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Abstract. The physical interpretation of Reynolds number in laminar and turbulent flows is studied in details. 

Understanding to its real physical meaning is the necessary condition for proper and meaningful explanation of the 

processes behind. The Reynolds number is interpreted in the paper as ratio of momentum convection and momentum 

diffusion effects in a laminar-like flow. 

INTRODUCTION 

The concept of Reynolds number (hereinafter Re) was introduced by Sir George Stokes in 1851, but this 

dimensionless parameter was given its name by Arnold Sommerfeld in 1908 after Osborne Reynolds (1842–1912), 

who popularized its use in 1883 in his famous experimental study on a pipe flow transition to turbulence [2]. 

Over last more than hundred years it was proved by both theory and practice, that the Reynolds number plays 

fundamental role in fluid dynamics, taking into account viscose and inertial effects. Reynolds number is the parameter 

determining the flow quality. However the physical interpretation of the Reynolds number is not straightforward and 

could be misleading. 

Reynolds number is interpreted as ratio of inertial and viscous forces as presented in many textbooks (see e.g. [3]). 

This traditional interpretation suffers from logical justification, as the forces should be in equilibrium any time. Better, 

the Reynolds number could be considered as ratio of inertial and viscose effects. However this interpretation is 

meaningful only in laminar flow.  

Anyway, the Reynolds number definition makes sense only within shear layers, where both viscose and inertial 

effects are present. Outside the shear flow regions the viscous forces vanish and the Reynolds number is thus 

undefined. The same statement holds for inviscid fluid flow anywhere. 

In turbulence the interpretation is very different. Turbulent flow occur at high Re, it originates as an instability of 

a laminar flow if the Re becomes too large. The instabilities are related to the interaction of viscous terms and nonlinear 

inertia terms in the equations of motion. This is a very complex process involving randomness, theory of partial 

differential equations is not developed in this area. The turbulent Re is defined using velocity standard deviation (i.e. 

square root of turbulent kinetic energy) and size of the vortices as a rule. Then, the Reynolds number represents ratio 

of turbulent and molecular viscosity. There are a few very different, however physical interpretations of the Reynolds 

number in turbulence.  

For example Lighthill [1] interprets Reynolds number in turbulence by analysis of the turbulent kinetic energy 

equation as the ratio of turbulent energy production per unit mass 
3U L  to the corresponding rate of viscous 

dissipation 
2 2U L . The scales are related to the typical eddies, here. Lumley in his classic textbook on turbulence 

[4] defines physical meaning of the Re as ratio of length-scales or time-scales in the turbulent flow. Reynolds number 

of a turbulent flow may be interpreted as a ratio of a turbulence time-scale L U  to a molecular time-scale 
2L   that 

would prevail in the absence of turbulence in a problem with the same length-scale. Lumley states that this point of 

view is more reliable than thinking of Re as a ratio of inertia to viscous effects in the governing equations. That could 
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be misleading as especially at high Re viscous and other diffusion effect tend to operate on smaller length scales than 

inertia effects. 

The presented paper is devoted to definition of the Reynolds number and explanation of its meaning in laminar-

like flow in shear layers.  

REYNOLDS NUMBER DEFINITION 

The definition of the Reynolds number is given by the following well-known formula: 

 ReL

UL


   (1) 

U holds for a typical velocity, L  is a typical length and   is kinematic viscosity.  

Please note that the numerator consists of quantities defining the flow and the denominator is represented by the 

fluid property only. 

Usually, the typical velocity and fluid viscosity are defined unambiguously. Kinematic viscosity is the fluid 

property given by the fluid nature and its state (static pressure and temperature). The typical velocity is usually chosen 

as velocity range within the shear region very often. For example, in the case of a boundary layer the velocity ranges 

from 0 on the wall to velocity of outer stream, so the typical velocity is the outer stream one. 

