ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program:B 2301Strojní inženýrstvíStudijní zaměření:Stavba výrobních strojů a zařízení

BAKALÁŘSKÁ PRÁCE

Posuvový mechanizmus koníku

Josef KOZÁK Autor: Vedoucí práce: Ing. Petr BERNARDIN, Ph.D.

Akademický rok 2017/2018

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta strojní Akademický rok: 2017/2018

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Josef KOZÁK
Osobní číslo:	S15B0126P
Studijní program:	B2301 Strojní inženýrství
Studijní obor:	Stavba výrobních strojů a zařízení
Název tématu:	Posuvový mechanizmus koníku
Zadávající katedra:	Katedra konstruování strojů

Zásady pro vypracování:

Základní požadavky:

Proveďte rešerši v dané oblasti. Zpracujte tématiku z hledisek principů, srovnání jednotlivých koncepcí, konstrukčních provedení, užitných vlastností a aplikací. Konstrukční návrh.

Základní technické údaje: Technické parametry jsou uvedeny v příloze zadání.

Osnova bakalářské práce:

- 1. Rešerše problému
- 2. Analýza současného řešení a možných variant
- 3. Konstrukční návrh a řešení
- 4. Závěr a zhodnocení nového řešení

Rozsah grafických prací:dle potřebyRozsah kvalifikační práce:**30-40 stran A4**Forma zpracování bakalářské práce:tištěná/elektronickáSeznam odborné literatury:

LAŠOVÁ, V. Základy stavby obráběcích strojů. Plzeň: ZČU, 2012

KRÁTKÝ, J., KRÓNEROVÁ, E., HOSNEDL, S. Obecné strojní části 2. Plzeň: ZČU, 2011

Podkladový materiál, výkresy, katalogy, apod. poskytnuté zadavatelem úkolu.

Vedoucí bakalářské práce:

Konzultant bakalářské práce:

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: Ing. Petr Bernardin, Ph.D.
Regionální technologický institut
Ing. Petr Bernardin, Ph.D.
Regionální technologický institut

 19. září 2017

 áce:
 21. května 2018

Doc. Ing. Milan Edl, Ph.D. děkan

V Plzni dne 19. září 2017

Doc. Ing. Váctava Lašová, Ph.D. vedoucí katedry

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Katedra konstruování strojů

Akad. rok: 2017/2018

<u>PŘÍLOHA ZADÁNÍ BAKALÁŘSKÉ</u> <u>PRÁCE</u>

Jméno a příjmení:	Josef Kozák
Studijní program:	B2341 Strojírenství
Studijní obor:	Stavba výrobních strojů a zařízení
Téma bakalářské práce:	Posuvový mechanizmus koníku.

Požadavky a základní technické údaje:

Proveď te rešerši v dané oblasti. Zpracujte tématiku z hledisek principů, srovnání jednotlivých koncepcí, konstrukčních provedení, užitných vlastností a aplikací. Konstrukční návrh.

- Provést analýzu konstrukcí posuvových mechanismů pro soustruhy, resp. koník soustruhu
- Navrhnout konstrukci posuvového mechanismu koníku soustruhu SR3
- Zpracovat projektovou dokumentaci (sestava, kusovník hlavních dílů, výpočet, popis, detail vybrané součásti)
- Použít výpočtové programy KISSsys, případně KISSsoft a MITcalc

Konstrukční práce:

• Posuvový mechanizmus koníka na bázi pastorek-hřeben

		SR3
Max. hmotnost obrobku upnutého mezi hroty	kg	80 000
Hmotnost koníku		
• Svršek	kg	12500
• Spodek	kg	11500
Účinnost vedení		0,5
Součinitel tření		0,15
Rychlost výstupní části mechanismu	m/min	2,5

Dokumentace pro konstrukci

Učební text	HUDEC, Z. Posuvové mechanizmy – příklady. Plzeň ZČU, 2014,
	ISBN 978-80-261-0388-2,
	Fiala, J., Svoboda, P., Šťastný, K., Strojnické tabulky 3.Praha,
	SNTL, 1989
Dokumentace	sr3.dwg, sr1_5_pos_kon.docx, 03 A0590900.pdf
	firemní lit.: ALPHA Wittenstein, Baruffaldi, ZF Duoplan,
	Neugart
Programy	KISSsys: 2_rychl_planet_coax.ks

V Plzni dne 11.9.2017

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě bakalářskou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto bakalářskou/diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů, uvedených v seznamu, který je součástí této bakalářské/diplomové práce.

V Plzni dne:

.

podpis autora

Poděkování

Tímto bych chtěl poděkovat vedoucímu mé práce panu Ing. Petru Bernardinovi, Ph.D., za čas, který mi věnoval během konzultací, za cenné rady a připomínky, které mi poskytl a které mi pomohli vypracovat tuto bakalářskou práci.

ANOTAČNÍ LIST BAKALÁŘSKÉ PRÁCE

AUTOR			Příjmení Kozák		Jméno Josef			
STUDIJNÍ OI	BOR		B23	B2301 "Strojní inženýrství"				
VEDOUCÍ PR	RÁCE		Příjmení (včetně titulů) Ing. Bernardin, Ph.D	lů) Jméno I.D. Petr				
PRACOVIŠ	TĚ			ZČU - FST	ČU - FST - KKS			
DRUH PRÁ	CE	Đ	DIPLOMOVÁ	BAKALÁŘSKÁ Nehodící se škrtněte			ící se iěte	
NÁZEV PRÁ	КСЕ		Posuvový mechanizmus koníku					
FAKULTA	Stroir	ní	KATEDRA				2018	
TANULIA	Buoji		KATEDNA		,	NOK U		2010

POČET STRAN (A4 a ekvivalentů A4)

Γ

|--|

STRUČNÝ POPIS (MAX 10 ŘÁDEK) ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Tato bakalářská práce obsahuje rešerši v oblasti posuvových mechanismů, které se používají na soustruhu. Popis a analýzu stávajícího řešení posuvového mechanismu na těžkém soustruhu SR3 a dále přestavbu na řešení, které vyšlo dle analýzy nejlépe a jeho následný konstrukční návrh.
KLÍČOVÁ SLOVA ZPRAVIDLA JEDNOSLOVNÉ POJMY, KTERÉ VYSTIHUJÍ PODSTATU PRÁCE	Posuvové mechanismy, koník, soustruh, pastorek, šnek, hřeben, kuličkový šroub, NX, MKP, KISSsoft, MITCalc

SUMMARY OF BACHELOR SHEET

AUTHOR	Surname Kozák			Name Josef
FIELD OF STUDY	B-2301 "Mechanical Engineering"			
SUPERVISOR	Surname (Inclusive of De Ing. Bernardin, Ph.	Degrees)NamePh.D.Petr		
INSTITUTION	ZČU - FST - KKS			
TYPE OF WORK	DIPLOMA	BACHELOR		Delete when not applicable
TITLE OF THE WORK	Feed mechanism for a tailstock			

FACULTYMechanical EngineeringDEPARTMENT	Machine Design	SUBMITTED IN	2018
--	-------------------	--------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY	102	TEXT PART	59	GRAPHICAL PART	43
---------	-----	-----------	----	-------------------	----

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	This bachelor thesis includes research in the area of the feed mechanisms, which is used on the lathe. Further, description and analysis of the existing feed mechanism on the heavy lathe SR3 and then reconstruction to the best solution by analysis and its construction design.
KEY WORDS	Feed mechanism, tailstock, lathe, pinion, worm, rack, ball screw, NX, FEM, KISSsoft, MITCalc

Josef Kozák

Obsah

Seznam obrázků	9
Seznam tabulek	
Seznam příloh	
Seznam použitých zkratek	
1 Úvod	
2 Posuvové mechanismy obráběcích strojů	
2.1 Pastorek a ozubený hřeben	
2.1.1 Materiály	
2.1.2 Výroba	
2.2 Šnek a hřeben	
2.2.1 Materiál	
2.2.2 Výroba	
2.3 Pohybový šroub – pohybová matice	
2.3.1 Závity s plošným dotykem	
2.3.1.1 Přesnost	
2.3.1.2 Materiály	
2.3.1.3 Výroba	
2.3.2 Závity s bodovým dotykem	
2.3.2.1 Přesnosti	
2.3.2.2 Materiály	
2.3.2.3 Výroba	
2.3.2.4 Způsoby zpětné cirkulace valivých elementů	
2.3.2.5 Speciální kuličkový šroub	
3 Rekonstrukce posuvového mechanismu koníku soustruhu SR3	
3.1 Popis stávajícího řešení	
3.2 Analýza stávajícího řešení a výběr nového řešení	
3.3 Zdané hodnoty	
3.4 Výpočet pohonu	
3.4.1 Výpočet potřebného výkonu motoru	
3.5 Návrh základních rozměrů pastorku a hřebene	
3.6 Kontrola navržené převodovky	
3.7 Návrh a kontrola hřídele	

Josef Kozák

3.	8 Va	rianta 2
3.	9 Ná	wrh a kontrola rozměrů pastorku a hřebene42
	3.9.1	Pastorek
	3.9.2	Hřeben
	3.9.3	Kontrola modulu dle Bacha42
	3.9.4	Kontrola ozubení programem KISSsoft43
3.	10	Síly v ozubení
3.	11	Návrh a kontrola hřídele
	3.11.1	Rovina x-z
	3.11.2	Rovina y-z
	3.11.3	Výsledné reakce a celkové napětí45
	3.11.4	Kontrola hřídele v programu KISSsoft46
3.	12	Návrh a kontrola ložisek
	3.12.1	Místo A4e
	3.12.2	Místo B47
	3.12.3	Mazání ložisek
	3.12.4	Kontrola hřídele i s ložisky v programu KISSsoft48
3.	13	Návrh a kontrola spoje pastorku a hřídele49
3.	14	Návrh a kontrola šroubů
	3.14.1	Kontrola programem KISSsoft
	3.14.2	Kontrola programem KISSsoft
3.	15	Návrh a kontrola konzoly
3.	16	Kontrola spojky
	3.16.1	Strana převodovky
	3.16.2	Strana pastorku
	3.16.3	Kontrola délky spoje – strana pastorku 56
4	Závěr.	
5	Seznar	n použité literatury

Seznam obrázků

obr.	1: Univerzální soustruh s naznačenými posuvy (1)	18
obr.	2: Řezný klín při soustružení s naznačenou hlavní a vedlejší řeznou rychlostí	18
obr.	3: Převod pastorek - ozubený hřeben (3)	19

Josef Kozák

obr. 4: Příklad šnekového soukolí	21
obr. 5: Šnek - hřeben	21
obr. 6: Šnek - globoidní hřeben	22
obr. 7: Varianta 1 (4)	22
obr. 8: Varianta 2 (4)	22
obr. 9: Varianta 1	24
obr. 10: Varianta 2	24
obr. 11: Varianta 3	24
obr. 12: Varianta 4	25
obr. 13: Trapézový profil	25
obr. 14: Pilový profil	25
obr. 15: Řez kuličkovým šroubem (5)	27
obr. 16: Převáděcí lůžko (6)	28
obr. 17: Převáděcí kanálek (7)	28
obr. 18: Rychloběžná matice (7)	29
obr. 19: Bezprofilový kuličkový šroub (6)	29
obr. 20: Soustruh SR3	30
obr. 21: Odkrytovaný soustruh SR3	30
obr. 22: Posuvový mechanismus koníku SR3 - kinematické schéma	31
obr. 23: Posuvový mechanismus koníku SR3 - aretace	31
obr. 24: Posuvový mechanismus koníku SR3 – sestava	32
obr. 25: Změna umístění hřebenu	33
obr. 26: Graf hodnocení koncepčních variant	34
obr. 27: Změna umístění hřebenu – zástavbové rozměry	34
obr. 28: Blokové schéma posuvového mechanismu	35
obr. 29: Síly působící na koníku	36
obr. 30: Náčrt návrhu pohonu	37
obr. 31: Rozměrový návrh hřídele s pastorkem	39
obr. 32: Výsledné posunutí hřídele s pastorkem	39
obr. 33: Narys navrhovaneho reseni	40
obr. 33: Narys navrhovaného resení obr. 34: Axonometrický pohled na navrhované řešení	40 40
obr. 33: Narys navrhovaného resent obr. 34: Axonometrický pohled na navrhované řešení obr. 35: Kinematické schéma předělaného návrhu	40 40 41
obr. 33: Narys navrhovaného resent obr. 34: Axonometrický pohled na navrhované řešení obr. 35: Kinematické schéma předělaného návrhu obr. 36: Výsledky	40 40 41 43

Západočeská univerzita v Plzni, Fakulta strojní,

Katedra konstruování

Josef Kozák

obr. 38: Rozložení sil v ozubení pastorku	44
obr. 39: Rozložení posouvajících sil a napětí v rovině x-z	44
obr. 40: Rozložení posouvajících sil a napětí v rovině y-z	45
obr. 41: Výsledky pro hřídel s absolutně tuhou podporou	46
obr. 42: Graf deformace hřídele v podélné ose	46
obr. 43: Jednoduché labyrintové těsnění	48
obr. 44: Výsledky hřídele se započtenými ložisky	48
obr. 45: Kontrola spoje hřídele s pastorkem	49
obr. 46: Síly působící ve šroubovém spoji	50
obr. 47: Vektory momentů vzniklých ve šroubovém spoji	50
obr. 48: Vektory výsledných momentů	51
obr. 49: Napětí vyvolané momenty	51
obr. 50: Zadané hodnoty a výsledky šroubů v programu KISSsoft	52
obr. 51: Návrh tvaru konzoly	53
obr. 52: Návrh tvaru konzoly - půdorys a řez	53
obr. 53: FEM síť konzoly	54
obr. 54: FEM síť konzoly - půdorys	54
obr. 55: Síly v ozubení	54
obr. 56: Síla od hmotnosti	54
obr. 57: Posunutí směr-x pohled 1	55
obr. 58: Posunutí směr-x pohled 2	55
obr. 59: Kontrola rovnobového drážkování	56
obr. 60: Výsledné řešení	57
obr. 61: Výsledné řešení - izometrický pohled	57

Seznam tabulek

Tabulka 1: Hodnocení koncepčních variant	33
Tabulka 2: Tabulka zadaných hodnot	35

Seznam příloh

PŘÍLOHA I Report s výpočtem pastorku a hřebene programem KISSsoft PŘÍLOHA II Report s výpočtem návrhu hřídele programem KISSsoft

Bakalářská práce, akad.rok 2017/2018

Josef Kozák

PŘÍLOHA III Report s výpočtem hřídele s ložisky programem KISSsoft PŘÍLOHA IV Report s výpočtem šroubů programem KISSsoft PŘÍLOJHA V Výsledky simulace konzoly programem NX Výkres sestavy pohonu Výrobní výkres hřídele

Seznam použitých zkratek

Označení	Název	Základní jednotka
a	Vyložení pastorku	[mm]
b	Šířka pastorku	[mm]
b _{hřeben}	Šířka hřebene	[mm]
b _{pera}	Šířka pera	[mm]
c	Dovolené namáhání v ozubení	[MPa]
C_0	Statická únosnost ložiska	[N]
d_{hnav}	Návrhový průměr hřídele	[mm]
d_{kon}	Průměr hřídele zasunutý ve spojce	[mm]
$d_{\check{s}}$	Průměr šroubu	[mm]
D	Roztečný průměr pastorku	[mm]
D _a	Hlavový průměr pastorku	[mm]
\mathbf{D}_{f}	Patní průměr pastorku	[mm]
f	Součinitel tření při pohybu koníku	[-]
F_N	Tíha koníku	[N]
F _T	Třecí síla při pohybu koníku	[N]
Fo	Olovová síla v ozubení	[N]
F _a	Axiální síla v ozubení	[N]
F _r	Radiální síla v ozubení	[N]
F _{Amax}	Maximální axiální síla na hřídeli	[N]
F _{Amin}	Minimální axiální síla na hřídeli	[N]
$F_{\check{S}}$	Síla působící na šroub	[N]
\mathbf{F}_1		[N]
$F_{p \check{r} e d}$	Předepínací síla	[N]
g	Tíhové zrychlení	
h	Obvod pastorku	[mm]
$\mathbf{h_a}^*$	Výška hlavy zubu	[-]
${\mathbf h_b}^*$	Výška paty zubů	[-]

Josef Kozák

h _{hřeben}	Výška zubů hřebene	[mm]
h _{draž}	Výška drážky	[mm]
i _c	Celkový převodový poměr posuv. mechanismu	[1/m]
i _p	Převodový poměr převodovky	[-]
$i_{\rm f}$	Převodový poměr finálního převodu	[1/m]
i _{pskut}	Skutečný převodový poměr převodovky	[-]
j	Vzdálenost mezi ložisky	[mm]
k	Výška kotvící desky konzoly	[mm]
1	Šířka kotvící desky konzoly	[mm]
L _{lože}	Délka lože	[mm]
1 _{pera}	Délka pera	[mm]
l _{draž}	Délka drážkovaného spoje	[mm]
m _k	Celková hmotnost koníku	[kg]
m _{svrsek}	Hmotnost svršku koníku	[kg]
m _{spodek}	Hmotnost spodku koníku	[kg]
m	Modul zubu ozubení	[mm]
M_{k1}	Krouticí moment na výstupu motoru	$[N \cdot m]$
M_{k2}	Krouticí moment na hřídeli finálního převodu	$[N \cdot m]$
Mo	Ohybový moment namáhající převodovku	[N·mm]
Mo	Ohybový moment na hřídeli	[N·mm]
M_{zx}	Moment v rovině zx	[N·mm]
M_{zy}	Moment v rovině zy	[N·mm]
\mathbf{M}_{yx}	Moment v robině yx	[N·mm]
\mathbf{M}_{utah}	Utahovací moment	$[N \cdot m]$
n _{motor}	Otáčky motoru	[ot/min]
n _{skut}	Skutečné otáčky hřídele finálního převodu	[ot/min]
0	Vzdálenost osy hřídele do kotvící desky	[mm]
р	Vzdálenost středu pastorku od středu kotvící desky	[mm]
Р	Teoretický potřebný výkon motoru	[kW]
P _{skut}	Skutečně potřebný výkon motoru	[kW]
Po	Ekvivalentní síla	[N]
p _M	Tlak vyvolaná momentem	[MPa]
p_{Fo}	Tlak vyvolaný obvodovou silou	[MPa]
p _c	Celkový tlak v šroubovém spoji	[MPa]
p_{dov}	Dovolené namáhání v otlačení	[MPa]
R _{Bx}	Reakce v bodě B v rovině xz	[N]

Josef Kozák

R _{Ax}	Reakce v bodě A v rovině xz	[N]
R _{By}	Reakce v bodě B v rovině yz	[N]
R _{Ay}	Reakce v bodě A v rovině yz	[N]
R _B	Celková reakce v bodě B	[N]
R _A	Celková reakce v bodě A	[N]
So	Koeficient statické únosnosti	[-]
S	Plocha	[mm ²]
t ₁	Výška pera v hřídeli	[mm]
V	Zadaná posuvová rychlost	[m/min]
V _{skut}	Skutečná posuvová rychlost mechanismu	[m/min]
W_k	Modul průřezu v krutu	[mm ³]
Wo	Modul průřezu v ohybu	[mm ³]
Х	Koeficient pro radiální směr	[-]
Y	Koeficient pro axiální směr	[-]
Z	Počet zubů pastorku	[-]
Z _{hřeben}	Počet zubů hřebene	[-]
Z _{draž}	Počet drážek	[-]
α	Úhel záběru zubů	[°]
α_{t}	Úhel záběru v čelní rovině	[°]
β	Úhel sklonu zubů	[°]
$\eta_{\rm V}$	Účinnost vedení lože	[-]
η _c	Celková účinnost	[-]
$\eta_{\rm m}$	Účinnost motoru	[-]
η_p	Účinnost převodovky	[-]
$\eta_{\rm f}$	Účinnost finálního převodu	[-]
σ_{odov}	Dovolené napětí v ohybu	[MPa]
σ_{RED}	Redukované napětí	[MPa]
$\sigma_{\rm DOV}$	Dovolené napětí v tlaku/tahu	[MPa]
$ au_{ m kdov}$	Dovolené napětí v krutu	[MPa]
ψ	Součinitel šířky ozubení	[-]

Josef Kozák

1 Úvod

Tématem bakalářské práce je posuvový mechanismus koníku na soustruhu. Cílem této bakalářské práce je seznámit čtenáře s možnými koncepčními řešeními posuvových mechanismů na soustruhu a dále konstrukčním návrhem jednoho z možných řešení.

