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Mgr. Tomáš Roubal

Thesis for the award of the degree

of Doctor of Natural Sciences (RNDr.)

in the field: Mathematics

Department: Department of Mathematics

Pilsen 2018



Declaration

I hereby declare that this thesis is my own work, unless clearly stated otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Abstract

The first aim of this thesis is to discuss metric regularity, metric subregularity, and metric
semiregularity of both single-valued and set-valued mappings between metric spaces. Several
equivalent properties are formulated and sufficient as well as necessary conditions are presented.
Further we discuss stability of these properties with respect to single-valued and set-valued
perturbations.

The second aim is to present local convergence theorems, Dennis-Moré theorems, and

Kantorovich-type theorems for Newton-type methods for solving generalized equations. The meth-

ods are illustrated on non-smooth inequalities.

Keywords: set-valued mapping, generalized equation, metric regularity, metric subregular-

ity, metric semiregularity, generalized equation, openness, Newton-type methods, Kantorovich-
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List of symbols

∅ empty set
∞ (positive) infinity
0 zero element
A×B Cartesian product of sets A and B
x ∈ A x is an element of the set A
A ⊂ B A is a subset of B
A ∪B union of sets A and B
A ∩B intersection of sets A and B
A \B set difference between A and B
A+B {a+ b : a ∈ A and b ∈ B}
A−B A+ (−B)
A+ x A+ {x}
A− x A+ {−x}
λA {λx : x ∈ A}, λ ∈ R
A closure of the set A
inf A infimum of the set A ⊂ R
minA minimum of the set A ⊂ R
supA supremum of the set A ⊂ R
maxA maximum of the set A ⊂ R

N positive integers
N0 nonnegative integers
R real numbers
Q rational numbers
R+ non-negative real numbers
Rn Euclidean space of x = (x1, ..., xn)T having n real coordinates
Rn+ set of x ∈ Rn having non-negative coordinates

a < b b ∈ R is greater than a ∈ R
a ≤ b b ∈ R is greater than or equal to a ∈ R
a = b a equals to b
a 6= b a is not equal to b
a := b let a be defined by b
≡ identically equal

(X, d) metric space X with the metric d
dist(x,A) inf{d(x, y) : y ∈ A}; the distance between a point x ∈ X and a set A ⊂ X
| · | absolute value in R
‖ · ‖X norm in X
(X, ‖ · ‖X) normed space X with the norm ‖ · ‖X
〈·, ·〉 duality pairing or inner product
X∗ set of all bounded linear functionals on X
L(X,Y ) space of all linear continuous mappings between Banach spaces X and Y
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[a, b] closed interval in R with a < b
(a, b) open interval in R with a < b
B(x, r) open ball centered at x ∈ X with the radius r > 0
B[x, r] closed ball centered at x ∈ X with the radius r > 0
SX unit sphere centered at 0 ∈ X
BX unit ball centered at 0 ∈ X

f : X → Y single-valued mapping f from X to Y
F : X ⇒ Y set-valued mapping F from X to Y
(xk) sequence of elements xk
lim
n→∞

xn limit of the sequence (xk)

→ converges to or maps to
7−→ maps to
ak ↑ b (ak) converges to b with ak < b
ak ↓ b (ak) converges to b with b < ak
∇f(x) derivative of a mapping f : Rn → Rm at x ∈ Rn
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Chapter 1

Introduction

1.1 Motivation

Let us consider a single-valued mapping f from X into Y , where X and Y are metric spaces and let
x̄ ∈ X be fixed. The mapping f is called open at x̄ if the image of every neighborhood of x̄ in X
is a neighborhood of f(x̄) in Y . The mapping f is said to be open if the image of every open set in
X is an open set in Y . Suppose for a moment that f is one-to-one taking X onto Y so that there
exists the single-valued inverse mapping f−1 defined on whole of Y . Then the openness of f at x̄
is equivalent to the continuity of f−1 at f(x̄) which means that the unique solution x ∈ X of the
equation

(1.1) f(x) = y

is close to x̄ whenever y ∈ Y is sufficiently close to f(x̄). Suppose now that f is not one-to-one.
Then the solutions of the equation (1.1) may not be determined uniquely and the openness of f at x̄
expresses the fact that whenever y ∈ Y is sufficiently close to f(x̄), then there exists a solution x ∈ X
of the equation (1.1) which is close to x̄. In this case the inverse mapping f−1 is set-valued and we
will see later that openness of f is equivalent to a certain kind of continuity of f−1.

A set-valued mapping G from X into Y , denoted by G : X ⇒ Y , is determined by a subset of
X × Y called the graph of G denoted by Graph G. Then G assigns to a point x ∈ X a (possibly
empty) subset G(x) of Y , which contains all y ∈ Y such that (x, y) ∈ Graph G and is called the image
of x under G or the value of G at x. The domain of G, denoted by dom G, is the set of points x ∈ X
such that the set G(x) is nonempty, and the range of G, denoted by rge G, is the union of all sets G(x)
for x ∈ dom G. Such a mapping G has always the inverse, denoted by G−1, which is the set-valued
mapping from Y to X such that, for each (x, y) ∈ X × Y , the point (y, x) ∈ Graph G−1 if and only
if (x, y) ∈ Graph G. To emphasize that a mapping from X into Y is single-valued, we use lower-case
letters and write g : X → Y .

Let a set-valued mapping F : X ⇒ Y and a point (x̄, ȳ) ∈ Graph F be given. Consider the problem,
for a fixed y ∈ Y , to find x ∈ X such that

F (x) 3 y.(1.2)

The openness of F at (x̄, ȳ) means again that, for each neighborhood U of x̄ in X, the set F (U) :=⋃
x∈U F (x) is a neighborhood of ȳ in Y . In other words, for each y ∈ Y sufficiently close to ȳ, there

is a solution x ∈ X of the inclusion (1.2) which is close to x̄.
In both the cases the openness gives us the existence of a solution but does not say anything about

the distance between the solution x and the reference point x̄. In order to get such an estimate, we
define openness of F at (x̄, ȳ) with a linear rate which means there is a constant c > 0 such that for
each r > 0 small enough the image of a ball around x̄ with the radius r contains a ball around ȳ with
the radius c · r. This property is equivalent to a certain calmness property of the inverse F−1.
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Figure 1.1: The function which is not open at x̄.

Even we can request the above property to be satisfied for each point (x, y) close to (x̄, ȳ), with
the same constant c independent of (x, y). This property is called openness around (x̄, ȳ) with a linear
rate and is equivalent to a certain kind of Lipschitz property of the inverse mapping F−1 called
Aubin property. There is the third equivalent property called metric regularity which will be defined
later. If X and Y are Banach spaces, then the well-known Banach open mapping principle says that
a continuous linear operator from X to Y is open with a linear rate around any reference point if and
only if it maps X onto Y . A generalization of this principle to nonlinear mappings, proved by L.M.
Graves, says that a continuously differentiable mapping f from X to Y is open around a point x̄ ∈ X
with a linear rate if and only if its derivative f ′(x̄) is surjective.

Now let X := Rn and Y := R. Given f : Rn → R, consider a problem

minimize f(u) subject to u ∈ Rn.(1.3)

Let x̄ ∈ Rn be a solution of (1.3). Then there is a neighborhood U of x̄ in Rn such that f(U) is not
a neighborhood of f(x̄), hence f is not open at x̄, see Figure 1.1. Hence negation of any sufficient
condition for openness (or openness with a linear rate) gives us a necessary condition for f to attain
its minimum (or maximum) at x̄. An example of such a condition is Graves theorem. Suppose that f
is a smooth function on Rn. The derivative of f at x̄ can be represented by the gradient ∇f(x̄) of f
at x̄ and the linear function Rn 3 u 7−→ 〈∇f(x̄), u〉 is not surjective if and only if ∇f(x̄) = 0. So we
have derived Euler-Fermat necessary condition.

This idea can be generalized, for example, to a constrained minimization problem in the form:

minimize f(u) subject to gi(u) = 0 for i = 1, . . . ,m,(1.4)

where functions gi : Rn → R are continuously differentiable. Let x̄ ∈ Rn be a solution of (1.4) and
define a mapping h : Rn → Rm+1 by

h(u) := (f(u), g1(u), g2(u), . . . , gm(u))T , u ∈ Rn.

Consequently we have

h(x̄) = (f(x̄), 0, 0, . . . , 0)T and ∇h(x̄) = (∇f(x̄),∇g1(x̄),∇g2(x̄), . . . ,∇gm(x̄))T .

Fix any sufficiently small ε > 0 and let

y := (f(x̄)− ε, 0, 0, . . . , 0).
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Then there is no x ∈ Rn with h(x) = y. Indeed, for any such a point x, we would have
f(x) = f(x̄) − ε < f(x̄) and gi(x) = 0 for each i = 1, . . . ,m, which contradicts the assump-
tion that x̄ solves (1.4). Consequently, h is not open at x̄ and, by Graves theorem, the mapping
Rn 3 u 7−→ ∇h(x̄)u is not surjective. This means that the rows of the Jacobian matrix ∇h(x̄) are
linearly dependent. In other words, there are numbers λi ∈ R, for i = 0, 1, . . . ,m, such that

λ0∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) + · · ·+ λm∇gm(x̄) = 0.

If all the vectors ∇gi(x̄), for i = 1, 2, . . . ,m, are linearly independent, then the previous equality can
be rewritten as

∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) + · · ·+ λm∇gm(x̄) = 0.

The numbers λ1, λ2, . . . , λm are called the Lagrange multipliers. We have derived Karush-Kuhn–Tucker
necessary conditions for the problem (1.4). An interesting fact is that W. Karush, who derived these
conditions in his master thesis in 1939, was a student of Graves.
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1.2 Regularity of mappings

In this section, we will present various regularity properties of a set-valued mapping F : X ⇒ Y ,
that maps from a metric space (X, d) into subsets of a metric space (Y, ρ), around/at the reference
point. We will focus on three properties of set-valued mappings called regularity, subregularity, and
semiregularity. At the end of this section we will present “stronger” versions of these properties. All of
them play a fundamental role in modern variational analysis, non-smooth analysis, and optimization.
We will illustrate this on the problems (1.1) and (1.2).

By the term semiregularity at the reference point we mean the group of three equivalent properties
called metric semiregularity, openness with a linear rate at the reference point, and recession with
a linear rate of the inverse. Metric semiregularity was introduced by A.Y. Kruger in [30] in 2009 and
can be found under the name hemiregularity, in [2, 19].

Definition 1.2.1 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be metrically semiregular at (x̄, ȳ) when
ȳ ∈ F (x̄) and there is a constant κ > 0 along with a neighborhood V of ȳ in Y such that

dist
(
x̄, F−1(y)

)
≤ κρ(y, ȳ) for every y ∈ V.(1.5)

The infimum of κ > 0 for which there exists a neighborhood V of ȳ in Y such that (1.5) holds is called
the semiregularity modulus of F at (x̄, ȳ) and is denoted by semiregF (x̄, ȳ).

We use the convention that inf ∅ = ∞, that is, semireg F (x̄, ȳ) < ∞ if and only if F is metrically
semiregular at (x̄, ȳ). For a single valued mapping f : X → Y we omit the point ȳ = f(x̄), that
is, we write semireg f(x̄) (and the same applies in all the definitions below) and for a linear map-
ping A : X → Y we omit even the point x̄, that is, we write semireg A (and the same applies for
the other properties). Now suppose for a moment that F is metrically semiregular at (x̄, ȳ). Let
κ > semireg F (x̄, ȳ) be arbitrary. From (1.5), for a fixed y ∈ V , we have

dist
(
x̄, F−1(y)

)
<∞,

that is, the set F−1(y) is nonempty. Moreover, there is a point x ∈ X with y ∈ F (x) such that

d(x̄, x) ≤ κρ(y, ȳ).

Metric semiregularity guarantees the solvability of (1.2) for y ∈ V and also the estimate of the distance
between the reference point x̄ and the solution x. In other words it guarantees the stability of a solution
with respect to small perturbations of the right-hand side.

Metric semiregularity is equivalent to openness with a linear rate at the reference point which can
be found under the name controllability, in [19, 18] and [23, 25, 22].

Definition 1.2.2 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be open with a linear rate at (x̄, ȳ) when
ȳ ∈ F (x̄) and there are positive constants c and ε such that

(1.6) B[ȳ, ct] ⊂ F (B[x̄, t]) for each t ∈ (0, ε).

The supremum of c > 0 for which there exists a constant ε > 0 such that (1.6) holds is called
the modulus of openness of F at (x̄, ȳ) and is denoted by lopenF (x̄, ȳ).

As we work with nonnegative quantities, we use the convention that sup ∅ = 0, that is,
lopen F (x̄, ȳ) > 0 if and only if F is open with a linear rate at (x̄, ȳ).

Recession with a linear rate, introduced by A.D. Ioffe in [25], closes the first group of definitions.
Note that this property is sometimes called pseudo-Calmness [19] or Lipschitz-lower semicontinuity
[30].
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Definition 1.2.3 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to recede from ȳ at (x̄, ȳ) with a linear rate when
ȳ ∈ F (x̄) and there is a constant µ > 0 along with a neighborhood U of x̄ in X such that

(1.7) dist
(
ȳ, F (x)

)
≤ µd(x̄, x) for each x ∈ U.

The infimum of µ > 0 for which there exists a neighborhood U of x̄ in X such that (1.7) holds is called
the speed of recession of F at (x̄, ȳ) and is denoted by recessF (x̄, ȳ).

The mapping F recedes from ȳ at (x̄, ȳ) with a linear rate if and only if recess F (x̄, ȳ) < ∞. If, in
addition, the space Y is a vector (linear) space, then for any µ > recess F (x̄, ȳ) there is a neighborhood
U of x̄ in X such that

ȳ ∈ F (x) + µd(x̄, x)BY for each x ∈ U.

Example 1.2.1 Consider a single-valued mapping f : X → Y which recedes from f(x̄) at x̄ with
a linear rate. Then for any µ > recess f(x̄) there is a neighborhood U of x̄ in X such that

ρ
(
f(x̄), f(x)

)
≤ µd(x̄, x) for each x ∈ U.

This is the definition of calmness of f at x̄.

