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Abstract

We show that every k-tree of toughness greater than k
3 is Hamilton-

connected for k ≥ 3. (In particular, chordal planar graphs of tough-
ness greater than 1 are Hamilton-connected.) This improves the result of
Broersma et al. (2007) and generalizes the result of Böhme et al. (1999).

On the other hand, we present graphs whose longest paths are short.
Namely, we construct 1-tough chordal planar graphs and 1-tough planar
3-trees, and we show that the shortness exponent of the class is 0, at most
log30 22, respectively. Both improve the bound of Böhme et al. Further-
more, the construction provides k-trees (for k ≥ 4) of toughness greater
than 1.

1 Introduction

We continue the study of Hamiltonicity and toughness of k-trees following Broer-
sma et al. [6] and of chordal planar graphs following Böhme et al. [3].

We recall that for a positive integer k, a k-tree is either the graph Kk (that is,
the complete graph on k vertices) or a graph containing a vertex whose neighbour-
hood induces Kk and whose removal gives a k-tree. Clearly, k-trees are chordal
graphs. We recall that the toughness of a graph G is the minimum, taken over
all separating sets X of vertices of G, of the ratio of |X| to the number of compo-
nents of G−X. The toughness of a complete graph is defined as being infinite.
We say that a graph is t-tough if its toughness is at least t.

In [6], Broersma et al. showed that certain level of toughness implies that a
k-tree has a Hamilton cycle (see also [20, 26]).

Theorem 1. Let k ≥ 2. Every k+1
3

-tough k-tree (except for K2) is Hamiltonian.
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In the same paper, they constructed 1-tough k-trees which have no Hamilton
cycle for every k ≥ 3.

An older result considering toughness and Hamiltonicity in another subclass
of chordal graphs is due to Böhme et al. [3] who showed the following:

Theorem 2. Every chordal planar graph (on at least 3 vertices) of toughness
greater than 1 is Hamiltonian.

In [11], Gerlach generalized Theorem 2 for planar graphs whose separating
cycles of length at least four have chords. In this paper, we present a different
generalization of Theorem 2 which also improves the result of Theorem 1.

The mentioned results were motivated by the following conjecture stated by
Chvátal [9].

Conjecture 3. There exists t such that every t-tough graph (on at least 3 vertices)
is Hamiltonian.

Conjecture 3 remains open. Partial results are known for some restricted
classes of graphs; for instance, for different subclasses of chordal graphs (see [6,
3, 5, 19, 18]), and for the class of chordal graphs itself (see [7] or [17]). The best
known lower bounds regarding Conjecture 3 for chordal graphs and for general
graphs were shown in [2]. The study of toughness of graphs (and Conjecture 3 in
particular) is well-documented by a series of survey papers, we refer the reader
to [1] (for more recent results, see [4]).

In addition to the result of Theorem 2, Böhme et al. [3] presented 1-tough
chordal planar graphs whose longest cycles are relatively short (compared to the
number of vertices of the graph); and using the notion of shortness exponent by
Grünbaum and Walther [13], they argued the following:

Theorem 4. The shortness exponent of the class of 1-tough chordal planar graphs
is at most log9 8.

We recall that the shortness exponent of a class of graphs Γ is the lim inf,
taken over all infinite sequences Gn of non-isomorphic graphs of Γ (for n going
to infinity), of the logarithm of the length of a longest cycle in Gn to base equal
to the number of vertices of Gn.

For more results considering the shortness exponent, see the survey [24]. To
conclude this section, we mention that by the combination of results of Moser and
Moon [22] and Chen and Yu [8], the shortness exponent of the class of 3-connected
planar graphs equals log3 2.

2 New results

We recall that a graph is Hamilton-connected if for every pair of its vertices, there
is a Hamilton path between them. Clearly, every Hamilton-connected graph
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(on at least 3 vertices) is Hamiltonian. Using a simple argument, we improve
the result of Theorem 1 as follows. (This also improves the result of [20] since
Hamilton-connected chordal graphs are, in fact, panconnected.)