Posuvový mechanismus slouží k transformaci rotačního pohybu na přímočarý pohyb a naopak za pomocí kinematické vazby, která je utvořena mezi hnacím a hnaným členem mechanismu. Celý tento mechanismus můžeme rozdělit na dvě části první z nich je část, která se stará o dodávání výkonu a změně otáček a druhá část je již samotný mechanismus, který mění pohyb. Tyto mechanismy se velice hojně používají na obráběcích strojích.

Obráběcí stroj je zařízení, které slouží k odebírání částí materiálu a tím k přeměně tohoto materiálu na finální rozměry, tvary a jakosti povrchů. Posuvové mechanismy jsou na většině obráběcích strojů využívány na pohyb nástroje, obrobku nebo pomocných částí, které slouží k ustavení polohy nebo k pomoci s upnutím obrobku na obráběcím stroji.

V první části jsou popsány nejčastěji používané posuvové mechanismy na soustruhu. Jsou zde popsány principy funkce jednotlivých řešení, z jakých materiálu se nejčastěji vyrábí a jakou metodou se vyrábějí. Tyto vlastnosti jsou rozhodující, na které aplikace se dané řešení nejvíce hodí.

Dalším úkolem je analýza stávajícího řešení posuvového mechanismu těžkého soustruhu SR-1 a možná identifikace slabých nebo nevyhovujících míst konstrukce. A následný rozbor, které popsané řešení je vhodné pro zadaný problém. Dále je pak řešen vlastní konstrukční návrh, který má za cíl zlepšit možné nevyhovující konstrukční řešení.

Josef Kozák

2 Posuvové mechanismy obráběcích strojů

Tato bakalářská práce bude zaměřena na obráběcí stroje, na kterých se materiál odebírá ve formě třísky, které se nazývají soustruhy. Takovým to strojům se také říká stroje na konvenční nebo třískové obrábění.

obr. 1: Univerzální soustruh s naznačenými posuvy(1)

Odebírání třísky se říká řezný proces, tento proces je uskutečňován pomocí řezného nástroje, ve formě klínu a řezným pohybem. Řezný pohyb se skládá z hlavního řezného pohybu a vedlejšího řezného pohybu. Hlavní řezný pohyb může obecně být rotační nebo přímočarý, toto je jedno z hlavních kriterií podle, kterého se dělí obráběcí stroje. Pro tento případ je ovšem hlavní řezný pohyb rotační. Vedlejší řezný pohyb se skládá z posuvu nebo přísuvu nebo z obou pohybů současně. Posuvy a přísuvy jsou na všech obráběcích strojích vždy přímočaré. Z tohoto je tedy vidět, že posuvové mechanismy jsou nezbytnou součástí konvenčních obráběcích strojů, ale nejen těch. A starají se o posuv a přísuv nástroje nebo obrobku do záběru a posuv pomocných částí, jako je například koník, sloužících k ustavení polohy nebo k podepření obrobku nebo k pomoci jeho pevného upnutí na obráběcích strojích.

obr. 2: Řezný klín při soustružení s naznačenou hlavní a vedlejší řeznou rychlostí

Josef Kozák

Výše uvedený popis posuvových mechanismu nám jasně stanovuje požadavky na ně kladené. A ty jsou:

- Dostatečná rychlost posuvu
- Zajištění dostatečné tuhosti
- Životnost a spolehlivost mechanismu
- Přesnost polohy

Mezi základní posuvové mechanismy na soustruhu patří:

- Pastorek a ozubený hřeben
- Šnekové ozubení
- Pohybový šroub pohybová matice

Jako další posuvové mechanismy by se dali uvažovat následující:

- Hydraulický systém
- Pneumatický systém
- Klikový mechanismus
- Kulisový mechanismus
- Přímé posuvy (lineární pohony)

Posuvové mechanismy na těchto principech se vyskytují jen ve výjimečných případech a v další části, kde budou jednotlivé mechanismy blíže popisovány, jim nebude věnován prostor. V této části jsou uvedeny jen pro úplnost.

Zde budou uvedena ta část mechanismu, která skutečně mění pohyb z rotačního na posuvný.

2.1 Pastorek a ozubený hřeben

Prvním možným řešením změny rotačního pohybu hnacího členu na přímočarý pohyb je pomocí pastorku a hřebenu. Oba prvky vytvářejí kinematickou a silovou vazbu vzájemným dotykem boků zubů, jak je vidět na obr. 3. Pastorek s hřebenem tedy slouží k přeměně rotačního pohybu na přímočarý a u silové vazby přeměna točivého momentu na posuvovou sílu. (2)

obr. 3: Převod pastorek - ozubený hřeben (3)

Ozubení může být s přímými zuby, tak jako je na obr. 3, nebo se šikmými zuby. To jaký tvar zubu bude zvolen, se projeví jak na použitém materiálu pastorku potažmo hřebenu, tak i výsledných vlastnostech převodu.

Tento mechanismus se používá pro posuv zařízení na obráběcích strojíc, které jsou velmi hmotné a u kterých chceme vyvodit velkou posuvovou sílu.

2.1.1 Materiály

Pastorky u tohoto typu převodu jsou více namáhané, než hřebeny, proto by měly být vyrobeny z kvalitnějšího houževnatějšího materiálu nebo mít větší tvrdost.

Nejčastěji jsou zhotoveny z oceli, ale můžou být vyrobeny i z šedé litiny, mosazi, bronzů, slitin hliníku a plastů. Pokud se budeme zaobírat nejčastěji využívaným materiálem a to ocelí, pastorky se mohou vyrábět ze všech tříd oceli, záleží na velikosti zatížení. Často je jejich povrch tepelně zpracován, aby se zvýšila životnost převodu a snížilo jeho opotřebení společně s možností vzniku vad, vlivem proměnlivého zatížení. Využívané tepelné úpravy jsou povrchové kalení, cementování a kalení, nitridování. Hřebeny se vyrábějí z typově stejných materiálů, ale jak bylo popsáno výše, nemusejí být ze stejně kvalitního materiálu. (2)

2.1.2 Výroba

Způsobů jak ozubení vyrobit je několik. Jedním je frézování dělícím způsobem, kdy se postupně frézuje jedna zubová mezera za druhou, tím že se pastorek pootáčí a nástroj ve tvaru zubové mezery vytváří zubovou mezeru. Tato metoda je málo produktivní a málo přesná. Další možností jak vyrobit ozubení je obrážení. Ozubení vzniká tak, že se nástroj pohybuje zpravidla svislým přímočaře vratným pohybem a obrobek se postupně otáčí. Zde existují dvě metody. První za pomoci obrážecího hřebenu, neboli metoda MAAG, kterou lze obrábět pouze vnější zuby. Druhou je pak pomocí obrážecího kolečka, metoda Fellows, kdy se dají obrážet jak vnější tak i vnitřní ozubení. Jednou z velmi častých, přesných a produktivních metod výroby je odvalovací způsob. Kde se jak nástroj, tak obrobek současně otáčejí a zubová mezera vzniká postupně při odebírání materiálu pohybem jednotlivých břitů. Tato metoda vlastně plně kopíruje vznik evolventy. Pokud jsou kola tepelně zpracovány, často dochází k jejich deformaci a zhoršení kvality povrchu. V takových případech je třeba ozubení brousit. Toto pravidlo porušuje jen nitridování, při kterém nedochází k ohřevu součásti, takže žádné deformace a ani okuje na bocích zubu nevznikají. Šikmé ozubení je možno vyrobit stejnými metodami jako ozubení přímé. (2)

2.2 Šnek a hřeben

Dalším možným řešením posuvového mechanismu, a dalším ozubeným převodem, je šnekové ozubení. Stejně jako u pastorek s hřebenem i tento mechanismus transformuje rotační pohyb na posuvný a naopak a točivý moment na axiální sílu. Jeho funkce je tedy zajištění kinematické a silové vazby mezi šnekem a hřebenem. Šnek je vlastně ozubené kolo s malým počtem zubů (např. jeden zub) a malou roztečí zubů, obdobně jako u závitu na šroubu. U šneku ale hovoříme o počtu chodů, vzniká tedy jednochodý nebo vícechodý šnek. Pro

Josef Kozák

správnou funkčnost převodu je nutné dodržení osové vzdálenosti, ustavení šneku a hřebenu do záběru a správné axiální uložení šneku, kvůli správnému záběru. (2)

obr. 4: Příklad šnekového soukolí

Na rozdíl od klasických šnekových převodů se zde využívá pouze válcový šnek. Hřeben je pak v provedení buď přímí, nebo globoidní. Z tohoto plynou pouze dvě varianty provedení:

1. Válcový šnek – přímí hřeben

Zuby šneku a hřebenu se dotýkají pouze bodově.

obr. 5: Šnek - hřeben

2. Válcový šnek – globoidní hřeben

Josef Kozák

Zuby šneku se s hřebenem dotýkají ve větší ploše, než u případu předchozího. Výroba globoidního hřebenu je více nákladná, než výroba klasického.

obr. 6: Šnek - globoidní hřeben

Zde jsou pro ilustraci uvedeny dva příklady možného konstrukčního uspořádání pro posun stolu obráběcího stroje:

obr. 8: Varianta 2 (4)

Josef Kozák

2.2.1 Materiál

Díky velkým tlakům na boky zubu a velkým skluzovým rychlostem, se musí materiály vybírat s větší obezřetností. Materiály musí jednak vyhovět pevnostním požadavkům a také mít dobré vzájemné třecí vlastnosti, tak aby se minimalizovali možnosti vzniku pettingu a zadírání. Vznik těchto nechtěných poruch, je také možno snížit správnou povrchovou úpravou nejčastěji ve formě teplených úprav a následného broušení. (2)

Šnek se nejčastěji, tak jako v případě pastorku, vyrábí z legované oceli a to buď bez tepelných úprav, nebo se vyrábějí kalené, cementované a kalené nebo se také mohou šneky nitridovat. Nitridované šneky, stejně jako v případě pastorku není potřeba déle brousit. (2)

Hřebeny se vyrábějí z šedé litiny, mosazi nebo ze slitin bronzu a to právě kvůli snížení vzájemného tření mezi dotykovými plochami. Volba materiálu hřebenu je závislá na obvodové rychlosti šneku, pro malé rychlosti se volí litina, pro velké rychlosti slitiny bronzů.(2)

2.2.2 Výroba

Výroba šneku je velmi složitá a nákladná, oproti výrobě pastorku s přímými nebo s šikmými zuby. Šneky lze vyrábět frézováním kotoučovou i stopkovou frézou, kdy se obráběný šnek musí jak otáčet tak posouvat. Další metodou je obrážení, kdy se opět může vyrábět jak hřebenovým tak kotoučovým nožem, opět se zde musí otáčet jak nástroj, tak obrobek, což výrobu značně stěžuje. Nejčastější metodou výroby je odvalovací frézou, globoidní šneková kola se jinou metodou než odvalovací globoidní frézou vyrábět nedají. Kalené šneky se brousí kruhovými tvarovými kotouči ve tvaru zubové mezery. (2)

Hřebeny se vyrábějí stejně, jako bylo popsáno v podkapitole 2.1.2.

2.3 Pohybový šroub – pohybová matice

Převod jak název napovídá je tvořen šroub společně s maticí. Slouží, tak jako všechny předchozí převody k vytvoření mechanické a silové vazby, to znamená k transformaci rotačního pohybu na posuvový nebo naopak. A také k transformaci točivého momentu na axiální sílu a naopak. K transformaci dochází za pomoci šroubového pohybu obou částí, které mají společnou osu. Jejich hlavní dělení je dle způsobu dotyku jednotlivých částí, a to na závity s plošným dotykem a závity s bodovým dotykem. (2)

Tuto vazbu je možno docílit následujícími čtyřmi možnostmi:

1. Šroub se posouvá – matice otáčí

Josef Kozák

obr. 9: Varianta 1

2. Šroub se otáčí a posouvá – matice se nepohybuje

obr. 10: Varianta 2

3. Šroub se otáčí – matice posouvá

obr. 11: Varianta 3

Josef Kozák

4. Šroub se nepohybuje – matice se otáčí a posouvá

obr. 12: Varianta 4

u obráběcích strojů ale varianta, kde se pohybuje šroub, nedává smysl proto je v těchto aplikacích možno vidět pouze poslední dvě varianty

2.3.1 Závity s plošným dotykem

Existují dva druhy těchto převodů. Jedním je lichoběžníkový rovnoramenný profil, který přenáší zatížení v obou smyslech pohybu a druhým je lichoběžníkový nerovnoramenný profil, který se používá, působí-li zatížení pouze v jednom smyslu pohybu. Rovnoramennému profilu se také říká trapézový a nerovnoramennému pilový (viz. obr. 13 a obr. 14). Při tomto způsobů změny pohybu vzniká ve stykových plochách závitu smykové tření. Dříve se tento typ převodu hojně používal na posuv suportu soustruhu, dnes je ale nahrazován kuličkovými šrouby.

obr. 13: Trapézový profil

obr. 14: Pilový profil

2.3.1.1 **Přesnost**

O přesnosti u tohoto druhu převodu rozhoduje odchylka od teoretického stoupání závitu. Jsou vyráběny ve třech třídách přesnosti.

Použití

1. jemná řada: brusky na závity a výrobní stroje se souvislým řízením

Josef Kozák

- 2. střední řada: dělící zařízení, obráběcí stroje se standardními přesnostmi
- 3. hrubá řada: stroje bez zvláštních požadavků na přesnost (2)

2.3.1.2 Materiály

Při volbě materiálu šroubu a matice musí být splněny požadavky na vysokou pevnost a dobré vzájemné třecí vlastnosti, které jsou předpokladem pro maximalizaci odolnosti proti otěru, zadírání a opotřebení. Tím, že jde o plošný dotyk šroubu a matice, vzniká velmi vysoké tlakové napětí na bocích závitu a tomu se také musí přizpůsobit vhodný výběr materiálu. (2)

Materiál šroubu bývá většinou legovaná ocel a to buď bez tepelných úprav, nebo s tepelnými úpravami povrchu, tj. kalené (2)

U matice je větší variantnost výběru materiálu. Jako je například šedá litina, bronz nebo ocel, u které není splněn druhý požadavek na vysoké kluzné vlastnosti, ale zato dosahuje takovýto převod největší možné pevnosti. U převodu ocelový šroub – ocelová matice, oba ve stavu bez tepelných úprav, je potřeba, aby rozdíl tvrdosti bodů závitu byl alespoň 30%, u kalených závitů tento požadavek odpadá. (2)

2.3.1.3 **Výroba**

Pro závity s plošným dotykem nejsou požadovány vysoké přesnosti. Šrouby je možné vyrábět klasickým soustružením a matice vyvrtáváním nebo je možnost vyrábět oba závity tvářením za studena, a to válcováním. Takové závity je nutno brousit na požadovanou drsnost. (2)

2.3.2 Závity s bodovým dotykem

Tomuto způsobu přeměně pohybu se často říká kuličkové šrouby (matice). Kdy mezi bok šroubu (pozice 1) a matici (pozici 3) jsou vloženy valivá tělesa (pozice 2), odtud kuličkové šrouby, které se po těchto bocích odvalují a přenášejí tak zatížení případně pohyb. Mezi bokem šroubu, bokem matice a valivým tělesem vzniká valivé tření a součinitel tohoto tření je řádově menší, než součinitel kluzného tření. Proto má tento převod větší účinnost, než převod s plošným dotykem. (2)

Konstrukčně je tento způsob převodu řešen tak, že valivá tělesa se pohybují v drahách, které vytvořili závity šroubu a matice. Matice je konstrukčně uzpůsobena tak, aby docházelo k neustálé recirkulaci valivých tělísek. Obě části jak recirkulační kanálek, tak závitové části matice a šroubu jsou kuličkami plně zaplněny. (2)

V dnešní době se tento převod používá prakticky na jakýchkoliv strojích pro posuv suportu nebo stolů. Na soustruhu se také velmi často používá jako výsuvný mechanismus pinoly koníku.

Josef Kozák

obr. 15: Řez kuličkovým šroubem (5)

2.3.2.1 Přesnosti

Platí pro ně stejná podmínka jako pro spoje s plošným dotykem, tj. že přesnost je závislá na odchylce od teoretické přesnosti stoupání závitu. Kuličkové šrouby se na rozdíl od klasických vyrábějí ve více stupních přesnosti a tím je i jejich použití více rozmanité.