The following theorem guarantees the above mentioned equivalence of metric semiregularity, openness
with a linear rate at the reference point, and recession with a linear rate of the inverse, for the proof
see [14, Proposition 2.1].

Theorem 1.2.1 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ Graph F . The following assertions are equivalent:

(i) F is metrically semiregular at (x̄, ȳ);

(ii) F is open with a linear rate at (x̄, ȳ);

(iii) F−1 recedes from x̄ at (ȳ, x̄) with a linear rate.

In addition it holds

(1.8) lopenF (x̄, ȳ) · semiregF (x̄, ȳ) = 1 and semiregF (x̄, ȳ) = recessF−1(ȳ, x̄),

under a convention 0 · ∞ =∞ · 0 = 1.

The above statement justifies the following definition.

Definition 1.2.4 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be semiregular at (x̄, ȳ) if and only
if semireg F (x̄, ȳ) < ∞ if and only if lopen F (x̄, ȳ) > 0 if and only if recess F−1(ȳ, x̄) <∞.

Further, by the term subregularity at the reference point we mean the group of three equivalent
properties called metric subregularity, pseudo-openness with a linear rate at the reference point, and
calmness of the inverse. Metric subregularity is entrenched in the literature [18].

Definition 1.2.5 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X×Y . The mapping F is said to be metrically subregular at (x̄, ȳ) when ȳ ∈ F (x̄)
and there is a constant κ > 0 along with a neighborhood U of x̄ in X such that

(1.9) dist
(
x, F−1(ȳ)

)
≤ κdist

(
ȳ, F (x)

)
for every x ∈ U.

The infimum of κ > 0 for which there exists a neighborhood U of x̄ in X such that (1.9) holds is called
the subregularity modulus of F at (x̄, ȳ) and is denoted by subregF (x̄, ȳ).
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The mapping F is metrically subregular at (x̄, ȳ) if and only if subregF (x̄, ȳ) < ∞. Note that
metric subregularity does not guarantee solvability of (1.1) and (1.2), respectively, as in the case of
semiregularity.

Example 1.2.2 Consider a single-valued mapping f : X → Y which is metrically subregular at a point
x̄ ∈ X. Then for any κ > subreg f(x̄) there is a neighborhood of U of x̄ such that for a fixed x ∈ U
there is x′ ∈ X such that

ȳ = f(x′) and d
(
x, x′

)
≤ κρ

(
ȳ, f(x)

)
.

In other words, if x ∈ U is an approximate solution of (1.1) with y := ȳ, then we can estimate
the distance from x to the solution set f−1(ȳ) by the residuum ρ

(
ȳ, f(x)

)
. The same is true for

set-valued mappings.

The following proposition shows us two more equivalent properties to metric subregularity.

Proposition 1.2.1 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ Graph F . The following assertions are equivalent:

(i) F is metrically subregular at (x̄, ȳ);

(ii) there is a constant κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(ȳ)

)
≤ κdist(ȳ, F (x) ∩ V ) for each x ∈ U ;

(iii) there is a constant κ > 0 along with a neighborhood U of x̄ in X such that

dist
(
x, F−1(ȳ)

)
≤ dist1,κ((x, ȳ),Graph F ) for each x ∈ U,

where for a subset A ⊂ X × Y and a point (u, v) ∈ X × Y we define

dist1,κ((u, v), A) := inf{d(u, u′) + κρ(v, v′) : (u′, v′) ∈ A}.(1.10)

The equivalence (i) ⇔ (ii) was showed in [18, Exercise 3H.4]. The property (iii) is called graph-
subregularity of F at (x̄, ȳ) and was proved to be equivalent to (i) in [26]. It uses the graph of F
instead of the values of F . The mapping X × Y 3 (x, y) 7−→ dist1,κ((x, y),Graph F ) is Lipschitz
continuous whereas the mapping X × Y 3 (x, y) 7−→ dist(y, F (x)) may be not even continuous.
Therefore sometimes it is convenient to work with the latter property.

Next property is pseudo-openness that is defined and proved to be equivalent to metric subregu-
larity and calmness in [1].

Definition 1.2.6 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be pseudo-open with a linear rate at (x̄, ȳ)
when ȳ ∈ F (x̄) and there are positive constants c and ε along with a neighborhood U of x̄ in X such
that

(1.11) ȳ ∈ F (B[x, t]) whenever x ∈ U ∩ F−1(B[ȳ, ct]) and t ∈ (0, ε).

The supremum of c > 0 for which there exist a constant ε > 0 and a neighborhood U of x̄ in X such that
(1.11) holds is called the modulus of pseudo-openness of F at (x̄, ȳ) and is denoted by popenF (x̄, ȳ).

The mapping F is pseudo-open at (x̄, ȳ) with a linear rate if and only if popenF (x̄, ȳ) > 0.
Calmness is entrenched in literature [25, 18] and closes the second group of definitions.
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Definition 1.2.7 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be calm at (x̄, ȳ) when ȳ ∈ F (x̄) and there is
a constant µ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

(1.12) dist
(
y, F (x̄)

)
≤ µd(x, x̄) whenever x ∈ U and y ∈ F (x) ∩ V.

The infimum of µ > 0 for which there exists a neighborhood U ×V of (x̄, ȳ) in X ×Y such that (1.12)
holds is called the calmness modulus of F at (x̄, ȳ) and is denoted by calmF (x̄, ȳ).

Hence the mapping F is calm at (x̄, ȳ) if and only if calmF (x̄, ȳ) <∞. If, in addition, the space Y is
a vector space, then for any µ > calm F (x̄, ȳ) there is a neighborhood U × V of (x̄, ȳ) in X × Y such
that

F (x) ∩ V ⊂ F (x̄) + µd(x, x̄)BY for each x ∈ U.

Example 1.2.3 Consider a single-valued mapping f : X → Y which is calm at a point x̄ ∈ X. Then
for any µ > calm F (x̄, ȳ) there is a neighborhood U of x̄ such that

ρ
(
f(x), f(x̄)

)
≤ µd(x, x̄) for each x ∈ U.

In this case, calmness and recession with a linear rate coincide.

The following theorem, established in [30], guarantees the equivalence of metric subregularity,
pseudo-openness with a linear rate, and calmness of the inverse.

Theorem 1.2.2 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ Graph F . The following assertions are equivalent:

(i) F is metrically subregular at (x̄, ȳ);

(ii) F is pseudo-open with a linear rate at (x̄, ȳ);

(iii) F−1 is calm at (ȳ, x̄).

In addition, it holds

(1.13) popenF (x̄, ȳ) · subregF (x̄, ȳ) = 1 and subregF (x̄, ȳ) = calmF−1(ȳ, x̄).

The above statement justifies the following definition.

Definition 1.2.8 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be subregular at (x̄, ȳ) if and only
if subreg F (x̄, ȳ) < ∞ if and only if popen F (x̄, ȳ) > 0 if and only if calm F−1(ȳ, x̄) <∞.

We have seen that semiregularity of the mappings appearing in (1.1) or (1.2) gives us solvability
of these problems as well as stability of a solution with respect to small perturbations of the right-
hand side. On the other hand, subregularity provides an estimate of the error of an approximate
solution via the residuum. Now we present a property which guarantees both the previous ones. By
the term regularity around the reference point we mean the group of equivalent properties called metric
regularity, openness with a linear rate around the reference point, and Aubin property of the inverse.

The name metric regularity was suggested by J.M. Borwein [7] in 1986.

Definition 1.2.9 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be metrically regular around (x̄, ȳ) when
ȳ ∈ F (x̄) and there is a constant κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ κdist(y, F (x)) for every (x, y) ∈ U × V.(1.14)

The infimum of κ > 0 for which there exists a neighborhood U ×V of (x̄, ȳ) in X ×Y such that (1.14)
holds is called the regularity modulus of F around (x̄, ȳ) and is denoted by regF (x̄, ȳ).
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The mapping F is metrically regular at (x̄, ȳ) if and only if regF (x̄, ȳ) < ∞. In this case, for any
κ > regF (x̄, ȳ) there is a neighborhood U × V of (x̄, ȳ) in X × Y such that (1.14) holds. Letting
x := x̄, we get

dist
(
x̄, F−1(y)

)
≤ κdist(y, F (x̄)) ≤ κ ρ(y, ȳ) for every y ∈ V.

We derived (1.5), hence F is semiregular at (x̄, ȳ). Further, letting y := ȳ in (1.14), we get (1.9),
which means F is subregular at (x̄, ȳ).

There are several equivalent definitions in the literature.

Proposition 1.2.2 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ Graph F . The following assertions are equivalent:

(i) F is metrically regular around (x̄, ȳ);

(ii) there is κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ κdist(y, F (x) ∩ V ) for each (x, y) ∈ U × V ;

(iii) there is κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ dist1,κ((x, y),Graph F ) for each (x, y) ∈ U × V,(1.15)

where dist1,κ is defined in (1.10).

The equivalence (i) ⇔ (ii) was showed in [18, Proposition 5H.1]. The property (iii) is called graph-
regularity at (x̄, ȳ) in [39], where the equivalence (i) ⇔ (iii) was proved.

Openness with a linear rate around the reference point is a stronger concept than openness with
a linear rate at the reference point defined above.

Definition 1.2.10 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be open with a linear rate around (x̄, ȳ) when
ȳ ∈ F (x̄) and there are positive constants c and ε along with a neighborhood U ×V of (x̄, ȳ) in X ×Y
such that

(1.16) B[y, ct] ⊂ F (B[x, t]) whenever (x, y) ∈ U × V, y ∈ F (x), and t ∈ (0, ε).

The supremum of c > 0 for which there exist a constant ε > 0 and a neighborhood U × V of (x̄, ȳ) in
X × Y such that (1.16) holds is called the modulus of surjection of F around (x̄, ȳ) and is denoted by
surF (x̄, ȳ).

The mapping F is open around (x̄, ȳ) with a linear rate if and only if surF (x̄, ȳ) > 0. The following
statement, proved in [18, Theorem 5H.3], contains another equivalent definition of linear openness
around the reference point.

Proposition 1.2.3 A set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ) is open
with a linear rate around (x̄, ȳ) ∈ Graph F if and only if there are c > 0 and ε > 0 such that

B(y, ct) ∩ B(ȳ, ε) ⊂ F (B(x, t)) whenever (x, y) ∈ Graph F, d(x, x̄) < ε, and t ∈ (0, ε).

Aubin property, introduced by J.-P. Aubin in [4] under the name pseudo-Lipschitz property, closes
the third group of definitions. We can also find a term Lipschitz-like property in literature [31].
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Definition 1.2.11 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ X ×Y . The mapping F is said to have Aubin property around (x̄, ȳ) when
ȳ ∈ F (x̄) and there is a constant µ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

(1.17) dist
(
y, F (x′)

)
≤ µd(x, x′) whenever x, x′ ∈ U and y ∈ F (x) ∩ V.

The infimum of µ > 0 for which there exists a neighborhood U ×V of (x̄, ȳ) in X ×Y such that (1.17)
holds is called the Lipschitz modulus of F around (x̄, ȳ) and is denoted by lipF (x̄, ȳ).

The mapping F has Aubin property around (x̄, ȳ) if and only if lipF (x̄, ȳ) < ∞. If, in addition,
the space Y is a vector space, then for any µ > lip F (x̄, ȳ) there is a neighborhood U × V of (x̄, ȳ) in
X × Y such that

F (x) ∩ V ⊂ F (x′) + µd(x, x′)BY for each x, x′ ∈ U.

As in the case of metric regularity and openness with a linear rate around the point, letting x′ := x̄
in (1.17), we conclude that F is calm at (x̄, ȳ) and, letting y := ȳ and x := x̄, we conclude that F
recedes from ȳ at (x̄, ȳ) with a linear rate.

Example 1.2.4 Consider a single-valued mapping f : X → Y which has Aubin property around x̄.
Then for any µ > lip f(x̄) there is a neighborhood U of x̄ in X such that

ρ
(
f(x), f(x′)

)
≤ µd(x, x′) for each x, x′ ∈ U.

The last inequality is the definition of Lipschitz continuity of f on U and therefore Aubin property of
f around x̄ means local Lipschitz continuity of f around x̄.

The following theorem guarantees the equivalence of metric regularity, openness with a linear rate
around the reference point, and Aubin property of the inverse, and gives us relations among the cor-
responding moduli. The equivalence of openness with a linear rate and metric regularity was men-
tioned, probably for the first time, by Dmitruk, Milyutin, and Osmolowski [16] in 1980. In late 80s,
Borwein-Zhuang [8] and Penot [33] proved (along with the equivalence with Aubin property) the full
statement.

Theorem 1.2.3 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and (Y, ρ)
and a point (x̄, ȳ) ∈ Graph F . The following assertions are equivalent:

(i) F is metrically regular around (x̄, ȳ);

(ii) F is open with a linear rate around (x̄, ȳ);

(iii) F−1 has Aubin property around (ȳ, x̄).

In addition, it holds

(1.18) surF (x̄, ȳ) · regF (x̄, ȳ) = 1 and regF (x̄, ȳ) = lipF−1(ȳ, x̄).

The above statement justifies the following definition.

Definition 1.2.12 Consider a set-valued mapping F : X ⇒ Y between metric spaces (X, d) and
(Y, ρ) and a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be regular around (x̄, ȳ) if and only if
reg F (x̄, ȳ) <∞ if and only if sur F (x̄, ȳ) > 0 if and only if lip F−1(ȳ, x̄) <∞.

We close this section by the group of stronger versions of the previous properties. For this purpose
we need the notion of a localization of a set-valued mapping F : X ⇒ Y around the reference point
(x̄, ȳ) ∈ GraphF , which is any mapping F̃ : X ⇒ Y such that Graph F̃ = GraphF ∩ (U ×V ) for some
neighborhood U × V of (x̄, ȳ) in X × Y , see Figure 1.2.

We start with strong semiregularty, for example see [2].

12



x

y

x̄
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Figure 1.2: A localization (in red) of the set-valued mapping F (in blue).

Definition 1.2.13 Consider a mapping F : X ⇒ Y between metric spaces (X, d) and (Y, %) and
a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be strongly semiregular at (x̄, ȳ) when F is
metrically semiregular at (x̄, ȳ) and F−1 has a localization around (ȳ, x̄) which is nowhere multivalued.

