenarios/download-xml.html scenarioId
experiments/choose-metadata.html id

experiments/detail.html experimentId
experiments/add-optional-parameter.html experimentId

experiments/edit.html id
people/edit.html id

10.4. Specifying Default Error Behavior

A separate page informing about a generic server error (HTTP Error 500) was
created alongside existing HTTP Error 404 page and set up to show on uncaught
exceptions (Listing 10.1) in the web descriptor.

3Because the access rules will be inherited from the security context, no changes would need to
be made to the definitions in JSPs even if the permission or role model radically changes.

45

10.5 Transport Layer Security

Listing 10.1 Specifying server error page in web.xml

<error−page>
<error−code>500</error−code>
<loca t i on >/er ro r500 . jsp </lo ca t i on>

</error−page>

10.5. Transport Layer Security

With the help of Ing. Matejka, a certificate trusted by global authority was obtained
and production server set up to use TLS. All communication between a client and the
server is now encrypted, using the HTTPS protocol (Hypertext Transfer Protocol
Secure).

10.6. HTTPOnly Cookies

Java Servlet 3 specification introduces an option to set up HttpOnly cookies globally
(for the whole application).

A corresponding JAR file was added to the application dependency list during Maven
migration, so only two changes were needed in the web descriptor:

1. Updating XML namespaces to 3.0 specification

2. Adding a snippet from Listing 10.2

A vulnerability scanner (NetSparker, detailed in section 12.1)4 was used to verify,
that HttpOnly cookies are now used exclusively.

Listing 10.2 Setting HttpOnly in web.xml

<se s s i on−con f i g>
<cookie−con f i g>

<http−only>true</http−only>
</cookie−con f i g>

<se s s i on−con f i g>

4A preliminary scan identified absence of HttpOnly limitation as a vulnerability

46

11. Testing

Every project code update described in this thesis was tested before committing
changes to the versioning system. But to ensure long term maintainability, the tests
should be automated. That way the testing is reproducible and can be used to verify
algorithm functionality, when the implementation is changed.

This chapter first describes test types, then actions done to fix existing test sup-
port and finally algorithms implemented new by tests to verify authentication and
authorization setup.

11.1. Test Types

According to [23], main software testing types divided by target are:

• Unit testing: Verifies functionality of software pieces in isolation. Typically
that means testing individual class methods.

• Integration testing: Tests interaction between application parts and behavior
of assembled components.

• System testing: Observes behavior of the whole system. Interoperability with
other applications, devices and systems is also concerned.

Tests can be further classified by objectives, techniques etc. Types relevant for this
chapter are, among the previously listed:

• Performance testing: Verifies, that the application performance matches spec-
ified goals (for example being able to serve a certain amount of users).

• Smoke testing: Tests only basic, critical functionality to check, that the code
is free of serious defects or misconfiguration.

47

11.2 Unit Tests

Unit, integration and performance tests were introduced during development of the
EEG/ERP Portal. However, no type is offering full code coverage and only integra-
tion tests were still working in late 2011. Performance tests are not very important
for testing security, but the other two types can be utilized to verify project setup
and the new functionality, as will be described in the following sections.

11.2. Unit Tests

The main goal of fixing unit tests was to verify project setup after Maven migration,
enabling future testing and making it possible to use Spring context in integration
tests. But a few new tests were also be added to aid in debugging and to verify
created code.

In Maven, all tests are normally executed before creating a package (WAR). This
behavior was disabled, not to block artifact assembly until all tests are working and
succeed.

11.2.1. Fixing Existing Tests

Before new tests could be added, existing configuration was fixed, including test
classes where possible. That was done in the following steps:

1. Moving classes and resources to Maven-defined structure, as described in
section 7.1.

2. Updating context configuration to match project context and persistence setup1

3. Test method update to match current business and domain class implementa-
tions

In the case of tests requiring Spring context initialization, this was blocked by an
interoperability issue. One of Hibernate DTD files could not be read due to XML
parsing errors (for reference, the error is printed in Listing 11.1).