- 1. Stupeň: měřící stroje a přístroje, přesné stroje na dokončování závitů a laboratorní přístroje.
- 2. Stupeň: přesné programově řízené obráběcí stroje a tvářecí stroje souvisle řízené.
- 3. Stupeň: produkční programově řízené obráběcí stroje a tvářící stroje pravoúhle řízené.
- 4. Stupeň: řídící, manipulační a transportní zařízení.
- 5. Stupeň: stroje bez požadavků na přesnost.(2)

2.3.2.2 Materiály

Šroub i matice jsou u tohoto typu převodu velmi namáhány. Šroub se nejčastěji vyrábí z ušlechtilé oceli třídy 14, dle ČSN značení, a jeho závity jsou kaleny a broušeny. Matice se vyrábí stejně jako šroub z ušlechtilé oceli třídy 14 a je také kalena. Kuličky jsou vyráběny ze stejných materiálů jako kuličky do valivých ložisek. Všechny části kuličkových šroubů, tedy šroub, matice a valivé tělesa se tepelně zpracovávají na stejnou tvrdost 61±2 HRC. (2)

2.3.2.3 **Výroba**

Závit kuličkového šroubu je možno vyrábět několika způsoby. Prvním způsobem je válcováním, kdy se tvarovými rotačními nástroji závit tváří do hladkého povrchu tyče. Vyrobený závit nemá často jmenovité stoupání, toto stoupání je posutou o přídavek pro další opracování. Dalším opracováním je myšleno nejčastěji kalení a následné broušení případně leštění, to závisí na požadované přesnosti šroubu. Touto výrobní metodou dojde ke zpevnění materiálu a tím zvýšení jeho mechanických vlastností, ale také dojde k velkému vnitřnímu

Josef Kozák

pnutí, které se projeví deformací osy šroubu a nižší geometrickou nepřesností. Toto se navenek projeví větší hlučností výsledného převodu. Výsledné přesnosti závitů jsou v IT7 až IT5. Dalším způsobem výroby závitů je okružování. Postup výroby je takový, že se polotovar nejdříve zakalí a poté se speciálními tvarovým nástrojem, který krouží kolem polotovaru, vytváří požadovaný profil. Výsledný profil závitu má takové stoupání a přesnosti, které jsou předepsány na výkrese. Přesnost výroby je v tomto případě ovlivněna přesností stroje a nástroje. Použití takto vyrobeného šroubu je méně obecné, což je zapříčiněno částečným zmenšení zakalené vrstvy okružováním. Nejčastěji je výsledná přesnost šroubů IT5. Jestli je požadavek na dosažení větších přesností je potřeba závit vždy brousit, poté je možno dosáhnout až IT1. (6)

2.3.2.4 Způsoby zpětné cirkulace valivých elementů

Existuje několik způsobů realizace převodu kuliček:

1. Převáděcí lůžka - převod probíhá mezi jedním stoupáním, v matici může být několik těchto lůžek podle počtu nosných závitů

obr. 16: Převáděcí lůžko (6)

2. Převáděcí kanálek – kanálek může být zcela mimo matici, ale existují i s převáděcím kanálkem uvnitř matice. Kanálek převádí kuličky mezi několika stoupáními závitu.

obr. 17: Převáděcí kanálek (7)

Josef Kozák

3. Rychloběžné matice – v podélném axiálním směru v matici je vyvrtán otvor, kterým jsou vedeny kuličky. Tento způsob vyžaduje speciální víčka nebo segmenty upravené pro plynulý přechod kuliček z pracovních prostru do vyvrtaného otvoru.

obr. 18: Rychloběžná matice (8)

2.3.2.5 Speciální kuličkový šroub

Jde o takzvaný bezprofilový šroub, kdy profilová část je pouze v matici a šroub je pouze hladká kalená tyč. Pohyb se děje pomocí pružné deformace šroubu a valivých těles, které se pohybuj v závitu matice. Tento způsob přenosu se využívá v aplikacích, kde není vyžadována velká tuhost a únosnost převodu. Je možno ho také využit jako bezpečnostní prvek, kdy po dosažení maximální axiální síly matice bude prokluzovat po hladkém šroubu. (6)

obr. 19: Bezprofilový kuličkový šroub (6)

Josef Kozák

3 Rekonstrukce posuvového mechanismu koníku soustruhu SR3

3.1 Popis stávajícího řešení

Na obr. 20a obr. 21 je vidět soustruh SR3, pro který se má navrhnout nové řešení posuvového mechanismu koníku. Nejprve bude stávající konstrukce posuvového mechanismu popsána, aby se zjistilo, zda a kde přesně jsou slabá místa stávajícího konstrukčního řešení.

obr. 21: Odkrytovaný soustruh SR3

Jde o těžký hrotový soustruh pro obrábění několika tunových obrobků, až 80 tun (9), firmy Škoda Machine Tool. Tomuto odpovídají i rozměry jednotlivých částí soustruhu. Délka lože soustruhu může v některých případech dosahovat až 30 metrů. Jednotlivé součásti jsou popsány na obrázku výše.

Posuvový mechanismus je součástí koníku. Tedy motor, převodovka i samotný mechanismus pro převod pohybu i s jeho uložením je zabudován do koníka. Na obr. 22 je vidět kinematické schéma posuvu, s popisem počtu zubů a modulu jednotlivých ozubených kol a také typ použitého motoru. Posuvový mechanismus koník přisune do přibližné polohy, co nejblíže

Josef Kozák

obrobku, ale tak aby se ho hrot koníku nedotýkal. To zajistí pinola, v které je hrot uložen, která se vysune z těla koníku, podepře a zároveň předepne obrobek.

obr. 22: Posuvový mechanismus koníku SR3 - kinematické schéma

Spodek koníku je k loži přichycen lištami s vůlí, která je potřeba pro zajištění posuvu. Lišty slouží ještě k tomu, aby zpevňovali koník s ložem, a to díky soustavě upínacích jednotek. Boční vůle potřebná pro posuv, mezi spodkem koníku a ložem, lze nastavit pomocí klínových lišt a šroubů, které jsou zajištěny stavěcími šrouby.

Tím, že pinola předepne obroben, by mohlo dojít k tomu, že touto předepínací silou a hmotností obrobku se celý koník odsune zpět. Proto dochází k automatické aretaci koníku po jeho zastavení. Ta je zajištěna zasunutím klínu do hřebenu na loži. Tento pohyb je zajišťován hydraulickým pístem. To aby píst vyjel v ten správný okamžik, tedy okamžik, kdy je klín nad zubovou mezerou, hlídá elektromagnetické zařízení, které za pohybu koníku sleduje rozteč zubů hřebenu.

obr. 23: Posuvový mechanismus koníku SR3 - aretace

Na obr. 24 je už vidět výkres sestavy, tak jak je celý mechanismus realizován přímo na stroji.

Josef Kozák

obr. 24: Posuvový mechanismus koníku SR3 – sestava

3.2 Analýza stávajícího řešení a výběr nového řešení

Nevýhody stávajícího řešení tedy jsou, velký počet vřazených převodů a tím i složitější tvar vnitřku koníku, větší nepřesnost mechanismu a větší silové namáhání koníka. Dále jelikož je hřeben na levé kluzné vodící ploše lože, při pohledu na vřeteno, působí na něj při obrábění velký klopný moment, toto se sice může dít, jen když koník stojí, ale i tak je mechanismus nadměrně namáhá.

Tyto nedostatky by šli nahradit vřazením planetové převodovky za motor, tím by odpadla nutnost vřazených ozubených kol a snížila by se také zástavbová plocha první části posuvového mechanismu. Druhý nedostatek, který se týká již samotného posuvového mechanismu, by se mohl vyřešit přesunutím mechanismu na pravou kluznou vodící plochu, na které je dostatek místa pro jeho umístění. Tato změna polohy je vyznačena červeně na obr. 25 a obr. 27.

Josef Kozák

obr. 25: Změna umístění hřebenu

Jako koncepční varianty poslouží jednotlivé posuvové mechanismy popsané výše. U všech, u kterých je to potřeba, bude uvažováno, že mechanismus bude umístěn na pravou kluznou vodící plochu lože. Nároky, které jsou v Tabulka 1, jsou sestaveny z požadavků na mechanismus kladených. Hodnoty jsou určeny z popisu mechanismů výše.

	Varianta	Šnek - hřeben	Pastorek - hřeben	Kuličkový šroub	Lineární posuv	Ideál
	Pohon	3	3	3	2	4
	Převodovka	0	0	0	4	4
	Složitost celého mechanismu	2	3	2	1	4
	Přesnost polohy	3	2	3	4	4
0	Vznik tepla	2	3	3	1	4
	Síly vzniklé mechanismem	1	2	2	3	4
	Tuhost mechanismu	2	3	2	3	4
	celkový součet	13	16	15	18	28
	normované hodnocení	0,464	0,571	0.536	0.643	1
	Výrobní náklady	3	2	2	4	4
	Náklady na nákup	3	2	3	4	4
С	Náklady na montáž	3	2	2	4	4
	celkový součet	9	6	7	12	12
	normované hodnocení	0,75	0,5	0,58	1	1

Josef Kozák

obr. 26: Graf hodnocení koncepčních variant

Nejlépe tady vyšla varianta, posuvového mechanismu tvořený z pastorku a hřebenu. Tato varianta má při nejnižších nákladech dostačující kvalitu. Kuličkový šroub má sice vyšší kvalitu, při skoro srovnatelných nákladech, ale dosahuje se zbytečně přesné polohy. Nám stačí, aby se mechanismu přisunul koník do polohy blízké obrobku, a o přesné zapolohování se již postará výsuvná pinola.

Rozměry do jakých by se měl hřeben pastorku vejít, jsou vidět na obrázku níže.

obr. 27: Změna umístění hřebenu – zástavbové rozměry

Josef Kozák

3.3 Zdané hodnoty

|--|

Max. hmotnost obrobku upnutého mezi hroty	kg	80 000
Hmotnost koníku		
• Svršek	kg	12500
• Spodek	kg	11500
Účinnost vedení		0,5
Součinitel tření		0,15
Rychlost výstupní části mechanismu	m/min	2,5

3.4 Výpočet pohonu

3.4.1 Výpočet potřebného výkonu motoru

Nejprve musíme určit výkon motoru, takový aby celý koník, i se započítanými pasivními odpory a účinnostmi jednotlivých části, byl schopný uvést do pohybu. Jednotlivé účinnosti jsou uvažovány tak, že účinnost finálního převodu je 0,98, účinnost převodovky, jako kdyby byla třístupňová, a to je 0,94 a účinnost motoru je 0,88.

obr. 28: Blokové schéma posuvového mechanismu

Josef Kozák

obr. 29: Síly působící na koníku

$$\begin{split} m_k &= m_{svrsek} + m_{spodek} = 12500 + 11500 = 24\,000\,kg\\ F_N &= m_k \cdot g = 24000 \cdot g = 235\,359,6\,N\\ F_T &= \frac{F_N \cdot f}{\eta_V} = \frac{235359,6 \cdot 0,15}{0,5} = 70\,607,9\,N\\ P &= F_T \cdot v = 70607,7 \cdot 2,5 = 2,94\,kW\\ \eta_c &= \eta_m \cdot \eta_p \cdot \eta_f = 0,88 \cdot 0,94 \cdot 0,98 = 0,811\\ P_{skut} &= \frac{P}{\eta_c} = \frac{2,94}{0,811} = 3,6\,kW \end{split}$$

Z vypočteného výkonu je zvolen motor značky Siemens s označením 1FT6102-8AB7 s výkonem 3850 W a otáčkami 1500 ot/min.

Dále spočteme celkový převodový poměr mezi motorem a pastorkem

$$i_c = \frac{2 \cdot \pi \cdot n_{motor}}{v} = \frac{2 \cdot \pi \cdot 1500}{2.5} = 3769.9 \frac{1}{m}$$

Tento poměr se nechá také rozložit a vyjádřit pomocí poměru převodovky a finálního převodu

$$i_c = i_p \cdot i_f$$

Převodový poměr finálního převodu jsme schopni vyjádřit

$$i_f = \frac{2 \cdot \pi}{h} = \frac{2 \cdot \pi}{\pi \cdot m \cdot z}$$

Kde h je obvod pastorku, proto v tomto kroku bude vhodné zvolit všechny potřebné parametry ozubení

$$m = 6 mm$$
$$z = 20 zubů$$
$$\alpha = 20°$$
$$\beta = 7°$$
$$\psi = 13$$
Bakalářská práce, akad.rok 2017/2018

Josef Kozák

Katedra konstruování

c = 40 MPa

A nyní můžeme spočítat tento převodový poměr

$$i_f = \frac{2}{m \cdot z} = \frac{2}{6 \cdot 20} = 16,667 \frac{1}{m}$$

A dále dopočteme převodový poměr, který musí být na převodovce

$$i_p = \frac{i_c}{i_f} = \frac{3769,9}{16,667} = 226,2$$

Nyní můžeme zvolit potřebnou převodovku, to je planetová třístupňová převodovka od firmy Witttenstain s označením TP+ 500 MA High torque, jejíž hlavní parametr, převodový poměr, je 220. Hodnoty vyčteny z katalogu výrobce (10) strana 98.

Kontrola skutečné posuvové rychlosti koníku, jakou je možno docílit s navrženými komponentami

$$n_{skut} = \frac{n_{motor}}{i_{pskut}} = \frac{1500}{220} = 6,82 \text{ ot/min}$$
$$v_{skut} = \frac{2 \cdot \pi \cdot n_{skut}}{i_f} = \frac{2 \cdot \pi \cdot 6,82}{16,7} = 2,57 \frac{m}{min}$$

Což je 3 % odchýlení od požadované rychlost 2,5 m/min, při zvolení jiných převodových poměrů převodovky, byli odchylky značné, proto bylo vyhodnoceno, že zvolená převodovka je vyhovující. Na obrázku níže je načrtnuto bližší řešení pohonu posuvu. Jde o jednoduchou svařovanou konzolu ve tvaru L na kterou je usazen motor společně s planetovou převodovkou ke které bude přes přírubu připojena hřídel s pastorkem.

obr. 30: Náčrt návrhu pohonu

Josef Kozák

3.5 Návrh základních rozměrů pastorku a hřebene

$$D = \frac{m \cdot z}{\cos \beta} = \frac{6 \cdot 20}{\cos 7} = 120,901 \ mm$$
$$D_a = D + 2 \cdot h_a^* \cdot m = 120,901 + 2 \cdot 1 \cdot 6 = 132,901 \ mm$$
$$D_f = D - 2 \cdot h_f^* \cdot m = 120,901 - 2 \cdot 1,25 \cdot 6 = 105,901 \ mm$$
$$b = \psi \cdot m = 13 \cdot 6 = 78 \ mm$$

Šířka pastorku je zvolena z doporučené řady, tj. b = 80 mm.

 $z_{h\check{r}eben} = \frac{L_{lo\check{z}e}}{\pi \cdot m} = \frac{10000}{\pi \cdot 6} = 530,5 \ zub\mathring{u}$ $h_{h\check{z}eben} = 2 \cdot m = 2 \cdot 6 = 12 \ mm$ $b_{h\check{r}eben} = \psi \cdot m = 13 \cdot 6 = 78 \ mm$

Šířka hřebenu je zvolena z doporučené řady, tj. $b_{hreben} = 80 mm$.

3.6 Kontrola navržené převodovky

Proto, aby námi navrhované řešení mohlo být uskutečněno je potřeba zkontrolovat dovolené hodnoty na výstupu převodovky. Tyto hodnoty byly dohledány v katalogu výrobce (10) strana 98. Těmito hodnotami jsou axiální síla a ohybový moment způsobený radiální silou. Při této příležitosti také spočteme všechny síly působící v ozubení.

$$\begin{split} M_{k_1} &= \frac{P_{motor}}{2 \cdot \pi \cdot n_{motor}} = \frac{3850}{2 \cdot \pi \cdot 1500} = 24,51 \, N \cdot m \\ M_{k_2} &= M_{k_1} \cdot i_{pskut} \cdot \eta_p = 24,51 \cdot 220 \cdot 0,93 = 5014,7 \, N \cdot m \\ F_o &= \frac{2 \cdot M_{k_2}}{D} = \frac{2 \cdot 5014700}{120,901} = 82\,956 \, N \\ F_a &= F_o \cdot tg \, \beta = 82956 \cdot tg \, 7 = 10\,186 \, N \\ F_r &= F_o \cdot tg \, \alpha_t = 82956 \cdot tg \, 20,14 = 30\,423 \, N \\ m_{mp} &= m_m + m_p = 20,5 + 89 = 109,5 \, kg \\ F_{mp} &= m_{mp} \cdot g = 109,5 \cdot g = 1073,8 \, N \\ F_{Amax} &= F_a + F_g = 10186 + 1073,8 = 11\,260 \, N \\ F_{Amin} &= F_a - F_g = 10186 - 1073,8 = 9\,112N \\ M_0 &= F_r \cdot a = 30\,423 \cdot 225 = 6845,2 \, N \cdot mm \end{split}$$

Ohybový moment a axiální síla jsou menší, než dovolené hodnoty. Navržená převodovka tedy plně vyhovuje a muže být použita do navrhovaného řešení.

Josef Kozák

3.7 Návrh a kontrola hřídele

Průměr hřídele bude spočítán se zanedbáním ohybového momentu a sníženou dovolenou hodnotou v krutu, tak jako by hřídel byla namáhána pouze krutem. Tato dovolená hodnota je zvolena 35 MPa. Materiál hřídele zvolen 11 700.

$$\tau_{kdov} = \frac{M_k}{W_k} = \frac{M_{k_2}}{\frac{\pi \cdot d_{hnat}^3}{16}} \Longrightarrow d_{hnav} = \sqrt[3]{\frac{5014700 \cdot 16}{\pi \cdot 35}} = 90,03 \, mm$$

Průměr tedy musí být větší, než 90 mm. Nejmenší navržený průměr je 110 mm.

obr. 31: Rozměrový návrh hřídele s pastorkem

Displacement [mm]

obr. 32: Výsledné posunutí hřídele s pastorkem

Josef Kozák

Deformace pastorku dle normy má být od $(0,01 \div 0,02) \cdot m$. Měla by tedy být od 0,06 do 0,12 setin milimetru. Jak je tedy vidět z obr. 32 deformace je příliš veliká. Toto by šlo vyřešit menším vysazením pastorku, když se ale pokusíme, náš problém reálně zkonstruovat vidíme, že vysazení pastorku zmenšit nelze jak je vidět na obr. 33 a obr. 34 velikost převodovky a tím

obr. 33: Nárys navrhovaného řešení

obr. 34: Axonometrický pohled na navrhované řešení

pádem i konzole nám neumožňuje zmenšit vysazení pastorku, protože by poté byla konzole v kolizi s ložem. Možnost by byla zvolit menší převodovku, ta ale nesplňuje požadavek na výstupní točivý moment (viz. (10) strana 100). Proto je potřeba náš návrh upravit a některé prvky změnit. Pozměněný návrh je vidět na obr. 35, konzole nebude jen pouhý L profil, ale bude to složitější tvar svařovaný z několika částí. V ní budou uložena dvě ložiska, která by měli zvýšit tuhost hřídele a tedy zmenšit deformaci pastorku. Konzola bude s koníkem spojena šrouby a na hřídel bude připojena planetová převodovka s elektromotorem.