Let F : X ⇒ Y be strongly semiregular at (x̄, ȳ) Then for any ` > semireg F (x̄, ȳ) there is a neigh-
borhood U ×V of (x̄, ȳ) such that the mapping V 3 y 7−→ F−1(y)∩U is single-valued on V and calm
at ȳ with the constant `.

Strong subregularity is entrenched in the literature [12].

Definition 1.2.14 Consider a mapping F : X ⇒ Y between metric spaces (X, d) and (Y, %) and
a point (x̄, ȳ) ∈ X×Y . The mapping F is said to be strongly subregular at (x̄, ȳ) when F is subregular
at (x̄, ȳ) and F−1 has no localization around (ȳ, x̄) that is multivalued at ȳ.

Let F : X ⇒ Y be strongly subregular at (x̄, ȳ). Then for any ` > subreg F (x̄, ȳ) there is a neighbor-
hood U of x̄ such that

d
(
x, x̄

)
≤ ` dist(ȳ, F (x)) whenever x ∈ U,

that is, F−1 has isolated calmness property at (ȳ, x̄), see [18].
Strong regularity was introduced by S.M. Robinson in [38] for generalized equations. This property

is related to the (local) inverse function theorem and the implicit function theorem.

Definition 1.2.15 Consider a mapping F : X ⇒ Y between metric spaces (X, d) and (Y, %) and
a point (x̄, ȳ) ∈ X × Y . The mapping F is said to be strongly regular around (x̄, ȳ) when F is regular
around (x̄, ȳ) and F−1 has a localization around (ȳ, x̄) which is nowhere multivalued.

Let F : X ⇒ Y be strongly regular around (x̄, ȳ). Then for any ` > reg F (x̄, ȳ) there is a neighborhood
U × V of (x̄, ȳ) such that the mapping V 3 y 7−→ F−1(y) ∩ U is single-valued on V and Lipschitz
continuous on V with the constant `.

The section closes with several examples.

Example 1.2.5 1) Let f1 : R→ R be defined by f1(x) := |x|, x ∈ R. Obviously for each y < 0 there
is no x ∈ R such f1(x) = y, hence f1 is not semiregular at 0. On other hand, for each x ∈ R it
holds

dist
(
x, f−1

1 (0)
)

= |x| = dist(0, f1(x)).

Therefore f1 is subregular at 0 with the constant 1. The graph of f1 is in Figure 1.3a;
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2) Let f2 : R→ R be defined by

f2(x) :=

{
x2 sin (1/x), for x 6= 0,
0, for x = 0.

Then f2 is subregular and open at 0 but it is not semiregular at 0. The graph of f2 is in Figure
1.3b;

3) Let f3 : R→ R be defined by

f3(x) :=

{
x+ x|x sin (1/x)|, for x 6= 0,
0, for x = 0.

Then f3 is semiregular (not strongly) at 0 and strongly subregular at 0. This example is from [14]
and for the graph of f3 see Figure 1.3c;

4) Let f4 : R → R be defined by f4(x) := 3
√
x, x ∈ R. Then f4 is strongly regular at any x ∈ R.

Moreover, the inverse is f−1
4 (x) = x3, for x ∈ R. The graph of f4 is in Figure 1.3d;

5) Let f5 : R→ R be defined by

f5(x) :=

{
x, for x ∈ Q,
−x, for x ∈ R \Q.

Then f5 is strongly semiregular at 0 and strongly subregular at 0, but it is not regular around 0.
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Figure 1.3: Graphs of functions from Example 1.2.5.
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Chapter 2

Regularity criteria

In this chapter we present some criteria which guarantee regularity, subregularity and semiregularity
and their stronger version.

2.1 Historical background

We begin with Banach open mapping theorem, which is also known as Banach–Schauder theorem and
guarantees regularity of a linear continuous mapping between Banach spaces.

Theorem 2.1.1 (Banach open mapping theorem) Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces
and A ∈ L(X,Y ). Then the following assertions are equivalent:

(i) surA > 0;

(ii) A(X) = Y ;

(iii) 0 ∈ intA(BX);

(iv) A is open at 0;

(v) the adjoint (dual) operator A∗ : Y ∗ → X∗ is injective.

Moreover,

surA = lopenA = sup{c > 0 : A(BX) ⊃ cBY } = inf{‖A∗y∗‖X∗ : y∗ ∈ SY ∗}.

Example 2.1.1 Consider a matrix A ∈ Rn×m with n ≤ m. Then the mapping Rm 3 x 7−→ Ax
is regular if and only if the rows of A are linearly independent. Moreover, surA equals to the least
singular value of A.

In 1950 L.M. Graves [21] published a sufficient condition for semiregularity of a nonlinear mapping
at the reference point, which generalizes Banach open mapping theorem to nonlinear mappings.

Theorem 2.1.2 (Graves theorem) Let (X, ‖·‖X), (Y, ‖·‖Y ) be Banach spaces and x̄ ∈ X be given.
Consider a mapping f : X → Y such that there is A ∈ L(X,Y ) with surA > lip(f − A)(x̄). Then f
is semiregular at x̄ and lopen f(x̄) ≥ surA− lip(f −A)(x̄).

Another generalization of Banach open mapping theorem was proved by S.M. Robinson [37] and
independently by C. Ursescu [41] for set-valued mappings with a closed convex graph. This state-
ment follows, for example, from a constrained version of Banach open mapping theorem applied to
the restriction of the canonical projection from X × Y onto Y to the graph of the mapping under
consideration, that is, the assignment Graph F 3 (x, y) 7−→ y ∈ Y .
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Theorem 2.1.3 (Robinson–Ursescu theorem) Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces and
ȳ ∈ Y be given. Consider a set-valued mapping F : X ⇒ Y having a closed convex graph. Then
the following assertions are equivalent:

(i) ȳ ∈ int rge F ;

(ii) for each x̄ ∈ F−1(ȳ), the mapping F is open at (x̄, ȳ);

(iii) for each x̄ ∈ F−1(ȳ), we have sur F (x̄, ȳ) > 0.

We say that a mapping f : X → Y between Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is Fréchet
differentiable at a point x̄ ∈ X if there is A ∈ L(X,Y ) such that calm(f −A)(x̄) = 0, that is, for each
µ > 0 there is δ > 0 such that

‖f(x)− f(x̄)−A(x− x̄)‖Y ≤ µ‖x− x̄‖X for each x ∈ B(x̄, δ).

Such a mapping A is called the Fréchet derivative of f at x̄ and denoted by f ′(x̄). The mapping f is
said to be continuously (Fréchet) differentiable at x̄ if f is Fréchet differentiable on a neighborhood U
of x̄ in X and the mapping U 3 x 7−→ f ′(x) ∈ L(X,Y ) is continuous at x̄.

In 1970 S.M. Robinson [38] studied the solution stability of the so-called generalized equation,
which is the problem to find x ∈ X such that

f(x) + F (x) 3 0,(2.1)

with given mappings f : X → Y and F : X ⇒ Y . He proved a sufficient condition for strong regularity
in case that f is continuously Fréchet differentiable and F is a normal cone mapping NK associated
with a closed convex subset K of X, which is the mapping

X 3 x 7−→ NK(x) := {x∗ ∈ X∗ :
〈
x∗, x′ − x

〉
≤ 0 for each x′ ∈ K}.

More precisely, Robinson proved the implicit function theorem for generalized equations, where
f : P ×X → X∗ with a parameter space P .

Theorem 2.1.4 (Robinson theorem) Let (X, ‖·‖X), (Y, ‖·‖Y ) be Banach spaces and (x̄, ȳ) ∈ X×Y
be given. Consider a set-valued mapping F : X ⇒ Y and a single-valued mapping f : X → Y which is
continuously Fréchet differentiable at x̄ and ȳ ∈ f(x̄) + F (x̄). If the mapping f(x̄) + f ′(x̄)(· − x̄) + F
is strongly regular around (x̄, ȳ), then f + F is strongly regular around (x̄, ȳ).

In 1996 A.L. Dontchev [17] proved a generalization of Theorem 2.1.2. We need one more definition,
we say that a set-valued mapping F : X ⇒ Y has a locally closed graph around (x̄, ȳ) ∈ GraphF if
there is a neighborhood U × V of (x̄, ȳ) in X × Y such that the set GraphF ∩

(
U × V

)
is closed.

Theorem 2.1.5 Let (X, d) be a complete metric space, (Y, ρ) be a linear metric space with a shift-
invariant metric, and (x̄, ȳ) ∈ X × Y be given. Consider a set-valued mapping F : X ⇒ Y with
a locally closed graph around (x̄, ȳ) and a single-valued mapping f : X → Y such that lip f(x̄) = 0,
that is, for each µ > 0 there is δ > 0 such that

ρ(f(x), f(x′)) ≤ µd(x, x′) for each x, x′ ∈ B(x̄, δ).(2.2)

Then surF (x̄, ȳ) = sur(f + F )(x̄, f(x̄) + ȳ).
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We say that a mapping f : X → Y between Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is strictly
differentiable at a point x̄ ∈ X if there is A ∈ L(X,Y ) such that lip(f − A)(x̄) = 0, that is, for each
µ > 0 there is δ > 0 such that

‖f(x)− f(x′)−A(x− x′)‖Y ≤ µ‖x− x′‖X for each x, x′ ∈ B(x̄, δ).

Such a mapping A is called the strict derivative of f at x̄. Note that the existence of the strict
derivative of f at x̄ implies that f is Fréchet differentiable at x̄, continuous on a neighborhood of x̄,
and locally Lipschitz continuous around x̄. Clearly, (2.2) means that f is strictly differentiable at x̄
and the strict derivative is zero. The following example shows that a strictly differentiable mapping
is regular around the reference point if and only if its strict derivative at this point is surjective.

Example 2.1.2 Let g : X → Y be a single-valued mapping between Banach spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ). Suppose that g is strictly differentiable at x̄ ∈ X, then Theorem 2.1.5, with F := g and
f := g(x̄)− g + g′(x̄)(· − x̄), implies that sur g(x̄) = sur

(
g′(x̄)

)
.

2.2 Regularity

In this section we present some statements which guarantee (strong) regularity of mappings. For more
criteria of regularity see [25] and [13].

In 1987 M. Fabian and D. Preiss [20, Corollary 1] proved a sufficient condition for semiregularity
of both single-valued and set-valued mappings at the reference point via Caristi’s principle. Thirteen
years later, A.D. Ioffe [24, Theorem 1b] proved independently a necessary and sufficient condition for
regularity of a set-valued mapping around the reference point via Ekeland’s variational principle. This
statement will be called Ioffe’s regularity criterion.

Theorem 2.2.1 Let (X, d) be a complete metric space, (Y, ρ) be a metric space, and x̄ ∈ X be
given. Consider a continuous single-valued mapping f : X → Y whose domain is all of X. Then
sur f(x̄) equals to the supremum of all c > 0 for which there is r > 0 such that for all (x, y) ∈
B[x̄, r]×

(
B[f(x̄), r] \ {f(x)}

)
there is x′ ∈ X satisfying

c d(x′, x) < ρ(f(x), y)− ρ(f(x′), y).(2.3)

It is a well-known fact that a study of regularity properties for a set-valued mapping F : X ⇒ Y can
be reduced to the study of the corresponding property for the restriction of the canonical projection
from X×Y onto Y , which is the mapping Graph F 3 (x, y) 7−→ y ∈ Y , for the proof and more details
see [24, Proposition 3].

Theorem 2.2.2 Let (X, d), (Y, ρ) be metric spaces and (x̄, ȳ) ∈ X × Y be given. Consider a set-
valued mapping F : X ⇒ Y whose graph is complete in a vicinity of (x̄, ȳ). Then surF (x̄, ȳ)
equals to the supremum of all c > 0 for which there are r > 0 and α ∈ (0, 1/c) such that for any
(x, v) ∈ Graph F ∩

(
B[x̄, r]×B[ȳ, r]

)
and any y ∈ B[ȳ, r] \ {v} there is a pair (x′, v′) ∈ Graph F such

that

cmax{d(x, x′), αρ(v, v′)} < ρ(v, y)− ρ(v′, y).(2.4)

We apply Theorem 2.2.2 to show that (strong) regularity is stable with respect to Lipschitz single-
valued perturbations.

Theorem 2.2.3 Let (X, d) be a complete metric space, (Y, ρ) be a linear metric space with a shift-
invariant metric, and (x̄, ȳ) ∈ X × Y be given. Consider a single-valued mapping f : X → Y which is
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both defined and continuous around x̄ and a set-valued mapping F : X ⇒ Y which has a locally closed
graph around (x̄, ȳ). Then

(2.5) sur(F + f)(x̄, ȳ + f(x̄)) ≥ surF (x̄, ȳ)− lip f(x̄).

In particular, if F is (strongly) regular around (x̄, ȳ) and surF (x̄, ȳ) > lip f(x̄), then F+f is (strongly)
regular around (x̄, ȳ + f(x̄)) and (2.5) holds.

Proof. If lip f(x̄) ≥ surF (x̄, ȳ) then (2.5) holds trivially. Suppose that this is not the case and
fix constants c, c′, and ` such that

lip f(x̄) < ` < c < c′ < surF (x̄, ȳ).

Find ε > 0 such that for each t ∈ (0, 2ε) and each (x,w) ∈
(
B[x̄, 2ε]× B[ȳ, 2ε]

)
∩GraphF we have

B[w, c′t] ⊂ F (B[x, t]).(2.6)

By assumptions on f there is r ∈ (0,min{ε, c′ε}) such that

f(x) ∈ B[f(x̄), ε] and ρ(f(x), f(x′)) ≤ ` d(x, x′) for each x, x′ ∈ B[x̄, r(1 + 2/c′)].

Let (x, v) ∈
(
B[x̄, r]× B[ȳ + f(x̄), r]

)
∩Graph(F + f) and y ∈ B[ȳ + f(x̄), r] with y 6= v be arbitrary.

Let
t := ρ(v, y)/c′ and w := v − f(x).

