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Abstract: Existence, uniqueness and continuous dependence results together with maximum principles rep-
resent key tools in the analysis of lattice reaction-diffusion equations. In this paper, we study these questions
in full generality by considering nonautonomous reaction functions, possibly nonsymmetric diffusion and
continuous, discrete or mixed time. First, we prove the local existence and global uniqueness of bounded
solutions, as well as the continuous dependence of solutions on the underlying time structure and on ini-
tial conditions. Next, we obtain the weak maximum principle which enables us to get the global existence of
solutions. Finally, we provide the strong maximum principle which exhibits an interesting dependence on
the time structure. Our results are illustrated by the autonomous Fisher and Nagumo lattice equations and
a nonautonomous logistic population model with a variable carrying capacity.
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1 Introduction
The classical reaction-diffusion equation ∂tu = k∂xxu + f(u) is a nonlinear partial differential equation
frequently used to describe the evolution of numerous natural quantities (chemical concentrations, tem-
peratures, populations, etc.). These phenomena combine a local dynamics (via the reaction function f ) and
a spatial dynamics (via the diffusion). It is well known that solutions to reaction-diffusion systems can exhibit
rich behavior such as the existence of traveling waves or formation of spatial patterns [32].

Motivated by applications in biology, chemistry and kinematics [2, 10, 12, 19], various authors have
considered the lattice reaction-diffusion equation (see [7, 8, 36, 37])

∂tu(x, t) = k(u(x + 1, t) − 2u(x, t) + u(x − 1, t)) + f(u(x, t)), x ∈ ℤ, t ∈ [0,∞), (1.1)

as well as the discrete reaction-diffusion equation (see [8, 9, 18])

u(x, t + 1) − u(x, t) = k(u(x + 1, t) − 2u(x, t) + u(x − 1, t)) + f(u(x, t)), x ∈ ℤ, t ∈ ℕ0. (1.2)

Naturally, equations (1.1) and (1.2) are also interesting from the standpoint of numerical mathematics since
they correspond to semi- or full discretization of the original reaction-diffusion equation [18].

The literature dealing with equations (1.1) and (1.2) studiesmainly the dynamical properties such as the
asymptotic behavior [5, 33, 34], existence of traveling wave solutions [8–10, 21, 35–37] and pattern forma-
tion [6–8], in particular for specific nonlinearities (e.g., the Fisher orNagumoequation). A growingnumber of
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studies have dealt with those questions in nonautonomous cases [17, 24]. In this paper, we study (1.1)–(1.2)
with a general time- and space-dependent nonlinearity f . Our focus lies on the existence, uniqueness, con-
tinuous dependence (both on the initial condition as well as on the underlying time structure/numerical
discretization), and a priori bounds in the form of weak and strong maximum principles. Note that both con-
tinuous dependence andmaximum principles are key assumptions in the proofs of the existence of traveling
waves [21, 35]. Our goal is to explore and describe them in full generality.

In order to consider both (1.1) and (1.2) at once and motivated by convergence issues and continuous
dependence of solutions on the time discretization, we use the language of the time scale calculus [4, 16].
We do not restrict ourselves to symmetric diffusion (see the following paragraph) and consider the nonau-
tonomous reaction-diffusion processes

u∆(x, t) = au(x + 1, t) + bu(x, t) + cu(x − 1, t) + f(u(x, t), x, t), x ∈ ℤ, t ∈ 𝕋, (1.3)

where a, b, c ∈ ℝ,𝕋 ⊆ ℝ is a time scale, and the symbol u∆ denotes the delta derivative with respect to time.
Our results are new even in the special cases 𝕋 = ℝ (when u∆ becomes the partial derivative ∂tu) and 𝕋 = ℤ
(when u∆ is the partial difference u(x, t + 1) − u(x, t)).

If a = c and b = −2a, then (1.3) becomes the symmetric lattice reaction-diffusion equation. The asymmet-
ric case a ̸= c, b = −(a + c) corresponds to the lattice reaction-advection-diffusion equation. Next, if c = 0 and
b = −a, or if a = 0 and b = −c, then (1.3) reduces to the lattice reaction-transport equation. For more details
and other special cases see [29, Section 1].

In Section 2, we formulate (1.3) as an abstract nonautonomous dynamic equation and prove the local
existence of solutions. In comparison with the existing literature [5, 33, 34], we do not work in the Hilbert
space ℓ2(ℤ) or in the weighted spaces ℓ2δ(ℤ) but in the Banach space ℓ∞(ℤ); as explained in [12], this is
a much more natural choice. We also prove the uniqueness of bounded solutions. In Section 3, we use tech-
niques from the Kurzweil–Stieltjes integration theory to show the continuous dependence of solutions on the
time scale (time discretization). In the special case, this implies the convergence of solutions of (1.2) to the
solution of (1.1) as the time discretization step tends to zero. Following the ideas from [31] (which deals with
initial-boundary-value problems on finite subsets ofℤ), we provideweakmaximumandminimumprinciples
in Section 4. These a priori bounds, as usual, depend strongly on the time structure. Combined with the local
existence results they enable us to prove the global existence of bounded solutions to (1.3). We illustrate our
findings on the autonomous logistic and bistable nonlinearities (Fisher andNagumo equations) and a nonau-
tonomous logistic populationmodel with a variable carrying capacity. Finally, in Section 5, we concludewith
the strong maximum principle. In the linear case f ≡ 0, the weak maximum principle was already proved in
[29, Theorem 4.7], but the strong maximum principle is new even for linear equations.

2 Local existence and uniqueness of solutions
In this section, we study the local existence and global uniqueness of solutions to the initial-value problem

u∆(x, t) = au(x + 1, t) + bu(x, t) + cu(x − 1, t) + f(u(x, t), x, t), x ∈ ℤ, t ∈ [t0, T]κ𝕋,
u(x, t0) = u0x , x ∈ ℤ, (2.1)

where {u0x}x∈ℤ is a bounded real sequence, a, b, c ∈ ℝ,𝕋 ⊆ ℝ is a time scale and t0, T ∈ 𝕋.Weuse thenotation[α, β]𝕋 = [α, β] ∩𝕋, α, β ∈ ℝ, and[t0, T]κ𝕋 = {{{[t0, T]𝕋 if T is left-dense,[t0, T)𝕋 if T is left-scattered.

We impose the following conditions on the function f : ℝ ×ℤ × [t0, T]𝕋 → ℝ:
(H1) f is bounded on each set B ×ℤ × [t0, T]𝕋, where B ⊂ ℝ is bounded.
(H2) f is Lipschitz-continuous in the first variable on each set B ×ℤ × [t0, T]𝕋, where B ⊂ ℝ is bounded.
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(H3) For each bounded set B ⊂ ℝ and each choice of ε > 0 and t ∈ [t0, T]𝕋 there exists a δ > 0 such that if
s ∈ (t − δ, t + δ) ∩ [t0, T]𝕋, then |f(u, x, t) − f(u, x, s)| < ε for all u ∈ B, x ∈ ℤ.

We begin with a local existence result. Given a function U : 𝕋→ ℓ∞(ℤ), the symbol U(t)x denotes the
x-th component of the sequence U(t), and should not be confused with the derivative of U with respect to x
(which never appears in this paper).