Josef Kozák

obr. 35: Kinematické schéma předělaného návrhu

3.8 Varianta 2

Potřebný výkon k pohonu bude v tomto případě stejný, takže je potřeba motor o výkonu minimálně 3,6 kW. O přísun tohoto potřebného výkonu se bude starat asynchronní elektromotor od firmy Siemens s označením 1LE112M třídy IE2, jde o motor se zvýšenou účinností, ta je dosahuje hodnoty 88%. Tento motor má výkonu 4 kW při 1460 ot/min, hodnoty zjištěny dle (11) kapitola 2 strana 21.

$$i_c = \frac{2 \cdot \pi \cdot n_{motor}}{v} = \frac{2 \cdot \pi \cdot 1460}{2.5} = 3669.4 \frac{1}{m}$$

Pastorek bude mít tyto rozměry

$$m = 6 mm$$

$$z = 28 zubů$$

$$\alpha = 20^{\circ}$$

$$\beta = 15^{\circ}$$

$$\psi = 13$$

$$c = 40 MPa$$

$$i_f = \frac{2 \cdot \pi}{h} = \frac{2 \cdot \pi}{\pi \cdot m \cdot z} \Longrightarrow i_f = \frac{2}{m \cdot z} = \frac{2}{6 \cdot 28} = 11.9 \frac{1}{m}$$

Josef Kozák

$$i_c = i_p \cdot i_f => i_p = \frac{i_c}{i_f} = \frac{3669.4}{11.9} = 308.2$$

Je tedy zvolen asynchronní elektromotor od firmy Siemens, tato firma má v nabídce elektromotory s připojenou planetovou převodovkou, proto bude zvolena tato forma pohonu. Převodovka s nejbližším převodovým poměrem je převodovka s označením SIMOGEAR D 109, ta má převodový poměr 314,98, dle (12) kapitola 3 strana 17. Tato převodovka mění vstupní otáčky motoru na výstupní o hodnotě 4,8 ot/min. Výsledná rychlost je tedy

$$v_{skut} = \frac{2 \cdot \pi \cdot n}{i_f} = \frac{2 \cdot \pi \cdot 4.8}{11.9} = 2.53 \ \frac{m}{min}$$

což je odchylka okolo jednoho procenta od požadované posuvové rychlosti. Tato odchylka je vyhovující.

3.9 Návrh a kontrola rozměrů pastorku a hřebene

3.9.1 Pastorek

$$D = \frac{m \cdot z}{\cos \beta} = \frac{6 \cdot 28}{\cos 15} = 173,926 mm$$
$$D_a = D + 2 \cdot h_a \cdot m = 173,926 + 2 \cdot 1 \cdot 6 = 185,926 mm$$
$$D_f = D - 2 \cdot h_f \cdot m = 173,926 - 2 \cdot 1,25 \cdot 6 = 158,26$$
$$b = \psi \cdot m = 13 \cdot 6 = 78 mm$$

Materiál pastorku volíme ocel s označením 18CrMiNo 7-6 dle evropského značení, dle staré české státní normy je ekvivalentní s 16 420. Tento materiál je vhodný k cementování a kalení.

3.9.2 Hřeben

$$z_{h\check{r}eben} = \frac{l_{lo\check{z}e}}{\pi \cdot m} = \frac{10000}{\pi \cdot 6} = 530,5 \ zub\mathring{u}$$
$$h_{zubu} = 2 \cdot m = 2 \cdot 6 = 12 \ mm$$
$$b_{h\check{r}eben} = \psi \cdot m = 13 \cdot 6 = 78 \ mm$$

Materiál hřebenu volíme ocel s označením 15 NiCr 13 dle evropského značení, dle staré české státní normy je ekvivalentní s 16 326. I tato ocel je vhodná k cementování a kalení.

3.9.3 Kontrola modulu dle Bacha

$$M_{k_1} = \frac{P_{motor}}{2 \cdot \pi \cdot n_{motor}} = \frac{4000}{2 \cdot \pi \cdot 1460} = 26,162 \ N \cdot m$$
$$M_{k_2} = M_{k_1} \cdot i_{pskut} \cdot \eta_{prev} = 26,162 \cdot 314,98 \cdot 0,93 = 7\ 663,805\ N \cdot m$$

$$m = 7,5 \cdot \sqrt{\frac{M_{k_2} \cdot \cos \beta}{\psi \cdot c \cdot z}} = 7,5 \cdot \sqrt{\frac{7663805 \cdot \cos 15}{13 \cdot 40 \cdot 28}} = 5,9 \ mm$$

Navržený modul 6 mm, podle zjednodušeného výpočtu dle Bacha, vyhovuje.

3.9.4 Kontrola ozubení programem KISSsoft

Zde se kontrolují některé důležité hodnoty bezpečnosti, jako je bezpečnost v ohybu, bezpečnost v dotyku, bezpečnost proti otěru, možnost vzniku pettingu a také bezpečnost proti zlomení zubu.

	Results	
Contact ratio (Transverse/Overlap/Total)	1.7143/ 1.0	985 / 2.8128
	Pinion	Rack
Actual tip circle (mm)	185.926	50.000
Root safety	1.4135	1.7152
Flank safety	1.6324	1.9441
Safety against scuffing (integral temperature)	6.07	44
Safety against scuffing (flash temperature)	11.36	16

obr. 36: Výsledky

Na obr. 36 jsou vidět prvotní výsledky, detailnější výsledky jsou v reportu viz. PŘÍLOHA I. Z těchto výsledků jsou nejdůležitější root safety (bezpečnost v ohybu) a flank safety (bezpečnost v dotyku), tyto bezpečnosti by měli pro moduly větší než 2 vycházet větší, než 1,4 respektive 1. Navržené rozměry pastorku, hřebenu a modul tedy vyhovují.

3.10 Síly v ozubení

$$F_o = \frac{2 \cdot M_{k2}}{D} = \frac{2 \cdot 7663805}{173,926} = 88\ 127\ N$$
$$F_a = F_o \cdot tg\ \beta = 88127 \cdot tg\ 15 = 23\ 614\ N$$
$$F_r = F_o \cdot tg\ \alpha_t = 88127 \cdot tg\ 20,14 = 32\ 320N$$

3.11 Návrh a kontrola hřídele

Nejprve navrhneme průměr hřídele se zanedbáním ohybového momentu a velkou bezpečností, ta se tedy projeví v dovoleném namáhání v krutu, které bude 35 MPa. Materiál hřídele volíme 11 373 (označení dle evropské normy S 235J2), který má dovolené napětí na mezi kluzu 235 MPa.

$$\tau_{kdov} = \frac{M_k}{W_k} = \frac{M_{k_2}}{\frac{\pi \cdot d_{hnav}^3}{16}} \Longrightarrow d_{hnav} = \sqrt[3]{\frac{7663805 \cdot 16}{\pi \cdot 35}} = 103,7 \, mm$$

Josef Kozák

Josef Kozák

Tento rozměr je pouze přibližný, nejmenší průměr hřídele by, ale neměl by být nějak výrazně menší. Proto nejmenší průměr na hřídeli bude 92 mm.

obr. 38: Rozložení sil v ozubení pastorku

Nyní můžeme spočítat reakce v jednotlivých rovinách a poté výsledné reakce a skutečné napětí od krutu a ohybu. Následně bude provedena kontrola v programu KISSsoft.

3.11.1 Rovina x-z

obr. 39: Rozložení posouvajících sil a napětí v rovině x-z

$$R_{B_x} = \frac{F_r \cdot (j+a) - F_a \cdot \frac{D}{2}}{j} = \frac{32320 \cdot 260 - 23614 \cdot 86,95}{180} = 35\ 276\ N$$
$$R_{A_x} = F_r - R_{B_x} = 32320 - 35276 = -2\ 956\ N$$

Josef Kozák

3.11.2 Rovina y-z

3.11.3 Výsledné reakce a celkové napětí

$$R_{A} = \sqrt{R_{A_{x}}^{2} + R_{A_{y}}^{2}} = \sqrt{2956^{2} + 39168^{2}} = 39\ 279\ N$$

$$R_{B} = \sqrt{R_{B_{x}}^{2} + R_{B_{y}}^{2}} = \sqrt{35276^{2} + 127295^{2}} = 132\ 092\ N$$

$$M_{o} = R_{A} \cdot (j + a) = 39\ 279 \cdot 260 = 10\ 212\ 522\ N \cdot mm$$

$$\sigma_{odov} = \frac{M_{o}}{W_{o}} = \frac{M_{o}}{\frac{\pi \cdot d_{min}^{3}}{32}} = \frac{10212522 \cdot 32}{\pi \cdot 92^{3}} = 134MPa$$

$$\tau_{kdov} = \frac{M_{k}}{W_{k}} = \frac{M_{k_{2}}}{\frac{\pi \cdot d_{h}^{3}}{16}} = \frac{7663805 \cdot 16}{\pi \cdot 92^{3}} = 50\ MPa$$

$$\sigma_{RED} = \sqrt{\sigma_{o}^{2} + 4 \cdot \tau_{k}^{2}} = \sqrt{134^{2} + 4 \cdot 50^{2}} = 167\ MPa$$

Josef Kozák

3.11.4 Kontrola hřídele v programu KISSsoft

Results					
maximum deflection			57.2	1 µm	
maximum equivalent stress	aximum equivalent stress 115.97 N/mm ²				
Bearing reaction force	Component	х	Y	Z	Rxz
Podpora B	F	65.211 kN	26.514 kN	141.447 kN	155.755 kN
	M	0.000 Nm	0.000 Nm	0.000 Nm	0.000 Nm
Podpora A	F	-28.515 kN	0.000 kN	-44.064 kN	52.486 kN
	M	0.000 Nm	0.000 Nm	0.000 Nm	0.000 Nm

obr. 42: Graf deformace hřídele v podélné ose

Z výsledků výše je patrné, že deformace v místě dotyku zubů je již v požadovaných mezích. To znamená, že varianta 2 vyhovuje našim požadavkům a můžeme ji dále podrobněji zpracovávat. Bezpečnost pro zvolený materiál S235 je skoro dvounásobná. Zbylé výsledky jsou k nalezení v PŘÍLOHA II.

3.12 Návrh a kontrola ložisek

V místě A (obr. 38) bude kuličkové ložisko, které zachytí jak radiální tak i axiální sílu. V místě B bude radiální válečkové ložisko, toto ložisko zachytí pouze radiální sílu. Takovéto rozložení ložisek je zvoleno z toho důvodu, že v místě B je daleko větší reakce než v místě A. Ložiska budou počítány na statickou únosnost, protože jsou otáčky hřídele menší než 10 ot/min. Statická únosnost by měla být minimálně rovna nebo větší než 2.

3.12.1 Místo A

Radiální reakce v místě popiska je $R_A = 38\ 231,5\ N$. Nejprve bude potřeba spočítat statickou únosnost ložiska, jako by ložisko bylo namáháno čistě radiální silou.

$$P_o = X \cdot R_A = 1 \cdot 39279 = 39279 N$$

 $C_0 = P_o \cdot s_o = 37279 \cdot 2 = 78558 N$

Dále bude postup výpočtu pokračovat dohledáním součinitelů X a Y, součinitelů pro radiaxiální zatížení ložiska, tyto hodnoty jsou dohledány z tabulek firmy SKF (13) a jsou tedy X = 0.56 a Y = 1.71.

$$\frac{F_a}{R_A} = \frac{23614}{39279} = 0,601$$
$$\frac{F_a}{C_0} = \frac{23614}{78558} = 0,317$$
$$P_o = X \cdot R_A + Y \cdot F_a = 0,56 \cdot 39279 + 1,71 \cdot 23617 = 62375 N$$
$$C_o = P_o \cdot s_o = 62375 \cdot 2 = 124751 N$$

Volba ložiska od firmy SKF s označením 6224-Z, jehož parametry jsou d = 120 mm, D = 215 mm, B = 40 mm, $C_0 = 118\ 000$ N.

3.12.2 Místo B

Radiální reakce v místě popiska je $R_B = 128569$ N. V tomto případě je X = 1.

$$P_o = X \cdot R_B = 1 \cdot 132092 = 132092 N$$

 $C_o = P_o \cdot s_o = 132092 \cdot 2 = 264 \ 184 N$

Volba ložiska od firmy SKF s označením NU 226 ECJ, jehož parametry jsou d = 130 mm, D = 230 mm, B = 40 mm, $C_0 = 455 000$ N.

3.12.3 Mazání ložisek

Ložiska budou mazána tuhým mazivem ve formě tuku. Problém nastává u spodního ložiska, kde vlivem snahy o co možná nejmenší vyložení pastorku, nezbývá na hřídeli moc místa na vložení těsnění. Proto je navrhnuto vlastní jednoduché labyrintové těsnění, toto těsnění je vidět na obr. 43 níže. Mezery v tomto těsnění jsou 1 mm. mezera mezi víčkem a pastorkem je také 1 mm. S horním těsněním nejsou žádné problémy a bude to klasické hřídelové těsnění.

Josef Kozák

Josef Kozák

obr. 43: Jednoduché labyrintové těsnění

obr. 44: Výsledky hřídele se započtenými ložisky

Josef Kozák

Z výsledků je vidět, že statická bezpečnost je větší než 2, protože jsou zvolena ložiska s nejbližší vyšší statickou únosností, než je požadovaná únosnost stanovená výpočtem. Deformace v místě dotyku zubů je větší než v případě na obr. 41, tento značný nesoulad je způsoben tím, že nyní bylo počítáno i s tuhostí ložisek, toto značně ovlivňuje výsledné posunutí. Výsledná deformace by tedy měla být 0,06 až 0,12 mm. I přesto, že je výsledek větší než horní mez, můžeme říci, že tuhost hřídele vyhovuje. Jelikož do výsledku není zahrnuta deformace tělesa, ve kterém budou ložiska uložena, dále také deformace koníku a samotného lože, tyto deformace výslednou deformaci v místě dotyku boků zubů ještě zvětší. Suma všech těchto deformací způsobí, že bok zubu nebude po své šířce rovnoměrné zatěžován, pro tento případ, aby se vyrovnaly všechny deformace, se nejčastěji kola korigují na měrné skluzy. V tomto případě nejsou kola nijak korigovány.

3.13 Návrh a kontrola spoje pastorku a hřídele

Tvarový spoj, kterým bude pastorek spojen s hřídelí, bude uskutečněn pomocí rovnobokého drážkování. Průměr, na kterém je pastorek nasazen bude 92mm, tedy $d_{kon} = 92mm$. Materiál hřídele bude změněn na 11 700, tak aby délka drážkování byla menší. Dovolená hodnota v otlačení bude 150 MPa.

$$p_{dov} = \frac{F}{S} = \frac{\frac{2 \cdot M_{k_2}}{d_{kon}}}{0.75 \cdot z_{dra\check{z}} \cdot h_{dra\check{z}} \cdot l_{dra\check{z}}} => l_{dra\check{z}} = \frac{2 \cdot M_{k_2}}{d_{kon} \cdot 0.75 \cdot z \cdot h \cdot p_{dov}} = \frac{2 \cdot 7663805}{92 \cdot 0.75 \cdot 10 \cdot 5 \cdot 150} = 28 \, mm$$

Minimální délka spoje rovnoboým drážkováním, tedy musí být 28 mm. Pastorek je široký 80 mm, takže zbývá ještě dostatečný prostor pro zápich a spoj pořád krouticí moment přenese. Kontrola spoje je provedena pomocí programu MITcalc, na obr. 45.

obr. 45: Kontrola spoje hřídele s pastorkem

Josef Kozák

3.14 Návrh a kontrola šroubů

Šrouby budou zajišťovat pevné spojení konzoly s koníkem. Na šrouby budou působit síly vyvolané pastorkem a hřebenem. V tomto případě jde o kombinované namáhání, přesněji o prostorový ohyb. Šrouby budou symetricky rozděleny kolem osy naznačené na obr. 46. Ve spoji bude uvažováno osm šroubů.

Nejprve jednotlivé síly přesuneme do středu spodní desky konzoly, na obr. 46 bod S.

obr. 46: Síly působící ve šroubovém spoji

Tímto přesunutím se jednak všechny síly v ozubení přesunuly do bodu S, ale také vznikly momenty od posunutých sil. Vektory jednotlivých momentů, které ve spoji vznikly, jsou zobrazeny na obr. 47.

obr. 47: Vektory momentů vzniklých ve šroubovém spoji

Josef Kozák

Katedra konstruování

Dvojici těchto vektorů vždy vektorově sečteme, tak aby v každé ose působil vždy jen jeden vektor moment, obr. 48.

- -

obr. 48: Vektory výsledných momentů

Tyto výsledné momenty namáhaní spoj ohybovým momentem ve dvou rovinách, momenty Myx a Mzx, a moment Mzy namáhá spoj na krut.

obr. 49: Napětí vyvolané momenty

Josef Kozák

Momenty převedeme na tlak ve spoji. Ve spoji, ale ovšem také stále působí posunuté síly. A právě síly F_o namáhá spoj také na tlak. Jak je psáno výše, ve spoji je osm šroubů.

$$p_{M} = \frac{M_{yx}}{\frac{1}{6} \cdot l^{2} \cdot k} + \frac{M_{zx}}{\frac{1}{6} \cdot l \cdot k^{2}} = \frac{3809681}{\frac{1}{6} \cdot 520^{2} \cdot 320} + \frac{25413888}{\frac{1}{6} \cdot 520 \cdot 320^{2}} = 2,6 MPa$$

$$p_{F_{o}} = \frac{F_{o}}{l \cdot k} = \frac{88127}{520 \cdot 320} = 0,48 MPa$$

$$p_{c} = p_{M} + p_{F_{o}} = 2,6 + 0,48 = 3,1 MPa$$

$$p_{c} = \frac{F_{\delta}}{l \cdot h} \cdot i = F_{\delta} = \frac{p_{c} \cdot l \cdot k}{i} = \frac{3,1 \cdot 520 \cdot 320}{8} = 63999 N$$

$$F_{1} = 1,2 \cdot F_{\delta} = 1,2 \cdot 63999 = 76799 N$$

$$\sigma_{DOV} = \frac{F_{1}}{\frac{\pi \cdot d_{\delta}^{2}}{4}} = d_{\delta} = \sqrt{\frac{4 \cdot F_{1}}{\pi \cdot \sigma_{DOV}}} = \sqrt{\frac{4 \cdot 76799}{\pi \cdot 150}} = 25,5 mm$$

Šroub tedy musí mít nejmenší průměr větší než je 25,3 mm, tomuto kritériu vyhovuje šroub o velikosti M36jehož nejmenší průměr má hodnotu 31,09 mm. Ve spoji tedy bude osm šroubů o velikosti M36.