The EEG/ERP project uses Oracle database XML support to store structured data
(experiment files in XML format). This requires a library called Oracle XDB parser
as a dependency. Upon linking to the project, Oracle XDB sets itself as a default

1Tests use the same development database, as the dev project channel

48

11.2 Unit Tests

Listing 11.1 Initializing test context with Oracle XDB parser

ERROR ErrorLogger − Error par s ing XML (31) : http :// h ibe rnate .
s ou r c e f o r g e . net / hibernate−mapping −3.0 . dtd<Line 31 , Column 2>:
XML−20068: (Fata l Error) content model i s not d e t e rm i n i s t i c

. . .
Caused by : org . h ibe rnate . Inval idMappingException : Unable to read

XML
. . .
Caused by : org . dom4j . DocumentException : Error on l i n e 31 o f

document http :// h ibe rnate . s ou r c e f o r g e . net / hibernate−mapping
−3.0 . dtd : http :// h ibe rnate . s ou r c e f o r g e . net / hibernate−mapping
−3.0 . dtd<Line 31 , Column 2>: XML−20068: (Fata l Error) content
model i s not d e t e rm i n i s t i c

XML parser. Unlike the build-in parser (Xerces/Xalan), Oracle XDB will fail while
trying to parse Hibernate internal XML files.

3 possible solutions were considered:

1. Removing Oracle from test configuration

2. Finding a suitable Hibernate XML configuration conforming to the Oracle
XDB accepted format

3. Explicitly switching default parser to Xerces

The first option is not practical, as XML types are an integral part of application
data model. Problem with the second option lies in the fact, that the conflicting
file was part of the Hibernate framework sources and could not be redefined by
the framework API (Application Interface)2 and an official suitable version is not
available.

It is possible to set default XML parser before the context is initialized by setting
system properties. Those can be defined:

• By setting environment variables in the operating system

• By command line parameter when starting the program3

2It would be technically possible to change the files directly inside the framework libraries. But
that would introduce an incompatible fork of the framework, which could not be loaded from
the central Maven repository and can never by updated to a newer version.

3Maven also has support for passing system properties to the test running plug-in, and this would
actually solve the problem when using Maven. But it would drop unit test support for any
other execution environments, like IDEs.

49

11.3 Integration Tests

• Directly in Java code

As the source codes needed to be portable and tests can be executed by different ap-
plications, defining the environment variables in Java code remains the only option.
A directive in Listing 11.2 was placed to superclass constructors to execute before
the application context is initialized. Using this setup, the tests can be executed in
any environment.

Listing 11.2 Redefining default XML parser in Java code

System . se tProper ty (" javax . xml . pa r s e r s . SAXParserFactory " ,
" org . apache . x e r c e s . jaxp . SAXParserFactoryImpl ") ;

System . se tProper ty (" javax . xml . pa r s e r s . DocumentBuilderFactory " ,
" org . apache . x e r c e s . jaxp . DocumentBuilderFactoryImpl ") ;

11.2.2. New JUnit Tests

As unit tests can be now easily constructed, several were created to check altered
methods in the business and data tier.

• ConfigurationSetupTest using test context initialization to check, that the ap-
plication is free of serious misconfiguration (essentially a smoke test).

• PersonDaoTest verifies user account creation and handling, including password
and other properties.

• MailServiceTest can be used to evaluate email server configuration and test
message sending.

11.3. Integration Tests

Integration tests were created to enable automatic access control setup verification.
These tests require a fully assembled application and simulate an user interacting
with the system.

50

11.3 Integration Tests

11.3.1. Mechanism

Selenium Framework was used for the integration tests, as it is already included
in the project4. This framework runs a browser instance and executes predefined
commands via JavaScript.

