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The dynamical systems describing general non-linear structures represent an interesting and
demanding topic in various branches of engineering. This regards the both cases of mathemat-
ical and experimental models or an analysis of results from measurements in situ. In case of a
complex behaviour of a structure or a non-linear mathematical model, the measured response
or computed data series can exhibit wide range of response types, from stationary and periodic
to diverging or chaotic behaviour. The stability in the sense of sensitivity to small perturbations,
however, is the key property of each type of the system response.

The concept of Lyapunov exponents (LE) is the most usable and most robust stability mea-
sure, despite of numerous new methods and modifications. However, practical estimation of LE
for both continuous systems and discrete data is still a demanding task. Even if the topic was
addressed by numerous papers in the past it seems that the practical usage of recommended
methods usually raise additional questions. It is natural because the theoretical results are
mostly substantiated by an limiting relation, assumptions of which are hardly fulfilled in the
practice.

The case of continuous systems is often dealt in the literature. As an interestin review can
serve, e.g., paper [4]. A very promising approach for continuous systems is presented by Dieci
et al. in [1]. On the other hand, the literature is meagre when it regards the case of discrete
data set. The present contribution extends the previous work of the authors [2] and aims at
presenting, comparison and analysis of two approaches derived specifically for the case when
the dynamical system is represented only as a discrete data series (procedures due to Wolf et al.
[6] and Rosenstein et al. [5]) and a possible extension of the mentioned algorithm due Dieci et
al. [1] to certain discrete cases.

Let us consider the continuous dynamical system

ẋ(t) = f(x, t) , x(0) = x0 . (1)

Stability of its solution x̃x0 can be deduced from increasing separation of two nearby orbits,
initial distance of which is δ0 in t = 0:

δ(t) = x̃x0(t)− x̃x0+δ0(t).
The commonly used estimates of LE fall into two main categories. The first uses a heuristic

approach based on the relation
||δ(t)|| = eλ1t||δ(0)||. (2)

Although usage this approach is not limited to the cases where only the discrete data are avail-
able, this methods are used mostly in such case. The second group, on the other hand, is based
on so called variational equation

P′(t) = A(x, t)P(t) , P(0) = I , (3)
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where P(t) is the derivative of x̃x0 with respect to initial condition x0. Since this approach
is based on the explicit knowledge of Jacobian A(x̃, t), it is naturally aimed at analysis of
continuous systems.

The popular algorithm belonging to the first group is the implementation which accompanies
paper due to Wolf et al. [6]. The algorithm follows the nature of the problem: It is based on
identification of close points on the orbit. Such points are considered as close or perturbed
initial conditions and separation of corresponding orbital sections is measured. The largest LE
λ1 is computed from the growth of distance of both orbits. When the separation becomes large,
a new trajectory is chosen near the reference trajectory considering close distance and direction.

The more recent procedure described by Rosenstein et al. [5] is similarly based on identi-
fying different yet similar sections in the data series, which are used subsequently to simulate
separation of close orbits. Result of the procedure is returned as dependence of the averaged
distance of two orbits on the increasing time lag to initial "close" point. The distance should
increase linearly in the logarithmic scale up to size of the attractor. The slope of the linear ramp
then represents an estimate of the largest LE.

The weak point of the Rosenstein’s approach is identification of the determinative part of the
resulting dependence which is used for estimation of the average slope, see description in [2].
The authors successfully used a simple detection of the "corner sample" based on the horizontal
direction of the upper plateau. A number of alternative approaches could be proposed, however,
they mostly require some ad hoc intervention.

The main problem in algorithms based on the variational equation and belonging to the
second group is that the auxiliary matrix P(t) has to be kept orthogonal. This requirement
implies necessity of reorthogonalization in every iteration step. The work presented by Dieci
et al. [1] is based on keeping the system P(t) in triangular form using the time-dependent
orthogonal discrete or continuous QR transformation. Usage of this procedure claims certain
prerequisites to the discrete data representing the dynamical system. Namely, the data set has
to be capable of continuous interpolation.

Numerical experiments with the mentioned algorithms show that in the case of discrete data,
namely those obtained experimentally, the functionality of all available approaches is limited
and closely reflects quality of the data.
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