3.14.1 Kontrola programem KISSsoft

Operating data						
Configuration	Multi-bolted join	t with arbitrary position	n of the screw		off 24	-
Torque	M _T 10	341.0870 Nm	Axial force (min/max)	F _A 23614.000	0.0000	N
Shearing force	F.qx 88	127.0000 N	Bending moment (min/max)	Max 25413.888	30 0.0000	Nm
Shearing force	F _{Q/} 32	320.0000 N	Bending moment (min/max)	Mey 3809.68	10 0.0000	Nm
Clampingr sealing	F ₁₀	0.0000 N	Coefficient of between parts	μт	0.1000	1
olt data						
Bolt type	Cylindrical screw	with socket head bolt	DIN EN ISO 4762:2004			
Reference diameter	d [36.0000 mm	Surface roughness of thread	N8 Rz=16 (Milling)	▼ R ₂	16.00 µm
			<u> </u>			
lolt length	E.	140.0000 mm	Surface roughness of head si	N8 Rz=16 (Milling)	▼ R₂	16.00 µm
Strength class	8.8	▼ Define.				
ype of bolting		Washer	T	ghtening technique		
Blind hole	Define	🔽 🔽 under b	olt head Define	orque wrench (by estim	ating the coefficient	of friction 💌
C Nut	Define	🛛 🗖 under n	ut Define,	1inimum		-
				ghtening factor a _A	1.6000	
Length of engage	ment Define	Extension s	leeves without external forces			0
		🔽 under b	Define,			
		🗖 under n	ut Define,			
lts						ť
			Forces and torques			
quired pretension for	ce (min/max)			241074.17	385718.68	N
quired tightening torq	ue (min/max)			1175.22	1880.35	Nm
Viold	aint	Safeties with	n maximal attained pretension for	ce Estimus failurs		
1.1	6	P	1.93	49.30	1 0	
		Safeties with	h minimal attained pretension for	ce		
			1 22			

obr. 50: Zadané hodnoty a výsledky šroubů v programu KISSsoft

Josef Kozák

3.14.2 Kontrola programem KISSsoft

Z výsledků je patrné, že navržený rozměr šroubů vyhovuje. A navíc byly zjištěny spodní a horní hodnoty pro předepínací sílu a pro utahovací moment, tento rozptyl je dán přesností klíče. Když zavedeme zjednodušení, tak můžeme psát, že:

$$F_{p\check{r}edep} = \frac{241074 + 385719}{2} = 313\ 397\ N$$
$$M_{uta\,h} = \frac{1175 + 1880}{2} = 1\ 528\ N\cdot m$$

3.15 Návrh a kontrola konzoly

Konzole bude sloužit k uložení ložisek a přichycení celého mechanismu ke koníku, musí tedy přenést jak vzniklé gravitační síly, tak i všechny síly působící v samotném posuvovém mechanismu, tedy v pastorku a hřebenu.

Na obr. 35 je vidět možný tvar konzoly. Tento tvar bude muset být upraven tak aby pastorek byl v záběru s hřebenem a samotná konzole nebyla v kolizi s ložem a zároveň byla zajištěna dostatečná tuhost jak konzole, tak i hřídele. Konzole bude navrhována metodou konečných prvků programem NX Nastran. Konzole bude vyrobena z jednotlivých svařovaných dílů, pro náš výpočet bude konzole zjednodušena a je namodelována jako jedno solid tělo.

obr. 51: Návrh tvaru konzoly

obr. 52: Návrh tvaru konzoly - půdorys a řez

Na celý tvar konzoly jsou aplikovány 3D tetraedrové prvky. Dále jsou vytvořeny 2 body, na obr. 53 a obr. 54 jsou zobrazeny červeně. Jeden bod v místě dotyku zubů pastorku a hřebenu, druhý bod v ose otvoru. Body jsou v tělesu připojeny absolutně tuhými 1D prvky. Do prvního bodu je umístěna normálová síla rozložená do tří složek a do druhého bodu síla, která odpovídá součtu hmotností motoru s převodovkou. Spodní ploše konzoly jsou odebrány všechny stupně volnosti.

Josef Kozák

obr. 53: FEM síť konzoly

obr. 54: FEM síť konzoly - půdorys

obr. 55: Síly v ozubení

obr. 56: Síla od hmotnosti

Josef Kozák

obr. 57: Posunutí směr-x pohled 1

obr. 58: Posunutí směr-x pohled 2

Nejdůležitější výsledek je směr posunutí, ve které je ozubený převod vytlačován ze záběru, je to tedy posunutí ve směru x, v souřadnicích programu NX. Toto posunutí je v řádech setinách milimetru, což je v naprostém pořádku. Zbylé výsledky jsou v PŘÍLOHA V.

3.16 Kontrola spojky

Mezi výstupním hřídelem převodovky a hřídelem, na kterém je pastorek, bude muset být spojka. Půjde o pevnou nerozpojovanou hřídelovou spojku firmy Flender. Byla zvolena spojka ZAPEX ZNN velikosti 130 varianty A. Zde je důležité zkontrolovat pouze délku pera, tak aby pero přeneslo námi požadovaný krouticí moment. Dovolená hodnota v otlačení musí být pro nejhorší materiál ve spoji. V tomto případě to bude materiál samotného pera, které bude z materiálu 11 500. Náboj a hřídel budou vyrobeny z totožného materiálu a to s oceli třídy 11, přesněji oceli ČSN 11 700. Informace o spojce byly vyčteny z katalogu výrobce, viz.(14) kapitola 4 strana 4. Dovolená hodnota v otlačení byla zvolena 120 MPa.

3.16.1 Strana převodovky

Tuto stranu není potřeba kontrolovat, protože výrobce zaručuje, že výstupní hřídel z převodovky a délka pera, která je v ní vyrobena, plně vyhovuje maximálnímu momentu převodovky, který je vyšší než moment, který je na našem hřídeli. Výstupní hřídel převodovky má průměr 60 mm. Tedy $d_{přev} = 60$ mm.

$$p_{dov} = \frac{F}{S} = \frac{\frac{2 \cdot M_{k_2}}{d_{p\check{r}ev}}}{\left(l_{pera} - b_{pera}\right) \cdot t_1} = > l = \frac{2 \cdot M_{k_2}}{d_{p\check{r}ev} \cdot p_{dov} \cdot t_1} + b = \frac{2 \cdot 7663805}{60 \cdot 120 \cdot 4.2} + 28 = l_{pera} = 19.8 \, mm$$

Josef Kozák

Protože je hřídel převodovky ve spojce zasunuta, jak jen je to možné, tj. 100 mm hluboko, je požadavek na minimální délku pera splněn.

3.16.2 Strana pastorku

Konec hřídele, na které je nasunut pastorek finálního převodu, má průměr 92 mm. Tj. $d_{kon} =$ 92 mm. Spoj bude uskutečněn rovnobokým normalizovaným drážkováním.

$$p_{dov} = \frac{F}{S} = \frac{\frac{2 \cdot M_{k_2}}{d_{kon}}}{0.75 \cdot z_{dra\check{z}} \cdot h_{dra\check{z}} \cdot l_{dra\check{z}}} => l_{dra\check{z}} = \frac{2 \cdot M_{k_2}}{d_{kon} \cdot 0.75 \cdot z \cdot h \cdot p_{dov}} =$$
$$= \frac{2 \cdot 7663805}{82 \cdot 0.75 \cdot 10 \cdot 5 \cdot 120} = 41.6 \ mm$$

Tento spoj tedy musí mít minimální délku 42 mm. Firma Flender, od které bude spojka nakoupena, umožňuje si délku náboje spojky zvolit v rozmezí od 62 do 186 mm, proto navržená spojka vyhovuje.

3.16.3 Kontrola délky spoje – strana pastorku

Rovnoboké drážkování na straně pastorku je kontrolováno programem MITcalc, níže na obr. 59 jsou vidět výsledky, z nichž vyplívá, že navržená délka plně vyhovuje.

obr. 59: Kontrola rovnobového drážkování

Na obrázcích níže je vidět, nejprve v řezu a poté v izometrickém pohledu, jak ve finále vypadá celý posuvový mechanismus.

Josef Kozák

obr. 60: Výsledné řešení

obr. 61: Výsledné řešení - izometrický pohled

Nakonec není potřeba řešit horní těsnění, protože motor s převodovkou jsou s konzolou spojeny pomocí trubky a přírub a spojka je uvnitř této trubky. Toto spojení zajišťuje dostatečné utěsnění a ochranu proti nečistotám, prachu, třískám a řezným kapalinám.

Josef Kozák

4 Závěr

Tématem mé bakalářské práce tedy byly posuvové mechanismy koníku, ale čistě teoreticky se posuv koníku dá realizovat pomocí jakéhokoliv posuvového mechanismu, který existuje. Proto jsem zpracoval rešerši posuvových mechanismů, kde jsem mechanismy rozdělil, popsal nároky na mechanismy kladené a také jsem v této části popisoval, jak tyto mechanismy fungují, jak se vyrábějí, z jakých materiálů se dané mechanismy vyrábějí, přesnosti jakou dosahují.

Dále následovala analýza stávajícího řešení posuvového mechanismu koníku na soustruhu SR 1. K rozhodnutí, který z možných mechanismů je lepší, než stávající, jsem využil nabyté poznatky z rešeršní části a znalostí z jiných předmětů. Jako nejlepší možné řešení pro právě tento řešený problém vyšel převod pomocí pastorku a hřebenu.

Pro tento mechanismus jsem tedy dál zpracovával konstrukční návrh. Ve kterém jsem navrhoval všechny důležité součásti, jako jsou motor, převodovka, hřídel s ložisky, spojka a v neposlední řadě samotný finální převod. Nejprve jsem se pokusil, navrhnou co možná nejjednodušší tvar konzoly, ve které je mechanismu uložen, ale to řešení nevyhovovalo z hlediska tuhostních nároků na mechanismus kladených. Pro jsem konzoly a celé uložení finálního převodu předělal do konečné podoby. Všechny navrhované součásti byly kontrolovány pomocí programu KISSsoft, konzola byla kontrolována metodou konečných prvku programem NX. Mým posledním krokem bylo zhotovení výkresu sestavy celého posuvového mechanismu, tak jak bude uchycen na koníku a také vytvoření výrobních výkresů nenormalizovaných a nenakupovaných součástí.

5 Seznam použité literatury

1. **Ostravská univerzita.** www.osu.cz. [Online] [Citace: 17. 11 2017.] Dostupné z: http://www.osu.cz/dokumenty/proportal/pdf/kpv/soustruzeni/02000.html.

2. Krátký, J. Obecné strojní části 2. Plzeň : Západočeská univerzita v Plzni, 2011. ISBN 978-80-261-0066-9.

3. **Raveo s.r.o.** http://www.ozubene-hrebeny.cz/. [Online] [Citace: 13. 11 2017.] Dostupné z: http://www.ozubene-hrebeny.cz/.

4. Lašová, V. Základy stavby obráběcích strojů. [Online] Fakulta strojní ZČU v Plzni, 2012. [Citace: 29. 3 2018.] https://zcu.cz/pracoviste/vyd/On-line.html#FST. ISBN 978-80-261-0126-0.

5. **International Organizazion for Standardization.** https://www.iso.org/. [Online] [Citace: 8. 11 2017.] Dostupné z: https://www.iso.org/obp/ui/#iso:std:iso:3408:-1:ed-2:v1:en.

6. **KSK Precise Motion, a.s.** http://www.ksk-pm.cz/. [Online] [Citace: 8. 11 2017.] Dostupné z: http://www.ksk-pm.cz/.

7. **Barnes Industries, Inc.** http://www.barnesballscrew.com. [Online] [Citace: 20. 4 2018.] Dostupné z: http://www.barnesballscrew.com/how-a-ball-screw-works/.

8. **MM Průmyslové spektrum.** [Online] [Citace: 18. 4 2018.] Dostupné z: https://www.mmspektrum.com/clanek/kulickove-srouby-a-matice-ve-stavbe-cnc-obrabecich-stroju-cast-2.html.

9. Katalog firmy Škoda Machine Tool. [Online] [Citace: 5. 3 2018.] Dostupné z: https://issuu.com/skodamt/docs/skoda-katalog-cz-web.

10. Katalog planetových přecvodovek firmy Wittenstain. [Online] [Citace: 8. 3 2018.] Dostupné z: https://issuu.com/wittenstein-ag/docs/sp-tp-en?e=2924389/59031093.

11. Katalog asynchronních motorů značky Siemens. [Online] [Citace: 5. 3 2018.] Dostupné z:

http://stest1.etnetera.cz/ad/current/content/data_files/technika_pohonu/motory/nizkonapetove _standardni_motory/D81_1-2016_cz.pdf.

12. **Katalog převodovek značky Siemens.** [Online] [Citace: 17. 3 2018.] Dostupné z: https://support.industry.siemens.com/cs/document/109746830/catalog-md-50-11%3A-simogear-gearboxes-with-adapter?dti=0&lc=en-WW.

13. **SKF.** http://www.skf.com/cz/index.html. [Online] [Citace: 5. 4 2018.] Dostupné z: http://www.skf.com/cz/products/bearings-units-housings/ball-bearings/deep-groove-ball-bearings/loads/index.html.

14. **Katalog spojek firmy Flender.** [Online] [Citace: 2. 4 2018.] Dostupné z: https://w3app.siemens.com/mcms/infocenter/dokumentencenter/md/InfocenterLanguagePacks /FLENDER%20Standardkupplungen/MD10-1-FLENDER-Standardkupplungen-EN.pdf.

15. Leinveber, J a Vávra, P. *Strojnické tabulky*. Úvaly : Albra-pedagogické nakladatelství, 2008. ISBN 978-80-7361-051-7.

16. **TumliKOVO.** http://www.tumlikovo.cz. [Online] [Citace: 17. 11 2017.] Dostupné z: http://www.tumlikovo.cz/druhy-soustruhu/#.

PŘÍLOHA I

Report s výpočtem pastorku a hřebene programem KIssoft

		——— KISSsoft Release	03/2016 F	
KISSsoft academ	ic license for Uni P	ilsen		
		File		
Name :	KISSsoft_pastore	ek-hreben		
Changed by:	joskozak	on: 19.04.2018	at: 09:58:02	

Important hint: At least one warning has occurred during the calculation:

1-> Calculation of scuffing: The entered gear pair data is outside the boundary of the calculation method!

The application of ISO/TR 13989-2 has following limitations:

1.0 m/s <= v(=0.0 m/s) <= 50.0 m/s

RACK ANALYSIS (CYLINDRICAL GEAR)

Drawing or arti	cle number:
Gear 1:	0.000.0
Gear 2:	0.000.0

Calculation method

ISO 6336:2006 Method B

		Pinion Rack -	n Rack -	
Power (kW)	[P]		4.000	
Speed (1/min)	[n]	4.8		
Torque (Nm)	[T]	7957.7		
Application factor	[KA]		1.35	
Required service life (h)	[H]	20000	.00	
Gear driving (+) / driven (-)		+	-	
Working flank gear 1: Right flank				

1. TOOTH GEOMETRY AND MATERIAL

(geometry calculation according to DIN 3960:1987)

	Pinion Rack -				
Running centre distance (mm)	[a]			130.963	
Centre distance tolerance	ISO 286:2010	Measure js7			
Rack height (mm)	[Hz]			50.000	
Normal module (mm)	[mn]			6.0000	
Pressure angle at normal section (°)	[alfn]			20.0000	
Helix angle at reference circle (°)	[beta	ι]		15.0000	
Number of teeth	[z]		28		
Facewidth (mm)	[b]		80.00		85.00
Hand of gear	right	left			
Accuracy grade	[Q-ISO13	28:1995]	6		6
Inner diameter (mm)	[di]		0.00		17480.65
Inner diameter of gear rim (mm)	[dbi]		0.00		0.00

Material

Gear 1:

15 NiCr 13, Case-carburized steel, case-hardened

	ISO 6336-5 Figure 9/10 (MQ), o	core strength >=25H	RC Jominy J=12mm <hrc28< th=""></hrc28<>	
Gear 2:	18CrNiMo7-6, Case-carburized steel, case-hardened			
	ISO 6336-5 Figure 9/10 (MQ), o	core strength >=25H	RC Jominy J=12mm <hrc28< th=""></hrc28<>	
		GEAR 1	GEAR 2	
Surface hardness		HRC 60	HRC 61	
Material quality according to ISO 6336:2	2006 Normal (Life factors ZNT a	and YNT >=0.85)		
Fatigue strength. tooth root stress (N/mi	m^2) [σ Flim]	430.00	430.00	
Fatigue strength for Hertzian pressure (N/mm²) [σHlim]	1500.00	1500.00	
Tensile strength (N/mm ²)	[σB]	1030.00	1200.00	
Yield point (N/mm ²)	[σ\$]	835.00	850.00	
Young's modulus (N/mm ²)	[E]	206000	206000	
Poisson's ratio	[٧]	0.300	0.300	
Roughness average value DS, flank (µr	n) [RAH]	0.60	0.60	
Roughness average value DS, root (µm	i) [RAF]	3.00	3.00	
Mean roughness height, Rz, flank (µm)	[RZH]	4.80	4.80	
Mean roughness height, Rz, root (µm)	[RZF]	20.00	20.00	
Gear reference profile 1 :				
Reference profile 1.25 / 0.38 /	1.0 ISO 53.2:1997 Profil A			
Dedendum coefficient	[hfP*]		1.250	
Root radius factor	[rhofP*]		0.380 (rhofPmax*=0.472)	
Addendum coefficient	[haP*]		1.000	
Tip radius factor	[rhoaP*]		0.000	
Protuberance height factor	[hprP*]		0.000	
Protuberance angle	[alfprP]		0.000	
Tip form height coefficient	[hFaP*]		0.000	
Ramp angle	[alfKP]		0.000	
		not topping		
Gear reference profile 2 :				
Reference profile 1.25 / 0.38 /	1.0 ISO 53.2:1997 Profil A		1 050	
Dedendum coemcient			1.250	
Root radius factor	[rnotP*]		$0.380 (rnofPmax^{-}=0.472)$	
	[haP^]		1.000	
lip radius factor	[rhoaP*]		0.000	
Protuberance height factor	[hprP^]		0.000	
Protuberance angle	[altprP]		0.000	
Tip form height coefficient	[hFaP*]		0.000	
Ramp angle	[alfKP]		0.000	
		not topping		
Summary of reference profile gears:				
Dedendum reference profile	[hfP*]	1.250	1.250	
Tooth root radius Refer. profile	[rofP*]	0.380	0.380	
Addendum Reference profile	[haP*]	1.000	1.000	
Protuberance height factor	[hprP*]	0.000	0.000	
Protuberance angle (°)	[alfprP]	0.000	0.000	
Tip form height coefficient	[hFaP*]	0.000	0.000	
Ramp angle (°)	[alfKP]	0.000	0.000	
Type of profile modification: none (only running-in)			
Tip relief (µm)	[Ca]	2.0	2.0	
Lubrication type	Grease	lubrication		
Type of grease	Grease	: Microlube GB 00		
Lubricant base Mineral-oil base				

