
Faculty of Electrical Engineering

Department of Applied Electronics and Telecommunications

Diploma Thesis

Communication system with M-ary chirp modulation

Author: Bc.Michael Křeček

Supervisor: Ing. Ivo Věrtát, Ph.D. Pilsen 2018

Abstrakt

Kĺıčová slova

Vı́cestavové rozmı́tané modulace, rozprostřené spektrum, ńızkoenergetický komunikačńı

systém, zlomková Fourierova transformace

i

Cílem této diplomové práce je experimentální softwarové realizace komunikačního
systému pracujícím v reálném čaše. Diplomová práce navazuje na [4], kde autor
vytvořil v prostředí MATLAB softwarové řešení modulátoru a demodulátoru s využitím
modulace vícestavových rozmítaných modulací. Tato práce poukazuje na problémy
původní verze a popisuje následné řešení a vylepšení.
Značné úsilí bylo vyvinuto pro snížení výpočetního výkonu. To vedlo k novým
neobvyklým možnostem demodulačního procesu, kdy se využila decimace a frakční
Fourierova transformace.
Výsledkem této práce je funkční softwarový prototyp komunikačního systému se
schopností volit energetickou nebo spektrální účinnost pro skupinu vícestavových
rozmítaných modulací, který byl vytvořen v softwarovém prostředí MATLAB.

Abstract

Křeček, Michael. Communication system with M-ary chirp modulation [Communication

system with M-ary chirp modulation]. Pilsen, 2018. Master thesis (in English). University

of West Bohemia. Faculty of Electrical Engineering. Department of Applied Electronics

and Telecommunications. Supervisor: Ivo Veřtát

The aim of this thesis is the experimental software implementation of a communication

system working in real-time. Thesis follows up on [4], where author created software solu-

tion of the modulator and demodulator utilizing M-ary chirp modulation in a MATLAB

environment. This paper points out to the issues of the original version and describes

subsequent solutions and improvements. In particular, significant e↵ort to decrease com-

putation di�culty has been made. This lead to new unusual possibilities to demodulation

process, where decimation and fractional Fourier Transform were utilized.

The result of this thesis is a functional software prototype of the communication

system, with an ability to select energy or spectral e�ciency over a group of the M-ary

chip modulation, created in the MATLAB environment.

Keywords

M-ary chirp modulation, spread spectrum, low power communication system, Fractional

Fourier transformation

ii

Prohlášeńı

Předkládám t́ımto k posouzeńı a obhajobě diplomovou práci, zpracovanou na závěr studia

na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem svou závěrečnou práci vypracoval samostatně pod vedeńım ve-

doućıho diplomové práce a s použit́ım odborné literatury a daľśıch informačńıch zdroj̊u,

které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořeńım této

závěrečné práce jsem neporušil autorská práva třet́ıch osob, zejména jsem nezasáhl nedo-

voleným zp̊usobem do ciźıch autorských práv osobnostńıch a jsem si plně vědom následk̊u

porušeńı ustanoveńı § 11 a následuj́ıćıch autorského zákona č. 121/2000 Sb., včetně možných

trestněprávńıch d̊usledk̊u vyplývaj́ıćıch z ustanoveńı § 270 trestńıho zákona č. 40/2009 Sb.

Také prohlašuji, že veškerý software, použitý při řešeńı této diplomové práce, je legálńı.

V Plzni dne May 30, 2018

Bc.Michael Křeček

. .

Podpis

iii

Acknowledgement

This work was created with the support of the student grant competition SGS-2015-002.

i

Contents

List of Figures iv

List of Symbols and Abbreviations v

1 Introduction 1

1.1 Aims of the thesis . 2

2 Chirp Spread Spectrum 3

2.1 M-ary Chirp Spread Spectrum . 5

2.1.1 Frequency Band Splitting . 5

2.1.2 Symbol Period Splitting Method . 6

3 Software Realization of Transmitting Side 8

3.1 Software Implemntation of the Main Program Transmitter main 8

3.2 Enter Message Function . 11

3.3 Message Alignment Block Function . 11

3.4 Create Modulation Symbol Function . 13

3.5 Software Realization of Frequency Band Splitting Method 17

3.6 Software Realization of Symbol Period Splitting Method 19

3.7 Transmission of the Message . 21

4 Software Realization of Receiving Side 28

4.1 Software Implemntation of the Main Program Receiver main 28

4.2 Setting Properties of the Receiver . 29

4.3 Interception of the Message . 32

4.3.1 Locate Synchronization Function 33

4.3.2 Dem Chirp Function . 37

4.3.2.1 Decimation . 40

4.4 FrFT dem Function . 43

4.5 Translation of Received String . 45

5 Conclusion 48

Literature and Sources 50

ii

Communication system with chirp modulation Michael Křeček 2018

Attachments 52

A Used scripts and source code 52

A.1 Main program Transmitter main.m . 52

A.2 Function enter message.m . 54

A.3 Function message alignment block.m . 55

A.4 Function create mod symbol.m . 56

A.5 Function chirpM B mod time.m . 56

A.6 Function chirpM mod time.m . 57

A.7 Function symbol mapping.m . 58

A.8 Main program Receiver main.m . 58

A.9 Function locate synchronization.m . 61

A.10 Function dem chirp.m . 62

A.11 Function dem FrFT.m . 63

A.12 Function locate aplha values . 64

A.13 Function frft.m . 66

A.14 Function message translation.m . 67

A.15 Function BER receiving side . 67

iii

List of Figures

2.1 Modulation symbol representation in CSS system. 4

2.2 Frequency band splitting in time and time-frequency domain. 5

2.3 Time Duration Splitting in time and time-frequency domain. 6

3.1 Simplified flowchart of transmitter . 10

3.2 Create modulation symbol function flowchart. 14

3.3 Band splitting method flowchart. 17

3.4 Symbol period splitting method flowchart. 19

3.5 Flowchart of the transmission loop. 22

4.1 Simplified flowchart of receiver. 30

4.2 Flowchart of the receiving loop. 34

4.3 Bu↵er data loading process. 37

4.4 BER simulation for 8-ary CSS and decimated versions, symbols created by

a symbol period splitting technique. 42

4.5 BER simulation for 32-ary CSS and decimated versions, symbols created

by a symbol period splitting technique. 42

4.6 BER simulation for 8-ary and 32-ary CSS-FrFT versions, symbols created

by a symbol period splitting technique. 45

iv

List of Symbols and Abbreviations

AFP Audio File Player

AFSK Audio Frequency-Shift Keying

AP Audio Player

ASCII American Standard Code for Information Interchange

↵
K

. Frequency gradient for first half of symbol time duration

↵0
K

. Frequency gradient for second half of symbol time duration

BER Bit Error Rate

DSP Design and Simulate Streaming Signal Processing

CSS Chirp Spread Spectrum

E Symbol Energy

Eb/N0 Energy per bit to noise power spectral density ratio

f
central

. Central frequency

fdown Down frequency

fhigh High frequency

FrFT Fractional Fourier transform

Fs Sampling frequency

IOT Internet Of Things

k Chirp rate

K One Modulation State

M Number of modulation states

PAPR Peak to Average Power Ratio

PC Personal Computer

RF Radio Frequency

RMS Root Mean Square

T Symbol duration

�
f

. Frequency sweep

!
c

. Angular frequency of carrier

v

Chapter 1

Introduction

At present, a radio link of the picosatellite generally utilizes the non-adaptive commu-

nication systems. Nevertheless, the signal quality received at the ground control center

changes during the passage of the picosatellite. Therefore, when a power reserve in the

link budget occurs, a fixed radio system cannot adapt communication to save power con-

sumption or increase data rates. This method leads to ine↵ective use of the radio link

budget. [1] Thus, adaptive communication system with an ability to select energy or spec-

tral e�ciency over a group of the modulations could solve the problem of the low data rate

(a few kbit/s), which is currently limiting use of the picosatellites for science experiments.

Selection of the modulation method for the adaptive communication system is a funda-

mental task. Chosen modulation method must have a constant envelope, which enables

utilization of non-linear RF amplifiers with high energy e�ciency. Other properties of

the modulation method should be energy balance, resistance to narrowband interference

and jamming. [2] Spread spectrum techniques satisfy those requirements. These tech-

niques are modulation methods by which a signal generated with a specific bandwidth is

purposely spread in the frequency domain, resulting in a signal with a bandwidth con-

siderably larger than the bandwidth of the original signal. Chirp spread spectrum are

potentially suitable for this application.

This thesis follows up on the diploma thesis High order chirp modulations [4]. An

output of this work was created in a MATLAB environment. It is a software prototype

of the modulator and demodulator with adjustable bandwidth, modulation number of

states and the duration of the modulation symbol working in an acoustic band. Because

solution of the predecessor contains many flaws, the main focus of this thesis was software

optimization and creation of the adjustable communication system utilizing M-ary chirp

modulation. There are two primary aims of this thesis. The first is to implement commu-

nication system with M-ary chirp modulation working in the real-time. The second aim

is to design and test suitable demodulation methods with a consideration of a realization

and computational di�culty for PC.

1

Communication system with chirp modulation Michael Křeček 2018

1.1 Aims of the thesis

A thesis is divided into three main chapters. In the first chapter, the chirp spread spec-

trum (CSS) is introduced. Likewise, techniques for creating a CSS are described. The next

chapter presents software realization of transmitting side, where the concept of the main

program ’Transmitter_main.m’ is revealed. Followed by a description of the functions

belonging to’Transmitter_main.m’. To ensure, that transmitted message has defined

properties under any given conditions, a data alignment and stu�ng methods were imple-

mented. The last chapter focuses on the software realization of receiving side, in the same

manner as for the previous chapter. First of all, the main program ’Receiver_main.m’

is and its functions are introduced. Di↵erent approaches for demodulation process are

implemented and measured with a consideration of the computational di�culty. A par-

ticular attention is paid to the comparison of demodulation duration between original

and optimized versions. The result of this thesis is a functional software prototype of the

communication system, with an ability to select energy or spectral e�ciency over a group

of the M-ary chip modulations, created in the MATLAB environment.

2

2

Chirp Spread Spectrum

The chirp spread spectrum (CSS) is a spread spectrum signalling technique in which a

carrier is swept over a wide-band during a given time interval. Generally, in the spread

spectrum method transmitted signal is spread over a wide frequency band that is much

wider than the minimum bandwidth required for the information to be sent. Spread

spectrum techniques are becoming increasingly popular, since their properties meet many

needs for modern digital transmission systems. Among these advantages are energy bal-

ance, code division multiple access, multipath suppression, low probability of intercept,

interference rejection and resistance to fading [3][2]. Energy balance is crucial for applica-

tions with limited power resources such as satellite technique and internet of things (IOT)

devices. A lot of energy is lost in radio transmission due to RF power amplifiers with

low energy e�ciency. For modulation with high PAPR, these RF amplifiers must work in

linear part of their characteristic curve. In order to utilize non-linear RF amplifiers with

higher energy e�ciency modulation with constant envelope is preferred. [1]

As mentioned above, CSS is type of spread spectrum modulation with the constant

envelope that does not necessarily employ coding. Neverthless, this form has found its

main application in radar because of its advantage in reducing powersignificantly. How-

ever, according to [6], M-ary CSS are more than suitable for multiple access systems or,

in our case, for the single user system but with M-ary signal. Therefore, chirp modulation

can be used for communication systems where power consumption is a critical factor. In

the chirp systems, modulation symbols are represented by a frequency sweep of a carrier.

The linear frequency sweep pattern is the most common one. Any pattern is suitable (e.g.

exponential), but in this thesis linear sweep is utilized. In 2-ary CSS, an entire frequency

band is reserved for both modulation symbols (0 and 1). From the negative and positive

frequency sweep of the carrier, we are able to distinguish 1 from 0. The modulation of

the symbol 1 is represented by a positive value of the frequency sweep, which is to say,

frequency increase. On that basis, this means that symbol 0 is represented by a negative

value of the frequency sweep, thus, frequency decrease. For both modulation symbols, the

value of high and low frequency are identical. Likewise, the time interval for sweeping is

the same for both symbols, as shown in figure 2.1. For better imagination a spectrogram,

3

Communication system with chirp modulation Michael Křeček 2018

of this CSS is displayed on the image on the right side. [4]

Time

Fr
eq

ue
nc

y

fdown

fhigh

01 1 1 00

Figure 2.1: Modulation symbol representation in CSS system.

In linear CSS, symbols are described by the equations 2.1 and 2.2 shown underneath,

where k is the rate of frequency change called chirp rate. The chirp initial and final fre-

quencies are described as f
down

and f
high

. These frequencies are determining size of the

bandwidth.

(2.1)y
Log1

(t) = sin[2⇡(f
down

t+
k

2
t2]

(2.2)y
Log0

(t) = sin[2⇡(f
high

t�
k

2
t2]

The value of the chirp rate k is described in equation 2.3, where f
high

� f
down

is

frequency sweep �f and T represents time duration to sweep from f
down

to f
high

.

(2.3)k =
f
high

� f
down

T

4

Communication system with chirp modulation Michael Křeček 2018

2.1 M-ary Chirp Spread Spectrum

The first method of creating 2-ary chirp modulation mentioned above, is used for low

data rate transmissions. To avoid mutual interference, the signals should be orthogonal.

To meet orthogonality criterium approximately, it isnecessary to use opposite polarity for

the frequency sweep of the two signals or to separate the two signals in certain frequency

space. With this in mind, M-ary chirp signals with di↵erent frequency band or diverse

chirp rate are used to increase the data rate.[5]

2.1.1 Frequency Band Splitting

Frequency band splitting is one of the techniques on how to approach M-ary CSS. This

method splits frequency band into subbands. The quantity of subbands correlates with

the number of modulation states. Therefore for 4-ary CSS, 2 subbands are needed. For 8-

ary modulation, each subband is split into half. This means, that 4 subbands are created

for this type of modulation and so on. In each subband one symbol has positive chirp

rate and one with negative chirp rate. In frequency band splitting method, chirp rate is

constant for all symbols. Principle is shown in figure 2.2.

Time

Fr
eq

ue
nc

y

fdown

fhigh

0100 10 11 0001

f ce
nt
ra
l

Figure 2.2: Frequency band splitting in time and time-frequency domain.

On the right side of figure 2.2 4-ary CSS spectrogram is displayed. On the left side,

time domain is shown. In this image, symbols 0 and 2 are represented by a positive value

of the chirp rate. Symbols 1 and 3 are represented by a negative value of chirp rate. For

symbols 0 and 2, there is di↵erence between final and initial frequency, which means that

chirp rate is same for both. The only di↵erence is in the placement of the symbols in the

frequency band. The frequency band is split into half, where the central frequency f
central

lies. Symbol 0 corresponds to the constant increase of frequency from f
down

to f
central

.

Symbol 2 represents same frequency increase but from f
central

to f
high

. For symbols 1 and

2 the same principles are applied but with constant frequency decrease. Mathematical

5

Communication system with chirp modulation Michael Křeček 2018

description of modulation is formally identical to 2.1 and 2.2 equations. Chirp rate is

characterized by equation 2.4.

(2.4)k =
f
high

� f
down

M/2

1

T

M means number of modulation states and f

high

�f

down

M/2

represents bandwidth.

2.1.2 Symbol Period Splitting Method

The second method on how to create M-ary CSS is by utilizing various chirp rates. In

this technique, time duration of modulation symbol is split into half. At this exact point,

chirp rate is altered. This means, one modulation symbol is represented by two distinct

chirp rates, that are changed in the middle of symbol time duration. All symbols include

frequencies from whole frequency band. Therefore, each symbol has a unique pair of chirp

rates with use of positive and negative chirp rates values. The principle of 4-ary CSS is

shown in image 2.3.

Time

Fr
eq

ue
nc

y

f1

f4

0100 10 11 0001

f2

f3

Figure 2.3: Time Duration Splitting in time and time-frequency domain.

In the spectrogram 2.3 displayed above, the change of chirp rate in middle of symbol

duration is shown. 4-ary CSS is expressed by the equations bellow.

(2.5)S
K0

(t) =

r
2E

T
cos(!

c

� ⇡↵0
K

t2)

(2.6)S
K1

(t) =

r
2E

T
cos(!

c

+ ⇡↵
K

t2)

(2.7)S
K2

(t) =

r
2E

T
cos(!

c

� 3⇡↵0
K

t2)

(2.8)S
K3

(t) =

r
2E

T
cos(!

c

+ 3⇡↵
K

t2)

6

Communication system with chirp modulation Michael Křeček 2018

(2.9)↵
K

=
M�f

T/2

(2.10)↵0
K

=
(M � 1)�K

T/2
�f

The one of the modulation states represents K , E symbolizes symbol energy and T

symbol duration. Angular frequency of carrier is !
c

, which is equal to 2⇡f
c

. Frequency

sweep is stand for �f and ↵
K

with ↵‘
K

represent frequency gradient for first and second

half of symbol time duration.

7

3

Software Realization of Transmitting

Side

In this chapter, a software solution of M-ary chirp modulation is described. Both tech-

niques for creating M-ary chirp modulation 2.1.1 and 2.1.2 can be used. Matlab envi-

ronment was utilized in this project. As mentioned before, this thesis follows up on [4].

However, predecessor has committed many flaws in his program. Rather than describe

them now, these flaws and their solutions will be presented as we approach them in the

functions of the modulator. As a result, some of the imperfections required additional

computation power. Since one of the key tasks of this thesis is reducing computation

di�culty, code optimization was necessary.

3.1 Software Implemntation of the Main Program

Transmitter main

Predecessor created multiple Matlab functions for 8, 16, 32 and 64-ary chirp modulation.

If a change of the modulation states or any other system parameters are requested, it

is complicated or even impossible to do it. Because each function has its own unique

folder and variables, this results in an inability to change properties of CSS inside of

the program. For instance, in order to change from 8-ary to 16-ary modulation, it is

necessary to check key variables ’fhigh’, ’fdown’, ’T’, ’Fs’, how many modulation

symbols are loaded, and which type of chirp rate method is currently being used(2.1.1 or

2.1.2). This is confusing and in addition the risk of overlooking crucial variables could

lead to modulator malfunction. The solution to this problem is to create one main file,

which calls all requested functions and has global variables for easy change of any M-ary

modulation and their properties. Another benefit of this solution is that adding another

M-ary chirp modulation (e.g. 4, 128-ary) is not a problem.The main program is called

’Transmitter_main’

8

Communication system with chirp modulation Michael Křeček 2018

Because ’Transmitter_main’ is quite complex flowchart 3.1 is introduced. However,

this flowchart is purposely simplified to show just essential functions for easier understand-

ing of the transmitter concept. These functions will be described more precisely later. As

seen in 3.1 various functions are used in ’Transmitter_main’ Firstly global variables are

loaded. Then an input dialog of the enter message function will pop up and ask the user

to input a message, which is going to be transmitted. Afterwards, inputted characters

are converted to the bit stream. Message alignment block is responsible for that inputted

data string has defined properties under any given conditions. Subsequently, all necessary

symbols are created and loaded. Lastly the transmitting loop will start transmission by

sending synchronization symbol, followed by transmitting modulation symbols, which are

representing data. In the end, termination of the transmission loop is done by sending

termination symbol.