Theorem 2.1 (Local existence). Assume that the function f : ℝ ×ℤ × [t0, T]𝕋 → ℝ satisfies (H1)–(H3). Then
for each u0 ∈ ℓ∞(ℤ) the initial-value problem (2.1) has a bounded local solution defined on ℤ × [t0, t0 + δ]𝕋,
where δ > 0 and δ ≥ μ(t0). The solution is obtained by letting u(x, t) = U(t)x, where U : [t0, t0 + δ]𝕋 → ℓ∞(ℤ)
is a solution of the abstract dynamic equation

U∆(t) = Φ(U(t), t), U(t0) = u0,
with Φ : ℓ∞(ℤ) × [t0, T]𝕋 → ℓ∞(ℤ) being given by

Φ({ux}x∈ℤ, t) = {aux+1 + bux + cux−1 + f(ux , x, t)}x∈ℤ.
Proof. Condition (H1) guarantees thatΦ indeed takes values in ℓ∞(ℤ). Choose an arbitrary ρ > 0 and denote

B = {u ∈ ℓ∞(ℤ) : ‖u − u0‖∞ ≤ ρ} and B = [inf
x∈ℤ u0x − ρ, supx∈ℤ u0x + ρ] ⊂ ℝ.

Note that if u, v ∈ B, then ux , vx ∈ B for all x ∈ ℤ. If L is the Lipschitz constant for the function f on
B ×ℤ × [t0, T]𝕋, we get‖Φ(u, t) − Φ(v, t)‖∞≤ ‖a{ux+1 − vx+1}x∈ℤ‖∞ + ‖b{ux − vx}x∈ℤ‖∞ + ‖c{ux−1 − vx−1}x∈ℤ‖∞ + {f(ux , x, t) − f(vx , x, t)}x∈ℤ∞≤ (|a| + |b| + |c|)‖u − v‖∞ + L‖u − v‖∞.
This means that Φ is Lipschitz-continuous in the first variable onB × [t0, T]𝕋.

Next, we observe that Φ is bounded on B × [t0, T]𝕋. Indeed, let M be the boundedness constant for the
function |f| on B ×ℤ × [t0, T]𝕋. For each u ∈ B we have ux ∈ B for each x ∈ ℤ, and consequently‖Φ(u, t)‖∞ ≤ ‖a{ux+1}x∈ℤ‖∞ + ‖b{ux}x∈ℤ‖∞ + ‖c{ux−1}x∈ℤ‖∞ + {f(ux , x, t)}x∈ℤ∞≤ (|a| + |b| + |c|)‖u‖∞ +M ≤ (|a| + |b| + |c|)(‖u0‖∞ + ρ) +M.

Finally, we claim thatΦ is continuous onB × [t0, T]𝕋. To see this, consider an arbitrary ε > 0 and a fixed
pair (u, t) ∈ B × [t0, T]𝕋. Let δ > 0 be the corresponding number from (H3). Then for all (v, s) ∈ B × [t0, T]𝕋
with ‖u − v‖∞ < ε and s ∈ (t − δ, t + δ) ∩ [t0, T]𝕋 we have‖Φ(u, t) − Φ(v, s)‖∞ ≤ ‖Φ(u, t) − Φ(v, t)‖∞ + ‖Φ(v, t) − Φ(v, s)‖∞≤ (|a| + |b| + |c| + L)‖u − v‖∞ + {f(vx , x, t) − f(vx , x, s)}x∈ℤ∞≤ (|a| + |b| + |c| + L + 1)ε,
which proves that Φ is continuous at the point (u, t).

By [4, Theorem 8.16], the initial-value problem

U∆(t) = Φ(U(t), t), U(t0) = u0,
has a local solution defined on [t0, t0 + δ]𝕋, where δ > 0 and δ ≥ μ(t0). Letting u(x, t) = U(t)x, x ∈ ℤ, we see
that u is a solution of the initial-value problem (2.1).

Note that even in the linear case f ≡ 0 the solutions of (2.1) are not unique in general (see, e.g., [29, Section3])
and the uniqueness can be expected only in the class of bounded solutions. In the next theorem, we tackle
this issue for an initial-value problem which generalizes (2.1).

Theorem 2.2. Assume that φ : ℓ∞(ℤ) ×ℤ × [t0, T]𝕋 → ℝ satisfies the following conditions:
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(i) φ is bounded on each setB ×ℤ × [t0, T]𝕋, whereB ⊂ ℓ∞(ℤ) is bounded.
(ii) φ is Lipschitz-continuous in the first variable on each setB ×ℤ × [t0, T]𝕋, whereB ⊂ ℓ∞(ℤ) is bounded.
Then for each u0 ∈ ℓ∞(ℤ) the initial-value problem

u∆(x, t) = φ({u(x, t)}x∈ℤ, x, t), u(x, t0) = u0x , x ∈ ℤ, t ∈ [t0, T]κ𝕋, (2.2)

has at most one bounded solution u : ℤ × [t0, T]𝕋 → ℝ.
Proof. Assume that u1, u2 are two bounded solutions that do not coincide onℤ × (t0, T]𝕋; let

t = inf{τ ∈ (t0, T]𝕋 : u1(x, τ) ̸= u2(x, τ) for some x ∈ ℤ}.
We claim that u1(x, t) = u2(x, t) for every x ∈ ℤ. If t = t0, the statement is true. If t > t0 and t is left-dense,
then the statement follows from the continuity of solutions with respect to the time variable. Finally, if
t > t0 and t is left-scattered, then u1(x, ρ(t)) = u2(x, ρ(t)), and the statement follows from the fact that
u∆1(x, ρ(t)) = u∆2(x, ρ(t)).

If t is right-scattered, then u1(x, t) = u2(x, t) and u∆1(x, t) = u∆2(x, t) imply u1(x, σ(t)) = u2(x, σ(t)), a con-
tradiction to the definition of t. Hence, t is right-dense. Since the functions Ui(τ) = {ui(x, τ)}x∈ℤ, i ∈ {1, 2},
τ ∈ [t0, T]𝕋, are bounded, their values are contained in a bounded set B ⊂ ℓ∞(ℤ). By the first assumption,
there is a constant M ≥ 0 such that |φ| ≤ M onB ×ℤ × [t0, T]𝕋. We have

ui(x, t2) − ui(x, t1) = t2∫
t1

u∆i (x, τ)∆τ = t2∫
t1

φ(Ui(τ), x, τ)∆τ, i ∈ {1, 2}, t1, t2 ≥ t0, x ∈ ℤ
(the last integral exists at least in the Henstock–Kurzweil sense; see [23, Theorem 2.3]). It follows that|ui(x, t2) − ui(x, t1)| ≤ |t2 − t1|M, i ∈ {1, 2}, t1, t2 ≥ t0, x ∈ ℤ,
and therefore ‖Ui(t2) − Ui(t1)‖∞ ≤ |t2 − t1|M, i ∈ {1, 2}, t1, t2 ≥ t0,
i.e., the functions U1, U2 are continuous on [t0, T]𝕋.

By the second assumption, themappingφ is Lipschitz-continuous in the first variable onB×ℤ× [t0, T]𝕋;
let L be the corresponding Lipschitz constant. Then

u1(x, r) − u2(x, r) = r∫
t

φ(U1(τ), x, τ) − φ(U2(τ), x, τ)∆τ, r ≥ t,
‖U1(r) − U2(r)‖∞ ≤ r∫

t

L‖U1(τ) − U2(τ)‖∞∆τ, r ≥ t
(the last integral exists since U1 − U2 is continuous). Consequently, for each s ∈ [t, T]𝕋 we have

sup
τ∈[t,s]‖U1(τ) − U2(τ)‖∞ ≤ (s − t)L sup

τ∈[t,s]‖U1(τ) − U2(τ)‖∞.
Since t is right-dense, there is a point s ∈ [t, T]𝕋 with s > t and (s − t)L < 1. Substituting this inequality into
the previous estimate, we arrive at a contradiction.

The uniqueness of bounded solutions to the initial-value problem (2.1) is now a simple consequence of the
previous theorem.