Then 0 < t ≤ 2r/c′ < 2ε. Clearly, (x,w) ∈ GraphF and x ∈ B[x̄, 2ε]. As f(x) ∈ B[f(x̄), ε], we get

ρ(w, ȳ) = ρ(v − f(x) + f(x̄), ȳ + f(x̄)) ≤ ρ(v − f(x) + f(x̄), v) + ρ(v, ȳ + f(x̄))

= ρ(f(x̄), f(x)) + ρ(v, ȳ + f(x̄)) ≤ ε+ r < 2ε.

Therefore w ∈ B[ȳ, 2ε]. Also y − f(x) ∈ B[w, c′t] because

ρ(y − f(x), w) = ρ(y − f(x), v − f(x)) = ρ(y, v) = c′t.

By (2.6), there is x′ ∈ B[x, t] such that y − f(x) ∈ F (x′). Then

d(x′, x̄) ≤ d(x′, x) + d(x, x̄) ≤ t+ r ≤ 2r/c′ + r = r(1 + 2/c′),

and consequently

(2.7) ρ(f(x), f(x′)) ≤ ` d(x, x′) ≤ `t.

Let v′ := y − f(x) + f(x′). Then (x′, v′) ∈ Graph(F + f). Using (2.7), we get

ρ(v′, y) = ρ(y − f(x) + f(x′), y) = ρ(f(x), f(x′)) ≤ `t = c′t− (c′ − `)t
= ρ(v, y)− (c′ − `)t < ρ(v, y)− (c− `)t.

Noting that d(x, x′) ≤ t and

ρ(v, v′) = ρ(v, y − f(x) + f(x′)) ≤ ρ(v, y) + ρ(y, y − f(x) + f(x′))

= ρ(v, y) + ρ(f(x), f(x′)) ≤ c′t+ ` d(x, x′) ≤ (c′ + `)t,

we conclude that

ρ(v′, y) < ρ(v, y)− (c− `) max{d(x, x′), ρ(v, v′)/(c′ + `)}.
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Theorem 2.2.2 with α := 1/(c′+`) implies that sur(F +f)(x̄, ȳ+f(x̄)) ≥ c−`. Letting c ↑ surF (x̄, ȳ)
and ` ↓ lip f(x̄) we finish the proof of (2.5).

If F is regular around (x̄, ȳ) and surF (x̄, ȳ) > lip f(x̄), then (2.5) implies that
sur(F + f)(x̄, ȳ + f(x̄)) > 0, that is, the mapping F + f is regular around (x̄, ȳ + f(x̄)).

Assume that F is strongly regular around (x̄, ȳ) and surF (x̄, ȳ) > lip f(x̄). Then F + f is regular
around (x̄, ȳ + f(x̄)). It suffices to show that (F + f)−1 has a localization around (x̄, ȳ + f(x̄)) which
is single-valued. Find c and ` such that surF (x̄, ȳ) > c > ` > lip f(x̄). Then there is a neighborhood
U × V of (x̄, ȳ) in X × Y such that the mapping σ : V 3 y 7−→ σ(y) := F−1(y) ∩ U is single-valued
and Lipschitz continuous on V with the constant 1/c, and also that f is Lipschitz continuous on U
with the constant `. Find a neighborhood U ′ × V ′ of (x̄, ȳ + f(x̄)) in X × Y such that y − f(x) ∈ V
whenever (x, y) ∈ U ′ × V ′. Fix any y ∈ V ′. Suppose on the contrary that there are two distinct
x, x′ ∈ (F + f)−1(y). Then we have x = σ(y − f(x)) and x′ = σ(y − f(x′)). Hence

0 < d(x, x′) = d(σ(y − f(x)), σ(y − f(x′))) ≤ c−1ρ(y − f(x), y − f(x′))

= c−1ρ(f(x), f(x′)) ≤ (`/c)d(x, x′) < d(x, x′),

a contradiction.
The above statement fails if we replace a single-valued perturbation by a set-valued one as the fol-

lowing example from [18, Example 5I.1] shows.

Example 2.2.1 Consider set-valued mappings F , G : R ⇒ R defined for each x ∈ R by

F (x) = {−2x, 1} and G(x) = {x2,−1}.

Then surF (0, 0) = 2 and lipG(0, 0) = 0. But the mapping

R 3 x 7−→ (F +G)(x) = {x2 − 2x, x2 + 1,−2x− 1, 0}

is not regular around (0, 0).

Despite the above example, H.V. Ngai, N.H. Tron, and M. Théra proved regularity of the sum
of two set-valued mappings [32] under the local sum-stability assumption around the reference point,
the property introduced by M. Durea and R. Strugariu [19].

Definition 2.2.1 Let (X, d), (Y, ρ) be metric spaces and (x̄, ȳ,z̄) ∈ X × Y × Y be given. Consider
set-valued mappings F , G : X ⇒ Y such that ȳ ∈ F (x̄) and z̄ ∈ G(x̄). We say that the pair (F,G)
is sum-stable around (x̄, ȳ, z̄) if for every ε > 0 there exists δ > 0 such that, for every x ∈ B[x̄, δ]
and every v ∈ (F + G)(x) ∩ B[ȳ+z̄, δ], there exist y ∈ F (x) ∩ B[ȳ,ε] and z ∈ G(x) ∩ B[z̄, ε] such that
v = y + z.

If the perturbing mapping is single-valued and continuous at the reference point then the local
sum-stability holds (cf. [19] where the perturbation is assumed to be calm at the reference point).

Example 2.2.2 Let (X, d) be a metric space, (Y, ρ) be a linear metric space with a shift-invariant
metric, and x̄ ∈ X be given. Consider a single-valued mapping f : X → Y and a set-valued mapping
F : X ⇒ Y such that 0 ∈ f(x̄)+F (x̄). If f is continuous at x̄, then (F, f) is locally sum-stable around
(x̄,−f(x̄), f(x̄)). Indeed, fix any ε > 0 and find δ ∈ (0, ε/2) such that

ρ(f(x), f(x̄)) < ε/2 for each x ∈ B[x̄, δ].

Pick any x ∈ B[x̄, δ] and any v ∈ (F + f)(x)∩B[0, δ], then v− f(x) ∈ F (x). Further, ρ(f(x), f(x̄)) ≤
ε/2 < ε, so f(x) ∈ B[f(x̄), ε]. Also, ρ(v− f(x),−f(x̄)) = ρ(v, f(x)− f(x̄)) ≤ ρ(v, 0) + ρ(f(x), f(x̄)) <
δ + ε/2 < ε.
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As observed in [32], even without local sum-stability, we always have regularity of the so-called
epigraphical multifunction introduced in [19].

Theorem 2.2.4 Let (X, d) be a complete metric space (Y, ρ) be a linear metric space with a shift-
invariant metric, and (x̄, ȳ,z̄) ∈ X × Y × Y be given. Consider set-valued mappings F , G : X ⇒ Y
such that F has a locally closed graph around (x̄, ȳ) and G has a locally closed graph around (x̄, z̄).
Define the mapping EF,G : X × Y ⇒ Y by

EF,G(x, z) := F (x) + z if z ∈ G(x) and EF,G(x, z) = ∅ otherwise.

Then

(2.8) sur EF,G(x̄, z̄, ȳ + z̄) ≥ surF (x̄, ȳ)− lipG(x̄, z̄).

If, in addition, the pair (F,G) is sum-stable around (x̄, ȳ,z̄), then

(2.9) sur(F +G)(x̄, ȳ + z̄) ≥ surF (x̄, ȳ)− lipG(x̄, z̄).

Proof. If lipG(x̄, z̄) ≥ surF (x̄, ȳ) then we are done. If this is not the case then fix constants c,
c′, and ` such that

lipG(x̄, z̄) < ` < c < c′ < surF (x̄, ȳ).

Define the (equivalent) metric on X × Y by

d̃((x, z), (x′, z′)) := max{d(x, x′), ρ(z, z′)/`}, (x, z), (x′, z′) ∈ X × Y.

As GraphF and GraphG are closed around (x̄, ȳ) and (x̄, z̄), respectively, so is Graph EF,G around
(x̄, z̄, ȳ+ z̄). Find ε > 0 such that for each t ∈ (0, 2ε) and each (x,w) ∈

(
B[x̄, 2ε]×B[ȳ, 2ε]

)
∩GraphF

we have

(2.10) B[w, c′t] ⊂ F (B[x, t]).

Since lipG(x̄, z̄) < `, there is r ∈ (0,min{ε, c′ε}) such that

(2.11) G(x) ∩ B[z̄, r] ⊂ G(x′) + ` d(x, x′)BY for each x, x′ ∈ B[x̄, r(1 + 2/c′)].

Let (x, z, v) ∈
(
B[x̄, r]×B[z̄, r]×B[ȳ+ z̄, r]

)
∩Graph EF,G and y ∈ B[ȳ+ z̄, r] with v 6= y be arbitrary.

Then there is w ∈ F (x) such that v = w + z. Let

t := ρ(v, y)/c′.

Then 0 < t ≤ 2r/c′ < 2ε. Also (x,w) ∈
(
B[x̄, 2ε]× B[ȳ, 2ε]

)
∩GraphF , because

ρ(w, ȳ) = ρ(v − z, ȳ) ≤ ρ(v − z, v − z̄) + ρ(v − z̄, ȳ) = ρ(z̄, z) + ρ(v, ȳ + z̄) ≤ r + r < 2ε.

Moreover, y − z ∈ B[w, c′t] since

ρ(y − z, w) = ρ(y − z, v − z) = ρ(y, v) = c′t.

By (2.10), there is x′ ∈ B[x, t] such that y − z ∈ F (x′). Then

d(x′, x̄) ≤ d(x′, x) + d(x, x̄) ≤ t+ r ≤ 2r/c′ + r = r(1 + 2/c′).

Since z ∈ G(x) ∩ B[z̄, r], using (2.11) we find z′ ∈ G(x′) such that

ρ(z, z′) ≤ ` d(x, x′) ≤ `t.
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Then v′ := y − z + z′ ∈ EF,G(x′, z′) and we may estimate

ρ(v′, y) = ρ(y − z + z′, y) = ρ(z, z′) ≤ `t = c′t− (c′ − `)t = ρ(v, y)− (c′ − `)t
< ρ(v, y)− (c− `)t.

Remembering that d(x′, x) ≤ t and ρ(z, z′) ≤ `t, as well as that

ρ(v, v′) = ρ(v, y − z + z′) ≤ ρ(v, y) + ρ(y, y − z + z′) = ρ(v, y) + ρ(z, z′) ≤ c′t+ `t = (c′ + `)t,

we conclude that

ρ(v′, y) < ρ(v, y)− (c− `) max{d̃ ((x, z), (x′, z′)), ρ(v, v′)/(c′ + `)}.

Theorem 2.2.2 with α := 1/(c′ + `) and (X, d) :=
(
X × Y, d̃

)
implies that

b := sur EF,G(x̄, z̄, ȳ + z̄) ≥ c− `.

Letting c ↑ surF (x̄, ȳ) and ` ↓ lipG(x̄, z̄) we get (2.8).
Let λ ∈ (0, b) be arbitrary. Then there exists ε > 0 such that for any t ∈ (0, ε) and any (x, z, v) ∈

Graph EF,G ∩ (B[x̄, ε] × B[z̄, ε] × B[ȳ + z̄, ε]), that is, x ∈ B[x̄, ε], z ∈ G(x) ∩ B[z̄, ε] and v ∈ (F (x) +
z) ∩ B[ȳ + z̄, ε], we have

B[v, λt] ⊂ EF,G(B[x, t]× B[z, t]).

Suppose that the pair (F,G) is sum-stable around (x̄, ȳ, z̄). Then there is δ ∈ (0, ε) such that for any
x ∈ B[x̄, δ] and any v ∈ (F + G)(x) ∩ B[ȳ+z̄, δ], there are y ∈ F (x) ∩ B[ȳ,ε] and z ∈ G(x) ∩ B[z̄, ε]
such that v = y + z. Fix any t ∈ (0, δ) and (x, v) ∈ (B[x̄, δ] × B[ȳ + z̄, δ]) ∩ Graph(F + G). Then
v = y + z for some y ∈ F (x) ∩ B[ȳ,ε] and z ∈ G(x) ∩ B[z̄, ε]. Given v′ ∈ B[v, λt], we find x′ ∈ B[x, t]
and z′ ∈ B[z, t] such that v′ ∈ EF,G(x′, z′), that is, v′ ∈ F (x′) + z′ ⊂ (F +G)(x′). Consequently,

B[v, λt] ⊂ (F +G)(B[x, t]).

Letting λ ↑ b, we get sur(F +G)(x̄, ȳ + z̄) ≥ b, which in view of (2.8) implies (2.9).
Let us point out that a direct application of Theorem 2.2.2 gives us a short and easy to read proof

of Theorem 2.2.4 which is similar to the one of Theorem 2.2.3. The proof in [32] which is based on
error bounds and slopes is more involved and longer. Example 2.2.2 shows that Theorem 2.2.4 implies
Theorem 2.2.3 .

The following proposition reveals that regularity for a mapping F is still guaranteed if we replace
the image of a ball under F in (1.16) by its closure. We need a definition of a ball around a set. For
a subset K of a metric spaces (X, d) and a constant δ > 0, the open ball around K with the radius δ
is the set

B̂(K, δ) := {x ∈ X : dist(x,K) < δ}.

Proposition 2.2.1 Let (X, d), (Y, ρ) be complete metric spaces and (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y which has a locally closed graph around (x̄, ȳ). Then surF (x̄, ȳ) is
equal to the supremum of c > 0 such that there are r > 0 and ε > 0 such that

B(y, ct) ⊂ F (B(x, t))

for all (x, y) ∈ GraphF ∩
(
B(x̄, r)× B(ȳ, r)

)
and all t ∈ (0, ε).