9

Communication system with chirp modulation Michael Křeček 2018

Figure 3.1: Simplified flowchart of transmitter

10

Communication system with chirp modulation Michael Křeček 2018

3.2 Enter Message Function

When global variables are listed ’enter_message’ function is called by the main pro-

gram. This function requests the user to enter the message he is wishing to send. As a

result, function returns a binary string, that represents inputted message which will be

interpreted as data for transmitting. After entering the message to input dialog window,

converting is necessary. Because ’inputdlg’ command returns a format cell. This data

type is non-usable, so it is changed into char. Each char is represented by 8 bits for this

reason length of the message is multiplied by 8. The last part of the code is shown below.

for i = 1:length(message_char)

% converting chars to number

ASCII_dec_msg = unicode2native(message_char(i), ’ISO-8859-2’);

% converting numbers which I get to bit expression

ASCII_bin_string_msg = dec2bin(ASCII_dec_msg, 8);

for i = 8

(message (((i-1)*8) + j) = str2num(ASCII_bin_string_msg(j));

end

end

Two for loops are used for last procedure of this function. In the first loop, chars are

converted into the a number (vector of unicode) using the ISO-8859-2 character encoding

scheme. ISO-8859-2 is informally referred to as ”Latin-2” and is intended for Central

European languages. Decimal numbers are then converted to the vector representing a

binary number. In some cases, less than 8 bits representation of decimal number can

occur. For example, decimal 23 (represents symbol # in ISO-8859-2 encoding) is 010111

in binary, which means 5 bits representation. As a result, variable length of letters

can happen which is inappropriate. To prevent this issue parameter, 8 in ’dec2bin’ is

necessary. Due to this parameter, ’dec2bin’ produces a binary representation with at

least 8 bits. Because ’dec2bin’ returns binary, but in string of chars form, a second loop

is needed. This loop returns the required binary string.

3.3 Message Alignment Block Function

When the message is entered, the following step is to align it. This operation is crucial in

terms of the synchronization. As mentioned above text char is always expressed in 8 bits.

However, transmitting symbols are represented by number of states (e.g 5 bits for M=32).

That means that transmitted message could be sent incomplete, leaving remainders of the

bits. This results in a loss of data and instability of the synchronization process. It is

necessary to ensure, that encoded message data size is defined at any given conditions.

11

Communication system with chirp modulation Michael Křeček 2018

’Message_alignment_block’ functions guarantees it by bit stu�ng. This function re-

quires 3 input parameters ’message’, ’number_of_bits’ and ’operation’. The first

parameter ’message’ is output variable of binary string from function enter_message.

The second parameter is the ’number_of_bits’, which express how many bits are used

for transmitting a single symbol. This parameter corresponds to global variable ’M’ in

relation to the number_of_bits = log
2

(M). As an example, when the global variable

’number_of_states’ equals 16, 4 bits are necessary for transmitting a single symbol.

The last parameter ’operation’ is string compare command, where two options can

be selected. The first is ’align’ and the second is ’remove_stuff’. When operation

’remove_stuff’ is chosen, ’message_alignment_block’ is used by the receiver. This

operation will be characterized in chapter 4.5.

The operation ’align’ will be described in this chapter, because it is always used

by ’Transmitter_main’ to stu↵ message into the size, where there are no leftover bits.

Firstly, the size of the message is increased by adding a su�x. The su�x is defined data

string, that describes stu�ng properties. These properties are important for a receiver.

After demodulation of the captured data, the string properties will enable removing stu↵-

ing flawlessly. Firstly, the message taken from previous function 3.2 gains length by adding

defined series shown below.

necessary_number_of_bits = length(message) +

separator_of_string_terminator + length(string_termination) +

length(description_number_of_additional_bits);

The ’separator_of_string_terminator’ of the string terminator separates the mes-

sage string from su�x. Value and length of the separator is 1. Another variable added

to the message string is the length of ’string_termination’. String termination vari-

able is equal to zeros(1, 2 * length_of_ASCII_character), where the size of ASCII

character is 8 bits for ISO-8859-2 encoding. The last added variable is a description of

addition bits. This variable is equal to zeros(1, number_of_bits), where the number

of bits is a function input parameter representing how many bits will be for transmitting

a single state. The length of this variable is modified whenever global variable ’M’ is

changed. For instance, 3 bits are needed for transmission of the single symbol when M=8.

For M=16, 4 bits are required and so on. When the number of ’necessary_bits’ is

defined, the next step is to divide it by the number of bits and find out how many remain.

This is done by mod command.

number_of_additional_bits=mod(necessary_number_of_bits,number_of_bits);

There are two options after this division is made. The first one is that number of

remained bits is 0. In this case bit stu�ng is not needed. Otherwise bit leftover can

occur. The number of the bits leftovers fluctuates from 1 to number_of_bits -1. To find

out how many bits are missing, the ’number of_bits’ is subtracted from additional bits.

12

Communication system with chirp modulation Michael Křeček 2018

A variable ’missing_bits’ is represented by a decadic value. This value symbolizes how

many bits will be added to the string as stu�ng. On a first basis, binary conversion is

essential.

for i = 1:number_of_bits

description_number_of_additional_bits(1, i) =

bin2dec(bin_number_of_missing_bits(i));

end

Variable ’description_number_of_additional_bits’ stores binary information on

how many bits were added as stu�ng. As a conclusion to the message string, su�x is

added.

resulting_message = cat(2,message,separator_of_string_terminator,

ones(1, number_of_missing_bits), string_termination,

description_number_of_additional_bits);

Variable ’separator_of_the_string’ is a bit of the value 1. After separator ones are

added. The number of the ones depends which value is stored in ’number of missing

bits’. 16 zeroes are stored in the ’string_terminator’. It represents the double size

of one ASCII character(8 bits). Lastly, binary value of stu↵ed bits is added. For better

understanding let us assume, that two bits are going to be stu↵ed. Then resulting mes-

sage will be as shown below, where each color symbolizes su�x variables mentioned above.

resulting_message = [(message)111000000000000000010]

3.4 Create Modulation Symbol Function

Afterwards, the desired message is entered and aligned. The next function called by

main program is ’create_modulation_symbol’. This function‘s purpose is to convert

the binary string of data into modulation symbols. These symbols are created as .wav

files. Later on, they are used by the main program. The required input parameters are

’fhigh’, ’fdown’, ’T’, ’Fs’ and ’type’. All parameters are global variables taken

from the main program. The flowchart is displayed in figure 3.2.

13

Communication system with chirp modulation Michael Křeček 2018

Figure 3.2: Create modulation symbol function flowchart.

Not all modulation symbol serves for data representation. The communication system

needs to know when the data stream is starting and when it is ending. For this purpose,

another two modulation symbols are made. They are called synchronization and termi-

nation symbols. First of all, the decision on where in the frequency band these symbols

will be allocated has to be made. For a better system interception, the reliability of syn-

chronization and termination symbols is designated by separated frequency band. This

subband has the size of one tenth from assigned frequency band. Another one tenth of the

assigned frequency band is reserved as the spacing between these two symbols and data

14

Communication system with chirp modulation Michael Křeček 2018

modulation symbols. Synchronization reliability is improved even more by that. Thus,

eight tenths of the allocated frequency band are used for data modulation symbols.

lower_range_of_control_zone = fup - ((fup - fdown) / 10);

upper_range_of_mod_symbols = lower_range_of_control_zone -

((fup - fdown)/10);

The code lines above are describing frequency band allocating. This method decreases

the band for data transmission, which is undesirable. Another approach could be to assign

frequency band outside of desired bandwidth. But strong interference could occur con-

sidering an unawareness of transmission density by other systems. Since synchronization

is crucial for a communication system, sacrificing 20% of assigned bandwidth for data

transmission is the better option than the probability of total system failure.

After that function, it is important to decide which type of method will be used to

calculate the chirp rate. If the global variable ’type’ is equal to 1, the frequency band

splitting procedure will be applied. Otherwise, a symbol period splitting method will be

utilized. These subfunctions will be described in great detail later on. For now, it will be

enough to know that both functions return input variable ’y’. This variable symbolizes

the modulation symbol with unique chirp rate slopes for each method. However, the

principle of the modulation symbols creation is identical for both. When the method is

selected, in the first place synchronization and termination symbol are created by sub-

functions ’chirpM_mod_time’ or ’chirpM_B_mod_time’. These two symbols are 2-ary

CSS, code sample shown below. Symbol 1 represents synchronization symbol. Symbol 2

stands for termination symbol. Due to the fact that both symbols are 2-ary CSS, there

is no need to create them for higher M-ary CSS. As a result, both symbols are identical

for any type of M-ary CSS. The main reason for creating these 2 symbols in 2-ary CSS

is to not reduce a quantity of the modulation symbols representing data in any chosen

M-ary CSS. Imagine if in 8-ary CSS where 2 symbols are used for synchronization and

termination symbols. This would mean a 25% loss of capacity which is unacceptable. The

last step after the creation of synchronization and termination symbols, is to write them

into a .wav file.

Synchro_symbol = chirpM_mod_time(T,1,fhigh,lower_range_of_control_zone,

2,Fs);

Termination_symbol = chirpM_mod_time(T,2,fhigh,lower_range_of_control_

zone,2,Fs);

15

Communication system with chirp modulation Michael Křeček 2018

The second stage is the development of the modulation symbols, that are representing

data. The predecessor had designed a code, which is inappropriate as shown below. If

the change of M-ary CSS is requested, it is necessary to edit the code for this switch

structure.

for i = 0:M-1

y = chirpM_mod_time(t,i,fup,fdown,M,Fs);

switch i

case 0

filename = ’Symbol_0.wav’;

case 1

filename = ’Symbol_1.wav’;

.

.

case 63

filename = ’Symbol_63.wav’;

end;

audiowrite(filename,y,Fs);

end;

It was therefore essential to create a more sophisticated solution. As a result, string

concatenation was used to solve this issue. String concatenation is the operation of join-

ing character strings end-to-end. For example, the concatenation of ’data’ and ’base’

is the database. The code below is a for loop, where ’M’ global variable represents

’number_of_states’ for CSS. In first iteration loop calculates chirp rate for symbol

number 1. Then string concatenation put together characters ’Symbol_1’(because i=1)

and .wav resulting in the creation of ’Symbol_1.wav’ string. Subsequently, chirp rate for

symbol 1 is written to the audio file called Symbol 1.wav and so on for the next iteration.

for i=1:M

y=chirpM_mod_time(T,i,upper_range_of_mod_symbols,fdown,M,Fs);

%concation of strings

filename = strcat(’Symbol_’, num2str(i), ’.wav’);

wavwrite(y,Fs,filename);

end;

The resulting code optimization has made the code more arranged and decreased

computation di�culty significantly. When parameter M was set to value 32 creation of

the modulation symbol number 31 was requested for the original program. It took 1.56

seconds to create this modulation symbol. The same request was completed by optimized

version with an outcome of 0.27 second. This results in a approximately five times faster

creation of the modulation symbol comparing to the original program. For a larger value

of ’M’, even faster creation can be expected.

16

Communication system with chirp modulation Michael Křeček 2018

3.5 Software Realization of Frequency Band Split-

ting Method

As noticed above in image 3.4, ’create_modulation_symbol’ function is calling another

subfunction, which returns a symbol with specific chirp rate slopes. If global variable

’type’ has value 1. Then ’create_modulation_symbol’ will call subfunction for calcu-

lation a unique chirp rates by frequency band splitting method 2.1.1.

Input parameters of this function are global variables ’fhigh’, ’fdown’, ’T’, ’Fs’

and variable ’symbol’. Parameter symbol is the decadic expression of the modulation

symbol. Flowchart of band splitting method is shown in 3.3

Figure 3.3: Band splitting method flowchart.

After input parameters are loaded size and number of subbands are defined. Subse-

quently chirp rate is calculated by equation 2.3. As seen, chirp rate is changing by symbol

period but also with the number of states. Parameter M is divided by two because two

17

Communication system with chirp modulation Michael Křeček 2018

modulation symbols belong to each subband. Below, a code for calculating chirp rate is

displayed.

subband_size = (fhigh-fdown)/(M/2);

chirprate = subband_size / T;

When chirp rate is computed, the next step is to decide which modulation symbol will

be created. As mentioned before this is done by decadic expression stored in parameter

symbol. For each decadic values 0, 1, 2, 3 corresponds a binary expression 00, 01, 10,

11. It is essential to distinguish which modulation symbol will have positive and nega-

tive chirp rate. This is done by dividing decadic values into 2 groups of even and odd

symbols. In Matlab environment that could be accomplished by (x,2). Where mod(x,2)

returns remainder after the division of 2. For odd numbers mod(x,2) returns 0 and for

even 1. If the result will be 0, a symbol with positive chirp rate will be generated. A neg-

ative symbol will be created when modulus returns 1. Code implementation of modulus

is shown beneath.

switch mod(symbol,2)

case 0

y = sin(2*pi.*((fdown+(subband_size*floor...

(symbol/2))).*time+((chirprate/2).*(time.^2))));

case 1

y = sin(2*pi.*((fhigh-(subband_size*floor...

((M-symbol)/2))).*time + ((-chirprate/2).*(time.^2))));

end;

The division into the respective subbands is ensured by command floor(symbol/2).

Floor command rounds down to next integer.

Code ((fdown+(subband_size*floor(symbol/2))) determines subband value which

will be added to initial frequency ’fdown’. The whole code above decides in which sub-

band symbol will be placed. Symbol 0 (00 in binary) starts from the frequency ’fdown’,

where floor returns 0 so nothing will be added to frequency ’fdown’. Next symbol 2 (10)

is shifted by one subband upwards because the result of the floor command is 1. The

same procedure will be applied for even symbols. Odd symbols have a small adjustment

in the code which will ensure the identical result from floor command as for even symbols.

A detailed explanation is displayed in table 3.1.

symbol number(even) floor(symbol/2) symbol number(odd) floor((M-symbol)/2)

0 0 1 0

2 1 3 1

4 2 5 2

6 3 7 3

Table 3.1: Subband division

18

Communication system with chirp modulation Michael Křeček 2018

3.6 Software Realization of Symbol Period Splitting

Method

The software realization for the second method is more complicated than for the first

one. The main reason is that for each modulation symbol two distinct chirp rates have

to be created. Input parameters are identical as for frequency band splitting method.

Therefore, global variables ’fhigh’, ’fdown’, ’T’, ’Fs’ and variable ’symbol’ are

requested as the input of this function. Flowchart of symbol period splitting function is

shown in figure 3.4.

Figure 3.4: Symbol period splitting method flowchart.

19

Communication system with chirp modulation Michael Křeček 2018

From the description of this method in 2.1.2 there is a clear di↵erence from the first

method. For chirp rate calculation in the first method, it did not matter what the sym-

bol is. The chirp rate was still the same, the only di↵erence was in positive or negative

sign depending on whether it was an even or odd symbol. The identical principle cannot

be applied to this method. Each symbol has two di↵erent values of the chirp rate that

jumps halfway in the middle of the modulation symbol period. Another di↵erence is the

distribution of the symbols to two halves, where the positive chirp rate is used for lower

frequency half and for the second negative it utilized. In a case of 4-ary CSS modulation

symbols, 0 (00) and 1 (01) are generated with the positive chirp rate. For the modulation

symbols 2 (10) and 3 (11) are generated with the negative chirp rate.

for i=1:(M/2)

chirprate1(i)=i*subband_size/(0.5*T);

chirprate2(i)=((M/2)-i+1)*subband_size/(0.5*T);

end;

for i=(M/2)+1:M

chirprate1(i)=-chirprate1(i-(M/2));

chirprate2(i)=-chirprate2(i-(M/2));

end;

The program for generating two chirp rates for each symbol is shown above. In the

first for loop both, chirp rates for first half of the modulation symbols duration are cal-

culated. The second cycle calculates as well both chirp rates, but for the second half of

the modulation symbols duration. It is seen that value of chirp rates for the second half

of the modulation symbol is the negative value of the chirp rate from the first half.

Before the creation of the modulation symbol, the middle frequency needs to be cal-

culated. It is the frequency at which chirp rate change is made. This frequency is located

in the middle of the symbol duration. That means middle frequency name correlates with

the symbol period, not with a bandwidth of the modulation Obviously, according to the

current chirp rate, the middle frequency will change for each individual modulation sym-

bols. The code for calculation of chirp rate is displayed below. Switch structure with fix

command (rounds toward zero) ensures that for the first half of symbols fix command will

return 0. This modulation symbols will be generated with positive chirp rate. When fix

command returns 1, the second half of symbols with negative chirp rate will be generated.

switch fix((symbol-1)/(M/2))

case 0

y_first_half=sin(2*pi.*(fdown.*time+(chirprate1(symbol)/2)

.*time.^2));

%phase detection of last sample

20

Communication system with chirp modulation Michael Křeček 2018

last_sample_phase=sin(2*pi.*(fdown*(T/2)+(chirprate1(symbol)/2)*

(T/2)^2));

y_second_half=sin(last_sample_phase+2*pi.*((freq_middle(symbol))

.*time+(chirprate2(symbol)/2).*time.^2));

case 1

y_first_half=sin(2*pi.*(fhigh.*time+(chirprate1(symbol)/2)

.*time.^2))

last_sample_phase=sin(2*pi.*(fhigh*(T/2)+(chirprate1(symbol)/2)*

(T/2)^2));

y_second_half=sin(last_sample_phase+2*pi.*((freq_middle(symbol))

.*time+(chirprate2(symbol)/2).*time.^2));

end;

%merging vectors of the first and the second half together

y = cat(2, y_first_half, y_second_half);

Whatever which case is chosen, the procedure of generating positive or negative chirp

rate for the symbol is the same. Two chirp rates are calculated for each modulation

symbol as mentioned above. Between generation of both halves, phase of the last sample

is calculated. For time axis is generated from 0 to (T/2)-(1/Fs). Therefore (T/2) is

technically the last sample of the time axis. The reason for creating this variable is to

reduce possible phase jump in the bond between the first and the second halves. Lastly,

both halves are concatenated into output variable ’y’. At a closer examination, the chirp

rate value for the first half of the modulation symbol’s duration is a multiple of the symbol

order. For the second half of the duration of the modulation symbol, the rate of frequency

sweep is reversed.