Theorem 2.3 (Global uniqueness). Assume that f : ℝ ×ℤ × [t0, T]𝕋 → ℝ satisfies (H1) and (H2). Then for
each u0 ∈ ℓ∞(ℤ) the initial-value problem (2.1) has at most one bounded solution u : ℤ × [t0, T]𝕋 → ℝ.
Proof. Note that (2.1) is a special case of (2.2) with the function φ : ℓ∞(ℤ) ×ℤ × [t0, T]𝕋 → ℝ being given
by

φ({ux}x∈ℤ, x, t) = aux+1 + bux + cux−1 + f(ux , x, t).
Hence, it is enough to verify that the two conditions in Theorem 2.2 are satisfied.
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Given an arbitrary bounded set B ⊂ ℓ∞(ℤ), there exists a bounded set B ⊂ ℝ such that u ∈ B implies
ux ∈ B, x ∈ ℤ. Hence, the first condition in Theorem 2.2 is an immediate consequence of (H1). To verify the
second condition let L be the Lipschitz constant for the function f on B ×ℤ × [t0, T]𝕋. Then, for each pair of
sequences u, v ∈ B ⊂ ℓ∞(ℤ), we have|φ(u, x, t) − φ(v, x, t)| ≤ (|a| + |b| + |c|) ⋅ ‖u − v‖∞ + |f(ux , x, t) − f(vx , x, t)|≤ (|a| + |b| + |c| + L) ⋅ ‖u − v‖∞,
which means that φ is Lipschitz-continuous in the first variable onB ×ℤ × [t0, T]𝕋.
3 Continuous dependence results
This section is devoted to the study of continuous dependence of solutions to abstract dynamic equations
with respect to the choice of the time scale. The results are also applicable to (2.1), whose solutions (as we
know from Theorem 2.1) are obtained from solutions to a certain abstract dynamic equation.

We begin by proving a continuous dependence theorem for the so-calledmeasure differential equations,
i.e., integral equations with the Kurzweil–Stieltjes integral (also known as the Perron–Stieltjes integral) on
the right-hand side. For readers who are not familiar with this concept it is sufficient to know that the integral
has the usual properties of linearity and additivity with respect to adjacent subintervals. Themain advantage
with respect to the Riemann–Stieltjes integral is that the class of Kurzweil–Stieltjes integrable functions is
much larger. For example, if g : [a, b]→ ℝ has bounded variation, then the integral ∫ba f(t)dg(t) exists for
each regulated function f : [a, b]→ X, where X is a Banach space (see [26, Proposition 15]).

The statement as well as the proof of the next theorem are closely related to [3, Theorem 5.1]; for more
details, see Remark 3.3.

Theorem 3.1. Let X be a Banach space and B ⊆ X. Consider a sequence of nondecreasing left-continuous
functions gn : [t0, T]→ ℝ, n ∈ ℕ0, such that gn  g0 on [t0, T]. Assume that Φ : B × [t0, T]→ X is Lipschitz-
continuous in the first variable. Let xn : [t0, T]→ B, n ∈ ℕ0, be a sequence of functions satisfying

xn(t) = xn(t0) + t∫
t0

Φ(xn(s), s)dgn(s), t ∈ [t0, T], n ∈ ℕ0,
and xn(t0)→ x0(t0). Suppose finally that the function s → Φ(x0(s), s), s ∈ [t0, T], is regulated. Then xn  x0
on [t0, T].
Proof. Since gn(t0)→ g0(t0) and gn(T)→ g0(T), the sequences {gn(t0)}∞n=1 and {gn(T)}∞n=1 are necessarily
bounded. Hence, there exists a constant M ≥ 0 such that

vart∈[t0 ,T] gn(t) = gn(T) − gn(t0) ≤ M, n ∈ ℕ.
The Kurzweil–Stieltjes integral ∫Tt0 Φ(x0(s), s)d(gn − g0)(s) exists because s → Φ(x0(s), s) is regulated and
gn − g0 has bounded variation. Since gn − g0  0, it follows from [22, Theorem 2.2] that

lim
n→∞ t∫

t0

Φ(x0(s), s)d(gn − g0)(s) = 0
uniformly with respect to t ∈ [t0, T]. Thus, for an arbitrary ε > 0 there exists an n0 ∈ ℕ such that t∫

t0

Φ(x0(s), s)d(gn − g0)(s) ≤ ε, n ≥ n0, t ∈ [t0, T].
Moreover, the index n0 can be chosen in such a way that ‖xn(t0) − x0(t0)‖ ≤ ε for each n ≥ n0.
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Consequently, the following inequalities hold for each n ≥ n0 and t ∈ [t0, T]:‖xn(t) − x0(t)‖ ≤ ‖xn(t0) − x0(t0)‖ +  t∫
t0

Φ(xn(s), s)dgn(s) − t∫
t0

Φ(x0(s), s)dg0(s)
≤ ε +  t∫

t0

(Φ(xn(s), s) − Φ(x0(s), s))dgn(s) +  t∫
t0

Φ(x0(s), s)d(gn − g0)(s)
≤ 2ε + t∫

t0

‖Φ(xn(s), s) − Φ(x0(s), s)‖dgn(s)
≤ 2ε + L t∫

t0

‖xn(s) − x0(s)‖dgn(s),
where L is the Lipschitz constant for the function Φ. Using Grönwall’s inequality for the Kurzweil–Stieltjes
integral (see, e.g., [25, Corollary 1.43]), we get‖xn(t) − x0(t)‖ ≤ 2εeL(gn(t)−gn(t0)) ≤ 2εeLM , n ≥ n0, t ∈ [t0, T],
which completes the proof.

We now use the relation between measure differential equations and dynamic equations to obtain a contin-
uous dependence theorem for the latter type of equations. Since we need to compare solutions defined on
different time scales (whose intersection might be empty), we introduce the following definitions.

Consider an interval [t0, T] ⊂ ℝ and a time scale 𝕋 with t0 ∈ 𝕋, sup𝕋 ≥ T. Let g𝕋 : [t0, T]→ ℝ be given
by

g𝕋(t) = inf{s ∈ [t0, T]𝕋 : s ≥ t}, t ∈ [t0, T].
Each function x : [t0, T]𝕋 → X can be extended to a function x∗ : [t0, T]→ X by letting

x∗(t) = x(g𝕋(t)), t ∈ [t0, T]. (3.1)

Note that x∗ coincides with x on [t0, T]𝕋, and is constant on each interval (u, v], where (u, v) ∩𝕋 = 0. Wewill
refer to x∗ as the piecewise constant extension of x, see Figure 1.

We are now ready to prove a theorem dealing with continuous dependence of solutions to abstract
dynamic equations with respect to the choice of the time scale and initial condition.

Theorem 3.2 (Continuous dependence). Let X be a Banach space andB ⊆ X. Consider an interval [t0, T] ⊂ ℝ
and a sequence of time scales {𝕋n}∞n=0 such that t0 ∈ 𝕋n and T ∈ 𝕋n for each n ∈ ℕ0 and g𝕋n  g𝕋0 on [t0, T].
Denote 𝕋 = ∞⋃

n=0𝕋n .
Suppose that Φ : B × [t0, T]𝕋 → X is continuous on its domain and Lipschitz-continuous with respect to the
first variable. Let xn : [t0, T]𝕋n → B, n ∈ ℕ0, be a sequence of functions satisfying

x∆n(t) = Φ(xn(t), t), t ∈ [t0, T]κ𝕋n , n ∈ ℕ0,
and xn(t0)→ x0(t0). Then the sequence of piecewise constant extensions {x∗n}∞n=1 is uniformly convergent to
the piecewise constant extension x∗0 on [t0, T]. In particular, for every ε > 0 there exists an n0 ∈ ℕ such that‖xn(t) − x0(t)‖ < ε for all n ≥ n0, t ∈ [t0, T]𝕋n ∩ [t0, T]𝕋0 .
Proof. According to the assumptions, we have

xn(t) = xn(t0) + t∫
t0

Φ(xn(s), s)∆s, t ∈ [t0, T]𝕋n , n ∈ ℕ0.
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Figure 1: The piecewise constant extension x∗ (gray) of a function x (black); see (3.1).
For each n ∈ ℕ0 let x∗n : [t0, T]→ X be the piecewise constant extension of xn. Using the relation between
∆-integrals and Kurzweil–Stieltjes integrals (see [27, Theorem 5] or [11, Theorem 4.5]), we conclude that x∗n
satisfy

x∗n(t) = x∗n(t0) + t∫
t0

Φ(x∗n(s), g𝕋n (s))dg𝕋n (s), t ∈ [t0, T], n ∈ ℕ0. (3.2)