Proof. Denote by s the supremum from the statement. Clearly s ≥ surF (x̄, ȳ). Assume that
s > surF (x̄, ȳ). Fix an arbitrary c ∈ (0, s). Find ε > 0 such that for each (x, v) ∈ GraphF ∩

(
B[x̄, ε]×

B[ȳ, ε]
)
, each t ∈ (0, ε), and each δ > 0 it holds

B[v, ct] ⊂ B(v, (c+ ε)t) ⊂ F (B(x, t)) ⊂ F (B[x, t]) ⊂ B̂(F (B[x, t]), δt).(2.12)
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Let r ∈ (0,min{ε, εc/2}). Fix any (x, v) ∈ Graph F ∩
(
B[x̄, r] × B[ȳ, r]

)
, any y ∈ B[ȳ, r] \ {v}, and

any δ ∈ (0, c). Define t := ρ(v, y)/c. Then 0 < t ≤ 2r/c < ε. By (2.12), there are x′ ∈ B[x, t] and
v′ ∈ F (x′) such that ρ(v′, y) < δt. Hence

ρ(v′, y) < δt = ct− (c− δ)t = ρ(v, y)− (c− δ)t.

As d(x, x′) ≤ t and

ρ(v, v′) ≤ ρ(v, y) + ρ(y, v′) < (c+ δ)t,

we get

ρ(v′, y) < ρ(v, y)− (c− δ) max{d(x, x′), ρ(v, v′)/(c+ δ)}.

Theorem 2.2.2 with α := 1/(c+ δ) says that surF (x̄, ȳ) ≥ c− δ. Letting c ↑ s and δ ↓ 0, we conclude
that surF (x̄, ȳ) ≥ s > surF (x̄, ȳ), a contradiction.

Further, let (H, 〈·, ·〉) be a Hilbert space. We study a global version of strong regularity of a set-
valued mapping F : H ⇒ H, which means, that F is strongly regular around any point in its graph
and the corresponding neighborhood U ×V in (1.14) equals H×H. This means that F−1 is Lipschitz
continuous on the whole of H. For this purpose we need two more definitions. The set-valued mapping
F : H ⇒ H is said to be monotone if

〈y − y′, x− x′〉 ≥ 0 for each (x, y), (x′, y′) ∈ GraphF ;

and F is said to be maximal monotone if it is monotone and there is no other monotone mapping
whose graph strictly contains the graph of F . Note that by [5, Theorem 3.5.9], if the mapping F
is maximal monotone then for each µ > 0 the mapping (I + µF )−1 is single-valued and Lipschitz
continuous on H with the constant 1, where I is the identity mapping on H. We will follow the proof
from [40, Lemma 2.2].

Theorem 2.2.5 Let (H, 〈·, ·〉) be a Hilbert space. Consider a maximal monotone mapping F : H ⇒ H
and A ∈ L(H,H) such that there is c > 0 such that

〈Ax, x〉 ≥ c‖x‖2 for each x ∈ H.(2.13)

Then the mapping (A+ F )−1 is single-valued and Lipschitz continuous on H with the constant 1/c.

Proof. Let µ := c/‖A‖2. Since the mapping F is maximal monotone, the mapping (I + µF )−1

is Lipschitz continuous on H with the constant 1. We show that rge(A + F ) = H, that is, for each
y ∈ H we find x ∈ H with

y ∈ Ax+ F (x).(2.14)

Fix any y ∈ H. Consider the mapping H 3 u 7−→ h(u) := (I + µF )−1(µy + u − µAu). We will find
a fixed point x ∈ H of h, which automatically satisfies (2.14). By (2.13), for arbitrary x, x′ ∈ H, we
have

‖h(x)− h(x′)‖2 ≤ ‖x− x′ − µA(x− x′)‖2

= ‖x− x′‖2 − 2µ〈A(x− x′), x− x′〉+ µ2‖A(x− x′)‖2

≤
(
1− 2cµ+ µ2‖A‖2

)
‖x− x′‖2

=
(
1− c2/‖A‖2

)
‖x− x′‖2.

By (2.13), we get 0 ≤ 1 − c2/‖A‖2 < 1. Then by Banach contraction theorem, we conclude the first
part of the proof.
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Now we show that the mapping (A + F )−1 is Lipschitz continuous. Fix any (x, v), (x′, v′) ∈
Graph(A + F ). Then there are y ∈ F (x) and y′ ∈ F (x′) such that v = Ax + y and v′ = Ax′ + y′.
Using the monotonicity of F and (2.13), we have

〈v − v′, x− x′〉 = 〈y − y′, x− x′〉+ 〈A(x− x′), x− x′〉 ≥ 〈A(x− x′), x− x′〉 ≥ c‖x− x′‖2.

Therefore

c‖x− x′‖2 ≤ 〈v − v′, x− x′〉 ≤ ‖v − v′‖‖x− x′‖.

Hence ‖x − x′‖ ≤ ‖v − v′‖/c. Consequently, (A + F )−1 is single-valued and Lipschitz continuous on
H with the constant 1/c.

2.3 Subregularity

In this section we present criteria for (strong) subregularity of mappings. The first statement is
an analogue Ioffe’s criterion and we prove the statement by the iterative process, which is a modification
of the proof from [13].

Theorem 2.3.1 Let (X, d) be a complete metric space, (Y, ρ) be a metric space, and x̄ ∈ X be given.
Consider a continuous mapping f : X → Y whose domain is all of X. Then popen f(x̄) equals to
the supremum of c > 0 for which there is r > 0 such that for all x ∈ B[x̄, r] with f(x) 6= f(x̄) there is
a point x′ ∈ X satisfying

(2.15) c d(x, x′) < ρ(f(x), f(x̄))− ρ(f(x′), f(x̄)).

Proof. Let b := popen f(x̄) and s be the supremum from the statement. Fix any c > 0 for which
there is r > 0 such that for any x ∈ B [x̄, r] with f(x) 6= f(x̄) there exists x′ ∈ X such that (2.15)
holds. Let ε := r/2. Then

(2.16) B [u, ε] ⊂ B [x̄, r] whenever u ∈ B [x̄, ε] .

Fix any t ∈ (0, ε) and any u ∈ B [x̄, ε] ∩ f−1(B [f(x̄), ct]). Then ρ(f(u), f(x̄)) ≤ ct. We have to show
that f(x̄) ∈ f (B [u, t]), that is, to find x ∈ B [u, t] such that f(x̄) = f(x). If f(x̄) = f(u), take x := u
and we are done. Assume further that f(x̄) 6= f(u). We will construct a sequence x1, x2, . . . in B [u, t]
satisfying

(2.17) c d(xm, u) ≤ ρ(f(u), f(x̄))− ρ(f(xm), f(x̄)), m ∈ N.

Clearly, the point x1 := u satisfies (2.17) with m = 1. Let n ∈ N and assume that xn ∈ B [u, t]
satisfying (2.17) with m = n was already found. If f(xn) = f(x̄), then take x := xn, and stop
the construction. Assume further that f(xn) 6= f(x̄). Then by (2.16) and (2.17), we find xn+1 ∈ X
such that

(2.18) c d(xn, xn+1) < ρ(f(xn), f(x̄))− ρ(f(xn+1), f(x̄)) and that d(xn, xn+1) ≥ 1
2sn

where

sn := sup
{
d(xn, x

′) : x′ ∈ X and c d(xn, x
′) < ρ(f(xn), f(x̄))− ρ(f(x′), f(x̄))

}
.(2.19)

Note that 0 ≤ sn ≤ 1
cρ(f(xn), f(x̄)) <∞. Using the first inequality in (2.18), and (2.17) with m := n,

we get
c d(u, xn+1) ≤ c d(u, xn) + c d(xn, xn+1) < ρ(f(u), f(x̄))− ρ(f(xn+1), f(x̄)),

24



which is (2.17) with m := n + 1. In particular, we have c d(u, xn+1) < ρ(f(u), f(x̄)) ≤ ct; thus
xn+1 ∈ B [u, t]. If the process stops at some n ∈ N, we are done.

Assume that this was not the case, that is, f(xn) 6= f(x̄) for every n ∈ N. From (2.18) we have,
for all 1 ≤ n < m, that

0 ≤ c d(xn, xm) ≤ c d(xn, xn+1) + · · ·+ c d(xm−1, xm)

<
(
ρ(f(xn), f(x̄))− ρ(f(xn+1), f(x̄))

)
+ · · ·+

(
ρ(f(xm−1)f(x̄))− ρ(f(xm), f(x̄))

)
= ρ(f(xn), f(x̄))− ρ(f(xm), f(x̄)),(2.20)

and so, ρ(f(xn), f(x̄)) > ρ(f(xm), f(x̄)). Thus ` := limn→∞ ρ(f(xn), f(x̄)) exists and is finite, and
hence (xn) is a Cauchy sequence in the complete metric space X. Put x := limn→∞ xn. Then
x ∈ B [u, t] . Suppose that f(x̄) 6= f(x). By the assumption, there is x′ ∈ X such that

(2.21) c d(x, x′) < ρ(f(x), f(x̄))− ρ(f(x′), f(x̄)).

Note that x 6= x′ by (2.21). Since xn → x and f(xn) → f(x), and the function ρ(f(·), f(x̄)) is
continuous, for any n ∈ N sufficiently large, we have

c d(xn, x
′) < ρ(f(xn), f(x̄))− ρ(f(x′), f(x̄)),

hence sn ≥ d(xn, x
′). Thus lim supn→∞ sn ≥ d(x, x′) > 0. But we know by (2.18) that

sn ≤ 2d(xn, xn+1)→ 0 as n→∞,

hence we obtain a contradiction. So f(x̄) = f(x). Therefore c ≤ b, and thus s ≤ b.
Assume now that s < b. Fix any c ∈ (s, b). Find ε > 0 such that for any t ∈ (0, ε) and

any x ∈ B [x̄, ε] ∩ f−1 (B [f(x̄), ct]) one has

f(x̄) ∈ f (B [x, t]) .

By the continuity of f , there is r ∈ (0, ε) such that ρ(f(x), f(x̄)) < cε for each x ∈ B [x̄, r]. Fix
any x ∈ B [x̄, r] with f(x) 6= f(x̄). Let t := ρ(f(x), f(x̄))/c. Then t ∈ (0, ε), and hence there is
x′ ∈ B [x, t] such that f(x̄) = f(x′). Noting that x′ 6= x because t > 0, we get

0 < cd(x, x′) ≤ ct = ρ(f(x), f(x̄)) = ρ(f(x), f(x̄))− ρ(f(x′), f(x̄)).

Hence s ≥ c′ for any c′ ∈ (s, c), a contradiction.
Again, using the canonical projection we obtain a set-valued version of the previous theorem.

Theorem 2.3.2 Let (X, d), (Y, ρ) be metric spaces and (x̄, ȳ) ∈ X × Y be given. Consider a set-
valued mapping F : X ⇒ Y whose graph is complete around (x̄, ȳ). Then popen F (x̄, ȳ) equals
to the supremum of all c > 0 for which there are r > 0 and α ∈ (0, 1/c) such that any (x, y) ∈
Graph F ∩ (B [x̄, r]× B [ȳ, r]) with y 6= ȳ there is a pair (x′, y′) ∈ Graph F such that

(2.22) c max
{
d(x, x′), αρ(y, y′)

}
< ρ(y, ȳ)− ρ(y′, ȳ).

Proof. Let b := popenF (x̄, ȳ) and denote by s the supremum from the statement.
First, we show that b ≥ s. Fix an arbitrary c ∈ (0, s) (if there is any). Find α ∈ (0, 1/c) and

r > 0 such that the property involving (2.22) holds. Define the (compatible) metric d̃ on X × Y by
d̃((u, v), (u′, v′)) := max {d(u, u′), αρ(v, v′)} for any (u, v), (u′, v′) ∈ X × Y . Fix r′ ∈ (0, r) such that
X̃ := GraphF ∩ (B [x̄, r′]× B [ȳ, r′/α]) is a complete metric space. Consider f := pY |X̃ , where pY

denotes the canonical projection of X × Y onto Y . Obviously, f is continuous on X̃. Let r̃ > 0 be
such that r̃(1 + αc) < αcr′. In particular, r̃ < r′. Fix any

(x, y) ∈ B
X̃

[(x̄, ȳ), r̃] = GraphF ∩ (B [x̄, r̃]× B [ȳ, r̃/α]) ⊂ GraphF ∩
(
B
[
x̄, r′

]
× B

[
ȳ, r′/α

])
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such that y 6= ȳ. By assumption, there is a pair (x′, y′) ∈ GraphF such that (2.22) holds. Then

d̃((x′, y′), (x̄, ȳ)) ≤ d̃((x′, y′), (x, y)) + r̃ <
ρ(y, ȳ)

c
+ r̃ ≤ r̃

(
1

αc
+ 1

)
< r′,

hence (x′, y′) ∈ X̃. Theorem 2.3.1 with (X, d) :=
(
X̃, d̃

)
says that popen f(x̄, ȳ) ≥ c. Fix an arbitrary

c′ ∈ (0, c). Find ε > 0 such that for any t ∈ (0, ε) and any (x, y) ∈ B
X̃

[(x̄, ȳ), ε] ∩ f−1 (B [ȳ, c′t]) one
has ȳ ∈ f

(
B
X̃

[(x, y), t]
)
. Fix an arbitrary t ∈ (0, ε) and x ∈ B [x̄, ε]∩F−1 (B [ȳ, c′t]). As c′ < c < 1/α,

there is y ∈ B [ȳ, c′t] ⊂ B [ȳ, ε/α] such that y ∈ F (x). Thus (x, y) ∈ GraphF ∩ (B [x̄, ε]× B [ȳ, ε/α]) =
B
X̃

[(x̄, ȳ), ε] and (x, y) ∈ f−1 (B [ȳ, c′t]). Find a pair (u, v) ∈ GraphF ∩ (B [x, t]× B [y, t/α]) such that
ȳ = f(u, v) = v. Then ȳ = v ∈ F (u) ⊂ F (B [x, t]). Thus b ≥ c′. Letting c′ ↑ c and then c ↑ s, we get
b ≥ s.

Suppose that b > s. Fix an arbitrary c ∈ (s, b). Find ε > 0 such that GraphF∩(B [x̄, ε]× B [ȳ, ε]) is
complete and such that for any t ∈ (0, ε) and any x ∈ B [x̄, ε]∩F−1 (B [ȳ, ct]) one has ȳ ∈ F (B [x, t]).
Pick α ∈ (0, 1/c) and let d̃ be as above. Set X̃ := GraphF ∩ (B [x̄, r′]× B [ȳ, r′/α]) with r′ ∈
(0,min {ε, αε}). Then X̃ ⊂ GraphF ∩ (B [x̄, ε]× B [ȳ, ε]), hence X̃ is a complete metric space.