3.7 Transmission of the Message

When the message is aligned and all symbols are created, the last step is to send it. This

is done by transmission loop. Before the transmission loop is executed, it is required

to set variables, that are crucial for synchronization and termination of the transmis-

sion. These parameters are an ’end_of_transmission’, ’terminate_transmission’,

’synchronization_counter’ and ’s’. ’s’ refers to if the synchronization was set or

not. All these variables have default value 0. The only exception is the parameter current

character with default value equal to 1. ’current_character’ describes the order of the

transmitting characters. The process of the transmission loop is shown in flowchart 3.5.

However, flowchart is quite sophisticated. To make it easier to understand, the diagram

was divided into three stages. For each stage a di↵erent color in the flowchart is chosen.

Red color represents synchronization stage. Data sending phase is defined by green and

the blue color describes termination stage.

21

Communication system with chirp modulation Michael Křeček 2018

Figure 3.5: Flowchart of the transmission loop.

22

Communication system with chirp modulation Michael Křeček 2018

At the beginning of the transmission variable ’s’ is set to zero, which means that

it is essential to send synchronization symbol. This symbol was already made by the

function ’create_modulation_symbol’. The next step is to allocate memory for audio

file player(variable AFP) and then load synchronization symbol into this variable.

%allocation of the memory for loading symbols

AFP = zeros(length(wavread(’Symbol_1.wav’)), 1);

AFP = synchro_symbol;

After AFP is defined the variable ’s’ is set to 1. This means synchronization was

sent, even if synchronization symbol will be sent in next few steps. The reason behind

this is to save computational di�culty. So there is just one loop for sending modulation

symbols, which does not recognize the di↵erence between synchronization, termination

and modulation symbol. Synchronization, termination and data sending are performed

as a modulation symbol play. This embodiment is selected because amateur radio sta-

tions contain audio input and output. After synchronization symbol is loaded to AFP, it

is required to set properties of an audio player which will play (transmit) the file stored

in the AFP. The audio player is defined by Matlab toolbox dsp.AudioPlayer where key

parameters are a sample rate which specifies the number of samples per second in the

signal. The default value is 44100. This number is changed to the value which is stored

in global variable Fs. The second parameter is queue duration, which specifies the dura-

tion of the signal, in seconds, that can be bu↵ered during the simulation. The purpose

of the queue is to control the trade-o↵ between latency and data dropout. To minimize

latency queue duration can be set to lower value. However, if the Matlab data throughput

rate is lower than the device throughput rate, a bu↵er underrun occurs. This requires

a device reading from the bu↵er to pause its processing while the bu↵er refills. This re-

sults in an unwanted data transmission delay. Underruns can be monitored by property

’OutputNumUnderrunSamples’ and by its value queue can be optimized. Another pos-

sible scenario is that Matlab data throughput rate is higher than the device throughput

rate, a bu↵er overrun occurs. Bu↵er overrun causing overwriting of the bu↵er producing

data dropouts. For this case, Matlab must wait before writing data to the queue. To

minimize chances of the dropouts it is recommended that queue duration is at least as

large as the frame size. This advice is respected, thus the queue is as long as the duration

of the modulation symbol.

AP = dsp.AudioPlayer(’SampleRate’,Fs,’QueueDuration’,T);

The last step in synchronization stage is to decide if synchronization symbol will be

sent right away or attached to the testing file. If the global variable test is set to false

synchronization symbol is transmitted (played) by dsp.AudioPlayer toolbox. Audio data

23

Communication system with chirp modulation Michael Křeček 2018

with properties of the dsp.AudioPlayer is played by calling step function.

When value true for the global variable test is chosen, synchronization symbol which is

currently saved in variable ’AFP’ will be written to the vector ’testing_output_of_modulator’.

The main reasons to create testing vector is to analyze the whole modulation symbol

sequence. Further advantage is reducing the time consumption for debugging received

signal. For an example, transmitting 60 symbols, where each symbols has a duration 1

second. It will take 1 minute when the test is not enabled. But if the test is enabled the

receiver almost instantly loads testing output file.

if test == true

%add currently transmitted symbol to the test vector

testing_output_of_modulator=cat(1,testing_output_of_modulator,AFP);

else

%play .wav file stored in AFP variable

step(AP, AFP);

end

Afterward, synchronization sequence ends because variable ’s’ is equal to 1. There-

fore, the data sending phase(green in 3.5) begins. The initial current symbol is loaded

from data string. Because current symbol is loaded in the binary string, firstly it has to

be converted into decadic expression.

symbol_bin_to_string = num2str(string_sent(current_character:

(current_character + (number_of_bits - 1))));

%decadic number of binary string which represents symbol number

number_of_symbol = bin2dec(symbol_bin_to_string);

Then ’symbol_mapping’ function is called by main program. This function finds out

which decadic expression stored in the variable number of symbol is corresponding to

the modulation state, that is going to be transmitted. The state of the modulation is

returned and displayed in Matlab console during real-time transmission. This allows an

easier analysis and debugging of the transmission. Function ’symbol_mapping’ requests 3

input parameters. The first parameter, ’number_of_symbols’, loads decadic value stored

in the variable as described above. Then string compares command requests string, where

two options can be chosen. The state is the one string that could be selected. When

chosen, the function assign the value stored in the ’number_of_symbol’ to the table

representing modulation state. Meaning decadic value stored in number of bits is equal

to the modulation symbol, which will be transmitted. If for any reason current assignation

is unsatisfying it is possible to make modification within the function quite easily. For

example to the Gray code or any other method. The second select option for the string

compare command is ’symbol’. It is always used by the receiver. It will be described in

24

Communication system with chirp modulation Michael Křeček 2018

chapter 4, in sum when is selected symbol mapping function is doing reverse operation.

The last necessary input parameter of the function is M.

number_of_state = symbol_mapping(number_of_symbol, ’state’, M)

When mapping function returns, the number of the modulation symbol to be trans-

mitted. The next step is to load this symbol to ’AFP’ variable. Firstly, all modulation

symbols are allocated as array with the length of the ’M’. Where each column represents a

modulation symbol. This procedure is done just one time. The main reason is to decrease

computation di�culty of the program. When global variables are inputted, it is already

clear how many modulation symbols will be needed. Since the property of the modulation

symbol is unchanged during transmission, there is no need to repeat this operation.

%loading of modulation symbols

for =1:M

%concatination of Symbol_+(i)+.wav

filename = strcat(’Symbol_’, num2str(i), ’.wav’);

%load array of the modulation symbols

mod_symbols(:,i) = wavread(filename);

end

Secondly, current modulation symbol is loaded to the variable ’AFP’ and ready to be

transmitted. Then the current_character is tested by multiple conditions. The most

important are the conditions verifying if ’current_symbol’ is the last modulation of the

frame and of the whole message string. If any of these requirements is not met the current

character will increase his value for next iteration and will be the transmitted one or saved

to the testing output of the modulator. Incrementation of the ’current_character’ is

done by adding a certain number of the bits. This value correlates with the selection

how many states M-ary CSS will have. For instance, 8-ary CSS will increase current

character by 3 bits in each iteration. One of the feature of this software application is

an ability to send synchronization after certain given period by the value of the variable

’duration_of_data_frame’.This is decided by a return value of the modulus command

below, where ’synchronization_counter’ stores a value how many synchronization

symbols were sent. This is for the case when message string is multiple times longer than

the size of data frame variable. This variable is equal to: (duration_of_data_frame *

number_of_bits / T). To be capable to maintain functionality of the code among all

possible variations of the global parameter M, ’number_of_bits’ variable is added into

modulus command.

For a better understanding of modulus condition lets us have an example. If the size of

data is 40, number of bits is 4, T equals 1 and 10 is stored in ’duration_of_data_frame’

variable. When transmission of this begins, that means synchronization was already sent,

thus in ’synchronization_counter’ 1 is stored. The first ’current_symbol’ has value

1 (dividend) and the divisor is equal to 37. After 9 iterations the ’current_symbol’

25

Communication system with chirp modulation Michael Křeček 2018

value (4 ⇥ 9 + 1) is equal to the divisor, resulting remainder 0 when modulus command

is executed. Variable ’s’ is going to be set to 0 followed by transmission and counter

incrementation of the synchronization. When 9 iterations are done current symbols is

storing number 73 and division value is the same(2⇥40+1�8). Therefore next synchro-

nization is sent and so on, until the end of message string. To ensure that modulus com-

mand works properly under any given conditions, ’current_character_synchro_fix’

and ’counter’ variables are necessary. The counter counts from 1 till reaches value

inputted into the duration of the data frame. Then resets itself and rises value of

’synchronization_counter’ by 1. The ’current_character_synchro_fix’ ensures

that initial value of this variable is 1 and in each iteration is increased by 1. In fact,

’synchro fix’ serves as decimator of the ’current_character’ for the ’counter’. To

secure function of the ’synchro fix’, small adjustment has been made. The initial value

of the ’current_symbol’ is 1 and then is incremented by 4 (for M = 16) in each iteration.

But in code, ’current_character’ variable is increased before synchronization is exe-

cuted. Meaning that for every first character after the synchronization ’synchro_fix’

variable is not calculated. This is done intentionally, because when synchronization is

sent for every first character, modulus operation returns 0. Which would lead to false

indication of the last character in the frame. This is the reason why there are 9 iterations

instead of 10 even when the duration of data is set to 10.

AFP = mod_symbols(:, number_of_state);

%size of frame is exceeded => necessary to send synchronization again

if mod(current_character,(synchronization_counter*size_of_data_frame+1)

-synchronization_counter*number_of_bits) == 0

%if s = 0 next symbol loaded into AFP will be Synchronization_symbol

s = 0;

end

%testing is current_character is last character of message

if (current_character + number_of_bits) <= length(string_sent))

%next current_character for upcoming iteration

current_character = (current_character + number_of_bits);

current_character_synchro_fix=fix(current_character/number_of_bits);

counter = mod(current_character_synchro_fix,duration_of_data_frame);

if counter == 0

synchronization_counter = synchronization_counter+1;

end

else

terminate_transmission = 1;

end

26

Communication system with chirp modulation Michael Křeček 2018

When the last current character is about to be transmitted termination condition is

fulfilled. At this moment termination sequence (blue in 3.5) has begun. When the if

condition above is met variable ’terminate_transmission’ is set to 1. In the next iter-

ation termination symbol will be loaded into ’AFP’ variable. Afterwards, transmitted or

saved into the testing vector. Termination procedure is almost identical to the synchro-

nization and data sending sequences. However, with the exception of changing the value

of the variable ’end_of_transmission’ to 1. This will cause end of the transmission

loop. When transmission loop is terminated the last operation is to create a .wav file

from testing vector if test option was selected. Before an audio file is created, a portion

of zeroes is added to the beginning of testing vector. The reason for putting these nulls

into the sound file is because some audio players (e.g windows media player) have issues

to play the .wav file without them.

testing_output_of_modulator=cat(1, zeros(Fs, 1), testing_output_of_

modulator);

wavwrite(testing_output_of_modulator, Fs, ’testing_output_of_

modulator.wav’);

27

4

Software Realization of Receiving

Side

In this chapter software solution of M-ary demodulation is described. This is the second

part of the communication system. As mentioned in a chapter 3, the predecessor has

made flaws in his program. This results in an unsatisfying performance of the demodula-

tion program. Considering that reducing computation di�culty is the main task of this

thesis, most of the predecessor‘s code had to be changed to achieve this goal. Detailed

characterization will be discussed in sections below.

4.1 Software Implemntation of the Main Program

Receiver main

The forerunner has left plenty of imperfections in his program solution, which is managing

data receiving process. The majority of flaws were related to the software solution of the

transmitter referred in the 3.1. Among these code defects were separated folders for each

M-ary CSS, an inability to change some properties of the receiver and inappropriate code

structures. A consequence of these imperfections is low performance of the receiving side.

In order to improve the performance, the same structure as for transmitter was followed.

Therefore, the main program Receiver_main was created. As a result, there is just one

file which calls all necessary function for receiving process. To understand concept of the

Receiver_main, the flowchart 4.1 is shown. More detailed description of each essential

block will be presented later on.

The receiver was designed in the same way as the transmitter. Firstly, the main

program loads global variables, then the properties of the DSP systems toolbox are set.

The DSP settings are essential for demodulation of the data string. Afterwards, all

symbols are allocated. The principal reason for the symbol allocation operation is to

reduce computation di�culty of the software solution. The core of the receiver is a

demodulation loop. The function for finding synchronization symbol is called as the first

28

Communication system with chirp modulation Michael Křeček 2018

in this loop. When the synchronization symbol is discovered, function also locates the

position of synchronization symbol in the bu↵er. Subsequently, ’dem_chirp’ function

demodulates the data stored in the bu↵er and returns them as received_state. If

’dem_chirp’ evaluates the termination symbol as received_state, the -1 value will be

written into the variable ’received_state’. This will be followed by termination of

the demodulation loop. Lastly, the received modulation states are translated into ASCII

characters and displayed in the dialog window.

4.2 Setting Properties of the Receiver

To guarantee proper functionality of the receiver, it is necessary to set correctly the

essential global variables. Some of them were inherited from the transmitter. The global

variables ’fhigh’, ’fdown’, ’T’, ’Fs’, ’type’ and ’duration_of_data_frame’

are among them. For the the ’Receiver_main’ extra global variables

’decimation_factor’ and ’demodulation_method’ were added. The receiver o↵ers

two methods how to demodulate signal. Global variable ’demodulation_method’ serves

for the demodulation method selection. When ’corr’ is written in the variable cross-

correlation method will be utilized by the receiver main program. If ’frft’ is stored in the

’demodulation_method’, the fractional Fourier transform will be used as demodulation

technique for the receiver. Both options will be described later, in their sections.

The other properties necessary to set are several Matlab DSP system toolboxes. The

first DSP system toolbox is in charge of cross-correlation. The cross-correlation is a

common technique used in signal processing which measures the similarity of two series

as a function of the displacement of one relative to the other. Important feature of

the CSS is an exceptional cross-correlation properties. This means, that the correlation

among modulation symbols is very low. This feature is the main reason why CSS is

implemented in the communication system. On the other hand, the disadvantage is

that cross-correlation operation is vastly increasing the computational di�culty. The

approaches to reduce the computational di�culty are introduced in this chapter.

In the receiver, cross-correlation is computed between data stored in the bu↵er and the

modulation symbols. This process is managed by dsp.Crosscorrelator system object. The

computation can be done in the time domain or in the frequency domain. The domain can

be specified through the Method property. When ’Fastest’ is selected dsp.Crosscorrelator

computes the cross-correlation in the domain that minimizes the number of computa-

tions. This is the best solution to minimize the computational power introduced by the

dsp.Crosscorrelator.

xcorr = dsp.Crosscorrelator(’Method’,’Fastest’);

As mentioned before, the communication system is using acoustic frequency band

29

Communication system with chirp modulation Michael Křeček 2018

Beginning

Load global

variables

Definition of dsp
toolbox

received state
 ~= -1??

YES

NO

end_of_
transmission =1

End

Load synchonization,
termination &
modulation

symbols

end_of_
transmission

~=1??

YES

NO

Find and locate
synchronization

Dem_chirp
or

Dem_FrFT

Translation of received
data string

Figure 4.1: Simplified flowchart of receiver.

30

Communication system with chirp modulation Michael Křeček 2018

for transmitting. Therefore, a microphone is utilized as a receiving device. To ensure

errorless functionality of the system microphone properties must be set precisely. A

dsp.AudioRecorder system object defines and sets up your audio recorder object. As

shown below, many properties has to be set. All set values are calculated from global

variables. Resulting accurate set up of the microphone at any given conditions. This is a

major advantage over the predecessor‘s version where any change of single variable (e.g.

sample rate) could lead to complete failure of the microphone, resulting in the receiver

malfunction. All the possible properties and their setting are described in [10] so only the

most important settings are going to be mentioned. The crucial property to be configured

is the bu↵er size, which specifies the size of the bu↵er that the audio recorder object uses

to communicate with the audio device. To be able to tune this attribute, firstly the bu↵er

size source must be set to ’Property’. Then bu↵er size is equal to the value stored in the

variable ’length_of_symbol’. Value of this variable is equal to Fs⇥T .

Mic = dsp.AudioRecorder(’SamplesPerFrame’,length_of_symbol,

’BufferSizeSource’,’Property’,’BufferSize’,length_of_symbol,

’QueueDuration’,0,’NumChannels’,1,’OutputDataType’,’double’);

It is necessary to define the device which acquires audio data. When the option default

is chosen, computer main recording device will be used. Another key feature to be set

is the sample rate of the defined microphone. Since default value is set to 44100 it was

required to change this feature to value stored in global variable ’Fs’.

Mic.DeviceName = ’Default’;

Mic.SampleRate = Fs;

Signal acquired by the microphone or from testing vector needs to be temporarily

stored, until is processed by the software solution of the receiver. This momentary stor-

age is called bu↵er and was mentioned above. The bu↵er is the last essential DSP system

object defined in ’dsp.Buffer’. The first fundamental feature to configure is the bu↵er

length which specifies how many samples can be gathered in the bu↵er. Double size of

symbol length was chosen as a length of the bu↵er for ’Receiver_main’. The logic behind

this choice will be explained in section 4.3.1. The second parameter defines how many

samples will be taken from the bu↵er and processed by the receiver. Name of this prop-

erty is overlap length. Overlap length is set to the value stored in ’length_of_symbol’.

With this setup of properties, the whole bu↵er is loaded by the receiver in 2 iterations

since overlap is half of the bu↵er size. In comparison to predecessor‘s code, the ability

to freely change any global variable without obligation to manually edit bu↵er properties

to assure proper functionality of the system is another advantage of ’Receiver_main’

solution.

31

Communication system with chirp modulation Michael Křeček 2018

InBuff = dsp.Buffer(’Length’, 2*length_of_symbol,’OverlapLength’,

length_of_symbol);

Lastly, synchronization, termination and modulation symbols are loaded for decreasing

computation di�culty purpose. The same operation is done in the transmitter. Since

transmitter and receiver were tested in one computer, receiver loads symbols created by

the transmitter. However, if a communication system does not operate on the single

pc. There is an issue of an inability to load all necessary symbols on the receiving side,

because symbols (.wav files) do not exist in the folder assigned to the receiver. Two

possible solutions can be considered. The first solution is to execute ’Transmitter_main

which will be created desired modulation symbols for the receiver. The second option is

to create a function which will search for modulation symbols in the designated folder.

If some modulation symbols are found, function will ask whether symbols should be

erased or not. If the detected symbols have properties, that user wants to use, function

will simply load those symbols. Due to time deficit and insignificant benefit compare to

other functions in the current setup of the communication system the first solution was

implemented. Even the second method is undoubtedly better for future implementation

of the system on multiple workstations.

4.3 Interception of the Message

After all necessary parameters and modulation symbols are loaded, the receiving loop is

initialized. The loop can be divided into two sections. The first sector is in charge of

locating the synchronization symbol. Then the second part demodulates received data.