Let Φ∗ : B × [t0, T]→ X be given by

Φ∗(x, t) = Φ(x, g𝕋(t)), x ∈ B, t ∈ [t0, T].
Note that for each s ∈ [t0, T]𝕋n we have

Φ(x∗n(s), g𝕋n (s)) = Φ(x∗n(s), s) = Φ(x∗n(s), g𝕋(s)) = Φ∗(x∗n(s), s).
Thus, by [11, Theorem 5.1], the integral equation (3.2) is equivalent to

x∗n(t) = x∗n(t0) + t∫
t0

Φ∗(x∗n(s), s)dg𝕋n (s), t ∈ [t0, T], n ∈ ℕ0.
Because x0 is continuous on [t0, T]𝕋0 , its piecewise constant extension x∗0 is regulated on [t0, T]

(see [27, Lemma 4]). Moreover, its one-sided limits at each point of [t0, T] are elements of B (note that
x∗0([t0, T]) = x0([t0, T]𝕋0 ) is compact because x0 is continuous and [t0, T]𝕋0 is compact). The function g𝕋
is the piecewise constant extension of the identity function from [t0, T]𝕋 to [t0, T]; therefore (again by
[27, Lemma 4]), g𝕋 is regulated on [t0, T]. Consequently, the function s → (x∗0(s), g𝕋(s)) is also regulated
on [t0, T], and its one-sided limits have values in B × [t0, T]𝕋. The continuity of Φ on B × [t0, T]𝕋 implies
that s → Φ(x∗0(s), g𝕋(s)) = Φ∗(x∗0(s), s) is regulated on [t0, T]. According to Theorem 3.1, we have x∗n  x∗0
on [t0, T].
Remark 3.3. The problem of continuous dependence of solutions to dynamic equations with respect to the
choice of time scale has been studied by several authors; see, e.g., [1, 3, 13–15, 20]. Our approach is close to
the one taken in [3] or [13]; it relies on the continuous dependence result for measure differential equations
fromTheorem3.1,which is similar in spirit to [3, Theorem5.1]. In this context, it seemsappropriate to include
a few remarks:∙ Although the statement of [3, Theorem 5.1] is essentially correct, the proof provided there is based on an

erroneous estimate of the form ‖∫tt0 fn dgn − ∫tt0 fn dg0‖ ≤ ∫Tt0 M d(gn − g0), where fn, f0 are certain func-
tions whose norm is bounded by M, and gn, g0 are nondecreasing.∙ The assumption that the Hausdorff distance between 𝕋n and 𝕋0 tends to zero is never used in the proof
of [3, Theorem 5.1], and can be omitted. On the other hand, the assumption that the above-mentioned
integral ∫Tt0 fn dg0 exists is missing.∙ The result [3, Theorem 5.1] deals with measure functional differential equations; our Theorem 3.1 and
its proof can be easily adapted to this type of equations.

The next result shows that each time scale can be approximated by a sequence of discrete time scales in such
a way that the assumptions of Theorem 3.2 are satisfied. We introduce the following notation:

μ𝕋 = max
t∈[t0 ,T)𝕋 μ(t).
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Theorem 3.4. If 𝕋0 ⊂ ℝ is a time scale with t0, T ∈ 𝕋0, there exists a sequence of discrete time scales {𝕋n}∞n=1
with 𝕋n ⊆ 𝕋0,min𝕋n = t0,max𝕋n = T, and such that g𝕋n  g𝕋0 on [t0, T].

Moreover, if μ𝕋0 = 0, then limn→∞ μ𝕋n = 0; otherwise, if μ𝕋0 > 0, then the sequence {𝕋n}∞n=1 can be chosen
so that μ𝕋n = μ𝕋0 for all n ∈ ℕ.
Proof. We start by proving that for each ε > 0 there exists a left-continuous nondecreasing step function
gε : [t0, T]→ ℝ such that gε(t0) = t0, gε(T) = T, and ‖gε − g𝕋0‖∞ ≤ ε.

Given an ε > 0, let t0 = x0 < x1 < ⋅ ⋅ ⋅< xm = T be a partition of [t0, T] such that xi − xi−1 ≤ ε, i ∈ {1, . . . ,m}.
We begin the construction of the step function gε : [t0, T]→ ℝ by letting gε(T) = T. Then we proceed by
induction in the backward direction and define gε on [xm−1, xm), . . . , [x0, x1). At the same time, we are going
to check that ‖g𝕋0 − gε‖∞ ≤ ε on these subintervals, and also ensure that gε(xi) = xi whenever xi ∈ 𝕋0; this
will guarantee that gε(t0) = t0.

Assume that gε is already defined at xi and we want to extend it to [xi−1, xi). We distinguish between two
possibilities:∙ If 𝕋0 ∩ [xi−1, xi) = 0, then, by the definition of g𝕋0 , we have g𝕋0 (t) = g𝕋0 (xi) for each t ∈ [xi−1, xi). Let

gε(t) = gε(xi), t ∈ [xi−1, xi). Then |gε(t) − g𝕋0 (t)| = |gε(xi) − g𝕋0 (xi)| ≤ ε, where the last inequality follows
from the induction hypothesis.∙ If 𝕋0 ∩ [xi−1, xi) is nonempty, let ti be its supremum. Define

gε(xi−1) = {{{xi−1 if xi−1 ∈ 𝕋0,
ti if xi−1 ∉ 𝕋0,

gε(t) = {{{ti if t ∈ (xi−1, ti],
gε(xi) if t ∈ (ti , xi).

Note that ti might coincide with xi. In this case, we necessarily have xi ∈ 𝕋0, and therefore, by the induc-
tion hypothesis, gε(xi) = xi; this guarantees that gε is left-continuous at xi.
For each t ∈ [xi−1, ti] we have xi−1 ≤ t ≤ g𝕋0 (t) ≤ ti. Hence, there holds 0 ≤ ti − g𝕋0 (t) ≤ ti − xi−1 ≤ ε,
which in turn means that |gε(t) − g𝕋0 (t)| ≤ ε. For each t ∈ (ti , xi) it follows from the definition of g𝕋0 that
g𝕋0 (t) = g𝕋0 (xi), and therefore |gε(t) − g𝕋0 (t)| = |gε(xi) − g𝕋0 (xi)| ≤ ε.

Observe that the function gε constructed in this way has the property that gε(t) ≥ t, and observe that gε(t) = t
implies t ∈ 𝕋0.

Choosing ε = 1/n, n ∈ ℕ, we get a sequence of left-continuous nondecreasing step functions {g1/n}∞n=1
such that g1/n  g𝕋0 on [t0, T]. For each n ∈ ℕ consider the set𝕋n = {t ∈ [t0, T] : g1/n(t) = t}.
Clearly, t0 and T are elements of 𝕋n, and 𝕋n ⊆ 𝕋0. Moreover, 𝕋n is finite since g1/n is a step function and
therefore its graph has only finitely many intersections with the graph of the identity function. Thus, 𝕋n is
a discrete time scale. It follows from the definition of 𝕋n that g𝕋n = g1/n, and therefore g𝕋n  g𝕋0 on [t0, T].