Testing procedure requires logging in the application with different roles. One so-
lution would be to manually create users designated for testing and hardwire the
credentials in source code. That would, however, create two issues:

1. Anyone getting access to the source code would be able to read full login
information of several users, including one with administrator privileges

2. Changing database table rows containing the user data or migrating to a new
database would break the tests

A different solution was designed using the Spring testing support. Application
context is initialized before loading Selenium, allowing any business code methods
to be executed before and after running the framework. The following sequence is
implemented:

1. A new user with defined role is created and saved to the database

2. His credentials are used to log in to the application front-end and perform
tests

3. User is deleted when tests are done

11.3.2. Testing Authentication Setup

Correct setup of the sign-in process is verified by a few tests in the following scenar-
ios:

• User with invalid credentials is rejected and presented a “Bad credentials”
message.

• Valid credentials are accepted and the user is logged in.

• When requesting a protected resource, an unauthenticated user is redirected
to the homepage with login form.

• If the user originally tried to access a resource different then the homepage, it
should be displayed after signing in.

4Selenium is used for testing room reservation functionality [16]

51

11.3 Integration Tests

11.3.3. User Authorization Tests

Page authorization is tested by automatically creating users and visiting protected
resources.Table 11.1 shows checking access control rules, which do not rely on database
setup5.

Table 11.1.: Access to page as verified by integration test

Resource Admin User Reader
Articles, Groups, My account X X X

Article settings X X X
Room booking X X X

Request for group role X X X
List of people (users) X X X

History X X X
Change role of user X X X

5Database checks outside user entity are needed for access control in groups. For example, group
administrator can see user details of group members. Such rules have to be tested manually -
no test class was created for this cases.

52

12. Evaluating Application
Security

Vulnerability scanners were used to independently verify application security. Be-
cause the theoretical likehood of being compromised by other common attacks is
already discussed in [1], it is not repeated here. Instead, improvements proposed
in the thesis are compared to the actually implemented changes, marking security
improvements in the covered areas.

12.1. Web Application Security Scanners

Portal security was tested by two publicly available1 web application security scan-
ners:

• NetSparker, an all-purpose scanner finding and exploiting multiple types of
security flaws2

• Acunetix Free Edition, a tool specialized on finding Cross-site scripting (XSS)
vulnerabilities

Deployment environment under test was the application running on localhost in
Apache Tomcat 6 and Jetty 7 servlet containers3 in two consecutive tests, using a
remote testing database. Both server instances were started in default configuration
and with no transport layer security (not using HTTPS).

1A free edition of Acunetix was used. While NetSparker also has a free community edition, it
cannot be configured to login using form authentication, skipping a large part of the application.
For this reason, a time limited evaluation version of the professional edition was employed
instead.

2All types of vulnerabilities tested can be found on the company website:
http://www.mavitunasecurity.com/netsparker/vulnerabilities/

3Jetty is used on the production server

53

http://www.mavitunasecurity.com/netsparker/vulnerabilities/

12.1 Web Application Security Scanners

Scanning with Acunetix did not find any flaws. Results from NetSparker analysis
are listed in Table 12.1.

Table 12.1.: Test results by scanning local EEG/ERP Portal installation by
NetSparker

Issue Commentary
Probable SQL Injection in pages
allowing user input (marked in

Tomcat execution only)

By leveraging Spring support for Hibernate,
the application uses parametrized queries
(prepared statements) for all its SQL

operations. This type of attack is thus not
feasible.

Password transmitted over
HTTP

Matches test setup. HTTPS is enforced on
production server.

Password transmitted over query
String

While being a false alarm for the password,
session ID is indeed transmitted over query
String under specific conditions (accessing
the webpage with disabled cookies). Further
research is needed to determine, if that can

and should be addressed.
TRACE / TRACK Identified

(Jetty execution only)
HTTP Trace can be used to bypass HTTP
Only Cookie limitation when performing

XSS attacks [21]. Should not be allowed on
production server.

Auto complete enabled Auto complete is not disabled on password
field in the registration and login form.

Browser might cache the value.
Server version disclosure Target web server was identified by HTTP

headers. This is standard setup in Jetty and
Tomcat.