Since the whole procedure is sophisticated, a flowchart is introduced in 4.2. Receiving loop

begins with an initial condition which is controlling two circumstances logically conjuncted

.The first condition inspects if the variable ’end_of_transmission’ is equal to 1 meaning

that termination symbol was recognised. The second condition counts processing time

of the locate synchronization function. When timer value is higher than the defined

threshold the condition is evaluated as false resulting termination of receiving loop. The

reason behind this is to terminate receiving process when no data are being transmitted.

It is unnecessary to workload computer during that time. Because the transmitter had

an option to create testing vector, it is logical that receiver supports this option. When

in the variable ’test’ true is stored, a testing feature is enabled. Data are loaded from

testing vector to the bu↵er by the step command. Afterwards, the iteration variable is

increased. By help of this variable in the next cycle, the following data will be loaded

from the position where the last data ended. In other words it is a shift register.

dataIn = step(InBuff, testing_output_of_modulator((((iteration-1) *

length_of_symbol) + 1):(iteration * length_of_symbol)));

32

Communication system with chirp modulation Michael Křeček 2018

iteration = iteration + 1;

If false is stored in the variable the test data will be loaded from the microphone to

the bu↵er. Considering that the microphone works already as a shift register, because of

its settings, there is no need to apply iteration variable. Both methods always store data

of the length defined in ’length_of_symbol’, ensuring compatibility with bu↵er.

dataIn = step(InBuff, step(Mic));

When data are already stored in the bu↵er it is necessary to find synchronization

symbol and its location, in order to determine beginning of data the stream. For this

purpose the ’locate_synchronization’ function was designed. This function will be

explained detaily in the section 4.3.1. When ’locate_synchronization’ is called, it re-

turns variables ’found’ and ’synchronization_location’. When found variable stores

value 1 (true) it means that synchronization was successfully discovered and its position in

the bu↵er indicates ’synchronization_location’. After synchronization is discovered

the data demodulation can begin. Function ’dem_chirp’ is in charge of demodulation

process. This function will be briefly introduced here and described later in 4.3.2. The

main task of ’Dem_chirp’ is to demodulate signal in the bu↵er. Demodulation is done

by correlation which assigns inputted data to the modulation state. This state is then

returned by function to the main program. Next if condition is testing if termination

symbol is detected. Till this event occurs demodulated modulation states are added

to the vector of the received states. When the termination symbol is detected variable

’end_of_transmission’ changes its value to 1 and in the next cycle the receiving loop

will be terminated. Leaving vector of the received states as an output.

4.3.1 Locate Synchronization Function

The crucial part of the receiver is to precisely locate the synchronization symbol. This

is done by the ’locate_synchronization’ function with input parameters: ’dataIn’,

’xcorr_synchr’, ’synchro_symbol’, ’Modsymbols’, ’termination_symbol’,

’length_of_symbol’. The signal loaded to bu↵er is stored in the variable ’dataIn’.

The number of modulation states is represented by ’M’ and ’xcorr_synchr’ parameter

sets up the properties of ’dsp.Crosscorrelator’. Definition of the modulation symbols

size is stored in the ’length_of_symbol’. The rest of the parameters are modulation sym-

bols, which are utilized for correlation between them and data stored in the bu↵er. When

’locate_synchronization’ function is completed it returns the variables ’found’,

’synchronization_location’ and ’correlation_location_of_synchronization’.

The ’found’ variable stores information if synchronization was successfully detected or

not. Default value of this variable is 0. This means, that the synchronization symbol was

not identified. In case that synchronization symbol was revealed in the bu↵er ’found’

33

Communication system with chirp modulation Michael Křeček 2018

Beginning

YES

NO

end_of_

transmission = 1

end_of_

transmission~=1
&& timer<
threshold

??

NO

Test = true ??

YES

NO

YES

YES

NO

Load DataIn

from the

testing vector

and iteration++

End

Synchronization
found ??

received_state

~= -1 ??

Load DataIn

from the

 microphone

Dem_chirp

 or

Dem_FrFT

Locate

synchonization

Add received_state

to received vector

Figure 4.2: Flowchart of the receiving loop.

34

Communication system with chirp modulation Michael Křeček 2018

variable is set to 1. Position of synchronization symbol is indicated by the variables

’synchronization_location’ and ’correlation_location_of_synchronization’.

Di↵erence between them is that ’synchronization_location’ shows where in the

bu↵er synchronization symbol is located. On the other hand

’correlation_location_of_synchronization’ marks the beginning of the synchro-

nization symbol in the vector of cross-correlation.

Before ’synchronization_location’ function is initialized, a normalization of the

data is done. The main reason for this procedure is to set the received signal to the defined

level at any given condition to ensure a correct evaluation. First of all, normalization level

is set to value 0.7071. Then root mean square of the data stored in the bu↵er is computed.

Afterwards, normalization level is divided by calculated rms value and result is stored in

the variable ’normalization’. In the end each sample in the bu↵er is multiplied by a

normalization factor, so its rms is equal to the normalization level.

After signal is normalized ’synchronization_location’ function is called by the

main program. In the first place function is testing if there is any data in the bu↵er.

This is done by computing mean value of the bu↵er. If value is higher than 0.01 this

means that some data are stored in the bu↵er thus, function will proceed. Otherwise

’synchronization_location’ is termined, because bu↵er is empty. When data are

stored in the bu↵er, firstly cross correlation of ’dataIn’ between synchronization sym-

bol, termination symbol, modulation symbol is done.

synchronization_correlation=step(xcorr_synchr, synchro_symbol, dataIn);

modulation_symbol_correlation=step(xcorr_synchr, Modsymbols, dataIn);

termination_symbol_correlation=step(xcorr_synchr, termination_symbol,

dataIn);

Then maximum value and its location in the cross correlation vector of ”correla-

tion location of synchronization” is computed. The same procedure is executed for vec-

tors ’modulation_symbol_correlation’ and ’termination_symbol_correlation’.

Considering that length of the symbol is identical for all symbols, it is not required

to calculate maximum value for entire correlation. Since position of maximum will be

on location alike to the correlation_location_of_synchronization it is enough to

calculate maximum in the range of 50 samples before and after the position of the

correlation_location_of_synchronization’. Computing power is spared significantly

by that.

[synchronization_level,correlation_location_of_synchronization]=max(abs

(synchronization_correlation));

modulation_symbol_level, ⇠] = max(abs(modulation_symbol_correlation

(((correlation_location_of_synchronization - 50):

35

Communication system with chirp modulation Michael Křeček 2018

(correlation_location_of_synchronization + 50)), :)));

[termination_symbol_level, ⇠] = max(abs(termination_symbol_correlation

(((correlation_location_of_synchronization - 50):

(correlation_location_of_synchronization + 50)), :)));

Subsequently, maximum values from each cross-correlation vectors are compared. If

’synchronization_level’ is higher than others maximums, a location of the synchro-

nization is defined. To guarantee reliable synchronization detection, maximums values are

multiplied by ’resolution_threshold’ variable. This ensures that only ’synchroniza-

tion˙level’ is far greater than the rest of maximums is able to meet the condition below.

If the condition is met location of the synchronization symbol in the cross-correlation

vector is defined. Because this vector and bu↵er have di↵erent sizes, the location of the

synchronization symbol in the bu↵er must be defined.

Nevertheless, it is unknown if the whole synchronization symbol or just a portion

of it was allocated in the bu↵er when cross correlation operation started. For suc-

cessful location of synchronization it is essential to have whole synchronization sym-

bol stored in the bu↵er. This issue is solved by setting up proper size of the bu↵er,

which was mentioned in the chapter 4.2. The size of the bu↵er is two times longer

than length of the symbol. This ensure that entire synchronization symbol will be in

the bu↵er eventually. For better understanding figure 4.3 is shown below. Figure de-

scribes loading procedure of the bu↵er, which is done from the end of the bu↵er. Two

extremes are displayed in the figure 4.3. In the left side entire synchronization sym-

bol is successfully loaded on the second iteration. Therefore location of this symbol

will be detected correctly. However, in the right side just half of the synchroniza-

tion symbol is loaded in the bu↵er during the second iteration. At this point corre-

lation of the synchronization symbol could be identified incorrectly. For this reason,

’locate_synchronization’ function is checking the location of synchronization symbol

in the bu↵er. If the value stored in ’correlation_location_of_synchronization’ is

higher than half of the bu↵er length, this means that incomplete symbol was loaded into

to bu↵er. Thus, ’locate_synchronization’ will evaluate synchronization as not found.

Therefore, main program routine will load new data to the bu↵er. This results in the shift

of synchronization symbol. In this iteration whole synchronization symbol is stored in the

bu↵er and its value of ’correlation_location_of_synchronization’ is lower than the

half of the bu↵er length. When this condition is fulfilled, synchronization is successfully

located, consequently ”found” variable is set to 1 causing termination of the function.

In the next iteration, the main program will not call ’locate_synchronization’, again

since the trigger condition is not met (found must be equal to 0). Instead, demodulation

of data is done by the function ’dem_chirp’.

36

Communication system with chirp modulation Michael Křeček 2018

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

Synchronization
symbol

1st Data
symbol

1st Data
symbol

1st Data
symbol

1st Data
symbol

1st Data
symbol

1st Data
symbol

2nd Data
symbol

2nd Data
symbol

2nd Data
symbol

2nd Data
symbol

Buffer = 2 * length_of_symbol Buffer = 2 * length_of_symbol

1st iteration 1st iteration

2nd iteration 2nd iteration

3rd iteration 3rd iteration

4th iteration 4th iteration

Figure 4.3: Bu↵er data loading process.

4.3.2 Dem Chirp Function

As once mentioned, CSS has great cross-correlation properties. Resulting very low re-

lation among modulation symbols. This uniqueness of each symbol is responsible for

low probability of detecting another symbol. Consequently robustness of communication

system is increased. To be able to measure value of correlation between multiple modula-

tion symbols correlation coe�cients table 4.1 was introduced. Table indicates correlation

values among modulation symbols for 8-ary CSS. Each column and row represent single

modulation symbol, where correlation among single modulation symbol and the rest of

them is calculated for each row. The main diagonal always has a value of 1, this means

that symbols were auto-correlated. The second value shows correlation between first and

the second modulation symbol and so on. From the results can be seen that demodulation

probability of modulation symbol substitution with another one is very low. However, the

modulation symbols neighbor to main diagonal are the most critical ones because of their

higher correlation values compare to the rest. In chapter 3.7 assignation by Gray code was

mentioned. Since table of correlation coe�cients shows level of mutual correlation among

modulation symbols. It is great tool for guiding assignation order for Gray code or any

other encoding algorithm. Main reason to apply these algorithms is to lower probability

of error and facilitate error correction.

When synchronization is successfully localized data demodulation can begin. De-

modulation process is done by ’dem_chirp’ function which returns modulation state.

This function calculates correlation which determines the similarity of the received signal

with the modulation symbols and termination symbol. Since correlation procedure de-

mands the most of computational power lots of e↵ort is put in to reduce it. Value of the

modulation state depends on the input parameters: ’dataIn’, ’M’, ’xcorr_demod’,

’Modsymbols’, ’termination_symbol’, ’synchronization_location’. Signal stored

37

Communication system with chirp modulation Michael Křeček 2018

1 0.0192 6.66e-08 1.94e-06 3.1e-07 7.5e-08 1.73e-07 2.50e-07

0.0192 1 -0.0384 -1.00e-07 0.0192 3.36e-08 1.56e-6 3.88e-07

6.66e-08 -0.0384 1 0.0192 -1.09e-07 1.53e-06 1.41e-05 3.99e-07

1.94e-08 -1.00e-07 0.0192 1 -0.0384 -5.28e-07 0.0192 1.35e-07

3.16e-07 0.0192 -1.09e-05 -0.0384 1 0.0192 -5.18e-07 2.00e-06

7.5e-08 3.33-08 1.53e-06 -5.58e-07 0.0192 1 -0.0384 -1.36-08

1.73-07 1.56e-06 1.41e-07 0.0192 -5.18e-07 -0.0384 1 0.0192

2.5e-07 3.88e-07 3.99e-07 1.35e-07 2.00-06 -1.36-08 0.0192 1

Table 4.1: Correlation coe�cients for 8-ary CSS, symbols created by a symbol period splitting

technique.

in the bu↵er refers to variable ’dataIn’, ’M’ represents number of modulation states and

’xcorr_dem’ parameter performs setup of the ’dsp.Crosscorrelator’ for ’dem_chirp’

function. Synchronization location defines position of the synchronization symbol. Rest

of the parameters are modulation symbols which are utilized for correlation between them

and data stored in the bu↵er.

To lower computational load from ’dem_chirp’ function inputted data stored in the

bu↵er are already normalized. Whenever ’dem_chirp’ is called primary, correlation be-

tween signal in the bu↵er (’dataIn’) and matrix of modulation symbols (’Modsymbols’)

is done. Because each column of ’Modsymbols’ represents single modulation symbol

computational di�culty increases with higher value of parameter ’M’. After this pro-

cess is completed position and value of correlation maximum for each column is found.

Since all symbols have same length and location of synchronization is known maximum

of correlation can be searched just on small area of bu↵er because, it is certain that next

symbol will be near to location in the bu↵er as synchronization previously was. This eases

computational load.

A vector with length equal to number of modulation states is stored in ’PomMax’. In

each column maximum correlation value for each modulation symbol is stored. In code

below max command returns position of column(variable ’S’) together with the highest

value (’AMP’) in the ’PomMax’ vector.

PomXcorr = abs(step(xcorr_demod, dataIn, Modsymbols));

[PomMax,⇠]= max(PomXcorr((synchronizatin_location - 50):

(synchronizatin_location + 50), :));

Afterwards, similar procedure is done between ’dataIn’ and termination symbol to

find out their correlation maximum. In the end variable ’AMP’ is compared with the

result of correlation between ’dataIn’ and termination symbol multiplied by resolution

threshold. This threshold is constant number (of value 3) which ensures that only symbol

with very high correlation value will be returned by a function. If threshold condition is

38

Communication system with chirp modulation Michael Křeček 2018

fulfilled the position of the column to which ’AMP’ variable belongs will be assigned to the

variable state and returned as an output of the ’dem_chirp’ function. When condition

is not met two possible outcomes can occur. The first is that termination symbol was de-

modulated resulting end of the function. The second option is that level of ’AMP’ variable

was not significantly higher than the rest of modulation symbols. Possible cause of this

event cold be dropout or interference thus function evaluates symbol as misinterpreted

thus, value 0 will be written to variable state. In this situation ’dem_chirp’ function

returns 0 which will be later evaluated by symbol mapping function as incorrect input.

This precaution helps prevent dropouts and interference mentioned above.

%AMP = max amplitude, S = column location of AMP

[AMP,S] = max(PomMax);

if AMP >= resolution threshold * max termination symbol

%modulation symbols sorting, symbol is determinated by location

%of the maximum AMP

if (S >= 1) && (S <= M))

State = S;

end

else

%termination symbol must be very clear

if max_termination_symbol >= 20

State = -1;

else

%HOLD => demodalator did not recognise any symbol

State = 0;

end

end

Since demodulation duration is essential parameter in the receiver, measurement of

predecessor‘s code and optimized version introduced in this thesis was done. Both mea-

surements were done on same computer(24 GB RAM & Intel c�Xenon 2.5 GHz) with

identical parameters: f
high

= 3000Hz, f
down

= 300Hz, T = 1s, Fs = 8000Hz for multiple

M-arry CSS which are shown in table 4.5. As seen in the table below major improvement

was accomplished. The last row is division between original and optimized is made to

indicate how many times faster upgraded version is.

39

Communication system with chirp modulation Michael Křeček 2018

Modulation states 8 16 32 64

Duration of original version [ms] 682 1460 3000 6100

Duration of optimized version [ms] 56 80 128 223

Improvement over original [-] 12⇥ 18⇥ 23⇥ 27⇥

Table 4.2: Demodulation duration before and after optimization

4.3.2.1 Decimation

Significant progress in reducing computational di�culty was made by optimizing pre-

decessor‘s program. However, desire to diminish computational di�culty even more, so

program can run in the real time on devices less powerfull than testing computer (24

GB RAM & Intel c�Xenon 2.5 GHz). Considering that, cross-correlation computes each

sample of modulation symbol with each sample of the data stored in the bu↵er, the idea

of decimating cross-correlation process to reduce computational di�culty was brought.

Before implementing decimation method, correlation coe�cients of decimated modula-

tion symbols are calculated. As a result cross-correlation properties of CSS are preserved,

even when symbols are decimated. Tables 4.3 and 4.4 displays these coe�cients for dec-

imation factor 3 and 5. Although, values of the correlation coe�cients are higher than

for non decimated version of the 8-ary CSS, which was expected. Taking this factor into

the consideration, decimated factors till factor 5 are suitable for communication system.

Higher decimation factors (e.g. 7) are unsuitable for communication system, because of

their high correlation coe�cients values (up to 0.17).

1 0.0812 -0.0017 0.0492 0.0442 0.0199 0.0166 0.0267

0.0812 1 -0.0105 0.0333 0.0314 -0.0114 0.0222 0.0367

-0.0017 -0.0105 1 0.0585 -0.0101 0.0448 0.0179 -0.0130

0.0492 0.0333 0.0585 1 0.0853 -5.28e-04 0.0291 0.0303

0.0442 0.0314 -0.0101 0.0853 1 -0.0201 0.0219 0.0315

0.0199 -0.0114 0.0448 -5.58e-04 -0.0201 1 -0.0853 0.0067

0.0166 0.0222 0.0179 0.0291 0.0219 0.0853 1 0.0593

0.0267 0.0367 -0.0130 0.0303 0.0315 0.0067 0.0593 1

Table 4.3: Correlation coe�cients for 8-ary CSS decimated by factor 3, symbols created by

and symbol period splitting technique.

40

Communication system with chirp modulation Michael Křeček 2018

1 0.0345 -0.0129 -0.0102 0.0311 0.0062 -0.0047 0.0569

0.0345 1 0.0036 0.0387 0.0115 -0.0012 0.0444 -0.0150

-0.0129 0.0036 1 0.0249 0.0051 0.0463 -0.0120 -0.0034

-0.0102 0.0387 0.0249 1 0.0629 -0.0048 6.41e-04 0.0408

0.0311 0.0115 0.0051 0.0629 1 0.0141 0.0475 0.0039

0.0062 -0.0012 0.0463 -0.0048 -0.0141 1 0.0167 0.0339

-0.0047 0.0444 -0.0120 6.41e-04 0.0475 0.0167 1 0.0237

0.0569 -0.0150 -0.0034 0.0039 0.0039 0.0339 0.0237 1

Table 4.4: Correlation coe�cients for 8-ary CSS decimated by factor 5, symbols created by a

symbol period splitting technique.