Kinem. viscosity base oil a	t 40 °C (mm²/s)	[nu40]		700.	00	
Kinem. viscosity base oil a	t 100 °C (mm²/s)	[nu100]		35.	00	
FZG-Test A/8.3/90 step		[FZGtestA]		12		
Specific density at 15 °C (kg/d	m³)	[roOil]		0.9	900	
Grease temperature (°C)		[TS]		40.0	000	
		Pinio	on Ra	ick -		
I ransverse module (mm)		[mt]		6.2	212	
Pressure angle at pitch circle ((°)	[alft]		20.0	647	
Working transverse pressure a	angle (°)	[alfwt]		20.0	647	
Working pressure angle at nor	mal section (°)	[alfwn]		20.	000	
Helix angle at operating pitch of	circle (°)	[betaw]		15.0	000	
Base helix angle (°)		[betab]		14.0	076	
Sum of profile shift coefficients	6	[Summexi]		0.0	0000	
Profile shift coefficient		[x]	0.	0000	0.0000)
Tooth thickness (Arc) (module) (module)	[sn*]	1.	5708	1.5708	3
Tip altoration (mm)		[k*mn]	0.	000	0.000	
Poforonco diamotor (mm)		[K 1111] [d]	172	000	44.000	
Reference diameter (mm)		[u] [db]	162	320 755	44.000	
Tip diameter (mm)		[do]	102.	026	50.000	
		[ua,⊓z] [da H≂ a/i]	195.006 /	105 000	50.000 /	40.005
				0.046	50.000/	49.995
Tip diameter allowances (mm)			105	-0.040	0.0007	-0.005
rip form diameter (mm))	[d⊢a] [d⊏a a /i]	185.	920	50.000	40.005
	1m)	[d⊢a.e/i]	185.926 /	185.880	50.000/	49.995
Active tip diameter (mm)		[diNa.e/I]	185.926 /	185.880	50.0007	49.995
Operating pitch diameter (mm))	[aw]	173.	926	44.000	
Root diameter (mm)	· ,	[ar]	158.	926	36.500	0.0474
Generating Profile shift coeffic		[xE.e/I]	-0.0060 /	-0.0174	-0.0060 /	-0.0174
Manufactured root diameter w	ith x⊨ (mm)	[df.e/i]	158.855 /	158.718	36.464 /	36.396
I heoretical tip clearance (mm)		[C]	1.	500	1.500	
Effective tip clearance (mm)		[c.e/i]	1.647/	1.516	1.629/	1.516
Active root diameter (mm)		[dNf]	165.	015	38.955	
(n	וm)	[dNf.e/i]	165.038 /	164.996	38.992 /	38.935
Root form diameter (mm)		[dFf]	165.	029	38.458	
(n	וm)	[dFf.e/i]	164.995 /	164.932	38.422 /	38.353
Reserve (dNf-dFf)/2 (mm)		[cF.e/i]	0.053 /	0.000	0.639 /	0.513
Height of bolt head (mm)		[ha = mn * (ł	naP*+x)]		6.000	6.000
(mm)		[ha.e/i]	6.000 /	5.977	6.000 /	5.995
Dedendum (mm)		[hf = mn * (h	fP*-x)]		7.500	7.500
(mm)		[hf.e/i]	7.536 /	7.604	7.536 /	7.604
Roll angle at dFa (°)		[xsi_dFa.e/i]	31.643	/ 31.60	9	
Roll angle to dNa (°)		[xsi_dNa.e/i]	31.643	/ 31.60	9	
Roll angle to dNf (°)		[xsi_dNf.e/i]	9.630	9.54	0	
Roll angle at dFf (°)		[xsi_dFf.e/i]	9.538	9.40	1	
Tooth height (mm)		[h]	13.	500	13.500	
Virtual gear no. of teeth		[zn]	30.3	810		
Normal tooth thickness at tip c	ircle (mm)	[san]	4.4	445	5.057	
	(mm)	[san.e/i]	4.440 /	4.364	5.035 /	4.981
Normal space width at root cire	cle (mm)	[efn]	0.	000	3.965	
	(mm)	[efn.e/i]	0.000 /	0.000	3.961 /	3.953
Max. sliding velocity at tip (m/s	5)	[vga]	0.	007	0.008	
Specific sliding at the tip		[zetaa]	0.3	315	0.554	
Specific sliding at the root		[zetaf]	-1.:	241	-0.459	
Sliding factor on tip		[Kga]	0.	163	0.194	
Sliding factor on root		[Kgf]	-0.	194	-0.163	
Pitch on reference circle (mm)		[pt]		19.	514	

Base pitch (mm)	[pbt]	18	.261
Transverse pitch on contact-path (mm)	[pet]	18	.261
Lead height (mm)	[pz]	2039.215	203921.456
Axial pitch (mm)	[px]	72	
Length of path of contact (mm)	[ga, e/i]	31.336 (31.393/ 31.218)
Length T1-A (mm)	[T1A]	13.606 (13.550/ 13.677)
Length T1-B (mm)	[T1B]	26.681 (26.681/ 26.634)
Length T1-C (mm)	[T1C]	30.664 (30.664/ 30.663)
Length T1-D (mm)	[T1D]	31.867 (31.811/ 31.938)
Length T1-E (mm)	[T1E]	44.943 (44.943/ 44.895)
Diameter of single contact point B (mm)	[d-B]	171.280 (171.280/ 171.251)
Diameter of single contact point D (mm)	[d-D]	174.790 (174.748/ 174.841)
Transverse contact ratio	[eps_a]		1.716
Transverse contact ratio with allowances	[eps_a.e/m/i]	1.719/	1.714 / 1.710
Overlap ratio	[eps_b]		1.098
Total contact ratio	[eps_g]		2.814
Total contact ratio with allowances	[eps_g.e/m/i]	2.818 /	2.813 / 2.808

2. FACTORS OF GENERAL INFLUENCE

		Pinion Rack -
Nominal circum. force at pitch circle (N)	[Ft]	91507.1
Axial force (N)	[Fa]	24519.2
Radial force (N)	[Fr]	34480.8
Normal force (N)	[Fnorm]	100815.0
Nominal circumferential force per mm (N/mm)	[w]	1143.84
Only as information: Forces at operating pitch circle:		
Nominal circumferential force (N)	[Ftw]	91507.1
Axial force (N)	[Faw]	24519.2
Radial force (N)	[Frw]	34480.8
Circumferential speed reference circle (m/s)	[V]	0.04
Circumferential speed operating pitch circle (m/s)	[v(dw)]	0.04
Running-in value (μm)	[yp]	0.7
Running-in value (μm)	[yf]	0.9
Correction coefficient	[CM]	0.800
Gear body coefficient	[CR]	1.000
Reference profile coefficient	[CBS]	0.975
Material coefficient	[E/Est]	1.000
Singular tooth stiffness (N/mm/µm)	[c']	14.412
Meshing stiffness (N/mm/µm)	[cgalf]	22.151
Meshing stiffness (N/mm/µm)	[cgbet]	18.829
Reduced mass (kg/mm)	[mRed]	0.10211
Resonance speed (min-1)	[nE1]	5023
Resonance ratio (-)	[N]	0.001
Subcritical range		
Running-in value (μm)	[ya]	0.7
Bearing distance I of pinion shaft (mm)	[I]	160.000
Distance s of pinion shaft (mm)	[s]	16.000
Outside diameter of pinion shaft (mm)	[dsh]	80.000
Load in accordance with Figure 13, ISO 6336-1:2006	[-]	4
0:a), 1:b), 2:c), 3:d), 4:e)		
Coefficient K' according to Figure 13, ISO 6336-1:200	6 [K']	-1.00
Without support effect		
Tooth trace deviation (active) (µm)	[Fby]	6.56

from deformation of shaft (μm)	[fsh*B1]	11.20
(fsh (μm) = 11.20, B1= 1.00, fHb5 (μm) =	16.00)	
Tooth without tooth trace modification		
Position of Contact pattern: favorable		
from production tolerances (µm)	[fma*B2]	15.62
(B2= 1.00)		
Tooth trace deviation, theoretical (µm)	[Fbx]	7.72
Running-in value (µm)	[yb]	1.16
Dynamic factor	[KV]	1.000
Face load factor - flank	[KHb]	1.040
- Tooth root	[KFb]	1.033
- Scuffing	[KBb]	1.040
Transverse load factor - flank	[KHa]	1.000
- Tooth root	[KFa]	1.000
- Scuffing	[KBa]	1.000
Helical load factor scuffing	[Kbg]	1.267
Number of load cycles (in mio.)	[NL]	5.760 3.147
Rack length (mm)	[1]	1000.000

3. TOOTH ROOT STRENGTH

Calculation of Tooth form coefficients accordin	ig method: B			
Internal toothing: Calculation of roF and sFn a	ccording to ISO 6336-	3:2007-04-01		
Internal toothing: Calculation of YF, YS	with pinion type cutte	er (z0=50, x0=	0.000, rofP*= 0.380)	
		Pinion F	Rack -	
Calculated with profile shift	[x]	0.0000	0.0000	
Tooth form factor	[YF]	1.18	1.01	
Stress correction factor	[YS]	2.06	2.61	
Working angle (°)	[alfFen]	17.17	20.00	
Bending moment arm (mm)	[hF]	4.99	5.80	
Tooth thickness at root (mm)	[sFn]	12.43	14.39	
Tooth root radius (mm)	[roF]	3.28	2.28	
(hF* = 0.832/0.967 sFn* = 2.072/2.398 rd	$F^* = 0.547/0.380$			
(dsFn (mm) = 161.375/ 0.000 alfsFn(°) = 3	0.00/30.00 qs = 1.89	93/ 3.156)		
Helix angle factor	[Ybet]		0.875	
Deep tooth factor	IYDTI		1.000	
Gear rim factor	[YB]	1.00	1.00	
Effective facewidth (mm)	[beff]	80.00	85.00	
Nominal stress at tooth root (N/mm ²)	[sigF0]	405.25	412.80	
Tooth root stress (N/mm ²)	[sigF]	565.37	575.90	
Permissible bending stress at root of Test-gea	r			
Notch sensitivity factor	[YdrelT]	0.994	1.006	
Surface factor	[YRrelT]	0.957	0.957	
size factor (Tooth root)	[YX]	0.990	0.990	
Finite life factor	[YNT]	0.987	0.999	
[YdrelT*Y	RrelT*YX*YNT]	0.929	0.952	
Alternating bending factor (mean stress influer	nce coefficient)	[YM]	1.000	1.000
Stress correction factor	[Yst]		2.00	
Yst*sigFlim (N/mm²)	[sigFE]	860.00	860.00	

Permissible tooth root stress (N/mm ²)	[sigFP=sigFG/SFmin]	570.81	584.69
Limit strength tooth root (N/mm ²)	[sigFG]	799.13	818.57
Required safety	[SFmin]	1.40	1.40
Safety for Tooth root stress	[SF=sigFG/sigF]	1.41	1.42
Transmittable power (kW)	[kWRating]	4.04	4.06

4. SAFETY AGAINST PITTING (TOOTH FLANK)

	Pinion Rack -			
Zone factor	[ZH]		2.425	
Elasticity coefficient (√N/mm)	[ZE]		189.812	
Contact ratio factor	[Zeps]		0.763	
Helix angle factor	[Zbet]		1.017	
Effective facewidth (mm)	[beff]		80.00	
Nominal contact stress (N/mm ²)	[sigH0]		912.16	
Contact stress at operating pitch circle (N/mm ²)	[sigHw]		1080.90	
Single tooth contact factor	[ZB,ZD]	1.00	1.00	
Contact stress (N/mm²)	[sigHB, sigHD]	1080.90	1080.90	
Lubrication coefficient at NI	[7]]	1.062	1.052	
		1.062	1.052	
	[ZV]	0.957	0.963	
Roughness coefficient at NL	[ZR]	0.983	0.986	
Material pairing coefficient at NL	[ZW]	1.000	1.000	
Finite life factor	[ZNT]	1.178	1.233	
	[ZL*ZV*ZR*ZNT]	1.176	1.232	
Small no. of pittings permissible:	no			
Size factor (flank)	[ZX]	1.000	1.000	
Permissible contact stress (N/mm ²)	[sigHP=sigHG/SHmin]	1764.47	1847.29	
Pitting stress limit (N/mm²)	[sigHG]	1764.47	1847.29	
Required safety	[SHmin]	1.00	1.00	
Safety factor for contact stress at operating pitch of	circle			
	[SHw]	1.63	1.71	
Safety for stress at single tooth contact	[SHBD=sigHG/sigHBI	D] 1.63	1.71	
(Safety regarding transmittable torque)	[(SHBD)^2]	2.66	2.92	
Transmittable power (kW)	[kWRating]	10.66	11.68	

4b. MICROPITTING ACCORDING TO ISO/TR 15144-1:2014

Calculation did not run. (Lubricant: Load stage micropitting test is unknown.)

5. STRENGTH AGAINST SCUFFING

Calculation method according to ISO TR 13989:2000

The calculation of load capacity for scuffing does not of	cover grease.		
The FZG-Test stage	[FZGtestA] is only		
estimated for grease.			
The calculation can only serve as a rough guide.!			
Lubrication coefficient (for lubrication type)	[XS]	1.200	
Scuffing test and load stage	[FZGtest]	FZG - Test A / 8.3 / 90 (ISO 14635 - 1)	12
Multiple meshing factor	[Xmp]	1.000	

Relative structure coefficient (Scuffing)	[XWrelT]	1.000	
Thermal contact factor (N/mm/s^.5/K)	[BM]	13.780	13.780
Relevant tip relief (µm)	[Ca]	2.00	2.00
Optimal tip relief (µm)	[Ceff]	69.71	
Ca taken as optimal in the calculation (0=no, 1=ves)		0	0
Effective facewidth (mm)	[beff]	80.000	
Applicable circumferential force/facewidth (N/mm)	[wBt]	1606.159	
Kbg = 1.267, wBt*Kbg = 2034.743			
Angle factor	[Xalfbet]	0.981	
(ε1:0.782, ε2:0.934)			
Flash temperature-criteria			
Lubricant factor	[XL]	0.725	
Tooth mass temperature (°C)	[theMi]	43.47	
theMi = theoil + XS*0.47*Xmp*theflm	[theflm]	6.16	
Scuffing temperature (°C)	[theS]	314.96	
Coordinate gamma (point of highest temp.)	[Gamma]	-0.556	
[Gamma.A]=-0.556 [Gamma.E]=0.466			
Highest contact temp. (°C)	[theB]	64.20	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058	
Approach factor	[XJ]	1.218	
Load sharing factor	[XGam]	0.758	
Dynamic viscosity (mPa*s)	[etaM]	618.24 (40.	0 °C)
Coefficient of friction	[mym]	0.149	
Required safety	[SBmin]	2.000	
Safety factor for scuffing (flash temperature)	[SB]	11.362	
Integral temperature-criteria			
Lubricant factor	[XL]	1.000	
Tooth mass temperature (°C)	[theMC]	46.75	
theMC = theoil + XS*0.70*theflaint	[theflaint]	8.03	
Integral scuffing temperature (°C)	[theSint]	357.16	
Flash factor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058	
Running-in factor (well run in)	[XE]	1.000	
Contact ratio factor	[Xeps]	0.277	
Dynamic viscosity (mPa*s)	[etaOil]	618.24 (40.	0 °C)
Mean coefficient of friction	[mym]	0.122	
Geometry factor	[XBE]	0.303	
Meshing factor	[XQ]	1.000	
Tip relief factor	[XCa]	1.096	
Integral tooth flank temperature (°C)	[theint]	58.80	
Required safety	[SSmin]	1.800	
Safety factor for scuffing (intgtemp.)	[SSint]	6.074	
Safety referring to transmittable torque	[SSL]	16.872	

6. MEASUREMENTS FOR TOOTH THICKNESS

		Pinion Rack -	
Tooth thickness deviation	DIN 3967 f2	25 DIN 3967 f25	
Tooth thickness allowance (normal section) (mm)	[As.e/i]	-0.026 / -0.076	-0.026 / -0.076
Number of teeth spanned	[k]	4.000	
(Internal toothing: k = (Measurement gap number)			
Base tangent length (no backlash) (mm)	[Wk]	64.592	
Actual base tangent length ('span') (mm)	[Wk.e/i]	64.568 / 64.521	
(mm)	[ΔWk.e/i]	-0.024 / -0.071	

Diameter of contact point (mm)	[dMWk.m]	174.:	381		
Theoretical diameter of ball/pin (mm)	[DM]	10.3	224	11	1.666
Effective Diameter of ball/pin (mm)	[DMeff]	10.	500	12	2.000
Theor. dim. centre to ball (mm)	[MrK]	94.4	432	54	1.596
Radial one ball mass (mm)	[MrK.e/i]	94.401 /	94.341	54.560 /	54.491
Diameter of contact point (mm)	[dMMr.m]	174.	338		
Diametral measurement over two balls without clearance (mn	n) [MdK]		188.863		
Diametral two ball measure (mm)	[MdK.e/i]	188.802 /	188.683		
Diametral measurement over rolls without clearance (mm)	[MdR]	188	.863		
Measurement over pins according to DIN 3960 (mm)	[MdR.e/i]	188.802 /	188.683		
Measurement over 3 pins (axial) according to AGMA 2002 (m	ım)				
	[dk3A.e/i]	188.802 /	188.683		
Chordal tooth thickness (no backlash) (mm)	[sc]	9.4	21	9.	425
Actual chordal tooth thickness (mm)	[sc.e/i]	9.395 /	9.345	9.399 /	9.349
Reference chordal height from da.m (mm)	[ha]	6.	108	Ę	5.996
Tooth thickness (Arc) (mm)	[sn]	9.4	425	ę	9.425
(mm)	[sn.e/i]	9.399 /	9.349	9.399 /	9.349
Backlash free center distance (mm)	[aControl.e/i]	13	0.892 / 1	30.754	
Backlash free center distance, allowances (mm)	[ita]	-	0.071 /	-0.209	
Tip clearance	[c0.i(aControl)]	1.	327		1.327
Centre distance allowances (mm)	[Aa.e/i]		0.020 /	-0.020	-
Circumferential backlash from Aa (mm)	[jtw_Aa.e/i]		0.015 /	-0.015	
Radial clearance (mm)	[jrw]		0.229 /	0.051	
Circumferential backlash (transverse section) (mm)	[jtw]		0.172 /	0.039	
Torsional angle for fixed gear 1 (°)		0	.0011 / 0.	0003	
Normal backlash (mm)	[jnw]		0.157 /	0.035	

7. GEAR ACCURACY

According to ISO 1328:1995

---- Pinion ----- Rack -

One or several gear data (mn, b or d) lay beyond the limits covered by the standard.