Theorem 5. Let k ≥ 3. Every k-tree of toughness greater than k
3

is Hamilton-
connected. Furthermore, every 1-tough 2-tree (except for K2) is Hamiltonian.

The proof of Theorem 5 is given in Section 3. We also show that under this
toughness restriction a graph is chordal planar if and only if it is a 3-tree or K1 or
K2 (see Lemma 15). In particular, Theorem 5 implies that chordal planar graphs
of toughness greater than 1 are Hamilton-connected (it generalizes the result of
Theorem 2).

In the other direction, we present 1-tough chordal planar graphs and 1-tough
planar 3-trees whose longest paths and cycles are relatively short.

In particular, for every ε > 0, there exists a 1-tough chordal planar graph
G whose longest path has less than |V (G)|ε vertices. In Section 4, we note
that such graphs can be obtained by considering the square of particular trees.
Consequently, we adjust the result of Theorem 4 as follows:

Theorem 6. The shortness exponent of the class of 1-tough chordal planar graphs
is 0.

We remark that the graphs constructed in [3] are 3-connected, so the bound
log9 8 of Theorem 4 also applies to the shortness exponent of the class of 1-tough
planar 3-trees (see Lemma 16). In Section 5, we use the standard construction for
bounding the shortness exponent (for more details regarding this construction,
see for instance [24] or [16]), and we improve this bound by the following:

Theorem 7. The shortness exponent of the class of 1-tough planar 3-trees is at
most log30 22.

In Section 6, we extend the used construction, and we remark that there are k-
trees of toughness greater than 1 whose longest paths are relatively short for every
k ≥ 4. (Meanwhile, 3-trees of toughness greater than 1 are Hamilton-connected
by Theorem 5.) This remark slightly improves the lower bound on toughness of
non-Hamiltonian k-trees presented in [6], and contradicts the suggestion of [26].

3 Tough enough k-trees are Hamilton-connected

In this section, we prove Theorem 5. Simply spoken, the proof is inductive; we
choose a vertex on a path and we extend the path using particular neighbours of
this vertex.

For a vertex v, we let N(v) denote its neighbourhood, that is, the set of all
vertices adjacent to v. We say a set S ⊆ N(v) is a squeeze by v if the following
properties are satisfied for S and R = N(v) \ S.
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• 2 ≥ |S| ≥ 1 and |R| ≥ 2.
• Every vertex of S is adjacent to at least |R| − 1 vertices of R, and every

vertex of R is adjacent to at least |S| − 1 vertices of S.

The basic ingredient for applying the induction is the following:

Lemma 8. Let P be some set of vertices of a graph G and let x1, x2 and v be
distinct vertices of P and let S be a squeeze by v. If G − S has a path between
x1 and x2 whose vertex set is P , then G has such path whose vertex set is P ∪S.

Proof. We let uv and vw be the edges (incident with v) of the considered path
in G− S. We note that the graph induced by {u, v, w} ∪ S has a Hamilton path
between u and w. Thus, we can extend the considered path into a path between
x1 and x2 whose vertex set is P ∪ S.

We recall that a vertex whose neighbourhood induces a complete graph is
called simplicial. For further reference, we state the following fact (shown, for
instance, in [16]).

Proposition 9. Adding a simplicial vertex to a graph does not increase its tough-
ness.

By definition, k-trees can be viewed as graphs constructed iteratively from
Kk by adding one new simplicial vertex of degree k in each step. We recall that
a vertex adjacent to all vertices of a graph is called universal. Considering a
non-universal vertex v of a k-tree and the set S of all its neighbours of degree k,
we say v is a twig if N(v) \ S induces Kk and |S| ≥ 1; and we say S is the bud
of this twig. We note the following two facts:

Lemma 10. Let k ≥ 1 and let G and G+ be k-trees such that G is obtained from
G+ by removing a simplicial vertex. If t is a twig in G but not in G+, then a
vertex of the bud of t is a twig in G+.