Decimation technique ensures that, cross-correlating is calculated between every sec-

ond, third or any n-th sample of the data. This feature, reduces computation time of

the cross-correlation considerably. In the table 4.5 comparison of demodulation duration

between decimated and non decimated versions is done.

Modulation states 8 16 32 64

Duration of original version [ms] 682 1460 3000 6100

Duration of optimized version [ms] 56 80 128 223

Duration of optimized version decimated by factor 2 [ms] 26 37 60 101

Duration of optimized version decimated by factor 3 [ms] 20 32 52 92

Duration of optimized version decimated by factor 5 [ms] 12 18 26 44

Improvement over original for decimation factor 5 [-] 56⇥ 81⇥ 115⇥ 138⇥

Table 4.5: Demodulation duration comparison between decimated and non decimated versions,

symbols created by a symbol period splitting technique.

The results show significant decrease of the demodulation process. However, a dis-

advantage of this improvement is a higher bit error rate of decimated versions over non

decimated ones. Results of BER simulation for 8-ary CSS and 32-ary CSS are displayed

below in figures 4.4 and 4.5. According to the simulation, BER performance of decimated

CSS is worse than non decimated ones, as expected. Nevertheless, simulation shows that

decimated modulation could be used for application, which could tolerate slightly higher

BER.

41

Communication system with chirp modulation Michael Křeček 2018

-4 -2 0 2 4 6 8 10

Eb/No[dB]

10-4

10-3

10-2

10-1

100

B
it

E
rr

o
r

R
a
te

BER vs Eb/No

8-ary CSS theorectical

8-ary CSS

8-ary CSS-decimation factor 2

8-ary CSS-decimation factor 3

8-ary CSS-decimation factor 5

Figure 4.4: BER simulation for 8-ary CSS and decimated versions, symbols created by a sym-

bol period splitting technique.

-4 -2 0 2 4 6 8 10
Eb/No[dB]

10-4

10-3

10-2

10-1

100

Bi
t E

rro
r R

at
e

BER vs Eb/No

32-ary CSS theorectical
32-ary CSS
32-ary CSS-decimation factor 2
32-ary CSS-decimation factor 3
32-ary CSS-decimation factor 5

Figure 4.5: BER simulation for 32-ary CSS and decimated versions, symbols created by a

symbol period splitting technique.

42

FSK

FSK

Communication system with chirp modulation Michael Křeček 2018

Implementation of the decimation procedure is made with consideration for simple

and easily change of the decimation parameter. Therefore, ’decimation_factor’ was

added as global variable. This solution allows easy access for setting up decimation pa-

rameter. Taking into account this modification, ’decimation_factor’ is added in as

input parameter for functions ’dem_chirp’ and locate_synchronization. Value stored

in the texttt’decimation˙factor’ relates to, which n-th sample of the data will be calculated

in the cross-correlation operation. For instance texttt’decimation˙factor’ = 2 meaning

that every second data sample will be cross-correlated. For non-decimated demodulation,

texttt’decimation˙factor’ must be equal to 1. Another usage of ’decimation_factor’

is shown bellow. The first line decimates modulation symbol by factor stored in the

’decimation_factor’. The second row decimates data loaded into the bu↵er.

Modsymbols = Modsymbols(1:decimation_factor:end,:);

dataIn = dataIn(1:decimation_factor:end);

4.4 FrFT dem Function

Until now only demodulation method of the receiver was based on cross-correlation and

its modifications. Function ’dem_FrFT’ is another approach to the demodulation pro-

cess. This function is based on the fractional Fourier transformation (FrFT). FrFT is a

linear transformation, which is a generalization of the Fourier transformation. The FrFT

implements the so-called orderparameter ↵ which acts as a ordinary Fourier transform

operator. That is to say, the ↵-th order fractional Fourier transform represents the ↵-th

power of the ordinary Fourier transform operator. For ↵ = 0, there will be no change after

applying fractional Fourier transform. When ↵ = ⇡

2

Fourier transform will be obtained.

If ↵ belongs into the interval 0 < ↵ < ⇡

2

, FrFT transforms (rotates) a signal, either in

the time domain or frequency domain into the domain between time and frequency: the

time-frequency domain. [14] [15] The time-frequency domain was already mentioned in

figure 2.3. In this picture (2.3), modulation symbol is represented by an unique combi-

nation of the two chirp rates. Since fractional Fourier transform has an ability to rotate

in the time-frequency domain, a specific chirp rate can be detected. In other words, for

each chirp rate a certain value of the ↵ parameter causes, that FrFT will return sequence

with strong maximum. This maximum indicates a particular chirp rate. Taking this into

consideration, a demodulation of the signal is possible. Nevertheless, two chirp rates are

necessary to detect a modulation symbol, thus only modulation symbols created by the

symbol period splitting method 3.6 can be successfully demodulated.

For demodulation on the FrFT basis three function are used: ’locate_aplha_values’,

’dem_FrFT’ and ’frft’, which was taken from [16]. The fist step of the demodulation

is to create vector of ↵ parameter values: ’aplha_values’. For any of these values, the

fractional Fourier transform returns a sequence, with strong maximum, which represents

43

Communication system with chirp modulation Michael Křeček 2018

detected chirp rate. Since a single modulation symbol is represented by a combination

of the two chirp rates, that are changed in the middle of the symbol duration. To cal-

culate ’aplha_values’ only one half of the symbol can be used. Reason for this is

that, for the linear chirp, the alpha values of the second half symbol duration are iden-

tical, but in the opposite order than the alpha values for the first half. The vector of

’aplha_values’ remains the same for whole demodulation procedure, so it is calculated

only ones. The reason for separating this function from the rest is a relatively high compu-

tational di�culty, that would slow down the main demodulation function ’dem_FrFT’. Af-

ter ’aplha_values’ are created, function texttt’dem˙FrFT’ can be called by the main pro-

gram. Function ’dem_FrFT’ calls its subfunction ’frft’ which, performs the fractional

Fourier transformation of given ↵ values stored in the ’aplha_values’ vector. Then a

maximum of FrFT output for each ↵ value is stored in variable ’first_half_maximum’.

From this variable another we are able to locate position of maximum, which refers to

discovered chirp rate of the first half.

for i = 1:length(alpha_values)

first_half_of_max_vector = alpha_values(i);

Frft_first_half = frft(data_first_half,alpha_vec

(first_half_of_max_vector));

[first_half_maximum(i),location(i)]= max(abs(Frft_first_half));

end

[first_half_mod_symbol_max,F]= max(first_half_maximum);

[second_half_mod_symbol_max,S]= max(second_half_maximum);

The identical procedure is done for the second half of the loaded data. In the end,

location of discovered maximums ’F’ and ’S’ are compared. If the values are the same,

this means symbol was successfully detected. Therefore, detected symbol is returned

as output of the ’dem_FrFT’ function. If a values of the both symbol halves are not

identical, ’dem_FrFT’ evaluate modulation symbol as unrecognized. To find out how big

improvement was made by an implementation of the ’dem_FrFT’ function, a measurement

with the same conditions as for decimation was done. Results are displayed in the table4.6.

The progress was made, however not so significant as in decimation method case. The

main issue is that function ’frft’ is not optimized for speed.

After determination of the ’dem_FrFT’ speed , testing of BER performance was done.

The results of the simulation are shown in figure 4.6. As seen, BER outcome for 32-

ary CSS is acceptable. However, result for 8-ary method is not satisfying. Because this

implementation is new, further analysis is necessary to verify or disprove this result.

44

Communication system with chirp modulation Michael Křeček 2018

Modulation states 8 16 32 64

Duration of original version [ms] 682 1460 3000 6100

Duration of optimized FrFT version [ms] 261 520 1030 2012

Improvement over original [-] 2.6⇥ 2.8⇥ 2.9⇥ 3⇥

Table 4.6: Demodulation duration before and after FrFT optimization, symbols created by a

symbol period splitting technique.

-4 -2 0 2 4 6 8 10
Eb/No[dB]

10-4

10-3

10-2

10-1

100

Bi
t E

rro
r R

at
e

BER vs Eb/No

32-ary CSS theorectical
8-ary CSS theorectical
32-ary CSS-FrFT
8-ary CSS-FrFT

Figure 4.6: BER simulation for 8-ary and 32-ary CSS-FrFT versions, symbols created by a

symbol period splitting technique.

4.5 Translation of Received String

The final section of the receiver is to translate received string of modulation states to

message sent by transmitter. However, multiple operations need to be processed to achieve

this goal. Firstly the ’symbol mapping’ function with parameter ’symbol’ is called to

transform modulation states into modulation symbols. When ’symbol’ parameter is

chosen the second mode of this function is accessed. In this mode function translates

modulation state to modulation symbol according to the table, which was generated in

the transmitter. Because a simple symbol assignation was used in the transmitter. The

same method is utilized in the receiver to do reverse operation. Therefore, ’symbol

mapping’ function with parameter symbol converts received string of the modulation

states to modulation symbols. Afterwards, decadic expression of the modulation symbol

45

FSK

Communication system with chirp modulation Michael Křeček 2018

is converted to binary string. Code section in charge of this procedure is shown below.

for i = 1:length(recieved_string_of_state)

recieved_symbol = symbol_mapping(recieved_string_of_state(1, i),

’symbol’, M);

bin_string_of_symbol = dec2bin(recieved_symbol, number_of_bits);

for j = 1:number_of_bits

%if this is the first tranlated state

ifrecieved_string == -1

recieved_string = str2num(bin_string_of_symbol(j));

else

recieved_string = cat(2, recieved_string,

str2num(bin_string_of_symbol(j)));

end

end

end

For correct translation, it is necessary to remove stu�ng from captured binary string.

The ’message alignment block manages this procedure when remove stu↵ parameter is

chosen.

string_without_alignment = message_alignment_block

(recieved_string, number_of_bits, ’remove_stuff’);

Message alignment process goal is to locate position where message ended in the data

string. This is achieved by doing exclusive disjunction operation between string termi-

nation and received string (message). In each cycle, the message is XORed with string

termination and checked if a sum of this operation is equal to 0. If not ’message’ is

shifted by one bit and XOR operation is repeated. Since string termination stores 16 ze-

roes sum result equal to 0 occurs only when message stores 16 zeroes as well. When this

situation happens ’end_of_termination_string’ is successfully located. Afterwards,

’message alignment_block’ calculates how many bits were added as stu�ng. Lastly,

’the_separator_of_data string’, ’string_terminator’ and

’description_number_of_additional_bits’ which were added to data string as

stu�ng are removed. The part of the message alignment code process is shown below.

for i = 1:length(message)

if location_of_end_found == 0

if (i + (length(string_termination) - 1)) <= length(message)

difference = xor(message(i:(i + length(string_termination)-1)),

if sum(difference) == 0

location_of_end_found = i;

end

46

Communication system with chirp modulation Michael Křeček 2018

end

end

end

The final procedure to obtain text message is to translate bitstream without stu�ng

given by message alignment block. Message translation function manages this process. In

code beneath according to the length of the ASCII character, 8 bits from bit stream are

loaded. These 8 bits are converted to a decimal number. Afterward, the decimal number

is transformed to Unicode representation (ASCII character) by the ISO-8859-2 encoding

scheme. ASCII character is then concatenated to the message vector. This cycle repeats

itself until the whole message is converted and the final dialog box with the translated

message appears as the final result of the receiver.

while actual_bit < length(input_bit_stream)

bin_string_ASCII = num2str(input_bit_stream(actual_bit:

(actual_bit + (ASCII_character_length - 1))));

dec_number_of_symbol = bin2dec(bin_string_ASCII);

ASCII_char_symbol=native2unicode(dec_number_of_symbol,’ISO-8859-2’);

message = strcat(1, message, ASCII_char_symbol);

actual_bit = actual_bit + ASCII_character_length;);

end

thi

47

5

Conclusion

This thesis deals with a software implementation of the communication system. The goal

was to create low speed transmission system with an ability to choose between energy

or spectral e�ciency over a group of the high order modulation. Communication system

of these properties can be utilized in the technology of the picosatellites, IOT devices or

any other applications, which is working with limited power resources. To meet criteria

for a high power e�ciency, a proper modulation method must be chosen. Methods with

constant modulation envelope allows to use non-linear RF amplifiers, which are very

e�cient. Chirp spread spectrum modulation fulfills these requirements. This modulation

method has good cross-correlation properties among modulation symbols. Another useful

feature of the CSS is resistance to interference and jamming. Taking all these factors into

a consideration, CSS was selected as the modulation method for communication system.

This paper follows up on the previous thesis High order chirp modulations [4]. The

author created a software prototype of the modulator and demodulator using M-ary chip

modulation. Because predecessor‘s solution involved many flaws, a optimization of the

program was necessary. The biggest disadvantages of the original version were a low level

of the parametrization and very high computational di�culty, especially for demodulation

process. This leaded to inability to demodulate in the real-time, because processing times

for a demodulation of the single symbol were units of second. Therefore, first primary

task of this thesis was to implement communication system with M-ary chirp modulation

working in the real-time. The second aim was to design and test suitable demodulation

methods with a consideration of a computational di�culty for a PC.

In the first chapter, the CSS was introduced, as well the frequency band splitting

and symbol period splitting methods, which are techniques for creating the modula-

tion symbols. The second chapter was devoted to the realization of the main program

Transmitter_main. To modify the properties of the transmitting signal as easily as pos-

sible, global variables were implemented. Therefore, transmitter features such as order

of modulation, sample frequency, method of creating modulation symbols and many oth-

ers can be controlled by managing several global variables. Transmitter contains various

blocks, which are represented as functions. Input parameters of these function are mostly

48

Communication system with chirp modulation Michael Křeček 2018

global variables, thus a parameterization is improved.

The following chapter describes implementation of the main program Receiver_main.

To improve parameterization, the global variables and the functions are applied in the

same manner as for Transmitter_main. In the receiver the most of the computational

power is demanded by the demodulation process. In the original version cross-correlation

was the primary method for data demodulation. To reduce computational di�culty,

multiple procedures were implemented. An inappropriate switch structure for sorting

modulation symbols to data vector was used by the predecessor. With increasing order

of the modulation, this solution was unacceptable. In optimized solution a single matrix

of all modulation symbols serve for symbol sorting instead of switch structure. Another

improvement was done by calculating cross-correlation just in the part of the bu↵er, where

was symbol expected. In the end, a measurement between original and optimized versions

was done. For the same input parameters, a demodulation of optimized version was on

average 20 times faster than original version. Far lower duration times were achieved

by a decimation technique, which was newly implemented. When 32-ary modulation

and decimation factor equal to 5 were selected, decimated version was 115 times faster

than original. However, when decimated versions were tested for a bit error rate, it was

discovered that, with higher decimation factor, bit error rate increases. This was expected

since decimation method reduces number of samples for cross-correlation computation.

The results of the bit error rate show an increase in energy e�ciency, as the number of

modulation states grows.

The last demodulation method realized in this thesis, is based on the fractional Fourier

transformation. An ability to distinguish an unique combination of two di↵erent chirp

rates, which represents modulation symbol is indeed interesting. A functional demodula-

tion prototype was created. A measurement proved that a demodulator based on FrFT is

approximately three times faster than original version. The primary reason why demod-

ulation times based on FrFT are not as impressive as other solutions is manly because

function for computing FrFT is not optimized for speed. If this issue can be overcomed,

a demodulation based on FrFT could found a use, since they have a potential, to gain

better performance with applied time-frequency domain filtering as is introduce in [17]

In current state of this thesis a bit error rates results shows, not so good properties as

expected. Therefore, FrFT needs to be analyzed more profoundly.

Demodulation methods implemented in this thesis are able to decrease computational

di�culty significantly. A drawback of these methods with decimation are slightly higher

bit error rates in comparison to the non-decimated methods. M-ary CSS, they are a

perspective alternative to the conventional modulation methods.

49

Bibliography

[1] VEŘTÁT, Ivo. Efektivńı komunikačńı systém pikosatelit̊u. Plzeň, 2011. disertačńı

práce (Ph.D.). ZÁPADOČESKÁ UNIVERZITA V PLZNI. Fakulta elektrotechnická

[2] S. Hengstler, D. P. Kasilingam and A. H. Costa. A Novel Chirp Modulation Spread

Spectrum Technique for Multiple Access. IEEE Operation Center, c2002. ISBN 0-

7803-7627-7.

[3] DIXON, Robert C. Spread spectrum systems: with commercial applications. 3rd ed.

New York: Wiley, c1994. ISBN 0471593427.

[4] HOSEK,Jan. Vı́cestavové rozmı́tané modulace. Plzeň, 2016. diplomová práce.

ZÁPADOČESKÁ UNIVERZITA V PLZNI. Fakulta elektrotechnická.

[5] J.Huang,Ch. He and Q. Zhang. M-ary Chirp Spread Spectrum Modulationfor Un-

derwater Acoustic Communication. IEEE, c2004. ISBN 0-7803-9311-2.

[6] EL-KHAMY, S.E., S.E. SHAABAN a E.A. TABET. E�cient multiple-

access communications using multi-user chirp modulation signals. In: Pro-

ceedings of ISSSTA’95 International Symposium on Spread Spectrum Tech-

niques and Applications.[online]. IEEE, 1996, s. 1209-1213 [Retrieved 2018-03-

05]. DOI: 10.1109/ISSSTA.1996.563498. ISBN 0-7803-3567-8. Available from :

http://ieeexplore.ieee.org/document/563498/

[7] The MathWorks, Inc. unicode2native. [online]. United States:The

MathWorks,Inc. c�1994-2016 [Retrieved 2018-04-25]. Available

from:https://www.mathworks.com/help/matlab/ref/unicode2native.html

[8] The MathWorks, Inc. unicode2native. [online]. United States:The

MathWorks,Inc. c�1994-2016 [Retrieved 2018-04-25]. Available

from:https://www.mathworks.com/help/matlab/ref/dec2bin.html

[9] The MathWorks, Inc. dsp.AudioPlayer System object. [online]. United

States:The MathWorks,Inc. c�1994-2016 [Retrieved 2018-03-27]. Available

from:https://www.mathworks.com/help/dsp/ref/dsp.audioplayer-system-

object.html

50

Communication system with chirp modulation Michael Křeček 2018

[10] The MathWorks, Inc. dsp.AudioRecorder System object. [online]. United

States:The MathWorks,Inc. c�1994-2016 [Retrieved 2018-04-21]. Available

from:https://www.mathworks.com/help/dsp/ref/dsp.audiorecorder-system-

object.html

[11] The MathWorks, Inc. dsp.Bu↵er System object. [online]. United

States:The MathWorks,Inc. c�1994-2016 [Retrieved 2018-04-22]. Available

from:https://www.mathworks.com/help/dsp/ref/dsp.bu↵er-system-object.html

[12] The MathWorks, Inc. dsp.Crosscorrelator System object. [online]. United

States:The MathWorks,Inc. c�1994-2016 [Retrieved 2018-05-07]. Available

from:https://www.mathworks.com/help/dsp/ref/dsp.crosscorrelator-system-

object.html?s˙tid=doc˙ta

[13] The MathWorks, Inc. corrcoef. [online]. United States:The

MathWorks,Inc. c�1994-2016 [Retrieved 2018-05-09]. Available

fhttps://www.mathworks.com/help/matlab/ref/corrcoef.html

[14] Sejdic, Ervin & Djurovic, Igor & Stankovic. Fractional Fourier transform as a signal

processing tool: An overview of recent developments. [online]. [Retrieved 2018-15-

05]. DOI: 10.1016/j.sigpro.2010.10.008. ISBN 10.1016/j.sigpro.2010.10.008. Avail-

able from : http://linkinghub.elsevier.com/retrieve/pii/S0165168410003956

[15] ALMEIDA, L.B. The fractional Fourier transform and time-frequency rep-

resentations. [online]. IEEE, 1996 42(11), 3084-3091[Retrieved 2018-05-

19]. DOI: 10.1109/78.330368. ISBN 10.1109/78.330368. Available from :

http://ieeexplore.ieee.org/document/330368/

[16] meng frft.m. [online]. United States: meng c
�2013 [Retrieved 2018-05-20]. Avail-

able from : https://www.mathworks.com/matlabcentral/fileexchange/41351-frft-

m?focused=3784947&tab=function

[17] Wikipedia: the free encyclopedia Fractional Fourier transform as a signal processing

tool. [online]. San Francisco (CA): Wikimedia Foundation[Retrieved 2018-05-30].

https://en.wikipedia.org/wiki/Fractional˙Fourier˙transform

.