To prove the final part of the theorem, we distinguish between two cases:∙ Assume that μ𝕋0 > 0. Let y0 = t0, and construct a sequence of points y1 < ⋅ ⋅ ⋅ < yk = T using the recursive
formula

yi = sup(yi−1, yi−1 + μ𝕋0 ] ∩ [t0, T]𝕋0 .
Since thegraininess of𝕋0 never exceeds μ𝕋0 , the setwhose supremumisbeing considered is never empty.
Also, note that yi+1 − yi−1 ≥ μ𝕋0 (otherwise, the point yi+1 would have been chosen directly after yi−1).
Thus, the recursive procedure always terminates by reaching the point yk = T for some k ∈ ℕ.
In the construction of the function gε described at the beginning of this proof, we can always assume that
the points y0, . . . , yk are among x0, . . . , xm. The construction then guarantees that gε(yi) = yi for each
i ∈ {0, . . . , k}. Consequently, the points y0, . . . , yk are contained in all of the time scales𝕋n, n ∈ ℕ, and

μ𝕋n ≤ max
1≤i≤k(yi − yi−1) ≤ μ𝕋0 .

On the other hand, since 𝕋n ⊆ 𝕋0, we have μ𝕋0 ≤ μ𝕋n , which in turn means that μ𝕋n = μ𝕋0 .
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∙ Assume that μ𝕋0 = 0. If μ is the graininess function of an arbitrary time scale 𝕋 with min𝕋 = t0 and
sup𝕋 ≥ T, observe that g𝕋(t+) − g𝕋(t) = μ(t) if t ∈ [t0, T)𝕋, and g𝕋(t+) − g𝕋(t) = 0 if t ∈ [t0, T) \𝕋.
Hence, we have

μ𝕋 = sup
t∈[t0 ,T)𝕋 μ(t) = sup

t∈[t0 ,T)(g𝕋(t+) − g𝕋(t)).
Since g𝕋n  g𝕋0 on [t0, T], the Moore–Osgood theorem implies that g𝕋n (t+) − g𝕋n (t)  g𝕋0 (t+) − g𝕋0 (t)
on [t0, T), and therefore

lim
n→∞ μ𝕋n = lim

n→∞( supt∈[t0 ,T)(g𝕋n (t+) − g𝕋n (t))) = sup
t∈[t0 ,T)(g𝕋0 (t+) − g𝕋0 (t)) = μ𝕋0 = 0.

4 Weak maximum principle and global existence
A natural task in the analysis of diffusion-type equations is to establish the maximum principles. Given an
initial condition u0 ∈ ℓ∞(ℤ), let

m = inf
x∈ℤ u0x , M = sup

x∈ℤ u0x .
We introduce the following conditions, which will be useful for our purposes:

(H4) a, b, c ∈ ℝ are such that a, c ≥ 0, b < 0 and a + b + c = 0.
(H5) b < 0 and μ𝕋 ≤ −1/b.
(H6) There exist r, R ∈ ℝ such that r ≤ m ≤ M ≤ R, and one of the following statements holds:∙ μ𝕋 = 0 and f(R, x, t) ≤ 0 ≤ f(r, x, t) for all x ∈ ℤ, t ∈ [t0, T]𝕋.∙ μ𝕋 > 0 and

1 + μ𝕋b
μ𝕋 (r − u) ≤ f(u, x, t) ≤ 1 + μ𝕋bμ𝕋 (R − u)

for all u ∈ [r, R], x ∈ ℤ, t ∈ [t0, T]𝕋.
Remark 4.1. Let us notice the following:∙ If (H4)–(H5) are not satisfied, then the maximum principle does not hold even in the linear case

with f ≡ 0; see [29, Section 4].∙ (H6) defines forbidden areas that the function f( ⋅ , x, t) cannot intersect for any x ∈ ℤ, t ∈ [t0, T]𝕋, simi-
larly to [31] (see Figure 2).∙ If (H5) holds, there exists a function f satisfying (H6); indeed, the linear functions

ψ1(u) = 1 + μ𝕋bμ𝕋 (r − u) and ψ2(u) = 1 + μ𝕋bμ𝕋 (R − u)
have identical nonpositive slopes, and the constant term of ψ1 is less than or equal to the constant term
ofψ2. If μ𝕋 = −1/b or r = R, then (H6) is equivalent to f(u, x, t) = 0 for all u ∈ [r, R], x ∈ ℤand t ∈ [t0, T]𝕋.
Finally, if μ𝕋 > −1/b and r < R, there does not exist any function satisfying (H6).

If (H6) holds in the continuous case μ𝕋 = 0, the following lemma shows that (H6) is also satisfied for all
sufficiently fine time scales (specifically, for almost all of the discrete approximating time scales 𝕋n from
Theorem 3.4).

Lemma 4.2. Assume that μ𝕋 = 0 and (H2) and (H6) hold. Then there exists ε0 > 0 such that for all ε ∈ (0, ε0]
the following inequalities hold:

1 + εb
ε
(r − u) ≤ f(u, x, t) ≤ 1 + εb

ε
(R − u) for all u ∈ [r, R], x ∈ ℤ, t ∈ [t0, T]. (4.1)

Proof. Let L ≥ 0 be the Lipschitz constant for the function f on the set [r, R] ×ℤ × [t0, T]. Then for all
u ∈ [r, R], x ∈ ℤ and t ∈ [t0, T] we obtain

f(u, x, t) ≤ f(u, x, t) − f(R, x, t) ≤ |f(u, x, t) − f(R, x, t)| ≤ L|u − R| = L(R − u),
f(u, x, t) ≥ f(u, x, t) − f(r, x, t) ≥ −|f(u, x, t) − f(r, x, t)| ≥ −L|u − r| = L(r − u).
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Figure 2: Illustration of (H6). The values r, R are chosen so that the function f( ⋅ , x, t) does not intersect the gray forbidden
areas. The slope of the boundary dashed lines is determined by the values of μ𝕋.
Since L(r − u) ≤ f(u, x, t) ≤ L(R − u), the two inequalities in (4.1) will be satisfied if 1/ε + b ≥ L, i.e., for all
ε ∈ (0, 1/(L − b)].
The following lemma represents a weakmaximumprinciple for time scales containing no right-dense points;
it will be a key tool in the proof of the general weak maximum principle.

Lemma 4.3. Assume that [t0, T)𝕋 does not contain any right-dense points, conditions (H4)–(H6) hold and
u : ℤ × [t0, T]𝕋 → ℝ is a solution of (2.1) with u0 ∈ ℓ∞(ℤ). Then

r ≤ u(x, t) ≤ R for all x ∈ ℤ, t ∈ [t0, T]𝕋. (4.2)

Proof. We show the statement via the induction principle [4, Theorem 1.7] in the variable t. For a fixed
t ∈ [t0, T]𝕋 we have to distinguish among three cases:∙ For t = t0 we obtain from the definitions of m and M and from (H6) that

r ≤ m ≤ u(x, t0) ≤ M ≤ R for all x ∈ ℤ.∙ Let t ∈ (t0, T]𝕋 be left-dense and assume that r ≤ u(x, s) ≤ R for all s ∈ [t0, t)𝕋 and x ∈ ℤ. Then the con-
tinuity of the function u(x, ⋅ ) on [t0, T]𝕋 implies

r ≤ u(x, t) = lim
s→t− u(x, s) ≤ R for all x ∈ ℤ.∙ Let t ∈ [t0, T)𝕋 be right-scattered, i.e., necessarily μ𝕋 > 0, and

r ≤ u(x, t) ≤ R for all x ∈ ℤ. (4.3)

We have to show that

r ≤ u(x, t + μ𝕋(t)) ≤ R for all x ∈ ℤ. (4.4)

Notice that from (H5) and from the fact that μ𝕋 ≥ μ𝕋(t) > 0 we get
0 ≤ 1 + μ𝕋b

μ𝕋 = 1
μ𝕋 + b ≤ 1

μ𝕋(t) + b = 1 + μ𝕋(t)bμ𝕋(t) .