Proof. Since t is a twig in G but not in G+, there exists a vertex t′ adjacent to
t such that t′ has degree k in G, and degree k + 1 in G+. Clearly, t′ is a twig
in G+.

Lemma 11. Let k ≥ 1 and let G be a k-tree (on at least k + 3 vertices) of
toughness greater than k

3
. Then G has a twig. Furthermore, if v is a twig of G

and S is its bud, then G−S is a k-tree of toughness greater than k
3
. In addition,

if k ≥ 2, then S is a squeeze by v.

Proof. We consider an iterative construction of G, and we let T denote the k-tree
on k+3 vertices which is obtained in the corresponding iteration of the construc-
tion. Proposition 9 implies that the toughness of T is at least the toughness of
G, and we observe that there exists only one k-tree on k+3 vertices of toughness
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greater than k
3

(for a fixed k). We note that T has a twig. Thus, Lemma 10
implies that G has a twig.

We consider a twig v in G and its bud S, and we let R = N(v) \ S. Clearly,
G− S is a k-tree. Furthermore, the toughness of G− S is at least the toughness
of G (by Proposition 9).

In addition, we note that every vertex of S is adjacent to precisely |R| − 1
vertices of R. Since v is non-universal, the toughness of G implies that no two
vertices of S have the same neighbourhood. In particular, for k = 2, we have
|S| ≤ 2. For k ≥ 3, the same follows from the fact that G − R − v has at least
|S|+ 1 components and |R| = k. Clearly, if k ≥ 2 then |R| ≥ 2; and we conclude
that S is a squeeze by v.

We note that, with Lemmas 8 and 11 on hand, we can easily show Hamiltonic-
ity of k-trees of toughness greater than k

3
. (We remark that 2-trees of toughness

greater than 2
3

are, in fact, 1-tough.)

Lemma 12. Let k ≥ 2. Every k-tree (except for K2) of toughness greater than
k
3

is Hamiltonian.

Proof. We let G be the considered k-tree, and we let n denote the number of
its vertices. Clearly, if n ≤ k + 2, then G is Hamiltonian. We can assume that
n ≥ k+3. We suppose that the statement is satisfied for graphs on at most n−1
vertices, and we show it for G.

By Lemma 11, G has a twig v; and we let S be the bud of v. Furthermore,
G−S is a k-tree of toughness greater than k

3
. (Clearly, G−S is distinct from K2.)

By the hypothesis, G − S has a Hamilton cycle, and we view it as a Hamilton
path containing v as an interior vertex. By Lemmas 8 and 11, we can prolong
this path and obtain a Hamilton path in G whose ends are adjacent, that is, a
Hamilton cycle.

Aiming for the Hamilton-connectedness, we shall need two additional ingre-
dients which are given by Lemma 13 and Proposition 14. For k ≥ 2, a basic
3-twig is the graph obtained from Kk+1 by choosing its three different subgraphs
Kk and by adding one new simplicial vertex to each of them. (For instance, the
basic 3-twig for k = 3 is the graph B depicted in Figure 2.)

Lemma 13. Let k ≥ 1 and let G be a k-tree (on at least k + 4 vertices) of
toughness greater than k

3
. If G is distinct from the basic 3-twig, then G has two

non-adjacent twigs (whose buds are disjoint).

Proof. We consider an iterative construction of G, and we note that all k-trees ob-
tained during the construction have toughness greater than k

3
(by Proposition 9).

We consider the k-tree on k+4 vertices, and we observe that either it is the basic
3-twig or it has two non-adjacent twigs. (Clearly, the buds of non-adjacent twigs
are disjoint.) In particular, we can assume that G has more than k + 4 vertices.
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Consequently, we note that the k-tree on k + 5 vertices obtained during the
construction has two non-adjacent twigs. Using Lemma 10, we conclude that G
has two non-adjacent twigs.

In a graph G, we say a Θ-spanner between vertices x1 and x2 is a spanning
subgraph of G consisting of three paths with the same ends x1, x2 such that
(except for the ends) these paths are mutually disjoint, and each of them has at
least one interior vertex. We shall use Θ-spanners to address the setting in which
the ends of the desired Hamilton path are the only twigs of a k-tree. (We note
that a similar idea appeared in [5].)