51

Appendix A

Used scripts and source code

A.1 Main program Transmitter main.m

1 close all;
2 clear all;
3 %true= symbols will be saved into waw. file
4 %false= transmitter will send all symbols
5 test = true;
6

7 %*******global variables *******
8 frequency_splitting=1;
9 time_splitting=2;

10

11 %setings of modulation parameters
12 T = 1; %time interval for symbol in seconds
13 fhigh = 3000; %settings for bandwidth of symbols
14 fdown = 300;
15 M = 16; %number of modulation states
16 Fs = 8000; %symbol sampling rate
17 type = time_splitting; % choosen type of the modulation
18 duration_of_data_frame = 100; %how many symbols will be in 1 frame
19

20 %*****end of global parameters********
21

22 length_of_symbol = T * Fs;
23

24 number_of_bits = log2(M);
25

26 size_of_data_frame = duration_of_data_frame * number_of_bits / T;
27

28 %align size of data frame so synchronization doesnt fluctuate
29 size_of_data_frame = size_of_data_frame - mod(size_of_data_frame, number_of_bits);
30

31 message = enter_message();
32

33 %creation of modulation symbol .wav file
34 create_mod_symbol(T, fhigh, fdown, M, Fs, type);
35

36 %load of synchronization & termination symbols
37 synchro_symbol = wavread(’Synchonization_symbol.wav’);
38

39 termination_symbol = wavread(’Termination_symbol.wav’);
40

41 %reallocation of memory for loading symbols
42 AFP=zeros(length(wavread(’Symbol_1.wav’)), 1);
43

44 %allocation of memory needed for symbols
45 mod_symbols=zeros(length_of_symbol,M);
46

47 %loading of modulation symbols
48 for i=1:M
49 %concatination of Symbol_+(i)+.wav

52

Communication system with chirp modulation Michael Křeček 2018

50 filename = strcat(’Symbol_’, num2str(i), ’.wav’);
51 %load field of modulation symbols
52 mod_symbols(:,i) = wavread(filename);
53 end
54

55 %variable which allows play audio file with defined parametrs for playing
56 AP=dsp.AudioPlayer(’SampleRate’,Fs,’QueueDuration’,T);
57

58 %order of character in message which have to be sent right now
59 current_character = 1;
60

61 %for synchonization purpose
62 synchronization_counter = 1;
63 %synchronization not sent yet
64 s = 0;
65 %test of vector in which all transmitted symbols are compound together
66 testing_output_of_modulator = 0;
67

68 %run message_alignment_block to align message
69 message_alignment=message_alignment_block(message, number_of_bits,’align’);
70

71 %possible for later use of interleaving or message coding
72 string_sent = message_alignment;
73

74 %creating variables for end of trannsmision
75 end_of_transmission = 0;
76 terminate_transmission = 0;
77

78 %till all character of message are sent
79 while end_of_transmission ~= 1
80 %if synchonization was not sent
81 if s == 0
82 %loading of syncho symbol into AFP variable
83 AFP = synchro_symbol;
84 %synchonization will be send after this
85 s = 1;
86

87 %if synchronization was sent
88 else
89 %till termanation symobol is not send
90 if terminate_transmission ~= 1
91 %load string from current_character + number of bits
92 symbol_bin_to_string = num2str(string_sent(current_character:(current_character + (number_of_bits - 1))));
93 %decadic number of binary string which represents symbol number
94 number_of_symbol = bin2dec(symbol_bin_to_string);
95 %run funcion symbol mapping
96 %find out character number of state corresponding to
97 %symbol which is about to be send
98 %state or symbol parameter
99 number_of_state = symbol_mapping(number_of_symbol, ’state’, M)

100 %load number of state for sending
101 AFP = mod_symbols(:, number_of_state);
102 %if size of frame is exceeded => necessary to send
103 %synchronization again for a new frame
104 %synchronization_counter if more than 1 synchornization
105 %is needed to be send
106 if mod(current_character,(synchronization_counter*size_of_data_frame+1)-synchronization_counter*number_of_bits) == 0
107 %if s = 0 next symbol loaded into AFP will be
108 %Synchronization_symbol
109 s = 0;
110 end
111 %testing is current_character is last character of message
112 if (current_character + number_of_bits) <= length(string_sent)
113 %next current_character for upcoming iteration
114 current_character = (current_character + number_of_bits);
115 %synchro fix necessary so that modulo in row 105 works fine
116 %If current_char =1 =>fix(1/number_of_bits) = 0 which is
117 %bad... to correct this >>
118 %current_character_synchro actually compute current_char
119 %after it was increased by next iteration(1+number_of_bits)
120 %meaning for first time it does not calculate the first
121 %current_character at all. But it starts from the second
122 %however this doesnt bother us because it is corrected

53

Communication system with chirp modulation Michael Křeček 2018

123 %in the counter variable (resets one symbol earlier)
124 current_character_synchro_fix = fix(current_character/number_of_bits);
125 %counter counts from 1 to duration_of_data_frame
126 %then it resets to 0 and start again
127 counter = mod(current_character_synchro_fix,duration_of_data_frame);
128 %testing when counter resets => new frame => new synchro
129 %symbol = counter of synchronization +1
130 if counter == 0
131 synchronization_counter = synchronization_counter+1;
132 end
133 else
134 terminate_transmission = 1;
135 end
136 else
137 %load terminatin symbol into AFP
138 AFP = termination_symbol;
139 end_of_transmission = 1;
140 end
141 end
142 %if is wanted created only 1 .wav file merged with all transmitted
143 %symbols for testing purposes
144 if test == true
145 %add curently transmitted symbol to test vector
146 testing_output_of_modulator = cat (1, testing_output_of_modulator, AFP);
147 else
148 %play .wav file stored in AFP variable
149 step(AP, AFP);
150 end
151 end
152

153 %if test== true => .wav file merged with all trasmitted symbols will be
154 %created
155 if test == true;
156 %adding part of 0 for reason that audio file will be played without
157 %issues for example in Media Player
158 testing_output_of_modulator=cat(1, zeros(Fs, 1), testing_output_of_modulator);
159 %creatation of testing .wav file
160 wavwrite(testing_output_of_modulator, Fs, ’testing_output_of_modulator.wav’);
161 end
162 %wait till symbols are played
163 pause(AP.QueueDuration);
164 %close(AFR)
165 release(AP);

A.2 Function enter message.m

1 %FUNCTION FOR ENTERING MESSAGE
2 %function in which message is inputed and sended by a program.
3 %called by transmitter_main
4 function message = enter_message()
5 %block for inserting the message
6 notification = {’Enter message for sending:’};
7 dialog_name = ’Message’;
8 number_of_lines = 1; %how many lines will dialog have
9

10 input_message = inputdlg(notification, dialog_name, number_of_lines);% set up a matlab window
11

12 message_char = char(input_message); %converting => because inputdlg returns format cell which is non usable
13

14 %message lenght is mutlplied by 8 => because I need to send bits individually
15 %chars are bits
16 message = (zeros(1, length(message_char) * 8));
17

18 for i = 1:length(message_char)
19 % converting chars to number
20 ASCII_dec_msg = unicode2native(message_char(i), ’ISO-8859-2’);
21 % converting numbers which I get to bit expression
22 ASCII_bin_string_msg = dec2bin(ASCII_dec_msg, 8); % necessary put 8 otherwise just 7 bits words can occur
23 %=> variable length of words -> inappropriately
24 for j = 1:8

54

Communication system with chirp modulation Michael Křeček 2018

25 %dec2bin return binary but in string of chars => necessary convert to numbers
26 message (((i-1)*8) + j) = str2num(ASCII_bin_string_msg(j));
27 end
28 end
29

30 end

A.3 Function message alignment block.m

1 %FUNCTION FOR MESSAGE ALINGMENT
2 function resulting_message = message_alignment_block(message,number_of_bits, operation)
3 %text characters always 8 bits. But transmitted symbols are express by
4 % a number of states for example 5 are 6 bits =>transmited message could
5 %apper with lefover of bits (1,2 or more)
6 %=> necessary to solve stuffing for whole number of states
7

8 length_of_ASCII_character = 8;
9 separator_of_string_terminator = 1;

10 string_termination = zeros(1, 2 * length_of_ASCII_character);
11 description_number_of_additional_bits = zeros(1, number_of_bits);
12

13 %block for transmitter to align message
14 %compares 2 strings if they are indentical strcmp returns 1 (true)
15 if strcmp(operation, ’align’) == 1
16

17 necessary_number_of_bits = length(message) + separator_of_string_terminator + length(string_termination) + length(description_number_of_additional_bits);
18 %remainer after division
19 number_of_additional_bits = mod(necessary_number_of_bits, number_of_bits);
20

21 if number_of_additional_bits ~= 0
22 %how much bits are needed for stuffing
23 number_of_missing_bits = number_of_bits - number_of_additional_bits;
24 else
25 number_of_missing_bits = 0;
26 end
27 %contver number of missing bits to binar with at least number of
28 % bits that is stored in number_of_bits
29 bin_number_of_missing_bits = dec2bin(number_of_missing_bits, number_of_bits);
30

31 %bin_number_of_missing_bits return format char => type conversion
32 %is needed
33 for i = 1:number_of_bits
34 description_number_of_additional_bits(1, i) = bin2dec(bin_number_of_missing_bits(i));
35 end
36 %concatenate all arrays with dimesnion of 2 => returns vector
37 % with 0 remainer after dividing by length of number_of_bits
38 resulting_message = cat(2, message, separator_of_string_terminator, ones(1, number_of_missing_bits), string_termination, description_number_of_additional_bits);
39

40 %block for reciever to remove stuffing
41 %this part doest work properly ..
42 elseif strcmp(operation, ’remove_stuff’) == 1
43

44 location_of_end_found = 0;
45

46 for i = 1:length(message)
47 if location_of_end_found == 0
48 if (i + (length(string_termination) - 1)) <= length(message)
49 difference = xor(message(i:(i + length(string_termination)-1)), string_termination);
50 if sum(difference) == 0
51 location_of_end_found = i;
52 end
53 end
54 end
55 end
56

57 end_of_termination_string = location_of_end_found + (length(string_termination) - 1);
58

59 stuff_str_descriptrion = num2str(message((end_of_termination_string + 1):(end_of_termination_string + length(description_number_of_additional_bits))));
60 number_of_stuffed = bin2dec(stuff_str_descriptrion);
61

55

Communication system with chirp modulation Michael Křeček 2018

62 resulting_message = message(1:((location_of_end_found - 1) - number_of_stuffed - separator_of_string_terminator));
63 else
64 errordlg(’Wrong input of operation!! Choose align or remove_stuff’);
65 end
66 end

A.4 Function create mod symbol.m

1 %FUNCTION FOR CREATING MODULATION SYMBOLS
2 function create_mod_symbol(T,fhigh,fdown,M,Fs,type)
3 %T - %time interval for symbol in seconds
4 %symbol - actually modulated symbol
5 %fhigh - upper limit frequency
6 %fdown - lower limit frequency
7 %M - number of modulation states
8 %Fs - symbol rate
9 %type - % choosen type of the modulation

10 %1 for a frequency split method
11 %2 for time spliting method
12

13 %for better synchronization "catching"
14 %synchro and terminal symbols have own frequency band
15 lower_range_of_control_zone = fhigh - ((fhigh - fdown) / 10);
16 upper_range_of_mod_symbols = lower_range_of_control_zone - ((fhigh - fdown)/10);
17

18 %creation of synchro and terminal symbols
19 if type == 1
20 Synchro_symbol = chirpM_mod_time(T,1,fhigh,lower_range_of_control_zone,2,Fs);
21 Termination_symbol = chirpM_mod_time(T,2,fhigh,lower_range_of_control_zone,2,Fs);
22 elseif type == 2
23 Synchro_symbol=chirpM_B_mod_time(T,1,fhigh,lower_range_of_control_zone,2,Fs);
24 Termination_symbol=chirpM_B_mod_time(T,2,fhigh,lower_range_of_control_zone,2,Fs);
25 end
26 %write to wav.file
27 wavwrite(Termination_symbol,Fs,’Termination_symbol.wav’);
28 wavwrite(Synchro_symbol,Fs,’Synchonization_symbol.wav’);
29

30 %creation of modulation symbols in different frequency band
31 for i=1:M
32 if type == 1
33 y=chirpM_mod_time(T,i,upper_range_of_mod_symbols,fdown,M,Fs);
34 elseif type == 2
35 y=chirpM_B_mod_time(T,i,upper_range_of_mod_symbols,fdown,M,Fs);
36 end
37 %concation of strings
38 filename = strcat(’Symbol_’, num2str(i), ’.wav’);
39 %audiowrite(filename,y,Fs); %write to wav.souboru
40 wavwrite(y,Fs,filename);
41 end
42

43 end

A.5 Function chirpM B mod time.m

1 %FUNCTION FOR CREATING MODULATION SYMBOLS BY FREQUENCY BAND SPLITTING
2 function y=chirpM_B_mod_time(T,symbol,fhigh,fdown,M,Fs)
3 %T - time interval for symbol in seconds
4 %symbol - actually modulated symbol
5 %fhigh - upper limit frequency
6 %fdown - lower limit frequency
7 %M - number of modulation states
8 %Fs - symbol rate
9

10 %generation of time axis
11 %in the end T - (1/Fs) because I am generating from 0
12 %=> necessary to remove one sample
13 time=(0:1/Fs:T-(1/Fs));

56

Communication system with chirp modulation Michael Křeček 2018

14

15 %size of one sub band
16 subband_size = (fhigh-fdown)/(M/2);
17

18 chirprate = subband_size / T;
19

20 %for even =0
21 %for odd =1
22 switch mod(symbol,2)
23 case 0
24 y=sin(2*pi.*((fdown+(subband_size*floor...
25 (symbol/2))).*time+((chirprate/2).*(time.^2))));
26 case 1
27 y=sin(2*pi.*((fhigh-(subband_size*floor...
28 ((M-symbol)/2))).*time + ((-chirprate/2).*(time.^2))));
29 end;
30

31 end

A.6 Function chirpM mod time.m

1 %FUNCTION FOR CREATING MODULATION SYMBOLS BY TIME DURATION SPLITTING
2 function y=chirpM_mod_time(T,symbol,fhigh,fdown,M,Fs)
3 %T - time interval for symbol in seconds
4 %symbol - actually modulated symbol
5 %fhigh - upper limit frequency
6 %fdown - lower limit frequency
7 %M - number of modulation states
8 %Fs - symbol rate
9

10 %geration to T/2 because vector will be used for each half of
11 %time interval
12 %generation of time axis
13 time=(0:1/Fs:(T/2)-(1/Fs));
14

15 %size of one sub band
16 subband_size = (fhigh-fdown)/((M/2)+1);
17

18 %alocating required memory
19 chirprate1=zeros(M);
20 chirprate2=zeros(M);
21 freq_middle=zeros(M);
22

23

24 for i=1:(M/2)
25 chirprate1(i)=i*subband_size/(0.5*T);
26 chirprate2(i)=((M/2)-i+1)*subband_size/(0.5*T);
27 end;
28 for i=(M/2)+1:M
29 chirprate1(i)=-chirprate1(i-(M/2));
30 chirprate2(i)=-chirprate2(i-(M/2));
31 end;
32 for i=1:(M/2)
33 %frequency middle is where chirp rate is changing
34 freq_middle(i) = fdown + i * subband_size;
35

36 end;
37 for i=(M/2)+1:M
38 freq_middle(i) = freq_middle((M)-i+1);
39 end;
40 switch fix((symbol-1)/(M/2))
41 %fix rounds down => first half of symbols are case 0
42 %second half is case 1 => division of inclination
43 case 0
44 y_first_half=sin(2*pi.*(fdown.*time+(chirprate1(symbol)/2).*...
45 time.^2));
46

47 %phase detection of last sample for appropriate bonding
48 last_sample_phase=sin(2*pi.*(fdown*(T/2)+(chirprate1(symbol)/2)*(T/2)^2));
49 y_second_half=sin(last_sample_phase + 2*pi.*((freq_middle(symbol)).*time+(chirprate2...