Database error message Database connection error caused by
network issues was displayed by the

response page.
E-mail Address Disclosure Email addresses were found in JQuery files.

No other emails are disclosed by the portal.

From all the listed findings, the first three were marked as having medium severity,
or higher, by the scanner. However, those can not be expected to succeed in the
production environment.

Apart from identifying potential issues, the penetration test provided useful insight
into the possibilities of automated attacks. When not addressed, critical flaws can
be exploited without any human intervention by tools using similar techniques like

54

12.2 Comparing with Previous Evaluation

the scanner. Also, it is clear that proper production server configuration is required
to assure security of the whole system.

12.2. Comparing with Previous Evaluation

A detailed security analysis was previously performed in [1]. Section 8.3 describes
possible improvements in the project as of 2011. Some are now implemented, others
were not followed for various reasons. Proposed improvements were the following:

• SSL: Transport layer security is now deployed, improving resistance against
session hijacking, man-in-the-middle attacks, sniffing and others

• Changing password storage: Either using an algorithm stronger than MD5, or
hash salting is proposed. Using only one of these in isolation is still potentially
vulnerable for two reasons:

1. MD5 with salt can be viewed as plain MD5 with length = password +
salt. If the password length is short, it can still be cracked by dictionary
attacks

2. Plain SHA-256 will produce always the same output for identical pass-
words. With a dictionary of common passphrase hashes, an attacker
could easily find them among actual hash values.

A combined solution was therefore implemented and deployed (section 9.2).
The Insecure Cryptographic Storage vulnerability was thus removed.

• Technology innovation: Update of proposed frameworks took place during
the realization phase. Only Spring Social module was not imported. While
it should be possible to simplify Facebook authentication using its API, the
existing process works without any regressions on the current setup. An effort
to restructure the Facebook login would not add any value to the application.
Migration can be done when extended functionality offered only by Spring
Social is needed. Tech upgrade helped to increase application security in two
aspects:

1. Vulnerabilities were found in older versions of the frameworks4. Upgrad-
ing to current framework versions thus removed the issues.

4Spring vulnerabilities are listed at http://www.springsource.com/security/springsource-all

55

http://www.springsource.com/security/springsource-all

12.2 Comparing with Previous Evaluation

2. Features introduced in the new technology versions helped to improve
application security. Examples are the HttpOnly cookie and BCrypt
password storage.

• CSFR protection: Steps described in this thesis do not improve resistance
against CSFR (Cross-site request forgery). Proposed steps to mitigate the
problem are both technically challenging and detrimental to user experience
with the software. Improvements in this field therefore remain available for
further discussion.

56

13. Conclusion

Before updating technologies used by EEG/ERP Portal, a new build system based on
Maven was deployed to simplify dependency and project management. The change
enabled support of multiple IDEs and migration of source codes to use new versions
of frameworks, most notably Spring, Spring Security, Hibernate and the Java Servlet
technology. Custom developed libraries and JARs with restrictive license were stored
in an internal Maven repository, created on top of existing versioning system. Ant-
based plugin for message conversion to JSON format, used by AJAX components,
was ported to become part of the new build system.

Security analysis of the existing code revealed issues to be addressed, like disclosing
error stacks, not checking URL inputs, lack of transport layer protection, shortcom-
ings in authorization and insecure password storage. Steps were made to address
the issues and to introduce other improvements for enhancing user experience.

Storing and verifying passwords now utilizes BCrypt in producing salted hashes of
the passwords, making it impractically time consuming to reveal the original values
even if an attacker gets access to the database. Login dialogs were unified to use
a single page. Email, which is less likely to be forgotten than a custom username,
is now accepted as the main identification in login form. Passwords are no longer
sent in plaintext by email on user registration. URL parameters are checked before
processing and a custom error page is displayed when an uncaught exception causes
the view to fail. Page access was restricted where needed and configuration was
set up to mitigate potential threats. Existing tests were fixed and new ones were
introduced to verify the added code. Finally, resistance against common attack
scenarios was tested using a vulnerability scanner and the results were analyzed.
The current security design was also compared to a previously proposed list of
improvements.