Proposition 14. Let k ≥ 3 and let G be a k-tree (distinct from K4) of toughness
greater than k

3
and let x1 and x2 be distinct vertices of degree k. Then G has a

Θ-spanner between x1 and x2.

Proof. Clearly, Kk has no vertex of degree k. Furthermore, there exists only one
k-tree on k + 1 vertices and one on k + 2 vertices, and only one k-tree on k + 3
vertices has the required toughness (for a fixed k).

Considering these k-trees, we note that the statement is satisfied for graphs
on at most k + 3 vertices. We let n denote the number of vertices of G, and we
assume that n ≥ k + 4. We suppose that the statement is satisfied for graphs on
at most n− 1 vertices, and we show it for G.

Let us suppose that there is a twig v and its bud S such that neither x1 nor x2

belongs to S. By Lemma 11 and by the hypothesis, we can consider a Θ-spanner
between x1 and x2 in G − S; and we let P be the set of vertices of one of the
three paths between x1 and x2 of this Θ-spanner such that v belongs to P . By
Lemmas 8 and 11, there is a path with the same ends whose vertex set is P ∪ S.
Thus, G has a Θ-spanner between x1 and x2.

We assume that every twig is adjacent to x1 or x2. By Lemma 13, we can
assume that there is a twig x′1 and its bud S ′ such that x1 belongs to S ′ and x2

does not. Clearly, x′1 has degree k in G−S ′. We consider a Θ-spanner Y between
x′1 and x2 in G − S ′; and we let N denote the set of all vertices adjacent to x′1
in Y . We choose a vertex y of N such that y is adjacent to x1 in G. Clearly,
the subgraph of Y induced by N ∪ {x′1} \ {y} is a path, and we apply Lemmas 8
and 11 and extend this path by adding vertices of S ′. We consider the resulting
path and the edge x1y, and we extend the graph Y −x′1 into a Θ-spanner between
x1 and x2 in G.

Finally, we use the tools introduced in this section and prove Theorem 5.

Proof of Theorem 5. For k = 2, the statement is satisfied by Lemma 12. We
assume that k ≥ 3. We let G be a k-tree of toughness greater than k

3
, and we

let n denote the number of its vertices. We note that if n ≤ k + 3, then G is
Hamilton-connected; so we can assume that n ≥ k + 4. We suppose that the
statement is satisfied for graphs on at most n − 1 vertices, and we show it for
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G (that is, we show that for an arbitrary pair of vertices x1 and x2, G has a
Hamilton path between x1 and x2).

Let us suppose that G has a twig distinct from x1 and x2. By Lemma 13,
we can choose a twig v such that x1 does not belong to the bud S of v. In case
x2 belongs to S, we consider a Hamilton path between x1 and v in G − x2, and
we extend it by adding the edge vx2. In case neither x1 nor x2 belongs to S, we
consider a Hamilton path between x1 and x2 in G − S, and we note that it can
be extended into a desired path in G (by Lemmas 8 and 11).

We assume that every twig of G belongs to {x1, x2}. By Lemma 13, we can
assume that x1 and x2 are non-adjacent twigs and the corresponding buds S1 and
S2 are disjoint. We consider the graph G′ = G − S1 − S2. We note that G′ is
distinct from K4 and x1 and x2 have degree k in G′, and that G′ is a k-tree of
toughness greater than k

3
(by Lemma 11).

We consider a Θ-spanner Z between x1 and x2 in G′ given by Proposition 14.
Clearly, Z forms three paths in G′ − x1 − x2. We note that we can join these
paths (using the adjacency of their ends and using the vertices of S1 and S2) and
obtain a Hamilton path from S1 to S2 in G− x1 − x2. Thus, we get a Hamilton
path between x1 and x2 in G.

To clarify the relation between Theorem 2 and the case k = 3 of Theorem 5,
we note the following:

Lemma 15. A graph of toughness greater than 1 is chordal planar if and only if
it is either a 3-tree or K1 or K2.