Consequently, (H6) yields

1 + μ𝕋(t)b
μ𝕋(t) (r − u) ≤ f(u, x, t) ≤ 1 + μ𝕋(t)bμ𝕋(t) (R − u) for all u ∈ [r, R], x ∈ ℤ, t ∈ [t0, T]𝕋. (4.5)
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Let us prove the latter inequality in (4.4). Using the equation in (2.1), we obtain the estimate

u(x, t + μ𝕋(t)) = μ𝕋(t)au(x + 1, t) + (1 + μ𝕋(t)b)u(x, t) + μ𝕋(t)cu(x − 1, t)+ μ𝕋(t)f(u(x, t), x, t)≤ μ𝕋(t)(a + c)R + (1 + μ𝕋(t)b)u(x, t) + μ𝕋(t)f(u(x, t), x, t) (by (H4) and (4.3))= −μ𝕋(t)bR + (1 + μ𝕋(t)b)u(x, t) + μ𝕋(t)f(u(x, t), x, t) (by (H4))≤ −μ𝕋(t)bR + (1 + μ𝕋(t)b)u(x, t) + (1 + μ𝕋(t)b)(R − u(x, t)) (by (4.3) and (4.5))= R
for each x ∈ ℤ. The former inequality in (4.4) can be shown in a similar way.

We do not have to consider the case when t is right-dense since𝕋 does not contain any such point. Therefore,
the induction principle yields that (4.2) holds for all x ∈ ℤ, t ∈ [t0, T]𝕋.
We now proceed to the general weak maximum principle for (2.1), where 𝕋 is an arbitrary time scale (i.e.,
allowing right-dense points). The basic idea of the proof is to use the continuous dependence results from
Theorems 3.2 and 3.4 to approximate the solution of (2.1) on any time scale by solutions of (2.1) defined on
discrete time scales, for which we can apply Lemma 4.3.

Theorem 4.4 (Weak maximum principle). Assume that (H1)–(H6) hold. If u : ℤ × [t0, T]𝕋 → ℝ is a bounded
solution of (2.1), then

r ≤ u(x, t) ≤ R for all x ∈ ℤ, t ∈ [t0, T]𝕋. (4.6)

Proof. From Theorems 2.1 and 2.3 we obtain that u has to be unique and U(t) = {u(x, t)}x∈ℤ is the unique
solution of the abstract initial-value problem

U∆(t) = Φ(U(t), t), U(t0) = u0,
where Φ : ℓ∞(ℤ) × [t0, T]𝕋 → ℓ∞(ℤ) is given by

Φ({ux}x∈ℤ, t) = {aux+1 + bux + cux−1 + f(ux , x, t)}x∈ℤ.
According to Theorem 3.4, there exists a sequence {𝕋n}∞n=1 of discrete time scales such that 𝕋n ⊆ 𝕋,

min𝕋n = t0, max𝕋n = T, and g𝕋n  g𝕋. Moreover, we have either μ𝕋 = 0 and μ𝕋n → 0, or μ𝕋n = μ𝕋 for all
n ∈ ℕ. In any case, using (H5), we get the existence of an n0 ∈ ℕ such that

μ𝕋n ≤ −1b for all n > n0.
If μ𝕋 = 0, it follows from Lemma 4.2 that n0 can be chosen in such a way that the inequalities

1 + μ𝕋n (t)b
μ𝕋n (t) (r − u) ≤ f(u, x, t) ≤ 1 + μ𝕋n (t)bμ𝕋n (t) (R − u) for all u ∈ [r, R], x ∈ ℤ, t ∈ [t0, T]𝕋n ,

hold for each n > n0. If μ𝕋 > 0, the same inequalities hold for each n ∈ ℕ because of (H6) and the fact that
μ𝕋n = μ𝕋.

Therefore, because 𝕋n are discrete time scales, Lemma 4.3 yields that the corresponding solutions
un : ℤ × [t0, T]𝕋n → ℝ of (2.1) satisfy

r ≤ un(x, t) ≤ R for all x ∈ ℤ, t ∈ [t0, T]𝕋n , n > n0,
i.e., for Un(t) = {un(x, t)}x∈ℤ we have

r ≤ inf
x∈ℤUn(t)x ≤ supx∈ℤ Un(t)x ≤ R for all t ∈ [t0, T]𝕋n , n > n0. (4.7)

Since the solution U is bounded, there is an S > 0 such that ‖U(t)‖∞ ≤ S for each t ∈ [t0, T]𝕋. Let
B = {V ∈ ℓ∞(ℤ) : ‖V‖∞ ≤ max(|r|, |R|, S)}.
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As in the proof of Theorem 2.1, one can show that the restriction of the mappingΦ toB × [t0, T]𝕋 is continu-
ous on its domain and Lipschitz-continuous in the first variable. Therefore, if we let𝕋0 = 𝕋, the assumptions
of Theorem 3.2 are satisfied (recall that Un(t) ∈ B for all t ∈ 𝕋n and n > n0 from (4.7), and U(t) ∈ B for all
t ∈ 𝕋 immediately from the definition ofB), and hence U∗n  U∗ on [t0, T].

From the definition of the piecewise constant extension U∗n and from (4.7) it is obvious that

r ≤ inf
x∈ℤU∗n (t)x ≤ supx∈ℤ U∗n (t)x ≤ R for all t ∈ [t0, T], n > n0. (4.8)

Since U∗n  U∗ on [t0, T], inequalities (4.8) imply

r ≤ inf
x∈ℤU∗(t)x ≤ supx∈ℤ U∗(t)x ≤ R for all t ∈ [t0, T].

Particularly, there has to be

r ≤ inf
x∈ℤU(t)x ≤ supx∈ℤ U(t)x ≤ R for all t ∈ [t0, T]𝕋,

which proves that (4.6) holds.

Remark 4.5. In connection with the previous theorem, we point out the following facts:∙ The classical maximum principle guarantees that m ≤ u(x, t) ≤ M, i.e., it corresponds to the case when
r = m and R = M. However, for this choice of r and R, condition (H6) need not be satisfied. Choosing
r < m and R > M, we can soften (H6), and obtain the weaker estimate r ≤ u(x, t) ≤ R.∙ An examination of the proofs of Lemma 4.3 and Theorem 4.4 reveals that if we are interested only in
the upper bound u(x, t) ≤ R, it is sufficient to assume that a + b + c ≤ 0. Symmetrically, to get the lower
bound u(x, t) ≥ r, it is enough to suppose that a + b + c ≥ 0.

As an application of the weak maximum principle, we obtain the following global existence theorem. Since
we consider a general class of nonlinearities f , the result is new even in the special case 𝕋 = ℝ.
Theorem 4.6 (Global existence). If u0 ∈ ℓ∞(ℤ) and (H1)–(H6) hold, then (2.1) has a unique bounded solution
u : ℤ × [t0, T]𝕋 → ℝ.

Moreover, the solution depends continuously on u0 in the following sense: For every ε > 0 there exists
a δ > 0 such that if v0 ∈ ℓ∞(ℤ), r ≤ v0x ≤ R for all x ∈ ℤ, and ‖u0 − v0‖∞ < δ, then the unique bounded solu-
tion v : ℤ × [t0, T]𝕋 → ℝ of (2.1) corresponding to the initial condition v0 satisfies |u(x, t) − v(x, t)| < ε for all
x ∈ ℤ, t ∈ [t0, T]𝕋.
Proof. We know from Theorems 2.1 and 2.3 that bounded solutions to (2.1) are unique, and that they corre-
spond to solutions of the initial-value problem

U∆(t) = Φ(U(t), t), t ∈ [t0, T]κ𝕋, U(t0) = u0, (4.9)

with Φ : ℓ∞(ℤ) × [t0, T]𝕋 → ℓ∞(ℤ) being given by
Φ({ux}x∈ℤ, t) = {aux+1 + bux + cux−1 + f(ux , x, t)}x∈ℤ.