The tolerances are calculated on the basis of the formulae in the standard.

However, their values are outside the official range of validity!

	[Q-ISO1328]	6	6
	[fptT]	10.00	10.00
	[fpbT]	9.40	9.40
ו)	[Fpk/8T]	17.00	17.00
	[ffaT]	12.00	12.00
	[fHaT]	9.50	9.50
	[FaT]	15.00	15.00
	[ffbT]	10.00	12.00
	[fHbT]	10.00	12.00
	[FbT]	15.00	17.00
	[FpT]	36.00	36.00
	[FrT]	29.00	29.00
	[FisT]	51.00	51.00
(µm)	[fisT]	15.00	15.00
	[FidT]	51.00	51.00
	[fidT]	22.00	22.00
	η) (μm)	[Q-ISO1328] [fptT] [fpbT] h) [Fpk/8T] [ffaT] [ffaT] [fHaT] [fHbT] [fHbT] [FbT] [FpT] [FrT] [FisT] (μm) [fisT] [FidT] [fidT]	[Q-ISO1328] 6 [fptT] 10.00 [fpbT] 9.40 [fpbT] 9.40 [fpk/8T] 17.00 [ffaT] 12.00 [ffaT] 9.50 [ffaT] 15.00 [ffbT] 10.00 [ffbT] 10.00 [ffbT] 10.00 [fbT] 15.00 [FbT] 36.00 [FpT] 36.00 [FrT] 29.00 [FisT] 51.00 [fidT] 51.00 [fidT] 51.00

(Tolerances of rack following

DIN 3961:1978 mit der Zähnezahl und dem Teilkreis des Ritzels berechnet)

Axis alignm Maximum v Maximum v	nent toleranc value for dev value for incli	es (recomme iation error c ination error	endation acc. f axis (μm) of axes (μm)	ISO TR 1 [fS [fS	0064:1992, igbet] igdel]	Quality	6)	31.00 (Fb=31.00) 62.00
8. ADDITIC	DNAL DATA							
Mean coeff	f. of friction (a	acc. Nieman	n)	[mi	um]			0.071
Wear slidin	ig coef. by Ni	iemann		[ze	tw]			0.763
Gear powe	r loss (kW)			[P\	/Z]			0.025
(Meshing e	fficiency (%)			[eta	az]			99.376)
9. DETERM	MINATION O	F TOOTH F	<u>ORM</u>					
Data for the Data not av	e tooth form (vailable.	calculation :						
<u>10. SERVI</u>	<u>CE LIFE, DA</u>	MAGE						
Required s	afety for toot	h root	[SI	-min]			1.40	
Required s	afety for toot	h flank	[SI	Hmin]			1.00	
Service life	(calculated)	with required	l safeties):					
System ser	rvice life (h)		[Ha	att]			32251	
Tooth root	service life (ł	n)	[HI	-att]	3.225	e+004		4.261e+004
Note: The	service life (entry 1e+006	(h) 5 h means th	HI] at the Service	Hatt] e life > 1,0	1e+(000,000 h.	006		1e+006
Damage ca	alculated on t	the basis of t	he required s	ervice life	. [H] (2000	0.0 h)	
F1%	F2%	H1%	H2%					
62.01	46.93	0.00	0.00					
Damage ca	alculated on I	basis of syst	em service life	e [H	latt] (3225	1.2 h)		
F1%	F2%	H1%	H2%					
100.00	75.68	0.00	0.00					
REMARKS	<u>):</u> cations with	[.e/i] imply	/: Maximum [é	e] and Mir	nimal value	[i] with		
conside	eration of all t	olerances						
Specific	ations with	[.m] imply	: Mean value	within tol	erance			
 For the 	backlash tole	erance, the c	center distanc	e tolerand	ces and the	tooth thi	ckness	

deviation are taken into account. Shown is the maximal and the minimal backlash corresponding the largest resp. the smallest allowances The calculation is done for the Operating pitch circle..

- Calculation of Zbet according Corrigendum 1 ISO 6336-2:2008 with Zbet = 1/(COS(beta)^0.5)

- Details of calculation method:
- cg according to method B
- KV according to method B
- KHb, KFb according method C
- fma following equation (64), fsh following (57/58), Fbx following (52/53/57)
- KHa, KFa according to method B

- The logarithmically interpolated value taken from the values for the fatigue strength and the static strength, based on the number of load cycles, is used for coefficients ZL, ZV, ZR, ZW, ZX, YdreIT, YRreIT and YX...

End of Report

lines: 495

PŘÍLOHA II

Report s výpočtem návrhu hřídele programem KISSsoft

		— KISSsoft Release	03/2016 F
KISSsoft academic	license for Uni Pilsen		
		File	
Name :	KISSsoft_hridel_navrh		
Changed by:	joskozak	on: 03.05.2018	at: 10:53:29

Analysis of shafts, axle and beams

Input data

Coordinate system shaft: see picture W-002

Label	Shaft 1
Drawing	
Initial position (mm)	0.000
Length (mm)	520.000
Speed (1/min)	4.80
Sense of rotation: clockwise	
Material	C45 (1)
Young's modulus (N/mm²)	206000.000
Poisson's ratio nu	0.300
Density (kg/m³)	7830.000
Coefficient of thermal expansion (10^-6/K)	11.500
Temperature (°C)	20.000
Weight of shaft (kg)	39.273
(Notice: Weight stands for the shaft only without co	nsidering the gears)
Weight of shaft, including additional masses (kg)	42.889
Mass moment of inertia (kg*m²)	0.077
Momentum of mass GD2 (Nm²)	3.012
Position in space (°)	90.000
Gears mounted with stiffness according to ISO	
Consider deformations due to shearing	
Shear correction coefficient	1.100
Contact angle of rolling bearings is considered	
Tolerance field: Mean value	
Reference temperature (°C)	20.000

Shaft definition		<u>(Shaft 1)</u>		
Outer contour				
Cylinder (Cylinder)			0.000mm	80.000mm
Diameter (mm)	[d]	100.0000		
Length (mm)	[1]	80.0000		
Surface roughness (µm)	[Rz]	16.0000		
Key way (Key way)			10.000mm	70.000mm
l=60.00 (mm), Rz=8.0, ⁻	Turned (Ra=3.2	µm/125µin)		
Cylinder (Cylinder)			80.000mm	160.000mm
Diameter (mm)	[d]	130.0000		
Length (mm)	[1]	80.0000		
Surface roughness (µm)	[Rz]	16.0000		
Cylinder (Cylinder)			160.000mm	360.000mm
Diameter (mm)	[d]	120.0000		
Length (mm)	[1]	200.0000		
Surface roughness (µm)	[Rz]	16.0000		
Cylinder (Cylinder)			360.000mm	<u>520.000mm</u>
Diameter (mm)	[d]	92.0000		
Length (mm)	[1]	160.0000		
Surface roughness (µm)	[Rz]	16.0000		

Forces

Type of force element Label in the model Position on shaft (mm) [Ylocal] Position in global system (mm) [Yglobal] Operating pitch diameter (mm) Helix angle (°) Working pressure angle at normal section (°) Position of contact (°) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm) Type of force element Label in the model Position on shaft (mm) [Ylocal] Position in global system (mm) [Yglobal] Effective diameter (mm) Radial force factor (-) Direction of the radial force (°) Axial force factor (-) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm) Mass (kg) Mass moment of inertia Jp (kg*m²) Mass moment of inertia Jxx (kg*m²) Mass moment of inertia Jzz (kg*m²) Eccentricity (mm)

Bearing

Label in the model Bearing type Bearing position (mm) Bearing position (mm) Degrees of freedom X: fixedY: fixedZ: fixed Rx: freeRy: freeRz: free

Label in the model Bearing type Bearing position (mm)

Cylindrical gear Pastorek 40.0000 40.0000 163.4370 15.0000 right 20.0000 0.0000 80.0000 4.0000 driven (Input) 7957.7472 -26092.8911 -36693.7282 -97379.9954 0.0000 -2132.2719 Coupling Coupling / Motor 490.0000 490.0000 0.0000 0.0000

490.0000 490.0000 0.0000 0.0000 0.0000 60.0000 4.0000 driving (Output) -7957.7472 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Podpora B Fixed bearing adjusted on both sides 121.000 121.000

Podpora A Free bearing 300.000

[Ylokal]

[Yglobal]

[Ylokal]

Bearing position (mm) Degrees of freedom X: fixedY: freeZ: fixed Rx: freeRy: freeRz: free

 Shaft 'Shaft 1: Cylindrical gear 'Pastorek' (y=
 40.0000 (mm)) is taken into account as component of the shaft.

 EI (y=
 0.0000 (mm)): 1011200.1354 (Nm²), EI (y=
 80.0000 (mm)): 1011200.1354 (Nm²), m (yS=
 40.0000 (mm)): 3.6159 (kg)

 Jp:
 0.0124 (kg*m²), Jxx:
 0.0081 (kg*m²), Jzz:
 0.0081 (kg*m²)

300.000

Results

Shaft

Maximum deflection (mm)	0.057
Position of the maximum (mm)	0.000
Mass center of gravity (mm)	240.972
Total axial load (N)	-26092.891
Torsion under torque (°)	-0.187

[Yglobal]

Bearing

Rolling bearings, classical calculation (contact angle considered)

Shaft 'Shaft 1' Bearing 'Podpora B'

Position (Y-coordinate)	[y]	121.00	mm
Bearing reaction force	[Fx]	65.211	kN
Bearing reaction force	[Fy]	26.514	kN
Bearing reaction force	[Fz]	141.447	kN
Bearing reaction force	[Fr]	155.755	kN (65.25°)
Displacement of bearing	[u _X]	0.000	μm
Displacement of bearing	[u _y]	0.000	μm
Displacement of bearing	[u _Z]	0.000	μm
Displacement of bearing	[ur]	0.000	μm
Misalignment of bearing	[r _X]	0.244	mrad (0.84')
Misalignment of bearing	[ry]	-0.283	mrad (-0.97')
Misalignment of bearing	[r _z]	-0.158	mrad (-0.54')
Misalignment of bearing	[r _r]	0.291	mrad (1')
Shaft 'Shaft 1' Bearing 'Podpora A'			
Position (Y-coordinate)	[y]	300.00	mm

Position (Y-coordinate)	[y]	300.00	mm
Bearing reaction force	[Fx]	-28.515	kN
Bearing reaction force	[Fy]	0.000	kN
Bearing reaction force	[Fz]	-44.064	kN
Bearing reaction force	[Fr]	52.486	kN (-122.91°)
Displacement of bearing	[u _X]	0.000	μm
Displacement of bearing	[uy]	-0.016	μm
Displacement of bearing	[u _Z]	0.000	μm
Displacement of bearing	[u _r]	0.000	μm

Misalignment of bearing	[r _X]	-0.057	mrad (-	0.2')
Misalignment of bearing	[ry]	-1.113	mrad (-	3.83')
Misalignment of bearing	[r _z]	0.037	mrad (0).13')
Misalignment of bearing	[r _r]	0.068	mrad (0).23')

Figure: Deformation (bending etc.) (Arbitrary plane 237.5570603 120)

Nominal stresses, without taking into account stress concentrations GEH(von Mises): sigV = ((sigB+sigZ,D)^2 + 3*(tauT+tauS)^2)^1/2 SSH(Tresca): sigV = ((sigB-sigZ,D)^2 + 4*(tauT+tauS)^2)^1/2

Figure: Equivalent stress

End of Report

lines: 205

PŘÍLOHA III

Report s výpočtem hřídele s ložisky programem KISSsoft

		— KISSsoft Release	03/2016 F
KISSsoft academic	license for Uni Pilsen		
		File	
Name :	KISSsoft_hridel_dodelan	а	
Changed by:	joskozak	on: 03.05.2018	at: 11:00:24

Analysis of shafts, axle and beams

Input data

Coordinate system shaft: see picture W-002

Label	Shaft 1
Drawing	
Initial position (mm)	0.000
Length (mm)	520.000
Speed (1/min)	4.80
Sense of rotation: clockwise	
Material	C45 (1)
Young's modulus (N/mm²)	206000.000
Poisson's ratio nu	0.300
Density (kg/m³)	7830.000
Coefficient of thermal expansion (10^-6/K)	11.500
Temperature (°C)	20.000
Weight of shaft (kg)	39.273
(Notice: Weight stands for the shaft only without co	nsidering the gears)
Weight of shaft, including additional masses (kg)	42.889
Mass moment of inertia (kg*m²)	0.077
Momentum of mass GD2 (Nm²)	3.012
Position in space (°)	90.000
Gears mounted with stiffness according to ISO	
Consider deformations due to shearing	
Shear correction coefficient	1.100
Contact angle of rolling bearings is considered	
Tolerance field: Mean value	
Reference temperature (°C)	20.000

Figure: Load applications

Shaft definition		<u>(Shaft 1)</u>		
Outer contour				
Cylinder (Cylinder)			0.000mm	80.000mm
Diameter (mm)	[d]	100.0000		
Length (mm)	[I]	80.0000		
Surface roughness (µm)	[Rz]	16.0000		
Key way (Key way)			10.000mm	70.000mm
l=60.00 (mm), Rz=8.0, T	urned (Ra=3	.2µm/125µin)		
Cylinder (Cylinder)			80.000mm	160.000mm
Diameter (mm)	[d]	130.0000		
Length (mm)	[I]	80.0000		
Surface roughness (µm)	[Rz]	16.0000		
Cylinder (Cylinder)			160.000mm .	<u>360.000mm</u>
Diameter (mm)	[d]	120.0000		
Length (mm)	[I]	200.0000		
Surface roughness (µm)	[Rz]	16.0000		
Cylinder (Cylinder)			360.000mm	<u>520.000mm</u>
Diameter (mm)	[d]	92.0000		
Length (mm)	[I]	160.0000		
Surface roughness (µm)	[Rz]	16.0000		

Forces

Type of force element Label in the model Position on shaft (mm) [Ylocal] Position in global system (mm) [Yglobal] Operating pitch diameter (mm) Helix angle (°) Working pressure angle at normal section (°) Position of contact (°) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm) Type of force element Label in the model Position on shaft (mm) [Ylocal] Position in global system (mm) [Yglobal] Effective diameter (mm) Radial force factor (-) Direction of the radial force (°) Axial force factor (-) Length of load application (mm) Power (kW) Torque (Nm) Axial force (N) Shearing force X (N) Shearing force Z (N) Bending moment X (Nm) Bending moment Z (Nm) Mass (kg) Mass moment of inertia Jp (kg*m²) Mass moment of inertia Jxx (kg*m²) Mass moment of inertia Jzz (kg*m²) Eccentricity (mm)

Bearing

Label in the model		Lozisko_B
Bearing type		SKF *NU 226 ECJ
Bearing type		Cylindrical roller bearing (single row)
Bearing position (mm)	[Ylokal]	120.000
Bearing position (mm)	[Yglobal]	120.000
Attachment of external ring		Free bearing
Inner diameter (mm)	[d]	130.000
External diameter (mm)	[D]	230.000
Width (mm)	[b]	40.000
Corner radius (mm)	[r]	3.000
Basic static load rating	[C ₀]	455.000

Cylindrical gear Pastorek 40.0000 40.0000 163.4370 15.0000 right 20.0000 0.0000 80.0000 4.0000 driven (Input) 7957.7472 -26092.8911 -36693.7282 -97379.9954 0.0000 -2132.2719 Coupling

Coupling / Motor 495.0000 495.0000 0.0000 0.0000 0.0000 0.0000 50.0000 4.0000 driving (Output) -7957.7472 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Basic dynamic load rating Fatigue load rating	[C] [CU]	415.000 51.000
Values for approximated geometry:		
Basic dynamic load rating (kN)	[C _{theo}]	0.000
Basic static load rating (kN)	[C _{0theo}]	0.000

	Lozisko_A
	SKF 6224-Z
	Deep groove ball bearing (single row)
[Ylokal]	300.000
[Yglobal]	300.000
	Fixed bearing
[d]	120.000
[D]	215.000
[b]	40.000
[r]	2.100
[C ₀]	118.000
[C]	146.000
[CU]	3.900
[C _{theo}]	0.000
[C _{0theo}]	0.000
	[Ylokal] [Yglobal] [d] [D] [b] [r] [C] [C] [CU] [Ctheo] [C0theo]

 Shaft 'Shaft 1': Cylindrical gear 'Pastorek' (y=
 40.0000 (mm)) is taken into account as component of the shaft.

 EI (y=
 0.0000 (mm)): 1011200.1354 (Nm²), EI (y=
 80.0000 (mm)): 1011200.1354 (Nm²), m (yS=
 40.0000 (mm)): 3.6159 (kg)

 Jp:
 0.0124 (kg*m²), Jxx:
 0.0081 (kg*m²), Jzz:
 0.0081 (kg*m²)

Results

Shaft

Maximum deflection (mm)	0.134
Position of the maximum (mm)	0.000
Mass center of gravity (mm)	240.972
Total axial load (N)	-26092.891
Torsion under torque (°)	-0.191

Bearing

Probability of failure Axial clearance	[n] [uA]	10.00 10.00	% µm		
Lubricant	Oil: ISO-VG 220				
Lubricant - service temperature	[TB]	20.00	°C		
Rolling bearings, classical calculation (contact angle considered)					

Shaft 'Shaft 1' Rolling bearing 'Lozisko_B'

Position (Y-coordinate)	[y]	120.00	mm
Position (Y-coordinate)	[y]	120.00	mm

E su de set la set		454.00	1.81
Equivalent load	[P]	154.89	KIN
Equivalent load	[P0]	104.69	KIN
	n . 1	1.000	h.
Nominal bearing service life	[Lnh]	92768.13	n
Operating viscosity	[v]	912.87	mm²/s
Static safety factor	[S ₀]	2.94	
Bearing reaction force	[Fx]	64.847	kN
Bearing reaction force	[Fy]	0.000	kN
Bearing reaction force	[Fz]	140.657	kN
Bearing reaction force	[Fr]	154.885	kN (65.25°)
Bearing reaction moment	[Mx]	-0.00	Nm
Bearing reaction moment	[My]	0.00	Nm
Bearing reaction moment	[Mz]	-0.00	Nm
Bearing reaction moment	[Mr]	0.00	Nm (-180°)
Oil level	(H)	0.000	mm
Rolling moment of friction	[Mrr]	2.353	Nm
Sliding moment of friction	[MeI]	3.859	Nm
Moment of friction, seals	[Meool]	0.000	Nm
Memory of friction for apple determined appe		cicco	000/1 EN-2012
Moment of friction flow losses	Malas al		000/1 EN.2013
Torque of friction		6.000	Nm
Power loss		0.212	
Powerloss	Ploss	3.123	vv
The moment of friction is calculated accordin	g to the details	in SKF Catalo	g 2013.
The calculation is always performed with a c	oefficient for add	ditives in the lu	ubricant µbl=0.15.
Displacement of bearing	[u _X]	-17.309	μm
Displacement of bearing	[uy]	-11.965	μm
Displacement of bearing	[u _Z]	-37.443	μm
Displacement of bearing	[ur]	41.250	µm (-114.81°)
Misalignment of bearing	[r _X]	0.513	mrad (1.76')
Misalignment of bearing	[ry]	-0.279	mrad (-0.96')
Misalignment of bearing	[r _z]	-0.298	mrad (-1.03')
Misalignment of bearing	[rr]	0.593	mrad (2.04')
Shaft 'Shaft 1' Rolling bearing 'Lozisko A			
Position (Y-coordinate)	[v]	300.00	mm
Equivalent load	[P]	60.47	kN
Equivalent load	[Po]	51.63	kN
life modification factor for reliability[a1]	1. 01	1 000	
Nominal bearing service life	[]]	48869 80	h
		-00000.00	11 ma ma 2/a
Static safety factor	[V] [So]	912.87	mm-/s
	[50]	2.29	
Bearing reaction force	[⊢x]	-28.154	KIN
Bearing reaction force	[⊢y]	26.513	KN
Bearing reaction force	[Fz]	-43.277	kN
Bearing reaction force	[Fr]	51.629	kN (-123.05°)
Oil level	[H]	0.000	mm

Rolling moment of friction	[Mrr]	0.999	Nm		
Sliding moment of friction	[M _{SI}]	13.159	Nm		
Moment of friction, seals	[M _{seal}]	0.000	Nm		
Moment of friction for seals determined acco	rding to SKF main	catalog 10	0000/1 EN:2013		
Moment of friction flow losses	[Mdrag]	0.000	Nm		
Torque of friction	[M _{loss}]	14.158	Nm		
Power loss	[Ploss]	7.117	W		
The moment of friction is calculated according to the details in SKF Catalog 2013.					