For convenience, we include a short proof of Lemma 15. We shall use the facts
stated in Lemmas 16 and 17 (shown by Patil [25] and by Markenzon et al. [21,
Lemma 24], respectively). We recall that a graph is H-free if it contains no copy
of the graph H as an induced subgraph.

Lemma 16. Let k ≥ 1. A graph (distinct from Kk) is a k-tree if and only if it
is k-connected chordal and Kk+2-free.

Lemma 17. Let G be a 3-tree. Then G is planar if and only if G − C consists
of at most two components for every set of vertices C inducing K3.

The combination of Lemmas 16 and 17 gives the desired equivalence.

Proof of Lemma 15. We consider a chordal planar (and thus K5-free) graph. By
the assumption on toughness, the graph is either 3-connected or K1 or K2 or K3,
and we apply the case k = 3 of Lemma 16.

For the other direction, we consider a 3-tree of toughness greater than 1. We
note that a removal of three vertices creates at most two components, and we
apply Lemma 17.
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4 Long paths in 1-tough chordal planar graphs

In this section, we shall show the following:

Proposition 18. For every n0, there exists a 1-tough chordal planar graph on
n > n0 vertices whose longest cycle has 4 log2

n+2
3

vertices and whose longest path
has 2(log2

n+2
3

)2 + 2 vertices.

In particular, the first part of Proposition 18 immediately implies the result
of Theorem 6.

Proof of Theorem 6. We consider an infinite sequence of non-isomorphic graphs
given by Proposition 18. We recall that a graph on n vertices belonging to this
sequence has a longest cycle on 4 log2

n+2
3

vertices. Consequently, the considered
shortness exponent is at most lim

n→∞
logn(4 log2

n+2
3

) = 0.

We recall that a tree is cubic if every non-leaf vertex has degree 3. In order
to prove Proposition 18, we consider the square of ‘balanced’ cubic trees, and we
combine several known facts (recalled in Theorems 19, 20 and Propositions 21
and 22).

We let G2 denote the square of a graph G, that is, the graph on the same
vertex set as G in which two vertices are adjacent if and only if their distance in
G is either 1 or 2. Studying squares of trees, Neuman [23] presented necessary
and sufficient conditions for the existence of a Hamilton path between a given
pair of vertices. As a corollary, the characterization of trees whose square has a
Hamilton cycle (Hamilton path) follows. (Later, these results were also proven
separately, see [15, 12].) We consider the trees depicted in Figure 1, and we recall
these characterizations (see Theorem 19). Similarly as above, we recall that a
graph is H-free if it contains no copy of a graph from the family H as an induced
subgraph.

Theorem 19. Let T be a tree. The following statements are satisfied:
(1) T 2 is Hamiltonian if and only if T (on at least 3 vertices) is S(K1,3)-free.
(2) T 2 has a Hamilton path if and only if T is S(K1,5)-free, F-free and X -free.

In addition, we recall the following property of squares of graphs (shown by
Chvátal [9]).

Theorem 20. The square of a k-connected graph is k-tough.

We recall that (as observed by Fulkerson and Gross [10]) a graph G is chordal if
and only if it has a perfect elimination ordering, that is, an ordering (v1, v2, . . . , vn)
of all vertices of G such that vi is a simplicial vertex of Gi for every i = 1, 2, . . . , n,
where Gi is the subgraph of G induced by {v1, v2, . . . , vi}. We note the following:

Proposition 21. The square of a tree is a chordal graph.
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S(K1,5)S(K1,3) The constructions of trees of F and X

Figure 1: The trees S(K1,3), S(K1,5) and the families of trees F and X . The trees
of F are obtained from two copies of S(K1,3) by joining their central vertices with
a path (possibly an edge) and adding one new vertex adjacent (by a pendant edge)
to each interior vertex of this path. The trees of X are obtained from three copies
of P5 and from a tree containing precisely three leaves by identifying each of these
leaves with the central vertex of one P5.