While multiple aspects of application security were improved, the effort to assure
security should not cease, as the need for it is continuous.

57

List of Abbreviations

ACL Access control list

AJAX Asynchronous JavaScript and XML

AOP Aspect Oriented Programming

API Application Interface

CAS Central Authentication Service

CSFR Cross-site request forgery

DAO Data Access Object

DTD Document Type Definition

DTO Data Transfer Object

EEG Electroencephalography

EJB Enterprise Java Beans

ERP Event Related Potentials

HQL Hibernate Query Language

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated development environment

IP Internet Protocol

JAAS Java Authentication and Authorization Service

JAR Java Archive

58

List of Abbreviations

JAX-WS Java API for XML Web Services

JDBC Java Database Connectivity

JMX Java Management Extensions

JPA Java Persistence API

JSON JavaScript Object Notation

JSP Java Server Pages

JSR Java Specification Request

JSTL JavaServer Pages Standard Tag Library

LDAP Lightweight Directory Access Protocol

MVC Model–View–Controller

NTLM NT LAN Manager

ORM Object-relational mapping

PHI Protected health information

PII Personally Identifiable Information

POJO Plain Old Java Object

POM Project Object Model

REST Representational state transfer

SAML Security Assertion Markup Language

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

SVN Apache Subversion

TLS Transport Layer Security

XML Extensible Markup Language

XSS Cross-site scripting

59

Bibliography

[1] Jiří Vlašimský. Access privileges in eeg/erp portal. Master’s thesis, Uni-
versity of West Bohemia, Faculty of Applied Sciences, 2011 [cit. 2012-
04-02]. Text in Czech. URL: https://portal.zcu.cz/stag?urlid=
prohlizeni-prace-detail&praceIdno=41447.

[2] EU Directive. 95/46/EC of the european parliament and of the council of 24 oc-
tober 1995 on the protection of individuals with regard to the processing of per-
sonal data and on the free movement of such data. Official Journal of the Euro-
pean Communities, 281:31–50, 1995 [cit. 2012-04-17]. URL: http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT.

[3] The Office for Personal Data Protection. Consolidated version of the personal
data protection act (act no. 101/2000 coll.), 2000 [cit. 2012-04-17]. URL: http:
//www.uoou.cz/files/101_en.pdf.

[4] E. McCallister, T. Grance, and K. Kent. Guide to protecting the confidentiality
of personally identifiable information (PII). Technical report, National Institute
of Standards and Technology (US), 2009 [cit. 2012-04-17]. URL: http://csrc.
nist.gov/publications/nistpubs/800-122/sp800-122.pdf.

[5] P.P. Gunn, A.M. Fremont, M. Bottrell, L.R. Shugarman, J. Galegher, and
T. Bikson. The health insurance portability and accountability act privacy rule:
a practical guide for researchers. Medical Care, 42(4):321, 2004 [cit. 2012-05-01].
URL: http://www.rand.org/pubs/reprints/2005/RAND_RP1161.pdf.

[6] P. Ježek and R. Mouček. database of eeg/erp experiments. In Third Interna-
tional Conference on Health Informatics. Valencia Spain, 2010.

[7] Jan Štěbeták. Computational tools in eeg/erp portal. Master’s
thesis, University of West Bohemia, Faculty of Applied Sciences,
2011 [cit. 2012-04-02]. URL: https://portal.zcu.cz/stag?urlid=
prohlizeni-prace-detail&praceIdno=41416.

60

https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=41447
https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=41447
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:NOT
http://www.uoou.cz/files/101_en.pdf
http://www.uoou.cz/files/101_en.pdf
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
http://www.rand.org/pubs/reprints/2005/RAND_RP1161.pdf
https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=41416
https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=41416

Bibliography

[8] Michael Cross. Developer’s guide to web application security. Syngress Pub,
Rockland, MA, 2007.