Fix any t ∈ (0, r′) and any (x, y) ∈ B
X̃

[(x̄, ȳ), r′] ∩ f−1 (B [ȳ, ct]). Then (x, y) ∈ GraphF ∩
(B [x̄, r′]× B [ȳ, r′/α]) with y ∈ B [ȳ, ct]. This implies, on one hand, that ȳ ∈ B [y, ct] ⊂ B [y, t/α].
On the other hand, it follows that x ∈ B [x̄, ε] ∩ F−1 (B [ȳ, ct]) , hence there is u ∈ B [x, t] such that
ȳ ∈ F (u). Then

(u, ȳ) ∈ GraphF ∩ (B [x, t]× B [y, t/α]) = B
X̃

[(x, y), t] .

Thus ȳ = f(u, ȳ) ∈ f
(
B
X̃

[(x, y), t]
)
. It follows that popen f(x̄, ȳ) ≥ c > s. By Theorem 2.3.1 for

any c′ ∈ (s, c) there is r̃ ∈ (0, r′) such that for all (x, y) ∈ B
X̃

[(x̄, ȳ), r̃] with y 6= ȳ, there is a point

(x′, y′) ∈ X̃ ⊂ GraphF such that

c′ max
{
d(x, x′), αρ(y, y′)

}
< ρ(y, ȳ)− ρ(y′, ȳ).

Take r ∈ (0,min {r̃, r̃/α}). As α < 1/c < 1/c′, we get s ≥ c′ > s, a contradiction.
Strong subregularity is stable under calm single-valued perturbations, see [14].

Proposition 2.3.1 Let (X, d) be a complete metric space, (Y, ρ) be a linear metric space with a shift-
invariant metric, and (x̄, ȳ) ∈ X × Y be given. Consider a mapping f : X → Y defined around
x̄ and a mapping F : X ⇒ Y such that ȳ ∈ F (x̄). If F is strongly subregular at (x̄, ȳ) and
calm f(x̄) < popenF (x̄, ȳ), then F + f is strongly subregular at (x̄, ȳ + f(x̄)) and

popen(F + f)(x̄, ȳ + f(x̄)) ≥ popenF (x̄, ȳ)− calm f(x̄) > 0.

Example 2.3.1 Let g : X → Y be a single-valued mapping between Banach spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ). Suppose that g is Fréchet differentiable and strongly subregular at x̄ ∈ X, then Propos-
ition 2.3.1, with F := g and f := g(x̄) − g + g′(x̄)(· − x̄), implies popen g(x̄) ≤ popen

(
g′(x̄)

)
. On

the other hand, suppose that popen
(
g′(x̄)

)
> 0, then Proposition 2.3.1, with F := g(x̄)+g′(x̄)(·−x̄) and

f := g − g(x̄)− g′(x̄)(· − x̄), implies popen
(
g′(x̄)

)
≤ popen g(x̄). Hence popen g(x̄) = popen

(
g′(x̄)

)
.

2.4 Semiregularity

In this section we will focus on criteria for (strong) semiregularity. The following theorem provides an
answer to the question what happens if we sum a semiregular set-valued mapping with a set-valued
mapping which has Aubin property, see [14]. This assertion follows either from [32, Corollary 3.1] or
Theorem 2.2.4.
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Theorem 2.4.1 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces and (x̄, ȳ, z̄) ∈ X × Y × Y be given.
Consider set-valued mappings F , G : X ⇒ Y such that F has a locally closed graph around (x̄, ȳ) and
G has a locally closed graph around (x̄, z̄). Then

lopen(F +G)(x̄, ȳ + z̄) ≥ surF (x̄, ȳ)− lipG(x̄, z̄).

In the case of a single-valued perturbation we get:

Corollary 2.4.1 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces and (x̄, ȳ) ∈ X × Y be given. Consider
a single-valued mapping f : X → Y which is continuous around x̄ and a set-valued mapping F : X ⇒ Y
which has a locally closed graph around (x̄, ȳ). Then

lopen(F + f)(x̄, ȳ + f(x̄)) ≥ surF (x̄, ȳ)− lip f(x̄).

The following example shows that semiregularity is unstable with respect calm (even differentiable
at x̄) single-valued perturbations.

Example 2.4.1 Consider single-valued mappings f, g : R→ R defined by

f(x) := x, x ∈ R, and g(x) :=

{
x2, for x ∈ Q,
0, for x ∈ R \Q.

Then sur f(0) = 1 and calm g(0) = 0 but the mapping f + g is not semiregular at 0.
Indeed, assume that f + g is semiregular at 0. For k = 5, 6, . . . , consider a problem to find

xk ∈ (−0.5, 0.5) such that

f(xk) + g(xk) = −1

k
.

But there is no xk ∈ (−0.5, 0.5) ∩Q such that

x2
k + xk = −1

k
,

because the only possible solution has the form

xk = −1

2
+

√
k − 4

√
k

2k

but such xk ∈ R \Q for k = 5, 6, . . . , a contradiction.
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Chapter 3

Newton-type methods

Consider a generalized equation: find x ∈ X such that

f(x) + F (x) 3 0,(3.1)

where (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces, f : X → Y is a single-valued mapping, and
F : X ⇒ Y is a set-valued mapping. We investigate a Newton-type method for solving (3.1) in
the form

f(xk) +Ak(xk+1 − xk) + F (xk+1) 3 0 for k = 0, 1, 2, . . . ,(3.2)

where an initial point x0 ∈ X and a sequence of Ak ∈ L(X,Y ), k = 0, 1, 2, . . . , are given. If F ≡ 0,
then (3.1) reduces to the equation: find x ∈ X such that

f(x) = 0.(3.3)

Then (3.2) reads as

f(xk) +Ak(xk+1 − xk) = 0 for k = 0, 1, 2, . . . .(3.4)

We are going to discuss three types of theorems - local convergence results, Dennis-Moré theorems
and Kantorovich theorems.

3.1 Historical background

We distinguish the following convergence rates of a sequence (xk) converging to x̄ in a Banach space
(X, ‖ · ‖X). We say that the sequence (xk) converges:

1. q-linearly to x̄ if there is µ ∈ (0, 1) such that

‖xk+1 − x̄‖X ≤ µ‖xk − x̄‖X

for all sufficiently large k ∈ N;

2. q-superlinearly to x̄ if there is a sequence of positive numbers (µk) converging to 0 such that

‖xk+1 − x̄‖X ≤ µk‖xk − x̄‖X

for all sufficiently large k ∈ N;
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3. r-superlinearly to x̄ if there are sequences of positive numbers (ηk) and (µk) such that ηk → 0
and

‖xk − x̄‖X ≤ µk and µk+1 ≤ ηkµk

for all sufficiently large k ∈ N;

4. q-quadratically to x̄ if there is µ > 0 such that

‖xk+1 − x̄‖X ≤ µ‖xk − x̄‖2X

for all sufficiently large k ∈ N.

Let f : Rn → Rn be a single-valued mapping and consider the problem (3.3). If f is differentiable,
then we can take Ak := ∇f(xk) in (3.4) and we get Newton iteration in the form

f(xk) +∇f(xk)(xk+1 − xk) = 0 for k = 0, 1, 2, . . . .(3.5)

For this method we have the following local convergence result, see [29, p. 71].

Theorem 3.1.1 Consider a single-valued mapping f : Rn → Rn and a point x̄ ∈ Rn such that
f(x̄) = 0. Suppose that f is twice continuously differentiable in a neighborhood of x̄ and the matrix
∇f(x̄) is nonsingular. Then there is a neighborhood O of x̄ such that for each x0 ∈ O the sequence
(xk) generated by (3.5) exists and converges q-quadratically to x̄.

The following example shows that a sequence generated by (3.5) may converge for any initial point,
even though some assumptions of Theorem 3.1.1 are not satisfied.

Example 3.1.1 Consider a problem to find x ∈ R such that

x2 = 0.

Clearly the solution is x̄ = 0 and the Newton iteration reads as

(3.6) (xk)
2 + 2xk(xk+1 − xk) = 0 for k = 0, 1, 2, . . . .

Hence
xk+1 = xk/2.

Then xk = 2−kx0 for k = 0, 1, 2, . . . and any fixed initial point x0 ∈ R. The sequence (xk) converges
q-linearly to x̄ no matter how far from x̄ the initial point is.

Sometimes it is difficult to compute∇f(xk) or this takes too much time. For this reason Chord method
is introduced. It uses ∇f(x0) instead of ∇f(xk), that is, we set Ak := ∇f(x0) for each k = 0, 1, 2, . . .
in (3.4), and we get the iteration scheme

f(xk) +∇f(x0)(xk+1 − xk) = 0 for k = 0, 1, 2, . . . ,(3.7)

where x0 ∈ Rn is given. The following statement guarantees the convergence of the Chord method,
see [29, p. 76].

Theorem 3.1.2 Consider a single-valued mapping f : Rn → Rn and a point x̄ ∈ Rn such that
f(x̄) = 0. Suppose that f is twice continuously differentiable in a neighborhood of x̄ and the matrix
∇f(x̄) is nonsingular. Then there is a neighborhood O of x̄ such that for each x0 ∈ O the sequence
(xk) generated by (3.7) exists and converges q-linearly to x̄.
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Statements as Theorem 3.1.1 and Theorem 3.1.2 which impose assumptions on the derivative at
the unknown solution x̄ and guarantee the convergence of the sequence (xk) to a solution x̄ are called
local convergence theorems.

In 1974 J.E. Dennis and J.J. Moré [15] proved the theorem characterizing the superlinear conver-
gence of the sequence generated by (3.4) to a solution of (3.3).

Theorem 3.1.3 (Dennis-Moré theorem) Consider a single-valued mapping f : Rn → Rn and
a point x̄ ∈ Rn. Suppose that f is differentiable on a neighborhood U of x̄, the derivative ∇f is
continuous at x̄ and the matrix ∇f(x̄) is nonsingular. Let (Ak) be a sequence of nonsingular matrices
and let for some initial point x0 ∈ U the sequence (xk) be generated by (3.4) and converge to x̄. Then
(xk) converges q-superlinearly to x̄ and f(x̄) = 0 if and only if

lim
k→∞

‖
(
Ak −∇f(x̄)

)
(xk+1 − xk)‖

‖xk+1 − xk‖
= 0.

Statements, which assume that there is a sequence converging to a solution and guarantee a certain
rate of convergence of the sequence, we call Dennis-Móre theorems.

While there is some disagreement among historians who actually invented the Newton method,
see [42] for an excellent reading about early history of the method, it is well documented in the lit-
erature that L.V. Kantorovich [27] was the first to obtain convergence of the method on assumptions
involving the point where iterations begin. Specially, Kantorovich considered the Newton method for
solving the equation (3.3) and proved convergence by imposing conditions on the derivative ∇f(x0)
of the function f and the residual ‖f(x0)‖ at the initial point x0. These conditions can be actually
checked, in contrast to the conventional approach in local convergence theorems. For this reason
Kantorovich-type theorems are usually called semi-local convergence theorems1 whereas conventional
convergence theorems are described as local theorems.

Theorem 3.1.4 (Kantorovich theorem) Consider a function f : Rn → Rn, a point x0 ∈ Rn, and
positive constants a, `, κ, and µ. Suppose that f is continuously differentiable in an open neighborhood
of the ball B[x0, a], the derivative ∇f is Lipschitz continuous in B[x0, a] with the constant `, and we
have

‖∇f(x0)−1‖ ≤ κ and ‖∇f(x0)−1f(x0)‖ < µ.

If α := κ`µa < 1/2 and a ≥ a0 :=
1−
√

1− 2α

κ`
, then there exists a unique sequence (xk) generated

by (3.5) with the initial point x0; this sequence converges to a point x̄ ∈ B[x0, a0] with f(x̄) = 0. In
addition, x̄ is the unique solution of (3.3) in B[x0, a0] and

‖xk − x̄‖ ≤
µ

α
(2α)2k for k = 0, 1, 2, . . . .

In [28, Chapter 18] Kantorovich showed that under exactly same assumptions as in Theorem 3.1.4,
the sequence (xk) generated by the scheme (3.7) converges q-linearly to the solution x̄.

In 1955 R.G. Bartle [6] studied the iteration

f(xk) +∇f(zk)(xk+1 − xk) = 0 for k = 0, 1, 2, . . . ,(3.8)

where zk ∈ Rn are, to quote [6], “arbitrarily selected points ... sufficiently close to the solution
desired.” For zk := xk one obtains the usual Newton method, and for zk := x0 the Chord method, but
zk may be chosen in other ways. For example as x0 for the first s iterations and then the derivative
could be calculated again every s iterations, obtaining in this way a hybrid version of the method.

1Some authors prefer the name global convergence theorems.
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If computing the derivatives, in particular in the case they are obtained numerically, involves time
consuming procedures, it is quite plausible to expect that for large scale problems the chord method or
a hybrid version of it would possibly be faster than the usual method. We present here the following
somewhat modified statement of Bartle theorem which fits our purposes.

Theorem 3.1.5 (Bartle theorem) Consider a single-valued mapping f : Rn → Rn, a point x0 ∈ Rn,
and positive constants a and κ. Suppose that f is continuously differentiable on B(x0, 2a), for any
three points x1, x2, x3 ∈ B[x0, a] we have

‖∇f(x1)−1‖ ≤ κ and ‖f(x1)− f(x2)−∇f(x3)(x1 − x2)‖ ≤ 1

2κ
‖x1 − x2‖,(3.9)

and also

‖f(x0)‖ < a

2κ
.(3.10)

Then for every sequence (zk) with zk ∈ B[x0, a], k = 0, 1, 2, . . . , there exists a unique sequence (xk)
generated by (3.8) with the initial point x0; this sequence converges to a point x̄ ∈ B[x0, a] with
f(x̄) = 0. In addition, x̄ is the unique solution of (3.3) in B[x0, a] and

‖xk − x̄‖ ≤ 2−ka for each k = 0, 1, 2, . . . .

Let us point out that all the previous results were originally proved in infinite-dimensional spaces.