Proof. Clearly, a perfect elimination ordering of the tree is a perfect elimination
ordering of its square.

We shall also use the following fact (which we view as a corollary of the
characterization of graphs whose squares are planar by Harary et al. [14]).

Proposition 22. Let T be a tree. Then T 2 is planar if and only if T has no
vertex of degree greater than 3.

Finally, we construct graphs which have the properties stated in Proposi-
tion 18.

Proof of Proposition 18. We let T be a cubic tree (on at least 4 vertices) having
a vertex such that the distances from this vertex to every leaf are the same; and
we let r denote this distance. By Theorem 20 and Propositions 21 and 22, T 2 is
a 1-tough chordal planar graph.

We let n denote the number of vertices of T . By simple counting arguments,
we get that n = 3 · 2r − 2 (that is, r = log2

n+2
3

) and that a largest S(K1,3)-free
subtree of T has 4r vertices.

Furthermore, T is S(K1,5)-free and F -free (since T is a cubic tree). We
consider a largest X -free subtree, say L, and we show that it has 2r2 + 2 vertices.
We let L0 be the tree obtained from L by removing all leaves of L, and we let
ni be the number of vertices of degree i in L0 (for i = 1, 2, 3). We note that all
vertices of degree 3 in L0 belong to a common path (since L is X -free). Hence,
n3 ≤ 2r − 3, and therefore n2 ≤ (r − 2)2 and n1 ≤ 2r − 1. Thus, L has at most
n3 + 2n2 + 3n1 = 2r2 + 2 vertices (that is, at most n3 + n2 + n1 vertices of L0

plus the removed leaves). Lastly, we note that there is an X -free subtree of T on
2r2 + 2 vertices.

We conclude that a longest cycle of T 2 has 4 log2
n+2
3

vertices and its longest
path has 2(log2

n+2
3

)2 + 2 vertices by Theorem 19.

9



5 Long paths in 1-tough planar 3-trees

In order to prove Theorem 7, we show the following:

Proposition 23. Let n be a non-negative integer and let c(n) = 1 + 62(1 + 22 +
· · ·+ 22n). Then there exists a 1-tough planar 3-tree Hn on 1 + 70(1 + 30 + · · ·+
30n) vertices whose longest cycle has c(n) vertices and whose longest path has
c(n) + 2 + 2(c(0) + c(1) + · · ·+ c(n− 1)) vertices.

We note that the desired result follows as a corollary of Proposition 23.

Proof of Theorem 7. We consider the sequence of graphs H1, H2, . . . given by
Proposition 23; and for every n ≥ 0, we let f(n) denote the number of vertices
of Hn. Clearly,

f(n) = 1 + 70
29

(30n+1 − 1) and c(n) = 1 + 62
21

(22n+1 − 1).

Thus,
lim
n→∞

logf(n) c(n) = log30 22,

and therefore the considered shortness exponent is at most log30 22.

In the remainder of this section, we construct the graphs Hn and prove Propo-
sition 23. We remark that, as well as in [3], we shall use the standard construction
for bounding the shortness exponent; the improvement of the bound comes with
a choice of a more suitable starting graph H0. The reasoning behind this choice
is similar to the one applied in [16].

We consider the graph H0 constructed in Figure 2; and we let u1, u2, u3 denote
the vertices of its outer face in the present embedding. We note that H0 contains
30 vertices of degree 3; and we call these vertices white.

For every n ≥ 0, we let Hn+1 be a graph obtained from Hn by replacing every
white vertex of Hn with a copy of H0 and by adding edges which connect the
vertex u1, u2, u3 of this copy to precisely 1, 2, 3 neighbours of the replaced vertex,
respectively. We note the following:

Proposition 24. For every n ≥ 0, the graph Hn is a planar 3-tree.

Proof. In accordance with the ordering suggested in Figure 2, we let u1, u2, . . . , u71

denote the vertices of H0.
We show that the graphs Hn are 3-trees. Clearly, {u1, u2, u3} induces K3,

and we consider adding vertices u4, u5, . . . , u71 in sequence (in this order), and
we observe that H0 is a 3-tree (by definition).