 $\begin{array}{c} \mbox{The calculation is always performed with a coefficient for additives in the lubricant μl=0.15$.} \\ \mbox{Displacement of bearing} & [u_X] & 8.130 & \mu m \end{array}$

[uy]	-10.000	μm
[u _Z]	11.398	μm
[u _r]	14.000	µm (54.5°)
[r _X]	0.214	mrad (0.74')
[ry]	-1.113	mrad (-3.83')
[r _z]	-0.104	mrad (-0.36')
[r _r]	0.239	mrad (0.82')
	[uy] [uz] [ur] [rx] [ry] [rz] [rr]	

age (%)		[H] (20000.000)
B1	B2		
21.56	40.93		
21.56	40.93		
ation (%) B2	2	[H] (20000.000)
74.	24		
.ozisko_B			
ozisko_A			
	age (%) B1 21.56 21.56 ation (%) B2 I 74.: .ozisko_B .ozisko_A	age (%) B1 B2 21.56 40.93 21.56 40.93 ation (%) B2 I 74.24 .ozisko_B .ozisko_A	age (%) [H] (B1 B2 21.56 40.93 21.56 40.93 ation (%) [H] (B2 I 74.24 .ozisko_B .ozisko_A

Figure: Deformation (bending etc.) (Arbitrary plane 241.2175485 120)

Nominal stresses, without taking into account stress concentrations GEH(von Mises): sigV = ((sigB+sigZ,D)^2 + 3*(tauT+tauS)^2)^1/2 SSH(Tresca): sigV = ((sigB-sigZ,D)^2 + 4*(tauT+tauS)^2)^1/2

Figure: Equivalent stress

End of Report

lines: 275

PŘÍLOHA IV

Report s výpočtem šroubů programem KISSsoft

		KISSsoft Release	03/2016 F
KISSsoft academic	license for Uni Pilsen		00/20101
		File	
Name : Changed by:	Srouby joskozak	on: 07.05.2018	at: 10:45:29

Bolt calculation according to VDI 2230:2015

INPUTS:

Configuration: Multi-bolted joint with arbitrary position of the screw

The forces are calculated under the assumption of rigid plates.

The validity of this assumption has to be checked by the user..

Calculation using assembly temperature

Assembly temperature (°C)	[TM]	20.00	
Thread standard	Standard threa	ad	
Label	M36		
Pitch (mm)	[P]	4.00	
Flank angle (°)	[β]	60.00	
Reference diameter (mm)	[d]	36.00	
Flank diameter (mm)	[d2]	33.40	
Core diameter (mm)	[d3]	31.09	
Nominal cross section of thread (mm ²)	[AN]	1017.88	
Core cross section of the thread (mm ²)	[Ad3]	759.28	
Thread manufacturing	Final heat trea	ted	
Surface roughness (µm)	[Rz]	16.00	
Axial force at flange (N)	[FaU/FaO]	23614.00 /	0.00
Shearing force at flange (N)	[Fqx]	88127.00	
Shearing force at flange (N)	[Fqy]	32320.00	
Torque at flange (Nm)	[Mt]	10341.09	
Bending moment at flange (Nm)	[MbxU/MbxO]	25413.89/	0.00
Bending moment at flange (Nm)	[MbyU/MbyO]	3809.68 /	0.00
Required clamping force for sealing (N)	[Fd]	0.00	
Coefficient of friction between parts	[µ]	0.100)
Number of screws	[n]	8	
Chosen screw	[no.]	7	
Axial force at single screw (N)	[FAU/FAO]	0.00 /	52817.72
Required clamping force:			
For shearing force transmission (N)	[FKQ]	176028.52	
- Maximal clamping force applied			
- Direction of shearing force is not taken into account			
For sealing (N)	[FKP]	0.00	

Load or	<u>n single screws</u>					
No.	X [mn	n] Y [mm]	Factor	Fa1 [N]	Fa2 [N]	Fkerf [N]
1	-215.00	-120.00	1.00	0.00	-42484.36	176028.52
2	215.00	-120.00	1.00	0.00	-46914.22	176028.52
3	-215.00	-40.00	1.00	0.00	-10717.00	169465.30
4	215.00	-40.00	1.00	0.00	-15146.86	169465.30
5	-215.00	40.00	1.00	0.00	21050.36	169465.30
6	215.00	40.00	1.00	0.00	16620.50	169465.30
7	-215.00	120.00	1.00	0.00	52817.72	176028.52
8	215.00	120.00	1.00	0.00	48387.86	176028.52

Figure: Bolt positions

nch (by estimating the coefficier	nt of friction)
[αA]	1.60
of friction)	
[amin]	1.00
[n]	0.16
[IA]	92.00
[ak]	0.00
[lk]	16.80
[µG]	0.100/ 0.100
[µK]	0.100/ 0.100
w with socket head bolt DIN EN	ISO 4762:2004
[d]	36.00
[1]	140.00
[d1]	36.00
[l1]	56.00
[b]	84.00
[dw]	52.54
[da]	39.40
(µm) [Rz]	16.00
	nch (by estimating the coefficien [αA] of friction) [αmin] [n] [IA] [ak] [Ik] [μG] [μK] w with socket head bolt DIN EN [d] [1] [d1] [1] [b] [dw] [da] (μm) [Rz]

Stressed cross section of screw (mm ²)	[As]	816.72
Height of bolt head (mm)	[k]	36.00
Diameter of screw head (mm)	[dk]	54.00
Free thread length (mm)	[13]	49.00
Width across flats (mm)	[s]	27.00
Reduction coefficient	[кт]	0.50
Strength class		8.8
Tensile strength (N/mm²)	[Rm]	830.00
Yield point (N/mm²)	[Rp0.2]	660.00
Maximum yield point (N/mm²)	[Rp,max]	660.00
Young's modulus screw (N/mm²)	[ES]	205000.00
Clamped parts: Plates		
Number of parts	ſiPl	1
	[11]	I
Part A		
Material	S235J2 (St37.3 N	1)
Depth of Layer (mm)	[hi]	100.00
Young's modulus (N/mm²)	[Ep]	206000.00
Permissible surface pressure (N/mm ²)	[pG]	490.00
Surface roughness (µm)	[Rz]	16.00
Thread with pocket hole		
Clamping length (mm)	[lk]	100.00
Effective Clamping length (mm)	[lkeff]	105.00
(including washers and counter bore depth or extension	on sleeves)	
Through hole standard	ISO 273:1979 (DI	N 273) fine
Through hole standard Diameter through hole (mm)	ISO 273:1979 (DI [dh]	N 273) fine 37.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm)	ISO 273:1979 (DI [dh] [cK]	N 273) fine 37.00 0.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm)	ISO 273:1979 (DI [dh] [cK]	N 273) fine 37.00 0.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head:	ISO 273:1979 (DI [dh] [cK]	N 273) fine 37.00 0.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089:	N 273) fine 37.00 0.00 2000
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2]	N 273) fine 37.00 0.00 2000 64.80
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1]	N 273) fine 37.00 0.00 2000 64.80 37.62
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [R2] [E]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [R2] [E] [pG]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [ED]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm) RESULTS:	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm) RESULTS: Virtual outer diameter of base body:	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 0.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm) RESULTS: Virtual outer diameter of base body: Diameter (mm) Diameter (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 206000.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm) RESULTS: Virtual outer diameter of base body: Diameter (mm) Diameter (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz] [DA'] [DA Gr]	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 206000.00 16.00 16.00
Through hole standard Diameter through hole (mm) Chamfer at head (mm) Washer bellow screw head: Standard External diameter (mm) Inner diameter (mm) Thickness (mm) Surface roughness (µm) Young's modulus (N/mm²) Permissible surface pressure (N/mm²) Blind hole Material Counter bore depth (mm) Young's modulus (N/mm²) Surface roughness (µm) RESULTS: Virtual outer diameter of base body: Diameter (mm) Diameter (mm) Diameter (mm)	ISO 273:1979 (DI [dh] [cK] DIN EN ISO 7089: [d2] [d1] [h] [Rz] [E] [pG] C45 (1) [ts] [Ep] [Rz] [DA'] [DA'] [DA.Gr] [rol	N 273) fine 37.00 0.00 2000 64.80 37.62 5.00 16.00 205000.00 1250.00 1250.00 1250.00 16.00 16.00 16.00

Ductility of flange ((mm/N)	[δP]	9.378833e-008
Addition for plate r	esilience (mm/N)	[δPzu]	5.665710e-008
Ductility of screw (mm/N)		[δS]	8.244872e-007
Load factor for cer	ntric load introduction	[Φn]	0.0262
Amount of embedd	ding (mm)	[fz]	0.0125
Preload loss (N)		[Fz]	13612.47
required assembly	preload:		
-minimum (N)		[FMmin]	241074.17
-maximum (N)		[FMmax]	385718.68
Pretension force a	ccording table (N)	[FMtab]	450000.00
Screw force at yiel	ld point (N)	[FM0.2]	540000.00
attained assembly	preload:		
-maximum (N)		[FM]	448345.40
(utilization of yield	strength (%)	[%Re]	90.00)
Pretension force (I	N)	[FV]	434732.93
Additional bolt load	d (N)	[FSA]	1384.54
Additional plate loa	ad (N)	[FPA]	51433.18
Fatigue load (N/m	m²)	[σa]	0.85
Fatigue life (N/mm	²)	[σAzul]	41.79
Number of load cy	rcles	[NZ]	>= 2000000
Screw extension a	ıt FMmin (mm)	[fSmin]	0.19876
	at FMmax (mm)	[fSmax]	0.31802
	at FM (mm)	[fS]	0.36966
Part extension	at FMmin (mm)	[fTmin]	0.02261
	at FMmax (mm)	[fTmax]	0.03618
	at FM (mm)	[fT]	0.04205

Calculation with maximum attained pretension force:

(utilization of yield strength (%)	[%Re]	90.00)
Mounting-Pretension force (N)	[FM]	448345.40
Pretension force (N)	[FV]	434732.93
Additional clamping force (reserve) (N)	[FKres]	39141.70
Equivalent stress (N/mm²)	[ored.M]	594.00
Equivalent stress (N/mm²)	[σred.B]	571.05
Tightening torque (Nm)	[MA]	2185.65
Loose torque (Nm)	[ML]	1558.38
Surface pressure		
(below screw head) (N/mm ²)	[pK]	473.98
(below washer) (N/mm ²)	[p]	254.51

Calculation with the minimum required assembly preload, tightening factor:						
Mounting-Pretension force (N)	[FMmin]	241074.17				
Equivalent stress (N/mm²)	[ored.M_FMmin]	319.39				
Equivalent stress (N/mm²)	[ored.B_FMmin]	307.81				
Tightening torque (Nm)	[MA_FMmin]	1175.22				
Loose torque (Nm)	[ML_FMmin]	815.38				
Surface pressure						
(below screw head) (N/mm ²)	[pK_FMmin]	255.53				
(below washer) (N/mm²)	[p]	137.21				

Calculation with the maximum required assembly preload with tightening factor:								
Mounting-Pretension force (N)	[FMmax]	385718.68						
Additional clamping force (reserve) (N)	[FKres]	39141.70						
Equivalent stress (N/mm²)	[ored.M_FMmax]	511.03						

1.60

Equivalent stress (N/mm²)	[σred.B_FMmax]	491.51
Tightening torque (Nm)	[MA_FMmax]	1880.35
Loose torque (Nm)	[ML_FMmax]	1333.88
Surface pressure		
(below screw head) (N/mm ²)	[pK_FMmax]	407.98
(below washer) (N/mm ²)	[p]	219.07
Remaining clamping force (N)	prce (N) [FKR]	
Permissible equivalent stress (N/mm ²)	[σ.Mzul]	594.00
Permissible equivalent stress (N/mm ²)	[σ.Bzul]	660.00
Support area		
(below screw head) (mm ²)	[ApK]	948.83
(below washer) (mm ²)	[Ap]	1767.01
Permissible surface pressure		
(below screw head) (N/mm ²)	[pKzul]	1250
(below washer) (N/mm ²)	[pzul]	490.00

SUMMARY:

The yield point must not be exceeded.

Calculation with the maximum required assembly preload with tightening factor:							
Safety against yield point	[SF]	1.34					
Safety against fatigue	[SD]	49.30					
Safety against pressure	[SP]	2.24					
Calculation with maximum attained pretension force:							
Safety against yield point	[SF]	1.16					
Safety against fatigue	[SD]	49.30					
Safety against pressure	[SP]	1.93					
Colculation with minimum attained protoncion forces							
Cafety excises alidian		4.00					
Safety against sliding	[56]	1.22					

Figure: Display of restraint-diagram

Remarks:

-The safeties (SF, SD, SP) are calculated according to VDI2230.

-Calculating safeties with the maximal assembly preload (FMmax).

-Safety against sliding [SG = FKR/FKerf] is calculated with:

FKR: with FM/ α A, FKerf = FKQ + FKP

-The calculation of the normal values for 90% usage (Preload

and tightening torque) follows the corresponding equation according VDI 2230.

These values correspond with the values in the tables in the VDI Standard. Small differences may however occur.

-Surface pressure under washers: Maximum external diameter for

calculating the support area is dw + 1.6*hs (VDI 2230: 2015, Formula 194).

-Total required clamp load according to (R2/4): FKerf >= Maxi(FKA + FKP, FKQ)

End of Report

lines: 248

PŘÍLOHA V

Výsledy simulace konzoly programem NX

5			4		3			2		1		
-A O 1:5	19 DETAIL C MĚŘÍTKO 1:2 18								E			
		23	Podlo	ožka MB 2₄	1	ČSN 0	2 3640			0,110	1	
		22	Matic	e KM 24		ČSN 0	2 3630			0 970	1	
	11	21	Kolík	25-160		ČSN 0	2 2150			0,606	2	
		20	Kolík	16_120		ČSN 0	2 2150			0.186		
	12	10	Motic	N16		ČON O	2 2 1 5 0			0,100	- -	
	5	10	ŏ			ČSN 02 1403				0,043	4	$\left \right $
	5	10	Šrou			CSN 02 1301			0,133	4	$\left \right $	
•	22	17	Srou	0 M12-50		ČSN U	2 1301			0,060	0	
		16	Srou	b M20-50		CSN 0	2 1144			0,144	1	
	00	15	Śrou	b M36-300		ČSN 02 1143 -			1,694	8		
	23	14	Šrou	b M20-100		ČSN 02 1143			0,323	8		
	9	13	Šrou	b M12-50		ČSN 02 1143			0,064	6		
	0	12	Spojł	ka Flender		Zapex ZNN - A			16,210	1		
	13	11	Elekt	romotor		Siemens 1LE1001			135,500	1		
	1	10	Váleð	čkové ložis	ko	SKF N	U 226 EC	J		6,280	1	
		9	Kulič	kové ložisk	0	SKF 6224-Z			5,585	1		
	8	8	Konz	ola		BP KKS 18-01.01			202,200	1	$\left \right $	
	10	<i>(</i>	Hreb	en		BP KKS 18-01/07		16326.4	44,877	2	$\left \right $	
	10	5	VICKO) ha		BP KKS 18-01/06		11 272	2,004	1		
	2		Podle	ua Džka		BP KKS 18-01/05		11 373	1 606	1	$\left \right $	
		3	Pasto	orek		BP KKS 18-01/04		16420.4	7,308	1	В	
	. –	2	Rozn	ěrný krouž	ek	BP KK	S 18-01/0)2	11373	0.883	1	
	17	1	Hříde	el		BP KK	S 18-01/0)1	11700	37.945	1	
	-	Poz.	NÁ7	EV - R07	MĚR	VÝKRI	S - NOR	MA	Materiál	Hmotnos	t Mn.	
	6	CAD 1		Datum / Date		Jmeno / Nan	ne		EAKI			1
	3	Drawn by Prezkousel / Checked by				Josef Kozák						
		Schvalil / Approved by							V PL	ZNI Vsechna prava vyhraze	na / All rights reserved	Jd
	4	Index zmeny	Popis zme	ny / change description	Schval. / APP	Datum / Date	Podpis / Signature	Poznami	ka / Note:			
	10	<u> </u>	Tolerance /	Soubor-model / ASM-file				Projekt /	Project:		Meritko / Scale	■A
	01	ISO 128	ISO 8015	Soubor-vykres / DRW-file	Sestav	ra_pohon		C sestav Assemb	y / y No.		1:10	
		Nazev / Title	100 27 00MK		Sestav	/a_pohon	Rev.	C.hmot.s	sestavy 2 kresu / Drawing No.	+9∠,8'l	Format	$\left \right $
				Pohon k	koníki	U	0		BP KKS	18-01	A2	
5		<u> </u>					List / she	eet no. 1 Pocet I	istu / sheets 1 1		J	