3.2 Local convergence theorems

The set-valued mapping H between Banach spaces is said to be outer semicontinuous at a point
x̄ ∈ domH if for every open set O containing H(x̄) there exists a neighborhood U of x̄ such that
H(x) ⊂ O for each x ∈ U . For a given subset A in L(X,Y ), the Kuratowski measure of noncompactness
χ(A) of A is defined by

χ(A) := inf{r > 0 : A ⊂ B + rBL(X,Y ) for some B ⊂ A finite}.

The following theorems from [11] (accommodated a bit to our purposes) generalize Theorem 3.1.1
for a generalized equation (3.1) and regularity plays a crucial role in them.

Theorem 3.2.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider a single-valued continuous
mapping f : X → Y along with set-valued mappings F : X ⇒ Y with a closed graph, H : X ⇒ L(X,Y ),
and a point x̄ ∈ X such that f(x̄) + F (x̄) 3 0. Suppose that H is outer semicontinuous at x̄ and that
for each ε > 0 there is a neighborhood U of x̄ such that

‖f(x)− f(x̄)−A(x− x̄)‖Y ≤ ε‖x− x̄‖X for every x ∈ U and A ∈ H(x).(3.11)

Define

GA : X 3 x 7−→ f(x̄) +A(x− x̄) + F (x) for A ∈ H(x̄)(3.12)

and let

χ(H(x̄)) < inf
A∈H(x̄)

sur GA(x̄, 0).

Then there is a neighborhood O of x̄ such that for any x0 ∈ O there exists a sequence (xk) generated
by (3.2) with Ak ∈ H(xk) for k = 0, 1, 2, . . . , converging q-linearly to x̄.
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Suppose that f is continuously Fréchet differentiable at x̄, F has a closed graph, and sur(f +
F )(x̄, 0) > 0. Then f satisfies (3.11) with H := f ′. By Theorem 2.1.5, with f := f(x̄)−f+f ′(x̄)(·− x̄)
and F := f + F , we get surGA(x̄, 0) > 0 with A := f ′(x̄). Moreover, H is outer semicontinuous at x̄
and χ(H(x̄)) = 0 < surGA(x̄, 0), with A := f ′(x̄). Therefore the assumptions of Theorem 3.2.1 are
satisfied.

If we assume that for each A ∈ H(x̄) the mapping GA is strongly regular at (x̄, 0), then we get
the superlinear or even the quadratic convergence of the sequence in (3.2).

Theorem 3.2.2 Suppose that the assumptions of Theorem 3.2.1 are satisfied. In addition, suppose
that for every A ∈ H(x̄) the mapping GA defined in (3.12) is strongly regular around (x̄, 0). Then
every sequence (xk) generated by (3.2) with Ak ∈ H(xk) for k = 0, 1, 2, . . . , which converges to x̄ is in
fact q-superlinearly convergent.

Moreover, suppose that there are µ > 0 and a neighborhood V of x̄ such that

‖f(x)− f(x̄)−A(x− x̄)‖Y ≤ µ‖x− x̄‖2X for every x ∈ V and A ∈ H(x).(3.13)

Then every sequence (xk) generated by (3.2) with Ak ∈ H(xk) for k = 0, 1, 2, . . . , which converges to
x̄ is in fact q-quadratically convergent.

Suppose that assumptions of Theorem 3.1.1 are satisfied, that is, f : Rn → Rn is twice continuously
differentiable around x̄ ∈ Rn with f(x̄) = 0 and the matrix ∇f(x̄) is nonsingular. Then (3.13) holds
with H := ∇f , H is outer semicontinuous at x̄, H(x̄) = ∇f(x̄), and χ(H(x̄)) = 0. The mapping GA
from (3.12) with A := ∇f(x̄) and F ≡ 0, is strongly regular around (x̄, 0). Consequently, Theorem
3.1.1 follows from Theorem 3.2.2.

3.3 Dennis-Moré theorems

The following two statements come from [11] and strong subregularity plays crucial role in them.

Theorem 3.3.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider a single-valued continuous
mapping f : X → Y along with set-valued mappings F : X ⇒ Y and H : X ⇒ L(X,Y ), and a point
x̄ ∈ X. Suppose that F has a closed graph, the set H(x̄) is bounded and x̄ ∈ int domH, and that for
each ε > 0 there is a neighborhood U of x̄ such that for every x, x′ ∈ U there is A ∈ H(x̄) satisfying

‖f(x)− f(x′)−A(x− x′)‖Y ≤ ε‖x− x′‖X .(3.14)

Consider a sequence (xk) generated by (3.2) with Ak ∈ L(X,Y ) and xk 6= x̄ for every k = 0, 1, 2, . . . ,
which converges to x̄. Let (Bk) be a sequence in H(x̄) satisfying

lim
k→∞

‖f(xk+1)− f(xk)−Bk(xk+1 − xk)‖Y
‖xk+1 − xk‖X

= 0(3.15)

with xk+1 6= xk for every k = 0, 1, 2, . . . .

(i) If (xk) converges q-superlinearly to x̄, then

lim
k→∞

dist
(
0, f(x̄) + (Ak −Bk)(xk+1 − xk) + F (xk+1)

)
‖xk+1 − xk‖X

= 0.(3.16)

(ii) If

lim
k→∞

‖(Ak −Bk)(xk+1 − xk)‖Y
‖xk+1 − xk‖X

= 0,(3.17)

then f(x̄) + F (x̄) 3 0. If, in addition, the mapping f + F is strongly subregular at (x̄, 0) then (xk)
converges q-superlinearly to x̄.
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Due to [12, Theorem 3.1], the condition that f + F is strongly subregular at (x̄, 0), can be substi-
tuted by the condition that for every A ∈ H(x̄) the mapping GA is strongly subregular at (x̄, 0), and
that χ(H(x̄)) is smaller than popenGA(x̄, 0) for each A ∈ H(x̄).

Theorem 3.3.2 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider a single-valued continuous
mapping f : X → Y along with set-valued mappings F : X ⇒ Y and H : X ⇒ L(X,Y ), and
a point x̄ ∈ X. Suppose that F has a closed graph and H is outer semicontinuous at x̄ ∈ int domH,
satisfies (3.11), and that the set H(x̄) is bounded. Consider a sequence (xk) generated by (3.2) with
Ak ∈ L(X,Y ) and xk 6= x̄ for every k = 0, 1, 2, . . . , which converges to x̄.

(i) If (xk) converges q-superlinearly to x̄, then for every sequence (Bk) with Bk ∈ H(xk) for all
sufficiently large k ∈ N, the condition (3.16) holds.

(ii) If there exists a sequence (Bk) such that Bk ∈ H(xk) for all sufficiently large k ∈ N and that
the condition (3.17) holds, then f(x̄) +F (x̄) 3 0. If, in addition, for every A ∈ H(x̄) the mapping GA
defined in (3.12) is strongly subregular at (x̄, 0) and

χ(H(x̄)) < inf
A∈H(x̄)

popen GA(x̄, 0).

Then (xk) converges q-superlinearly to x̄.

Suppose that assumptions of Theorem 3.1.3 are satisfied, that is, f : Rn → Rn is differentiable around
a point x̄ ∈ Rn, ∇f is continuous at x̄, ∇f(x̄) is nonsingular, (Ak) is a sequence of nonsingular
matrices in Rn×n, and (xk) is a sequence in Rn converging to x̄, generated by (3.4) with an initial
point x0 close enough to x̄. Set H ≡ ∇f(x̄) and Bk := ∇f(x̄) for every k = 0, 1, 2, . . . . Then H
is outer semicontinuous at x̄, H(x̄) is bounded, χ(H(x̄)) = 0, and the conditions (3.11), (3.14) and
(3.15) hold. Consequently, the mappings f and GA from (3.12), with A := ∇f(x̄) and with F ≡ 0, are
strongly subregular2 at x̄ and χ(H(x̄)) = 0 < popenGA. Consequently, Theorem 3.1.3 follows either
from Theorem 3.3.1 or Theorem 3.3.2.

3.4 Semilocal convergence theorems

We present semilocal convergence theorems, which were proved in [10]. In the following assertions,
(strong) regularity plays a crucial role. The first theorem is a generalization of Bartle theorem and [35,
Theorem 3.3].

Theorem 3.4.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider a single-valued continuous
mapping f : X → Y , positive constants a, κ, δ, and a point x0 ∈ X such that

κδ < 1 and ‖f(x0)‖Y < (1− κδ)a
κ
.

Suppose that there exists a sequence (Ak) in L(X,Y ) such that, for every k = 0, 1, 2, . . . and every
x, x′ ∈ B[x0, a], we have

‖A−1
k ‖L(Y,X) ≤ κ and ‖f(x)− f(x′)−Ak(x− x′)‖Y ≤ δ‖x− x′‖X .

Then there exists a unique sequence (xk) generated by (3.4) with the initial point x0; this sequence
remains in B(x0, a) and converges to a point x̄ ∈ B(x0, a) with f(x̄) = 0. In addition, x̄ is the unique
solution of (3.3) in B[x0, a] and for each α ∈ (κδ, 1) we have

‖xk − x̄‖X < αka for every k = 0, 1, 2, . . . .

2The mappings are in fact strongly regular around x̄, see Example 2.1.2 and Theorem 2.2.3.
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It follows a generalization of the previous theorem for the generalized equation with the itera-
tion (3.2).

Theorem 3.4.2 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. Consider a single-valued continuous
mapping f : X → Y and a set-valued mapping F : X ⇒ Y with a closed graph along with positive
constants a, b, κ, δ, and points x0 ∈ X, y0 ∈ f(x0) + F (x0) such that

(i) κδ < 1 and ‖y0‖Y < (1− κδ) min{ aκ , b}.

Suppose that there exists a function ω : [0, a] → [0, δ] such that for every k = 0, 1, 2, . . . and every
x1, . . . , xk ∈ B[x0, a] the operator Ak := Ak(x0, . . . , xk) ∈ L(X,Y ) appearing in (3.2) has the following
properties:

(ii) the mapping

X 3 x 7−→ GAk
(x) := f(x0) +Ak(x− x0) + F (x)(3.18)

is metrically regular around (x0, y0) with constant κ and neighborhoods B[x0, a] and B[y0, b];

(iii) ‖f(x)− f(xk)−Ak(x− xk)‖Y ≤ ω(‖x− xk‖X) ‖x− xk‖X for every x ∈ B[x0, a].

Then for every α ∈ (κδ, 1) there exists a sequence (xk) generated by (3.2) with the initial point
x0; this sequence remains in B(x0, a) and converges to a point x̄ ∈ B(x0, a) with f(x̄) + F (x̄) 3 0. In
addition, the convergence is r-linear; specifically

‖xk − x̄‖X < αka and dist(0, f(xk) + F (xk)) ≤ αk‖y0‖Y for every k = 0, 1, 2, . . . .

If limξ→0 ω(ξ) = 0, then the sequence (xk) converges r-superlinearly to x̄.
If there exists a constant ` > 0 such that ω(ξ) ≤ `ξ for each ξ ∈ [0, a], then (xk) converges

r-quadratically to x̄; specifically, there exists a sequence of positive numbers (εk) such that for any
C > α`

δ we have εk+1 < Cε2
k for all sufficiently large k ∈ N.

If the mapping B[y0, b] 3 y 7−→ G−1
Ak

(y) ∩ B[x0, a] is single-valued, then there is no other sequence
(xk) satisfying (3.2) starting from x0 which stays in B[x0, a].

Suppose that the assumptions of Theorem 3.1.5 are satisfied, that is, f : Rn → Rn is continuously
differentiable in an open neighborhood O of a point x0 ∈ Rn, there are positive constants a and
κ, such that B[x0, 2a] ⊂ O and (3.9) and (3.10) hold. Then for each x ∈ B[x0, a] the mapping
f(x0) +∇f(x)(· − x0) is strongly metrically regular with the constant κ and neighborhoods Rn and
Rn. Let (zk) be an arbitrary sequence in B[x0, a]. Set ω ≡ δ := 1/(2κ), y0 := f(x0), Ak := ∇f(zk)
for every k = 0, 1, 2, . . . . Then the conditions (i), (ii), and (iii) in Theorem 3.4.2 hold. Consequently,
Theorem 3.1.5 follows from Theorem 3.4.2.

3.5 Numerical experiments

Suppose that K is a nonempty subset of Rm and let F (x) := K for each x ∈ Rn. Then the generalized
equation (3.1) reads as

(3.19) f(x) +K 3 0.

When f : Rn → Rm and K := Rm+ then the above inclusion corresponds to a system of m nonlinear
(possibly non-smooth) inequalities: find x ∈ Rn such that

f1(x) ≤ 0, f2(x) ≤ 0, . . . , fm(x) ≤ 0.
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Kantorovich-type theorems for Newton method for solving (3.19) with K being a closed convex cone
and f being smooth can be found in [3, Chapter 2.6] and [36]. The paper [34] deals with a generalized
equation of the form

(3.20) g(x) + h(x) +K 3 0,

where g : Rn → Rm is a smooth function having a Lipschitz derivative on a neighborhood U of
the initial point x0 ∈ Rn and the function h : Rn → Rm is Lipschitz continuous on U . The algorithm
proposed therein reads as: given xk ∈ Rn find xk+1 satisfying

(3.21) g(xk) + h(xk) +∇g(xk)(xk+1 − xk) +K 3 0.

Clearly, (3.21) corresponds to our iteration scheme with f := g + h and Ak := ∇g(xk), and, since Ak
does not take into account the non-smooth part, it is expected to be slower in general (or not even
applicable) as we will show on two toy examples below.

Consider a sequence (Ak) in Rm×n and an initial point x0 ∈ Rn. Given k ∈ N0, xk ∈ Rn, and Ak,
let

Ωk := {u ∈ Rn : g(xk) + h(xk) +Ak(u− xk) +K 3 0}.

For the already computed xk, the next iterate xk+1 can be found as a solution of the problem:

minimize ϕk(x) subject to x ∈ Ωk,

where ϕk : Rn → [0,∞) is a suitably chosen function. In [34], the function ϕk = ‖ · −xk‖ is used. In
the following examples we solve the linearized problem in MATLAB using either function fmincon for
ϕk = ‖ · −xk‖2 or quadprog for ϕk(x) := 1

2〈x, x〉 − 〈xk, x〉 for x ∈ Rn. We will compare the following
three versions of (3.2) for solving (3.20) with different choices of Ak at the step k ∈ N0 and the current
iterate xk:

(C1) Ak := ∇g(xk);

(C2) Ak := ∇g(xk) + j(xk), where j : Rn → Rm×n is specified later;

(C3) Ak := A0 := ∇g(x0) + j(x0).