We view the replacement of a white vertex by a copy of H0 as identifying this
white vertex with the vertex u1 of this copy and adding vertices u2, u3, . . . , u71 of
this copy in sequence, and we note that the resulting graph is a 3-tree. Conse-
quently, Hn is a 3-tree for every n ≥ 0.
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i+ 20

4

i+ 30

i+ 40 i+ 50

BH0

Figure 2: The graph B and the construction of the graph H0. The graph H0 is
obtained by replacing each of the highlighted triangles (of the graph depicted on
the left) with a copy of B in the natural way (by identifying the vertices of the
highlighted triangle with the vertices of degree 5 in B). The numbers represent
the ordering of vertices of H0.

We consider the planar embedding of H0 given by Figure 2. When replacing
a white vertex by a copy of H0, we proceed in two steps. First, we remove the
white vertex, and we note that its neighbourhood induces a facial cycle. Next,
we embed a copy of H0 inside this facial cycle, and we observe that the additional
edges can be embedded as non-crossing. We conclude that Hn is planar for every
n ≥ 0. (Alternatively, the planarity can be observed using Lemma 17.)

To verify the toughness of the graphs Hn, we shall use the following lemma
(shown in [16]).

Lemma 25. For i = 1, 2, let G+
i and Gi be t-tough graphs such that Gi is obtained

by removing vertex vi from G+
i . Let U be a graph obtained from the disjoint union

of G1 and G2 by adding new edges such that the minimum degree of the bipartite
graph (N(v1), N(v2)) is at least t. Then U is t-tough.

In order to apply Lemma 25, we determine the toughness of H+
0 , that is,

the graph obtained from H0 by adding one auxiliary vertex x adjacent to u1, u2

and u3.
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Proposition 26. The graphs H+
0 and H0 are 1-tough.

Proof. We consider a separating set S of vertices of H+
0 . If u4 belongs to a

component of H+
0 −S, then every other component has precisely one vertex, and

we note that |S| > c(H+
0 − S).

We assume that u4 belongs to S. Except for u4, the vertices adjacent to a
white vertex are called black. Except for u4 and x, the non-white and non-black
vertices are called blue. We consider the set consisting of all white vertices and
all black vertices which have no blue neighbour, and we let I denote the set of
all components of H+

0 − S whose every vertex belongs to the considered set.
We shall use a discharging argument. We assign charge 1 to every component

of H+
0 −S, and we distribute all assigned charge among the vertices of S according

to the following rules.

• The component containing x (if there is such) gives its charge to u4.
• The total charge of all components of I is distributed equally among black

vertices of S.
• The total charge of all remaining components is distributed equally among

blue vertices of S.

We observe that every vertex of S receives charge at most 1, that is, |S| ≥
c(H+

0 − S). Thus, H+
0 is 1-tough. Consequently, H0 is 1-tough by Proposition 9.

Proposition 27. For every n ≥ 0, the graph Hn is 1-tough.

Proof. By Proposition 26, H+
0 and H0 are 1-tough. We consider an iterative

construction of Hn (replacing white vertices by copies of H0 in sequence). We
shall apply Lemma 25. The graph at a current iteration plays the role of G+

1 and
the replaced vertex the role of v1, and H+

0 and H0 play the role of G+
2 and G2.

Using Lemma 25 repeatedly, we note that in each step of the construction we
obtain a 1-tough graph. We conclude that Hn is 1-tough.

We recall the standard construction for bounding the shortness exponent (this
construction produces graphs whose longest cycles are relatively short). The idea
of the construction is formalized in the following definition and in Lemma 28
(which was proven in [16]).

An arranged block is a 5-tuple (G0, j,W,O, k) where G0 is a graph, j is the
number of vertices of G0, and W and O are disjoint sets of vertices of G0 such
that the vertices of W are simplicial and independent and O induces a complete
graph and such that every cycle in G0 contains at most k vertices of W .