[9] Peter Mularien. Spring Security 3 secure your web applications against mali-
cious intruders with this easy to follow practical guide. Packt Open Source,
Birmingham, U.K, 2010.

[10] Blake Ives, Kenneth R. Walsh, and Helmut Schneider. The domino effect of
password reuse. Commun. ACM, 47(4):75–78, April 2004 [cit. 2012-04-05].
URL: http://doi.acm.org/10.1145/975817.975820, doi:10.1145/975817.
975820.

[11] Craig Walls. Spring in action. Manning, Shelter Island, 2011.

[12] Rod Johnson, Juergen Hoeller, Keith Donald, et al. Spring framework reference
documentation, 2010 [cit. 2012-05-01]. URL: http://static.springsource.
org/spring/docs/3.0.5.RELEASE/reference/.

[13] Ben Alex and Luke Taylor. Spring security reference documentation,
2012 [cit. 2012-05-01]. 3.1.0. URL: http://static.springsource.org/
spring-security/site/docs/3.1.x/reference/springsecurity-single.
html.

[14] Christian Bauer. Java persistence with Hibernate. Manning, Greenwich, Conn,
2007.

[15] Steve Ebersole. In relation to... tag: Core release, 2010 [cit. 2012-05-01]. URL:
http://in.relation.to/tag/Core+Release.

[16] Jan Kolena. Eeg/erp portal - reservation system for eeg/erp labora-
tory. Bachelor thesis, University of West Bohemia, Faculty of Applied Sci-
ences, 2011 [cit. 2012-04-02]. URL: https://portal.zcu.cz/stag?urlid=
prohlizeni-prace-detail&praceIdno=43594.

[17] Jason van Zyl. History of maven, 2005 [cit. 2012-05-05]. URL: http://maven.
apache.org/background/history-of-maven.html.

[18] Sonatype Company. Maven : the definitive guide. Oreilly, Sebastopol, Calif,
2008.

[19] Niels Provos and David Mazieres. A future-adaptable password scheme. In
Proceedings of the annual conference on USENIX Annual Technical Confer-
ence, ATEC ’99, pages 32–32, Berkeley, CA, USA, 1999. USENIX Associa-

61

http://doi.acm.org/10.1145/975817.975820
http://dx.doi.org/10.1145/975817.975820
http://dx.doi.org/10.1145/975817.975820
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/
http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
http://in.relation.to/tag/Core+Release
https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=43594
https://portal.zcu.cz/stag?urlid=prohlizeni-prace-detail&praceIdno=43594
http://maven.apache.org/background/history-of-maven.html
http://maven.apache.org/background/history-of-maven.html

Bibliography

tion. [cit. 2012-04-02]. URL: http://static.usenix.org/event/usenix99/
provos/provos.pdf.

[20] Mike Shema. Seven deadliest web application attacks. Syngress/Elsevier Sci-
ence, Amsterdam Boston, 2010.

[21] J. Grossman. Cross site tracing (xst). WhiteHat Security White Paper, 2003
[cit. 2012-04-29]. URL: http://www.cgisecurity.com/whitehat-mirror/
whitePaper_screen.pdf.

[22] S. Indesteege. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, 2010 [cit. 2012-04-06]. URL: http:
//www.cosic.esat.kuleuven.be/publications/thesis-171.pdf.

[23] A. Abran and P. Bourque. SWEBOK: Guide to the software engineering Body
of Knowledge. IEEE Computer Society, 2004 [cit. 2012-04-10]. URL: http:
//www.computer.org/portal/web/swebok/htmlformat.