Example 3.5.1 Consider the system from [34]:

x2 + y2 − |x− 0.5| − 1 ≤ 0,

x2 + (y − 1)2 − |x− 0.5| − 1 ≤ 0,

(x− 1)2 + (y − 1)2 − 1 = 0.

Observe that the solutions are given by y = 1 ±
√

2x− x2 if 0 ≤ x ≤ (11 − 6
√

3)/26 and y =
1−
√

2x− x2 when (11− 6
√

3)/26 ≤ x ≤ 1/2, in particular, the points (x∗1, y
∗
1) := (0.5, 1−

√
3/2) and

(x∗2, y
∗
2) = (1 −

√
2/2, 1 −

√
2/2) solve the problem. Then setting K := R2

+ × {0} and
g(x, y) := (x2 + y2 − 1, x2 + (y − 1)2 − 1, (x− 1)2 + (y − 1)2 − 1), h(x, y) := (−|x− 0.5|,−|x− 0.5|, 0)
for each (x, y) ∈ R2, we arrive at (3.20). Then

∇g(x, y) =

 2x 2y
2x 2(y − 1)

2(x− 1) 2(y − 1)

 , for each (x, y) ∈ R2.

Let the function j : R2 → R3×2 appearing in (C2) and (C3) be for each (x, y) ∈ R2 defined by

j(x, y) :=

 −sgn(x− 0.5) 0
−sgn(x− 0.5) 0

0 0

 where sgn(u) :=

{
1 if u > 0,

− 1 otherwise.
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Step k
fmincon quadprog

(C1) (C2) (C3) (C1) (C2) (C3)

0 5.0× 10−2 5.0× 10−2 5.0× 10−2 5.0× 10−2 5.0× 10−2 5.0× 10−2

1 2.4× 10−2 2.0× 10−3 2.0× 10−3 2.5× 10−2 2.0× 10−3 2.0× 10−3

2 1.2× 10−2 2.3× 10−6 2.3× 10−6 1.3× 10−3 2.3× 10−6 2.3× 10−6

4 3.1× 10−3 1.0× 10−8 1.0× 10−8 3.1× 10−3 6.5× 10−9 6.5× 10−9

Table 3.1: ‖(x∗1, y∗1)− (xk, yk)‖∞ in Example 3.5.1 for (x0, y0) = (0.55, 0.1).

Step k
fmincon quadprog

(C1) (C2) (C3) (C1) (C2) (C3)

0 2.9× 10−1 2.9× 10−1 2.9× 10−1 2.9× 10−1 2.9× 10−1 2.9× 10−1

1 4.2× 10−2 4.2× 10−2 4.2× 10−2 4.2× 10−2 4.2× 10−2 4.2× 10−2

2 1.2× 10−3 1.2× 10−3 1.2× 10−3 1.2× 10−3 1.2× 10−3 1.2× 10−3

4 1.1× 10−10 5.2× 10−10 5.2× 10−10 7.9× 10−13 7.9× 10−13 5.2× 10−13

7 1.1× 10−10 5.2× 10−10 5.2× 10−10 1.6× 10−16 1.1× 10−16 1.1× 10−16

Table 3.2: ‖(x∗2, y∗2)− (xk, yk)‖∞ in Example 3.5.1 for (x0, y0) = (0, 0).

For an error estimate we use the norm ‖z‖∞ := max{|z1|, |z2|, . . . , |zn|} for z ∈ Rn.
From Table 3.1 we see that the convergence of (3.2) with the choice (C1) and the initial point

(0.55, 0.1) is much slower than (3.2) with the choice (C3). Both quadprog and fmincon are of almost
the same efficiency.

From Table 3.2 we see that for the initial point (0, 0) all the choices (C1)–(C3) provide similar
accuracy but we get substantially better results when quadprog is used to solve the linearized problem.

Example 3.5.2 Consider the system

x2 + y2 − 1 ≤ 0 and − |x| − |y|+
√

2 ≤ 0

having four distinct solutions. Setting K := R2
+ and g(x, y) := (x2 + y2 − 1, 0),

h(x, y) := (0,−|x| − |y|+
√

2) for each (x, y) ∈ R2, we arrive at (3.20). Then

∇g(x, y) =

(
2x 2y
0 0

)
, for every (x, y) ∈ R2.

Let the function j : R2 → R2×2 appearing in (C2) and (C3) be for each (x, y) ∈ R2 defined by

j(x, y) :=

(
0 0

−sgn(x) −sgn(y)

)
.

For the initial point (0, 0) the method (3.2) with (C1) fails. The convergence for the remaining two
choices (C2) and (C3) can be found in Table 3.3. Note that using quadprog we find a solution (up to
a machine epsilon) after one step and the iteration using fmincon gives the precision 10−9 at most.

For the initial point (99,−999) the method (3.2) with (C1) and (C3) does not converge - see
Table 3.4. The only convergent scheme is (3.2) with (C2) (note that we start far away from the solu-
tion).
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Step k
fmincon quadprog

(C2) (C3) (C2) (C3)

0 7.0× 10−1 7.0× 10−1 7.0× 10−1 7.0× 10−1

1 2.5× 10−9 2.5× 10−9 0 0

2 7.5× 10−8 7.5× 10−8 0 0

4 1.2× 10−8 1.2× 10−8 0 0

7 8.5× 10−8 8.5× 10−8 0 0

10 8.5× 10−9 3.7× 10−9 0 0

Table 3.3: ‖(−
√

2/2,−
√

2/2)− (xk, yk)‖∞ in Example 3.5.2 for (x0, y0) = (0, 0).

Step k
fmincon quadprog

(C1) (C2) (C3) (C1) (C2) (C3)

0 9.9× 102 9.9× 102 9.9× 102 9.9× 102 9.9× 102 9.9× 102

1 4.9× 102 4.9× 102 4.9× 102 – 4.9× 102 4.9× 102

4 6.1× 101 6.1× 101 6.1× 101 – 6.1× 101 6.1× 101

10 5.0× 10−1 6.0× 10−1 6.0× 10−1 – 5.8× 10−1 8.3× 10−1

21 7.0× 10−1 3.0× 10−4 1.5× 10−1 – 2.8× 10−4 1.4× 100

40 7.0× 10−1 5.3× 10−9 1.5× 10−1 – 1.0× 10−8 1.4× 100

Table 3.4: ‖(−
√

2/2,
√

2/2)− (xk, yk)‖∞ in Example 3.5.2 for (x0, y0) = (99,−999).
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Open problems

(i) Let (P, ρ) be a metric space, let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces, and Ω ⊂ X × P .
Let a single-valued mapping f : X × P → Y and a set-valued F : X ⇒ Y be given. Suppose
that for each (x, p) ∈ Ω the mapping f(·, p) + F is regular around (x, 0).

The question is: is it possible to find assumptions on f, F and Ω such that the regularity is
uniform, that is, there are positive constants κ, a, and b such that for each (x, p) ∈ Ω we have

dist(x′, (f(·, p) + F )−1(y)) ≤ κdist(f(x′, p) + F (x′), y) for every (x′, y) ∈ B[x, a]× B[y, b].

(ii) We can study a differential generalized equation (DGE), a model introduced in [9], that is,
a problem to find a pair of functions x : [0, ε]→ Rn and u : [0, ε]→ Rm such that

ẋ(t) = g(x(t), u(t)),

0 ∈ f(x(t), u(t)) + F (u(t)),

x(0) = xI ,

for all t ∈ [0, ε],

with a fixed ε > 0, single-valued functions g : Rn×Rm → Rn and f : Rn×Rm → Rd, a set-valued
mapping F : Rm ⇒ Rd, and a given initial state xI ∈ Rn.

In [9], a numerical method for solving DGE is introduced and is based on Euler method and
Euler-Newton continuation method for tracking a solution trajectory. The authors derived that
the error of the numerical solution is of order O(h). It is an open question how to improve this res-
ult. One possibility is the following scheme, which is based on a combination of Runge–Kutta
method, Euler method and Euler-Newton continuation method.

Given N ∈ N and (x0, u0) close to (xI , u(0)), consider an iteration
x̃i+1 = xi + hg(xi, ui),

ei ∈ f(x̃i+1, ui) +∇uf(x̃i+1, ui)(ui+1 − ui) + F (ui+1),

xi+1 = xi +
h

2
(g(xi, ui) + g(x̃i+1, ui+1)),

where i = 0, 1, 2, . . . , N−1, h := ε/N is a discretization step, and (ei) is a sequence of sufficiently
small numbers representing errors.

(iii) It seems to be an open question, whether it is possible to prove criteria for semiregularity in
the spirit of Theorem 2.2.1 , Theorem 2.2.2, Theorem 2.3.1, and Theorem 2.3.2. We can find
some attempts in [14].
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Resumé (CZ)
V této práci jsme si vzali za úkol shrnout základńı teorii o regularitě zobrazeńı a metodách Newtonově
typu pro řešeńı (zobecněných) rovnic.

Kapitola 1 je rozdělená do dvou podkapitol. Prvńı podkapitola obsahuje motivaci pro studium reg-
ularity zobrazeńı skrze řešitelnost rovnic/inkluźı při malé perturbaci pravé strany. Dále jsme ukázali,
že nutnou podmı́nku pro (lokálńı) minimum/maximum lze odvodit negaćı postačuj́ıćıch podmı́nek
regularity. V druhé podkapitole definujeme metrickou regularitu, metrickou subregularitu a metrickou
semiregularitu. Také je zde uvedeno několik ekvivalentńıch vlastnost́ı.

Kapitola 2 je rozdělena do čtyř podkapitol. Prvńı kapitola obsahuje stručný historický vývoj
kritéríı metrické regularity, metrické subregularity a semiregularity. Daľśı kapitoly obsahuj́ı kritéria
každé z těchto vlastnosti.

Kapitola 3 je zaměřena na metody Newtonova typu a je rozdělena do pěti podkapitol. Prvńı
podkapitola obsahuje stručný historický vývoj Newtonovy metody. Druhá podkapitola je zaměřena
na věty o lokálńı konvergenci a třet́ı obsahuje věty typu Dennis-Moré. Ve čtvrté kapitole najdeme věty
o semilokálńı konvergenci, které jsou zobecněńı Bartleho věty. Všechny tyto výsledky jsou založeny
na vlastnostech regularity zobrazeńı. V posledńı podkapitole jsou metody Newtonova typu aplikovány
na problém nehladkých nerovnic.

Resume (EN)
In this thesis we set ourselves the task to present regularity properties of mappings, basic results for
them, and Newton-type methods for solving (generalized) equations.

The Chapter 1 is divided into two sections. In the first section, we motivated our considerations by
a solvability of equations/inclusions under small perturbations of the right hand side. Moreover, we
showed that necessary conditions for (local) minimum/maximum can be derived by negating sufficient
conditions of regularity. In the second section, we defined metric regularity, metric subregularity, and
metric semiregularity. Several equivalent properties were presented.

The Chapter 2 is divided into four sections. The first section contains a brief historical development
of criteria of metric regularity, metric subregularity, and metric semiregularity. In the remaining
sections, criteria for each property are given.

The Chapter 3 is focused on Newton-type methods and is divided into five sections. In the first
section, we presented a brief historical development of the Newton method. The second section is
focused on local convergence theorems and the third one contains Dennis-Moré theorems. The fourth
section contains semilocal convergence theorems, which generalize Bartle theorem. All these results
are based on various combinations of regularity properties. In the last section Newton-type methods
are applied to non-smooth inequalities.
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theorems for nonsmooth generalized equations. SIAM J. Control Optim., 53(2):1003–1019, 2015.

[12] R. Cibulka, A. L. Dontchev, and A. Y. Kruger. Strong metric subregularity of mappings in
variational analysis and optimization. J. Math. Anal. Appl., 457(2):1247–1282, 2018.

[13] R. Cibulka and M. Fabian. On primal regularity estimates for set-valued mappings. J. Math.
Anal. Appl., 438(1):444–464, 2016.

[14] R. Cibulka, M. Fabian, and A. Y. Kruger. On semiregularity of mappings. Submitted to Journal
of Mathematical Analysis and Applications.
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[32] H. V. Ngai, N. H. Tron, and M. Théra. Metric regularity of the sum of multifunctions and
applications. J. Optim. Theory Appl., 160(2):355–390, 2014.

[33] J.-P. Penot. Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear
Anal., 13(6):629–643, 1989.

[34] A. Pietrus. Non differentiable perturbed Newton’s method for functions with values in a cone.
Investigación Oper., 35(1):58–67, 2014.

[35] L. Q. Qi and J. Sun. A nonsmooth version of Newton’s method. Math. Programming, 58(3, Ser.
A):353–367, 1993.

41



[36] S. M. Robinson. Extension of Newton’s method to nonlinear functions with values in a cone.
Numer. Math., 19:341–347, 1972.

[37] S. M. Robinson. Regularity and stability for convex multivalued functions. Math. Oper. Res.,
1(2):130–143, 1976.

[38] S. M. Robinson. Strongly regular generalized equations. Math. Oper. Res., 5(1):43–62, 1980.

[39] L. Thibault. Various forms of metric regularity. unpublished note, Univ. de Montpellier, 1999.

[40] L. U. Uko. Generalized equations and the generalized Newton method. Math. Programming,
73(3, Ser. A):251–268, 1996.

[41] C. Ursescu. Multifunctions with convex closed graph. Czechoslovak Math. J., 25(100)(3):438–441,
1975.

[42] T. J. Ypma. Historical development of the Newton-Raphson method. SIAM Rev., 37(4):531–551,
1995.

42


	Introduction
	Motivation
	Regularity of mappings

	Regularity criteria
	Historical background
	Regularity
	Subregularity
	Semiregularity

	Newton-type methods
	Historical background
	Local convergence theorems
	Dennis-Moré theorems
	Semilocal convergence theorems
	Numerical experiments

	Open problems