57

Communication system with chirp modulation Michael Křeček 2018

50 (symbol)/2).*time.^2));
51

52 case 1
53 y_first_half=sin(2*pi.*(fhigh.*time+(chirprate1(symbol)/2).*...
54 time.^2));
55

56 last_sample_phase=sin(2*pi.*(fhigh*(T/2)+(chirprate1(symbol)/2)*(T/2)^2));
57 y_second_half=sin(last_sample_phase + 2*pi.*((freq_middle(symbol)).*time+(chirprate2...
58 (symbol)/2).*time.^2));
59 end;
60

61 %merging vectors of first and second half together
62 y=cat(2, y_first_half, y_second_half);
63

64 end

A.7 Function symbol mapping.m

1 %FUNCTION FOR SYMBOL MAPPING AND ASSIGNATION
2 %Table with translation of which nummber expression in bits
3 %means state or symbol
4 %later on this is used for tranlsation to ASCII character
5

6 function output = symbol_mapping(input, find_out, number_of_states)
7

8 output = -1;
9 %number_of_states+1 because i need one more symbol if demodulator

10 %did not recognised the symbol
11 table=zeros(1, number_of_states+1);
12

13 %here just assignation
14 %but Gray code assignation can be done as well for example
15 for i = 1:number_of_states
16 % to be able to transmitt terminator symbol 0
17 %creation of table
18 table (1, i) = i -1;
19 end
20

21 if strcmp(find_out, ’state’) == 1
22 for i = 1:number_of_states
23 if table(1, i) == input
24 output = i;
25 end
26 end
27

28 if output == -1;
29 errordlg(’Problem with translation of the symbol’);
30 end
31 elseif strcmp(find_out, ’symbol’) == 1
32 % symbolize NaN
33 if input == 2 * number_of_states
34 output = input;
35 else
36 output = table (1, input);
37 end
38 else
39 errordlg(’Wrong input parameter for mapping’);
40 end
41

42 end

A.8 Main program Receiver main.m

1 close all;
2 clear all;
3

4 %true = demodulation of vector testing_output_of_modulator

58

Communication system with chirp modulation Michael Křeček 2018

5 %false = demodulate signal captured by microphone
6 test = true;
7

8 %global variable for easy change
9 frequency_splitting=1;

10 time_splitting=2;
11

12 %setings of modulation parameters
13 T = 1; %time interval for symbol in seconds
14 fhigh = 3000; %settings for bandwidth of symbols
15 fdown = 300;
16 M = 32; %number of modulation states
17 Fs = 8000; %symbol sampling rate
18 type = time_splitting;
19 duration_of_data_frame = 100; %how many symbols will be in 1 frame
20 decimation_factor = 1; %always choose odd number as the decimation factor
21 demodulation_method = ’xcorr’;
22

23 length_of_symbol = T * Fs;
24

25 number_of_bits = log2(M);
26

27 size_of_data_frame = duration_of_data_frame * number_of_bits / T;
28

29 %align size of data frame so synchronization doesnt fluctuate
30 size_of_data_frame = size_of_data_frame - mod(size_of_data_frame, number_of_bits);
31

32 %tady to chce blok k nalezeni modulacnich symbolu, pokud neexistujou, tak je vytvori,
33 %pokud nejaky existujou tak se zepta jestli je ma vymazat,kdyby byly pro jinej pocet stavu
34 %nebo pro jinej typ modulace; nebo je jen necha a proste je nacte - pokud
35 %vime ze posledni pouzita modulace je stejna jako kterou chcem pouzit ted
36

37 %zatim byly vysilac i prijimac pousteny na stejnem pocitaci ve stejne slozce,
38 %proto prijimac pouze nacita stejne symboly vytvorene uz vysilacem
39

40 %load of synchronization & termination symbols
41 synchro_symbol = wavread(’Synchonization_symbol.wav’);
42 synchro_symbol =synchro_symbol(1:decimation_factor:end);
43 termination_symbol = wavread(’Termination_symbol.wav’);
44 termination_symbol = termination_symbol(1:decimation_factor:end);
45 %loading of modulation symbols
46 Modsymbols=zeros(length_of_symbol,M); %modulation symbols
47

48 %loading of modulation symbols
49 for i=1:M
50 %concatination of Symbol_+(i)+.wav
51 filename = strcat(’Symbol_’, num2str(i), ’.wav’);
52 %load field of modulation symbols
53 Modsymbols(:,i) = wavread(filename);
54 end
55 Modsymbols = Modsymbols(1:decimation_factor:end,:);
56 %loading of testing vector testing_output_of_modulator
57 testing_output_of_modulator = wavread(’testing_output_of_modulator.wav’);
58

59 %laod locations of max for FRFT demodulator
60 load(’alpha_values.mat’);
61 %and a factor for FRFT
62 alpha_vec= (0.51:0.01:1.49);
63

64 %adding zeroes to testing vector for reason that syncho symbol
65 %would‘t start at intiger multiple of buffer
66 % testing funcionality of synchro_symbol position determination
67 %so 8K zeroes from transsmiter +2K zeroes = 10K zeroes
68 testing_output_of_modulator = cat(1, zeros(2000, 1), testing_output_of_modulator);
69

70 %variable calls dsp.Crosscorrelator function
71 %correlation determines if any symbol is in received signal
72 xcorr = dsp.Crosscorrelator(’Method’,’Fastest’);
73

74 %variable calling recording with set parameters
75 Mic=dsp.AudioRecorder(’SamplesPerFrame’,length_of_symbol,’BufferSizeSource’,’Property’,’BufferSize’,length_of_symbol,’QueueDuration’,0,’NumChannels’,1,’OutputDataType’,’double’);
76 %specify the device which to acquire audio data, ’Default’ => computer
77 %starndard input device

59

Communication system with chirp modulation Michael Křeček 2018

78 Mic.DeviceName=’Default’;
79 Mic.SampleRate=Fs;
80

81 %variable where data are stored in buffer which were acquired by mic
82 %buffer is 2*length_of_symbol long and overlaping by lenght of
83 %length_of_symbol => buff load one symbol in single iteration
84 InBuff = dsp.Buffer(’Length’, 2 * length_of_symbol, ’OverlapLength’,length_of_symbol);
85

86 %in the begining synchronization is not recieved
87 s = 0;
88 current_character = 0;
89 %serves for stepping of testing vector for demodulation when test=true
90 iteration = 1;
91

92

93 %start of countdown till when synchonization must be acquired
94 tic;
95 duration_of_synchronization = toc;
96

97 recieved_string_of_state = -1;
98 transmission_found = 0;
99 end_of_transmission = 0;

100

101 %if transmitter is transmitting synchronization has to appear in the frame
102 %if not transmitting is not happening or reciever is not able to capture
103 %synchronization => if message‘s max size of buffer is exceeded process
104 %will be terminated
105

106 while (duration_of_synchronization < (duration_of_data_frame + 2 * T)) && (end_of_transmission ~= 1)
107 if test == false
108 %record one lenght of buffer from microphone
109 dataIn = step(InBuff, step(Mic));
110 dataIn = dataIn(1:decimation_factor:end);
111 else
112 %load length of buffer from test signal
113 dataIn = step(InBuff, testing_output_of_modulator((((iteration-1) * length_of_symbol) + 1) : (iteration * length_of_symbol)));
114 %decimation of dataIn for
115 dataIn = dataIn(1:decimation_factor:end);
116 iteration = iteration + 1;
117 end
118

119 %if synchronization was not found yet
120 if s == 0
121 %returns the maximum values in vector synchronizatin_location
122 [found, synchronizatin_location,correlation_location_of_synchronization] = locate_synchronization(dataIn, xcorr, synchro_symbol, Modsymbols, termination_symbol, length_of_symbol, decimation_factor);
123 if found == true
124 release(xcorr)
125 %testing if synchronization location was found properly
126 x = step(xcorr,dataIn,synchro_symbol);
127 plot(x)
128 s = 1;
129 transmission_found = 1;
130 tic;
131 end
132 else
133 %demodulation of recieved state
134 % tic
135 if strcmp(demodulation_method,’xcorr’) == 1
136 recieved_state = dem_chirp(dataIn, M, xcorr, Modsymbols, termination_symbol, correlation_location_of_synchronization, synchronizatin_location,length_of_symbol, decimation_factor);
137 elseif strcmp(demodulation_method,’frft’) == 1
138 [recieved_state] = dem_FrFT(dataIn,M,alpha_vec, alpha_values, synchronization_location, correlation_location_of_synchronization,length_of_symbol, decimation_factor)
139 else
140 errordlg(’Wrong input of demodulation_method, Choose ’xcorr’ or ’frft’);
141 end
142 %counter of the recieved symbols
143 current_character = current_character + 1;
144 % toc
145 if recieved_state ~= -1
146 %if this is the first recieved symbol
147 if recieved_string_of_state == -1;
148 recieved_string_of_state = recieved_state;
149 else
150 %some symbol was recieved already, add next one to the end

60

Communication system with chirp modulation Michael Křeček 2018

151 recieved_string_of_state = cat(2, recieved_string_of_state, recieved_state);
152 end
153 else
154 end_of_transmission = 1;
155 end
156 %if size of frame is exceeded look for synchonization again
157 if mod(current_character*number_of_bits, size_of_data_frame) == 0
158 s = 0;
159 current_character = 0;
160 found = 0;
161 end
162 end
163

164 %duration_of_synchronization = toc;
165

166 end
167

168 %message will be listed only of transmission was found
169 if transmission_found == 1
170

171 recieved_string = -1;
172

173 %translation recived state numbers (0:M-1) to the symbols
174 for i = 1:length(recieved_string_of_state)
175 recieved_symbol = symbol_mapping(recieved_string_of_state(1, i), ’symbol’, M);
176 bin_string_of_symbol = dec2bin(recieved_symbol, number_of_bits);
177

178 for j = 1:number_of_bits
179 %if this is the first tranlated state
180 if recieved_string == -1
181 recieved_string = str2num(bin_string_of_symbol(j));
182 else
183 recieved_string = cat(2, recieved_string, str2num(bin_string_of_symbol(j)));
184 end
185 end
186 end
187

188 string_without_alignment = message_alignment_block(recieved_string, number_of_bits, ’remove_stuff’);
189

190 tranlated_message = message_translation(string_without_alignment);
191

192 msgbox(tranlated_message, ’Recieved message’);
193

194 else
195 errordlg(’Transmission not found’);
196 end
197

198 release(xcorr);
199

200 % close(xcorr);
201 release(Mic);
202

A.9 Function locate synchronization.m

1 %FUNCTION FOR LOCALIZATION OF THE SYNCHRONIZATION SYMBOL AND ITS POSITION IN THE BUFFER
2 function [found, synchronizatin_location,correlation_location_of_synchronization] = locate_synchronization(dataIn, xcorr_synchr, synchro_symbol, Modsymbols, termination_symbol, length_of_symbol,decimation_factor)
3

4 found = false;
5 synchronizatin_location = 0;
6 resolution_threshold = 3;
7 correlation_location_of_synchronization = 0;
8

9 mean_input_value = mean(abs(dataIn))
10 lenght_of_buffer = 2 * length_of_symbol;
11

12 %if input sample are all 0 => mean value =0
13 %for this case SNR = 0/noise =>SNR=inf
14 %so it would evaulate that synchronization is found => that is bad
15 %this means SNR cant be used..

61

Communication system with chirp modulation Michael Křeček 2018

16 %however if mean=0 if>0.0001 will secure that for all 0 correlation
17 %will not be calculated
18 if mean_input_value > 0.0001;
19 release(xcorr_synchr);
20 synchronization_correlation = step(xcorr_synchr, synchro_symbol, dataIn);
21 release(xcorr_synchr);
22 modulation_symbol_correlation = step(xcorr_synchr, Modsymbols, dataIn);
23 release(xcorr_synchr);
24 termination_symbol_correlation = step(xcorr_synchr, termination_symbol, dataIn);
25

26 %location of synchonization in correlation output
27 %synchro level = max value
28 %corr_location = location of max in synchronization_correlation
29 [synchronization_level,correlation_location_of_synchronization] = max(abs(synchronization_correlation));
30 %searching for modulation symbol in correlation output
31 %in location of symbol begining +- 50 samples
32 [modulation_symbol_level, ~] = max(abs(modulation_symbol_correlation(((correlation_location_of_synchronization - 50):(correlation_location_of_synchronization + 50)), :)));
33 modulation_symbol_maximum = max(modulation_symbol_level);
34 [termination_symbol_level, ~] = max(abs(termination_symbol_correlation(((correlation_location_of_synchronization - 50):(correlation_location_of_synchronization + 50)), :)));
35

36 if (synchronization_level > resolution_threshold * modulation_symbol_maximum) && (synchronization_level > resolution_threshold * termination_symbol_level)
37

38 %((length_of_symbol + lenght_of_buffer - 1)/2) for decimation
39 %of 2
40 synchronizatin_location = - correlation_location_of_synchronization + ((length_of_symbol + lenght_of_buffer - 1)/decimation_factor);
41

42 if ((correlation_location_of_synchronization > 0) && (correlation_location_of_synchronization < length_of_symbol))
43

44 if synchronization_level > 20
45 found = true;
46 end
47 end
48 end
49

50 end
51

52 end

A.10 Function dem chirp.m

1 %Function for demodulation of the signal
2 function [Symbol, max_termination_symbol, AMP,PomMax,mean_PomMax,I,PomXcorr] = dem_chirp(dataIn, M, xcorr_demod, Modsymbols, termination_symbol, correlation_location_of_synchronization, synchronization_location,length_of_symbol, decimation_factor)
3

4 resolution_threshold = 1;
5 release(xcorr_demod);
6 symbol_begining = synchronization_location - correlation_location_of_synchronization;
7 %correlation of the input data with all symbols
8 PomXcorr = abs(step(xcorr_demod, dataIn(correlation_location_of_synchronization : correlation_location_of_synchronization + (length_of_symbol/decimation_factor)), Modsymbols));
9

10 %(synchronization_location - 50):(synchronization_location + 50)
11 [PomMax,I]= max(PomXcorr((symbol_begining - 50):(symbol_begining + 50), :));
12 %jenze problem - kdyz bude synchronizace objevena u zacatku tak mi
13 %to hlasilo ze nemuze hledat maximum o 50 vzorku pred
14

15 %AMP = max amplitude, S = column location of AMP
16 %=> each column is for individual modulation symbol
17 %=> S = modulation symbol with highest correlation
18 [AMP,S] = max(PomMax);
19 mean_PomMax = mean(PomMax);
20 release(xcorr_demod);
21 termination_symbol_correlation = abs(step(xcorr_demod, dataIn, termination_symbol));
22 [max_termination_symbol,~] = max(termination_symbol_correlation((synchronization_location - 50):(synchronization_location + 50), :));
23

24 if ((AMP >= resolution_threshold * max_termination_symbol) &&(AMP >= resolution_threshold * mean_PomMax))
25 %modulation symbols sorting, symbol is determinated by location
26 %of the maximum AMP
27 if ((S >= 1) && (S <= M))
28 Symbol = S;
29 end
30 else

62

Communication system with chirp modulation Michael Křeček 2018

31 %termination symbol must be very clear
32 if max_termination_symbol >= 50
33 Symbol = -1;
34 else
35 %HOLD symbol 0 because in this case signal is noise or
36 %interruption could occur => demodalator did not recoignase any
37 %symbol so wait until reciver call dem_chirp again
38 Symbol = M+1;
39 end
40 end
41 end

A.11 Function dem FrFT.m

1 function [recieved_state,symbol_first_half,symbol_second_half] = dem_FrFT(dataIn,M,alpha_vec, alpha_values,synchronization_location,correlation_location_of_synchronization,length_of_symbol, decimation_factor)
2

3 data = dataIn(correlation_location_of_synchronization : correlation_location_of_synchronization + (length_of_symbol/decimation_factor));
4 % %the first half of data
5 data_first_half = data(1:(length_of_symbol/2));
6 %the second half of the data
7 data_second_half = data((length_of_symbol/2)+1:end);
8

9

10 for i = 1:length(alpha_values)
11 first_half_of_max_vector = alpha_values(i);
12 Frft_first_half = frft(data_first_half,alpha_vec(first_half_of_max_vector));
13 [first_half_maximum(i),location(i)]= max(abs(Frft_first_half));
14 % figure(5)
15 % plot(real(Frft_first_half))
16 % title(’Symbol 17’)
17 %
18 end
19

20 % F = location of this maximums
21 [first_half_mod_symbol_max,F]= max(first_half_maximum);
22

23 location_of_first_halfmax = location(F);
24

25 %for detection of the Location_of_max_first_half in the alpha vec%%%%%%
26

27 %distinguish symbols 1-16 &17-32
28 %because symbol 1 & 17 have the same symbol position
29 if location_of_first_halfmax < (length_of_symbol/4)
30 %first half => symbols 1-16
31 symbol_first_half= F;
32 else
33 %second half => symbols 17-32
34 symbol_first_half= (M/2)+F;
35

36

37 end
38 %second half maximum**************
39

40 for ii = 1:length((alpha_values))
41 second_half_of_max_vector = fliplr(alpha_values);
42 second_half_position = second_half_of_max_vector(ii);
43 Frft_second_half = frft(data_second_half,alpha_vec(second_half_position));
44 [second_half_maximum(ii),location_second_half(ii)]= max(abs(Frft_second_half));
45

46 end
47 %S =second half location
48 [second_half_mod_symbol_max,S]= max(second_half_maximum);
49 % toc
50 location_of_second_halfmax = location(S);
51

52 %for detection of the Location_of_max_first_half in the alpha vec%%%%%%
53

54 %distinguish symbols 1-16 &17-32
55 %because symbol 1 & 17 have the same symbol position
56 if location_of_second_halfmax < (length_of_symbol/4)

63

Communication system with chirp modulation Michael Křeček 2018

57 %first half => symbols 1-16
58 symbol_second_half = S;
59 else
60 %second half => symbols 17-32
61 symbol_second_half = (M/2)+S;
62

63 end
64

65 if symbol_first_half == symbol_second_half
66 recieved_state = symbol_first_half;
67 else
68

69 recieved_state = M+1;
70 end
71

72 end
73

74

A.12 Function locate aplha values

1 %FUNCTION FOR LOCALIZATION OF ALPHA VALUES
2 function [alpha_values,auxiliary_vec] = locate_alpha_values(alpha_vec,M,length_of_symbol)
3

4 %load modulation symbols
5 for i=1:M
6 %concatination of Symbol_+(i)+.wav
7 filename = strcat(’Symbol_’, num2str(i), ’.wav’);
8 %load field of modulation symbols
9 Modsymbols(:,i) = wavread(filename);

10 end
11

12 Modsymbols_first_half = Modsymbols(1:half_of_length_of_symbol,:);
13 Modsymbols_second_half = Modsymbols(half_of_length_of_symbol:end,:);
14

15 for j=1:M
16 %find max value of frft for element from a vector
17 for n = 1:length(alpha_vec)
18 Faf_first_half = frft(Modsymbols_first_half(:,j),alpha_vec(n));
19 %largest element and its location
20 [max_first_half(n),location(n)] = max(abs(Faf_first_half));
21 % figure(5)
22 % plot(real(Faf_first_half))
23 end
24 %since identical maximuns are found, sorting is done
25 %Mag = magnitude, Loc = location of this maximums
26 [Mag,Loc]= sort(max_first_half,’descend’)
27 %the first maximum is desired one, this if commnad assure it
28 if Loc(1)< Loc(2)
29 MaX_first_half = Mag(1)
30 F(j)= Loc(1)
31 else
32 MaX_first_half = Mag(2)
33 F(j)= Loc(2)
34 end
35

36 %for detection of the Location_of_max_first_half in the alpha vec%%%%%%
37 symbol_position = location(F);
38 %auxiliary vector for distinguish symbols 1-16 &17-32
39 %because symbol 1 & 17 have the same symbol position
40 if symbol_position(j) < (half_of_length_of_symbol/2)
41 %first half => symbols 1-16
42 auxiliary_vec(j)= 1;
43 else
44 %second half => symbols 17-32
45 auxiliary_vec(j)= -1;
46