Thus, it is enough to prove that (4.9) has a solution on the whole interval [t0, T]𝕋.
Let S be the set of all s ∈ [t0, T]𝕋 such that (4.9) has a solution on [t0, s]𝕋, and denote t1 = sup S. By The-

orem 2.1, we have t1 > t0. Let us prove that t1 ∈ S. The statement is obvious if t1 is a left-scattered maximum
of S; therefore, we can assume that t1 is left-dense. It follows from the definition of t1 that (4.9) has a solution
U defined on [t0, t1)𝕋. According to theweakmaximumprinciple, the solution U takes values in the bounded
set B = {u ∈ ℓ∞(ℤ) : r ≤ ux ≤ R for each x ∈ ℤ}. As in the proof of Theorem 2.1, one can show that Φ is con-
tinuous on its domain and Lipschitz-continuous in the first variable and bounded on B × [t0, T]𝕋; let C be
the boundedness constant for ‖Φ‖∞. Since U is a solution of (4.9), we have

U(t) = U(t0) + t∫
t0

Φ(U(s), s)∆s (4.10)
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for each t ∈ [t0, t1)𝕋. Note also that ‖U(s1) − U(s2)‖∞ ≤ C|s1 − s2| for all s1, s2 ∈ [t0, t1)𝕋. Thus, the Cauchy
condition for the existence of the limit U(t1−) = lims→t1− U(s) is satisfied. If we extend U to [t0, t1]𝕋 by let-
ting U(t1) = U(t1−), we see that (4.10) holds also for t = t1. Since the mapping s → Φ(U(s), s) is continuous
on [t0, t1]𝕋, it follows that U is a solution of (4.9) on [t0, t1]𝕋, i.e., t1 ∈ S.

If t1 < T, we can use Theorem 2.1 to extend the solution U from [t0, t1]𝕋 to a larger interval. However,
this contradicts the fact that t1 = sup S. Hence, the only possibility is t1 = T, and the proof of the existence is
complete.

To obtain continuous dependence of the solution on the initial condition, it is enough to show the fol-
lowing statement: If un ∈ B for n ∈ ℕ, un → u0 in ℓ∞(ℤ) and Un : [t0, T]𝕋 → ℓ∞(ℤ) is the unique solution of
the initial-value problem

U∆
n (t) = Φ(Un(t), t), t ∈ [t0, T]κ𝕋, Un(t0) = un ,

then Un  U on [t0, T]𝕋. Since we know that the solutions Un in fact take values in B, the statement is an
immediate consequence of Theorem 3.2 where we take 𝕋n = 𝕋 for each n ∈ ℕ0.
Let us illustrate the application of the weak maximum principle and the global existence theorem on the
following special cases of (2.1).

Example 4.7. Consider the logistic nonlinearity f(u, x, t) = λu(1 − u), u ∈ ℝ, x ∈ ℤ, t ∈ [t0, T]𝕋, where λ > 0
is a parameter. In this case, problem (2.1) becomes a Fisher-type reaction-diffusion equation:

u∆(x, t) = au(x + 1, t) + bu(x, t) + cu(x − 1, t) + λu(x, t)(1 − u(x, t)), x ∈ ℤ, t ∈ [t0, T]κ𝕋,
u(x, t0) = u0x , x ∈ ℤ. (4.11)

Obviously, the function f satisfies (H1)–(H3). Suppose that a, c ≥ 0, b < 0, a + b + c = 0, and μ𝕋 ≤ −1/b,
i.e., (H4) and (H5) hold. Consider an arbitrary nonnegative initial condition u0 ∈ ℓ∞(ℤ), i.e., m ≥ 0. We now
distinguish between the cases μ𝕋 = 0 and μ𝕋 > 0:∙ If μ𝕋 = 0, let r = min(m, 1) and R = max(M, 1). Then f(R, x, t) ≤ 0 and f(r, x, t) ≥ 0, i.e., (H6) holds and

there exists a unique global solution u of (4.11). Moreover, the solution u satisfies r ≤ u(x, t) ≤ R for all
x ∈ ℤ and t ∈ [t0, T]𝕋. In particular, nonnegative initial conditions always lead to nonnegative solutions.∙ If μ𝕋 > 0, Lemma 4.2 together with the analysis of the previous case guarantee that (H6) holds with
r = min(m, 1) and R = max(M, 1) whenever μ𝕋 is sufficiently small. For example, if M ≤ 1, consider the
linear functions

ψ1(u) = 1 + μ𝕋bμ𝕋 (r − u) and ψ2(u) = 1 + μ𝕋bμ𝕋 (R − u)
from (H6). We have ψ1(u) ≤ 0 ≤ f(u, x, t) for u ∈ [r, R], i.e., the first inequality in (H6) is satisfied. The
graphs of ψ2 and f( ⋅ , x, t) meet at the point (1, 0). Therefore, the second inequality f(u, x, t) ≤ ψ2(u)
in (H6) will be satisfied for u ∈ [r, R] if and only if ∂f∂u (1, x, t) ≥ ψ2(1), i.e., if and only if −λ ≥ −(1/μ𝕋 + b).
The last condition is equivalent to λ − b ≤ 1/μ𝕋, which holds if μ𝕋 ≤ 1/(λ − b) (note that b < 0 < λ).
Under these assumptions, condition (H6) holds and there exists a unique bounded global solution u
of (4.11). Moreover, the solution u satisfies m = r ≤ u(x, t) ≤ R = 1 for all x ∈ ℤ and t ∈ [t0, T]𝕋.

Example 4.8. Consider the so-called bistable nonlinearity f(u, x, t) = λu(1 − u2), u ∈ ℝ, x ∈ ℤ, t ∈ [t0, T]𝕋,
where λ > 0. In this case, problem (2.1) becomes a Nagumo-type reaction-diffusion equation:

u∆(x, t) = au(x + 1, t) + bu(x, t) + cu(x − 1, t) + λu(x, t)(1 − u(x, t)2), x ∈ ℤ, t ∈ [t0, T]κ𝕋,
u(x, t0) = u0x , x ∈ ℤ. (4.12)

Obviously, the function f satisfies (H1)–(H3). Suppose that a, c ≥ 0, b < 0, a + b + c = 0, and μ𝕋 ≤ −1/b,
i.e., (H4) and (H5) hold. Consider an arbitrary initial condition u0 ∈ ℓ∞(ℤ). Again, we distinguish between
the cases μ𝕋 = 0 and μ𝕋 > 0:∙ If μ𝕋 = 0, let

r = {{{min(m, −1) if m < 0,
min(m, 1) if m ≥ 0, R = {{{max(M, −1) if M ≤ 0,

max(M, 1) if M > 0.
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Then f(R, x, t) ≤ 0 and f(r, x, t) ≥ 0, i.e., (H6) holds and there exists a unique bounded global solution u
of (4.12). Moreover, the solution u satisfies r ≤ u(x, t) ≤ R for all x ∈ ℤ and t ∈ [t0, T]𝕋. In particular,
nonnegative/nonpositive initial conditions always lead to nonnegative/nonpositive solutions.∙ If μ𝕋 > 0, Lemma 4.2 together with the analysis of the previous case guarantee that (H6) holds whenever
μ𝕋 is sufficiently small. For example, if ‖u0‖∞ ≤ 1, one can follow the computations from [31, Section 8]
to conclude that there exists a unique global solution u of (4.12) satisfying

u(x, t) ∈ {{{[−1, 1] if μ𝕋 ≤ 1/(2λ − b),[−R̃, R̃] if 1/(2λ − b) < μ𝕋 ≤ 2/(λ − 2b),
where

R̃ = 2λμ𝕋(1/3 + (1 + 2bμ𝕋)/3λμ𝕋)3/21 + bμ𝕋 .