However, there is a problem in definition of the typical length. Sometimes it is represented by a scale in the 

streamwise direction (e.g. airfoil chord) in other cases the spanwise length parameter is used (e.g. boundary layer 

thickness or pipe diameter), sometimes a characteristic dimension of the rigid boundary is considered with no simple 

link to the flow-field (e.g. cylinder diameter in cross-flow). Obviously, the choice of the length parameter used in the 

Reynolds number definition is determining its physical meaning. 

Its general form could be derived with help of dimensional analysis of the flow dynamics. For the case of viscose 

incompressible fluid-flow without presence of other volume forces the Reynolds number is the only relevant parameter 

defining quality of the flow under given boundary conditions (see e.g. [5]). It determines presence of coherent 

structures in the flow and their behavior. And of course also the type of the flow: laminar or turbulent. 

REYNOLDS NUMBER IN LAMINAR BOUNDARY LAYER 

The laminar boundary layer flow is considered. Prandtl’s theory of boundary layer could be adopted to simplify 

the Navier-Stokes (NS) equations, which govern the case. The details could be find in any good fluid mechanics 

textbook, e.g. [3]. The schematic view of the boundary layer is shown in fig. 1. 

The final equations of motion for steady two-dimensional incompressible flow in a laminar boundary layer after 

omitting the small terms of higher order are as follows: 
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The first equation is the continuity, the other 2 equations are the momentum (NS) in x (streamwise) and y 

(spanwise, perpendicular to the wall) directions respectively. Boundary conditions include vanishing both velocity 

components u and v on the rigid wall and velocity U of the outer stream. 



  
 

Figure 1. Scheme of laminar boundary layer 

 

Now, let us consider the flow-field not too close to the surface. In such situation the flow contains the length-

scale L determined by the geometry of the body and convection process, e.g. for an airfoil the chord length would be 

characteristic. The second length-scale is the boundary layer thickness  , it is characterizing the momentum diffusion 

process due to molecular mechanism. 

From the continuity equation we could estimate u x U L   , while v y V     and we end-up with estimate 

of the velocity component perpendicular to the wall on the boundary layer border V U L .  

The y-momentum equation indicates constant pressure across the boundary layer. If zero pressure gradient along 

the boundary layer is present, then the pressure is constant in the whole domain. Now, both nonlinear inertial terms 

are of the order 
2u u x v u y U L      , while the viscose term is of order 

2U  . Within the inertial terms the 

streamwise length-scale L  is present, while in the viscose term the typical length-scale is the boundary layer 

thickness  . The x-momentum equation now yields: 
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Please note, that the x-momentum equation states clearly in the constant pressure case that the viscous force is 

equal to the inertial force for any velocity value, so the ratio of inertial and viscose forces is always equal to 1 for 

the laminar boundary layer without pressure gradient! 

From the formula (3) we could derive Reynolds number, defined with help of L  or  : 
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So, the Reynolds number Re  could be interpreted as ratio of convective and diffusive length-scales of the flow 

within the shear layer, L  and  .  

On the other hand, the Reynolds number ReL  is proportional to the square of the same ratio. 

Obviously, the ReL  is proportional to square of the Re . So, the two Reynolds numbers represent themselves 

two completely different parameters with different physical meaning. 

From the Blasius solution of a laminar boundary layer, the thickness of the boundary layer   could be evaluated 

precisely, then the solution gives: 
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where C  is constant, its value depends on the boundary layer thickness definition: 4.91C   for conventional 99% 

BL thickness, 1.72C   for displacement BL thickness and 0.664C   for impulse (momentum) BL thickness 

respectively (see e.g. [3]). 

CONCLUSION 

The Reynolds number is the ratio of scales in flow, the scales could be defined as time-scales or length-scales. 

Then, the Reynolds number physical meaning is the ratio of advection (due to convection) scale to dissipation 

(molecular viscosity related) scale. The flow region over which the Reynolds number is defined is considered as 

laminar flow – the whole region of the laminar flow-field, or laminar-like eddy within the turbulent flow. 

More generally, the Reynolds number could be understood as the ratio of inertial and viscous effects, or, more 

precisely, the ratio of momentum convection and momentum diffusion length-scales. 
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