Lemma 28. Let (G0, j,W,O, k) be an arranged block such that k ≥ 1. For every
n ≥ 1, let Gn be a graph obtained from Gn−1 by replacing every vertex of W with
a copy of G0 (which contains W and O), and by adding arbitrary edges which
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connect the neighbourhood of the replaced vertex with the set O of the copy of G0

replacing this vertex. Then Gn has 1 + (j − 1)(1 + |W | + · · · + |W |n) vertices
and its longest cycle has at most 1 + (` − 1)(1 + k + · · · + kn) vertices where
` = j − |W |+ k.

Finally, we show that the constructed graphs Hn have all properties stated in
Proposition 23.

Proof of Proposition 23. By Propositions 24 and 27, Hn is a 1-tough planar 3-
tree (for every n ≥ 0). By a simple counting argument, we get that Hn has
1 + 70(1 + 30 + · · ·+ 30n) vertices.

We observe that a path in H0 contains at most 22 + z white vertices where z
is the number of white ends of the path. In particular, every cycle in H0 contains
at most 22 white vertices. By Lemma 28, a longest cycle in Hn has at most c(n)
vertices.

We let p(n) = c(n) + 2 + 2(c(0) + c(1) + · · ·+ c(n− 1)) and w(n) = 22n+1 +
2(1 + 22 + · · ·+ 22n). For the sake of induction, we show that every path in Hn

has at most p(n) vertices, and furthermore that it contains at most w(n) white
vertices (a similar idea was used in [16]). We note that the claim is satisfied for
n = 0, and we proceed by induction on n.

We let P be a path in Hn, and we consider suppressing vertices of P as follows.
For every newly added copy of H0, we suppress all but one vertex of the copy and
we replace the remaining vertex (if there is such) by the corresponding replaced
vertex of Hn−1; and we let P ′ be the resulting graph. Since the neighbourhood of
every replaced vertex induces a complete graph, P ′ is a path; and we view P ′ as
a path in Hn−1. By the hypothesis, P ′ contains at most w(n− 1) white vertices.
Thus, P visits at most w(n− 1) of the newly added copies of H0.

Similarly, we choose an arbitrary newly added copy of H0, and we suppress
all vertices of P not belonging to this copy. Since {u1, u2, u3} induces a complete
graph, the resulting graph is a path in H0 (possibly empty or trivial). Considering
such paths for all newly added copies of H0, and considering the set of all their
ends, we note that at most two white vertices belong to this set. Hence, in total
these paths contain at most 63 · w(n− 1) + 2 vertices. We note that

p(n) = p(n− 1)− w(n− 1) + 63 · w(n− 1) + 2.

Thus, P has at most p(n) vertices. Furthermore, we note that P contains at most
w(n) = 22 · w(n− 1) + 2 white vertices.

To conclude the proof, we extend the earlier observation as follows. In fact,
there are paths in H0 containing 22 + z white and all non-white vertices such
that all non-white ends belong to {u1, u2}. Using these paths, we observe that
Hn has a cycle on c(n) vertices and a path on p(n) vertices.
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6 On k-trees of toughness greater than one

To conclude the paper, we remark that for every k ≥ 4, there are k-trees of
toughness greater than 1 whose longest paths are relatively short. For brevity,
we omit enumerating the exact length of these paths.

We consider the 1-tough 3-trees Hn given by Proposition 23. Clearly, adding
a universal vertex to a k-tree gives a (k + 1)-tree. For every k ≥ 4 and every
n ≥ 0, we let Hn,k denote the graph obtained by adding k − 3 universal vertices
to Hn; and we note that Hn,k is a k-tree of toughness greater than 1.

We consider a path in Hn,k. We remove the universal vertices of Hn,k from
this path, and we view the resulting forest (whose components are paths) as a
subgraph of Hn. By Proposition 23, every path of this forest is relatively short.
Consequently, we observe that for every k ≥ 4, there exists n0 such that if n ≥ n0,
then a longest path in Hn,k is relatively short. (We note that the same idea can
be applied to the graphs constructed in [3].)
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