62

http://static.usenix.org/event/usenix99/provos/provos.pdf
http://static.usenix.org/event/usenix99/provos/provos.pdf
http://www.cgisecurity.com/whitehat-mirror/whitePaper_screen.pdf
http://www.cgisecurity.com/whitehat-mirror/whitePaper_screen.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-171.pdf
http://www.cosic.esat.kuleuven.be/publications/thesis-171.pdf
http://www.computer.org/portal/web/swebok/htmlformat
http://www.computer.org/portal/web/swebok/htmlformat

CD Contents

CD included with this thesis contains the following directories and files:

• bin: Contains assembled WAR with the EEG/ERP Portal

• src: Application source codes

• thesis-src: Source files for this document in LYX and TEX format

• thesis-jnovotny.pdf : Thesis in PDF format

Running the Application

To run the application, put the WAR from bin directory to a Servlet Container
(tested on Apache Tomcat 6 and Jetty 7) and start the server. The application is
running on localhost. Internet connection is required.

Compiling From Source Codes

To assemble the program from source codes:

1. Install Maven 2 from http://maven.apache.org/index.html

2. Copy the src directory to any writable location

3. Execute the following command in the new src folder and wait:

mvn package

When done, a WAR file ready for deployment will be located in target subdirectory.

63

http://maven.apache.org/index.html

	Contents
	1 Introduction
	I Theoretical Background
	2 Legal Aspects of Storing Neuroinformatic Data
	2.1 EU Directive
	2.1.1 Special Categories
	2.1.2 Data Controllers
	2.1.3 Security Of Processing

	2.2 Czech Law Definitions
	2.3 Personal Data Protection in the U.S.

	3 EEG/ERP Portal
	3.1 Features
	3.2 Users
	3.3 Architecture
	3.3.1 Data Tier
	3.3.2 Application Tier
	3.3.3 Presentation Tier

	4 Authentication and Authorization Solutions
	4.1 Authentication
	4.1.1 Remember Me
	4.1.2 Password Storage
	4.1.3 Third Party Login

	4.2 Authorization
	4.2.1 Page-level Security
	4.2.2 Individualized Views

	5 Frameworks Used in EEG/ERP Portal
	5.1 Spring
	5.1.1 New Features in Spring 3.0
	5.1.2 Backward Compatibility

	5.2 Spring Security
	5.2.1 New Features
	5.2.2 Backward Compatibility

	5.3 Hibernate

	II Design and Implementation
	6 Migration Plan
	6.1 Blocks to a Direct Update
	6.1.1 Library Structure
	6.1.2 Absence of Tests

	6.2 Introducing Maven
	6.2.1 Tool Description
	6.2.2 Artifact Repositories

	6.3 Migration Steps

	7 Technology Update
	7.1 Project Directory Structure Changes
	7.2 Unifying Dependencies
	7.3 Storing Custom Libraries
	7.4 Porting JSON Plugin
	7.5 Building in Major IDEs
	7.6 Command Line Support

	8 Analyzing Security Loopholes
	8.1 Password Storage
	8.2 Error Stack Traces
	8.3 Unverified Address Inputs
	8.4 Transport Layer Security
	8.5 Authorization Issues
	8.6 Cookies Accessible to Scripts

	9 Restructuring Authentication Mechanism
	9.1 Unifying Account Manipulation
	9.2 Securing Database Password Storage
	9.3 Email as Primary Identification
	9.4 Single Login Page
	9.5 Removing Plain Text Passwords

	10 Fixing Authorization and Mitigating Risks
	10.1 Page Access
	10.1.1 Proposed Design Improvement

	10.2 Conditional Rendering
	10.3 Protecting URL Parameter Input
	10.4 Specifying Default Error Behavior
	10.5 Transport Layer Security
	10.6 HTTPOnly Cookies

	11 Testing
	11.1 Test Types
	11.2 Unit Tests
	11.2.1 Fixing Existing Tests
	11.2.2 New JUnit Tests

	11.3 Integration Tests
	11.3.1 Mechanism
	11.3.2 Testing Authentication Setup
	11.3.3 User Authorization Tests

	12 Evaluating Application Security
	12.1 Web Application Security Scanners
	12.2 Comparing with Previous Evaluation

	13 Conclusion
	List of Abbreviations
	Bibliography
	CD Contents