47 end
48 end
49 alpha_values = F;

64

Communication system with chirp modulation Michael Křeček 2018

50 auxiliary_vec;
51 %cat just for control 1-16 has value 1 , 17-32 value -1
52 % auxiliary_vec1= auxiliary_vec(1:16);
53 % auxiliary_vec2= auxiliary_vec(17:32);
54 % cat(1,auxiliary_vec1,auxiliary_vec2);
55

56 save(’alpha_values.mat’,’alpha_values’, ’-mat’);
57 save(’auxiliary_vec.mat’,’auxiliary_vec’, ’-mat’);
58

59

60

61 %%%%%%%%%%%%second half%%%%%%%%%%%%%%%%%%%%%%%%
62 %just for control because values are same as for first half but flipped
63 % for jj=1:M
64 %
65 % for nn = 1:length(a)
66 % Faf_second_half = frft(Modsymbols_second_half(:,jj),a(nn));
67 % [max_second_half(nn),location2(nn)] = max(abs(Faf_second_half));
68 % end
69 % [Mag2,Loc2]= sort(max_second_half,’descend’)
70 % if Loc2(1)< Loc2(2)
71 % MaX_second_half = Mag2(1)
72 % S(jj)= Loc2(1)
73 % else
74 % MaX_second_half = Mag2(2)
75 % S(jj)= Loc2(2)
76 % end
77 %
78 % symbol_position2 = location2(S);
79 %
80 % if symbol_position2(jj) < (2000)
81 % %first half => symbols 1-16
82 % auxiliary_vec2(jj)= 1;
83 % else
84 % %second half => symbols 17-32
85 % auxiliary_vec2(jj)= -1;
86 %
87 % end
88 %
89 % end
90

91 % Location_of_max_second_half = S;
92 % auxiliary_vec2;
93 % %cat just for control 1-16 has value 1 , 17-32 value -1
94 % auxiliary_vec11= auxiliary_vec2(1:16)
95 % auxiliary_vec22= auxiliary_vec2(17:32)
96 % bbbb=cat(1,auxiliary_vec11,auxiliary_vec22)
97

98 %***DEMODUALTION TESTING*******
99

100 % Location_of_max_second_half_flipped = fliplr(Location_of_max_second_half)
101 % mod_symbol_table = cat(1,Location_of_max_first_half,Location_of_max_second_half_flipped)
102 %load(’Location_of_max_first_half.mat’);
103

104 % %the first half maximum
105 % %for j=1:M
106 % tic
107 % for i = 1:length(Location_of_max_first_half)
108 % first_half_of_max_vector = Location_of_max_first_half(i);
109 % Faf_first_half = frft(Modsymbols_first_half(:,5),alpha_vec(first_half_of_max_vector));
110 % first_half_maximum(i) = max(abs(Faf_first_half));
111 % end
112 % % mod_symbol_max = zeros(1,M);
113 % [first_half_mod_symbol_max(j),location_of_first_halfmax] = max(first_half_maximum)
114 % toc
115 % %end
116 %
117 % %second half maximum
118 % %for j=1:M
119 % for ii = 1:length(Location_of_max_first_half)
120 % second_half_of_max_vector = fliplr(Location_of_max_first_half);
121 % second_half_position = second_half_of_max_vector(ii);
122 % Faf_second_half = frft(Modsymbols_second_half(:,6),alpha_vec(second_half_position));

65

Communication system with chirp modulation Michael Křeček 2018

123 % second_half_maximum(ii) = max(abs(Faf_second_half));
124 % end
125 % % mod_symbol_max = zeros(1,M);
126 % [second_half_mod_symbol_max(j),location_of_second_half_max] = max(second_half_maximum)
127 % % toc
128 % %end
129 end

A.13 Function frft.m

1 function Faf = frft(f, a)
2 %meng\copyright 2013
3 % The fast Fractional Fourier Transform
4 % input: f = samples of the signal
5 % a = fractional power
6 % output: Faf = fast Fractional Fourier transform
7

8 error(nargchk(2, 2, nargin));
9

10 f = f(:);
11 N = length(f);
12 shft = rem((0:N-1)+fix(N/2),N)+1;
13 sN = sqrt(N);
14 a = mod(a,4);
15

16 % do special cases
17 if (a==0), Faf = f; return; end;
18 if (a==2), Faf = flipud(f); return; end;
19 if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end
20 if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end
21

22 % reduce to interval 0.5 < a < 1.5
23 if (a>2.0), a = a-2; f = flipud(f); end
24 if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end
25 if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end
26

27 % the general case for 0.5 < a < 1.5
28 alpha = a*pi/2;
29 tana2 = tan(alpha/2);
30 sina = sin(alpha);
31 f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)];
32

33 % chirp premultiplication
34 chrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)’.^2);
35 f = chrp.*f;
36

37 % chirp convolution
38 c = pi/N/sina/4;
39 Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)’.^2),f);
40 Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi);
41

42 % chirp post multiplication
43 Faf = chrp.*Faf;
44

45 % normalizing constant
46 Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1);
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%
49 function xint=interp(x)
50 % sinc interpolation
51

52 N = length(x);
53 y = zeros(2*N-1,1);
54 y(1:2:2*N-1) = x;
55 xint = fconv(y(1:2*N-1), sinc([-(2*N-3):(2*N-3)]’/2));
56 xint = xint(2*N-2:end-2*N+3);
57

58 %%%%%%%%%%%%%%%%%%%%%%%%%
59 function z = fconv(x,y)
60 % convolution by fft

66

Communication system with chirp modulation Michael Křeček 2018

61

62 N = length([x(:);y(:)])-1;
63 P = 2^nextpow2(N);
64 z = ifft(fft(x,P) .* fft(y,P));
65 z = z(1:N);

A.14 Function message translation.m

1 ASCII_character_length = 8;
2

3 acutal_bit = 1;
4

5 message = ’’;
6

7 while acutal_bit < length(input_bit_stream)
8 bin_string_ASCII = num2str(input_bit_stream(acutal_bit:(acutal_bit + (ASCII_character_length - 1))));
9 dec_number_of_symbol = bin2dec(bin_string_ASCII);

10 ASCII_char_symbol = native2unicode(dec_number_of_symbol, ’ISO-8859-2’);
11 message = strcat(1, message, ASCII_char_symbol);
12 acutal_bit = acutal_bit + ASCII_character_length;
13 end
14

15 end

A.15 Function BER receiving side

1 function [output_args] = BER_receiving_side()
2 %UNTITLEDs2 Summary of this function goes here
3 % Detailed explanation goes here
4 close all;
5 clear all;
6

7 %true = demodulation of vector testing_output_of_modulator
8 %false = demodulate signal captured by microphone
9 test = true;

10

11 %global variable for easy change
12 frequency_splitting=1;
13 time_splitting=3;
14

15 %setings of modulation parameters
16 T = 1; %time interval for symbol in seconds
17 fhigh = 3000; %settings for bandwidth of symbols
18 fdown = 300;
19 M = 32; %number of modulation states
20 Fs = 8000; %symbol sampling rate
21 type = time_splitting;
22 duration_of_data_frame = 10000000; %how many symbols will be in 1 frame
23 decimation_factor = 1; %always choose odd number as the decimation factor
24

25 length_of_symbol = T * Fs;
26

27 number_of_bits = log2(M);
28

29 size_of_data_frame = duration_of_data_frame * number_of_bits / T;
30

31 %align size of data frame so synchronization doesnt fluctuate
32 size_of_data_frame = size_of_data_frame - mod(size_of_data_frame, number_of_bits);
33

34 %load of synchronization & termination symbols
35 synchro_symbol = wavread(’Synchonization_symbol.wav’);
36 synchro_symbol = synchro_symbol(1:decimation_factor:end).*8;
37 termination_symbol = wavread(’Termination_symbol.wav’);
38 termination_symbol = termination_symbol(1:decimation_factor:end)./8;
39 %loading of modulation symbols
40 Modsymbols=zeros(length_of_symbol,M); %modulation symbols
41

67

Communication system with chirp modulation Michael Křeček 2018

42 [sequence,Bin_sequence, BER_testing_output_of_modulator] = BER_transmitting_side();
43 %loading of modulation symbols
44 % sequence= load(’sequence.mat’)
45

46 for i=1:M
47 %concatination of Symbol_+(i)+.wav
48 filename = strcat(’Symbol_’, num2str(i), ’.wav’);
49 %load field of modulation symbols
50 Modsymbols(:,i) = wavread(filename);
51 end
52 Modsymbols = Modsymbols(1:decimation_factor:end,:);
53 %correlation coefficients
54 coef= corrcoef(Modsymbols);
55 %laod locations of max for FRFT demodulator
56 load(’alpha_values.mat’);
57 %and a factor for FRFT
58 alpha_vec= (0.51:0.01:1.49);
59 %Modsymbols_first_half = Modsymbols(1:4000,:);
60

61 %loading of testing vector testing_output_of_modulator
62 BER_testing_output_of_modulator = wavread(’BER_testing_output_of_modulator.wav’);
63

64 %adding zeroes to testing vector for reason that syncho symbol
65 %would‘t start at intiger multiple of buffer
66 % testing funcionality of synchro_symbol position determination
67 %so 8K zeroes from transsmiter +2K zeroes = 10K zeroes
68 shift = 500;
69 BER_testing_output_of_modulator = cat(1, zeros(shift, 1), BER_testing_output_of_modulator);
70

71 %variable calls dsp.Crosscorrelator function
72 %correlation determines if any symbol is in received signal
73 xcorr = dsp.Crosscorrelator(’Method’,’Fastest’);
74

75 %variable calling recording with set parameters
76 Mic=dsp.AudioRecorder(’SamplesPerFrame’,length_of_symbol,’BufferSizeSource’,’Property’,’BufferSize’,length_of_symbol,’QueueDuration’,0,’NumChannels’,1,’OutputDataType’,’double’);
77 %specify the device which to acquire audio data, ’Default’ => computer
78 %starndard input device
79 Mic.DeviceName=’Default’;
80 Mic.SampleRate=Fs;
81

82 %variable where data are stored in buffer which were acquired by mic
83 %buffer is 2*length_of_symbol long and overlaping by lenght of
84 %length_of_symbol => buff load one symbol in single iteration
85 InBuff = dsp.Buffer(’Length’, 2 * length_of_symbol, ’OverlapLength’,length_of_symbol);
86

87 %in the begining synchronization is not recieved
88 s = 0;
89 current_character = 0;
90 %serves for stepping of testing vector for demodulation when test=true
91 iteration = 1;
92

93

94 %start of countdown till when synchonization must be acquired
95 tic;
96 duration_of_synchronization = toc;
97

98 recieved_string_of_state = -1;
99 transmission_found = 0;

100 end_of_transmission = 0;
101

102 %if transmitter is transmitting synchronization has to appear in the frame
103 %if not transmitting is not happening or reciever is not able to capture
104 %synchronization => if message‘s max size of buffer is exceeded process
105 %will be terminated
106 xxcounter= 0;
107 symbol_counter = 0;
108 EbNoVec = -4:0.5:10;
109 % ((1:length(EbNoVec))= BER;
110 % ((1:length(EbNoVec))= SER;
111 for n = 1:length(EbNoVec)
112 % %converting En/Bo to SNR
113 EbNo = EbNoVec(n)
114

68

Communication system with chirp modulation Michael Křeček 2018

115 % snrdB = EbNoVec(n)+10*log10(number_of_bits)-(10*log10((Fs/decimation_factor)/2));
116 % snrdB = -18
117

118 snrdB = EbNoVec(n)+10*log10(number_of_bits);
119 BER(n) = 0;
120 SER(n) = 0;
121 Error_counter = 0;
122 bit_error_counter = 0;
123 symbol_counter = 0;
124 end_counter = 0;
125

126 rms_orig = rms(BER_testing_output_of_modulator)
127 AWGN_BER_testing_output_of_modulator = awgn(BER_testing_output_of_modulator,snrdB,’measured’);
128 rms_awgn = rms(AWGN_BER_testing_output_of_modulator)
129 normalization = rms_orig/rms_awgn;
130 AWGN_BER_normilazed = AWGN_BER_testing_output_of_modulator.*normalization;
131 rms_normalized = rms(AWGN_BER_normilazed)
132

133 %while SER < 100 %&& numBits < 1e10
134 %(duration_of_synchronization < (duration_of_data_frame + 2 * T)) && (end_of_transmission ~= 1)
135

136 while (SER < 100) %& (end_counter < (n)*13)
137 if test == false
138 %record one lenght of buffer from microphone
139 dataIn = step(InBuff, step(Mic));
140 dataIn = dataIn(1:decimation_factor:end);
141 else
142 %load length of buffer from test signal
143 dataIn = step(InBuff, AWGN_BER_normilazed((((iteration-1) * length_of_symbol) + 1) : (iteration * length_of_symbol)));
144 % dataIn_buffer_rms = rms(dataIn);
145 %decimation of dataIn for
146 dataIn = dataIn(1:decimation_factor:end);
147 iteration = iteration + 1;
148 end
149

150 %if synchronization was not found yet
151 if s == 0
152 % Modsymbols = Modsymbols(1:decimation_factor:end,:)./1;
153 % %returns the maximum values in vector synchronizatin_location
154 % [found, synchronizatin_location,correlation_location_of_synchronization] = locate_synchronization(dataIn, xcorr, synchro_symbol, Modsymbols, termination_symbol, length_of_symbol, decimation_factor);
155 % Modsymbols = Modsymbols(1:decimation_factor:end,:).*1;
156 found = 1;
157 synchronization_location = 16500;
158 correlation_location_of_synchronization = 7499;
159 release(xcorr);
160

161 % plot(x)
162 if found == true
163 release(xcorr)
164 s = 1;
165 transmission_found = 1;
166 tic;
167 end
168 else
169

170 end
171 %demodulation of recieved state
172 % tic;
173 % [recieved_state, max_termination_symbol, AMP,PomMax,mean_PomMax,I, PomXcorr] = dem_chirp(dataIn, M, xcorr, Modsymbols, termination_symbol, correlation_location_of_synchronization, synchronization_location,length_of_symbol, decimation_factor);
174 %tic
175 [recieved_state,symbol_first_half,symbol_second_half] = dem_FrFT(dataIn,M,alpha_vec, alpha_values, synchronization_location, correlation_location_of_synchronization,length_of_symbol, decimation_factor)
176 % toc
177 %counter of the recieved symbols
178 release(xcorr);
179 % x = step(xcorr,dataIn,Modsymbols(1,:));
180 % plot(x)
181 current_character = current_character + 1;
182 symbol_counter = symbol_counter + 1;
183 current_input = sequence(current_character);
184

185 if current_character == 9999
186

187 xxcounter= xxcounter +1

69

Communication system with chirp modulation Michael Křeček 2018

188 current_character = 0;
189 iteration = 2;
190 end_counter = end_counter+1
191

192

193 %this for converts char string to bin double
194

195 % current_char_in_sequence = sequence(i);
196 %fixed number of bits
197 % sequence_string = dec2bin(current_char_in_sequence, number_of_bits);%fixed number of bits
198 % for j = 1:number_of_bits
199 % %dec2bin return binary but in string of chars => necessary convert to numbers
200 % bin_input (j) = str2num(sequence_string(j));
201 % end
202

203 % toc;
204 if recieved_state ~= -1
205 %if this is the first recieved symbol
206 if recieved_string_of_state == -1;
207 recieved_string_of_state = recieved_state;
208 recieved_symbol = symbol_mapping(recieved_string_of_state, ’symbol’, M);
209 else
210 %some symbol was recieved already, add next one to the end
211 recieved_symbol = symbol_mapping(recieved_state, ’symbol’, M);
212 recieved_string_of_state = cat(2, recieved_string_of_state, recieved_state);
213 bin_string_of_symbol = dec2bin(recieved_symbol, number_of_bits);
214 %this loop convers char from dec2bin to double string
215 % for j = 1:number_of_bits
216 % %dec2bin return binary but in string of chars => necessary convert to numbers
217 % bin_output (j) = str2num(bin_string_of_symbol(j));
218 % end
219 %current_input = 2
220 comparsion= [current_input, recieved_symbol];
221

222 if xor(current_input~=recieved_symbol,recieved_symbol==0)
223 %biterror of input and output signal
224

225 bin_input = (zeros(1,number_of_bits));
226

227 %this loop convers char from dec2bin to double string
228 current_input_bin = dec2bin(current_input, number_of_bits);%fixed number of bits
229 for j = 1:number_of_bits
230 %dec2bin return binary but in string of chars => necessary convert to numbers
231 bin_input (j) = str2num(current_input_bin(j));
232 end
233

234 bin_output = (zeros(1,number_of_bits));
235

236 current_output = dec2bin(recieved_symbol, number_of_bits);
237 %this loop convers char from dec2bin to double string
238 for j = 1:number_of_bits
239 %dec2bin return binary but in string of chars => necessary convert to numbers
240 bin_output (j) = str2num(current_output(j));
241 end
242

243

244 nErrors = biterr(bin_input,bin_output);
245

246 BER(n)= BER(n)+ nErrors;
247

248 SER(n) = SER(n)+ 1
249

250 Error_counter = Error_counter + nErrors;
251

252

253 end
254 %else
255 % end_of_transmission = 1;
256 end
257 %if size of frame is exceeded look for synchonization again
258 % if mod(current_character*number_of_bits, size_of_data_frame) == 0
259 % s = 0;
260 % current_character = 0;

70

Communication system with chirp modulation Michael Křeček 2018

261 % found = 0;
262 % end
263 end
264

265 %duration_of_synchronization = toc;
266 end
267

268 end
269 end
270

271 %Esitmated the BER
272 BER_estimated(n) = Error_counter/((number_of_bits)*(symbol_counter));
273 %Theorectical BER
274 BER_theory = berawgn(EbNoVec,’fsk’, M, ’coherent’);
275 BER(n) = Error_counter/((number_of_bits)*(symbol_counter));
276 BER_8 = zeros(1,length(EbNoVec));
277 BER_8 = cat(2,BER, BER_8)
278 save(’BER_32_FrFT.mat’,’BER_8’, ’-mat’);
279 %Symbol Error Rate
280 SER(n)=SER(n)/(symbol_counter);
281 figure(2)
282 semilogy(EbNo,BER(n),’b*’);
283 hold on
284 semilogy(EbNoVec,BER_theory,’red’)
285 grid
286 title(’BER vs Eb/No’)
287 axis([-4 10 10^-6 1]);
288 xlabel(’Eb/No[dB]’)
289 ylabel(’Bit Error Rate’)
290 legend(’BER’,’Theorectical BER’)
291

292 end

71