We have no a priori bounds for μ𝕋 > 2/(λ − 2b).
Example 4.9. Consider the nonautonomous nonlinearity f(u, x, t)= λu(d(x, t) − u), u ∈ℝ, x ∈ℤ, t ∈ [t0, T]𝕋,
where λ > 0 and d : ℤ × [t0, T]𝕋 → ℝ. In this case, problem (2.1) has the form

u∆(x, t) = au(x + 1, t) + bu(x, t) + cu(x − 1, t) + λu(x, t)(d(x, t) − u(x, t)), x ∈ ℤ, t ∈ [t0, T]κ𝕋,
u(x, t0) = u0x , x ∈ ℤ. (4.13)

This equation can be interpreted as the logistic population model where the carrying capacity d depends on
position and time. Assume that d has the following properties:∙ d is bounded.∙ For each choice of ε > 0 and t ∈ [t0, T]𝕋 there exists a δ > 0 such that if s ∈ (t − δ, t + δ) ∩ [t0, T]𝕋, then|d(x, t) − d(x, s)| < ε for all x ∈ ℤ.
Then the function f satisfies (H1)–(H3). Indeed, let D be the boundedness constant for |d|. If B ⊂ ℝ is
bounded, it is contained in a ball of radius ρ centered at the origin. Consequently, for all u, v ∈ B, x ∈ ℤ,
t, s ∈ [t0, T]𝕋, we get the estimates|f(u, x, t)| ≤ λ|u|(|d(x, t)| + |u|) ≤ λρ(D + ρ),|f(u, x, t) − f(v, x, t)| = λ|(u − v)(d(x, t) − u − v)| ≤ λ|u − v|(D + 2ρ),|f(u, x, t) − f(u, x, s)| = λ|u(d(x, t) − d(x, s))| ≤ λρ|d(x, t) − d(x, s)|,
which imply that (H1)–(H3) hold.

As an example, let us mention the model of population dynamics with a shifting habitat, which was
described by Hu and Li in [17]. There, the authors considered problem (4.13) with 𝕋 = ℝ, a = c, b = −2a
(i.e., symmetric diffusion), and d(x, t) = e(x − γt), where γ > 0 and e : ℝ→ ℝ is continuous, nondecreasing,
and bounded. It follows that e is uniformly continuous on ℝ: Given an ε > 0, there exists a δ > 0 such that|t1 − t2| < δ implies |e(t1) − e(t2)| < ε. Thus, we get|d(x, t) − d(x, s)| = |e(x − γt) − e(x − γs)| < ε
whenever |t − s| < δ/γ and x ∈ ℤ; this shows that d satisfies our assumptions. (We remark that some of the
results presented in [17] can be found in our earlier paper [28]. In particular, the fundamental solution of the
linear lattice diffusion equation was derived in [28, Example 3.1], and [17, Corollary 2.1] is a consequence
of our superposition principle from [28, Theorem 2.2].)

Another simple example is obtained by letting d(x, t) = e(t), where e : ℝ→ ℝ is a continuous periodic
function; this choice corresponds to a population model with a periodically changing habitat. Since e is
necessarily bounded and uniformly continuous onℝ, it is obvious that d satisfies our assumptions.

Suppose now that a, c ≥ 0, b < 0, a + b + c = 0, and μ𝕋 ≤ −1/b, i.e., (H4) and (H5) hold. For simplicity,
let us restrict ourselves to the case when d is a positive function, and let

dmin = inf(x,t)∈ℤ×[t0 ,T]𝕋 d(x, t), dmax = sup(x,t)∈ℤ×[t0 ,T]𝕋 d(x, t).
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Consider an arbitrary nonnegative initial condition u0 ∈ ℓ∞(ℤ), i.e., m ≥ 0. Take r = min(m, dmin) and
R = max(M, dmax). Then f(r, x, t) ≥ 0 and f(R, x, t) ≤ 0 for all x ∈ ℤ and t ∈ [t0, T]𝕋. This means that (H6)
holds if μ𝕋 = 0, or (by Lemma 4.2) if μ𝕋 is positive and sufficiently small. In these cases, problem (4.13)
possesses a unique global solution u, and r ≤ u(x, t) ≤ R for all x ∈ ℤ and t ∈ [t0, T]𝕋.
5 Strong maximum principle
In the rest of the paper, we focus on the strong maximum principle for (2.1). We need the following stronger
versions of (H4)–(H6):
(H4) a, b, c ∈ ℝ are such that a, c > 0, b < 0 and a + b + c = 0.
(H5) b < 0 and μ𝕋 < −1/b.
(H6) There exist r, R ∈ ℝ such that r ≤ m ≤ M ≤ R, and the following statements hold for all x ∈ ℤ and

t ∈ [t0, T]𝕋:∙ f(R, x, t) ≤ 0 ≤ f(r, x, t).∙ If μ𝕋 > 0, then
f(u, x, t) > 1 + μ𝕋b

μ𝕋 (r − u) for all u ∈ (r, R].∙ If μ𝕋 > 0, then
f(u, x, t) < 1 + μ𝕋b

μ𝕋 (R − u) for all u ∈ [r, R).
The next lemma analyzes the situation when a solution of (2.1) attains its maximum at a left-scattered

point.

Lemma 5.1. Assume that (H1), (H2), (H3), (H4), (H5), and (H6) hold, and u : ℤ × [t0, T]𝕋 → ℝ is a bounded
solution of (2.1). If u(x̄, ̄t) ∈ {r, R} for some x̄ ∈ℤ and a left-scattered point ̄t ∈ (t0, T]𝕋, then u(x, ρ𝕋( ̄t))= u(x̄, ̄t)
for each x ∈ {x̄ − 1, x̄, x̄ + 1}.
Proof. We consider the case when u(x̄, ̄t) = R; the case u(x̄, ̄t) = r can be treated in a similar way. Denotēs = ρ𝕋( ̄t). We have

u(x̄, ̄t) = μ𝕋( ̄s)au(x̄ + 1, ̄s) + (1 + μ𝕋( ̄s)b)u(x̄, ̄s) + μ𝕋( ̄s)cu(x̄ − 1, ̄s) + μ𝕋( ̄s)f(u(x̄, ̄s), x̄, ̄s).
By the weak maximum principle (which holds because (H4)–(H6) imply (H4)–(H6)), the values of u cannot
exceed R. If at least one of the values u(x̄ + 1, ̄s), u(x̄ − 1, ̄s) is smaller than R and u(x̄, ̄s) = R, then

u(x̄, ̄t) (H4)< μ𝕋( ̄s)(a + c)R + (1 + μ𝕋( ̄s)b)R + μ𝕋( ̄s)f(R, x̄, ̄s) (H4)= R + μ𝕋( ̄s)f(R, x̄, ̄s) (H6)≤ R,

which contradicts the fact that u(x̄, ̄t) = R. If u(x̄, ̄s) < R, then
u(x̄, ̄t) ≤ μ𝕋( ̄s)(a + c)R + (1 + μ𝕋( ̄s)b)u(x̄, ̄s) + μ𝕋( ̄s)f(u(x̄, ̄s), x̄, ̄s)< μ𝕋( ̄s)(a + c)R + (1 + μ𝕋( ̄s)b)u(x̄, ̄s) + μ𝕋( ̄s)1 + μ𝕋bμ𝕋 (R − u(x̄, ̄s)) (by (H4) and (H6))≤ μ𝕋( ̄s)(a + c)R + (1 + μ𝕋( ̄s)b)u(x̄, ̄s) + (1 + μ𝕋( ̄s)b)(R − u(x̄, ̄s))= R (by (H4)),

which is a contradiction again. Thus, the only possibility is that

u(x̄ + 1, ̄s) = u(x̄, ̄s) = u(x̄ − 1, ̄s) = R,
as desired.

We now turn our attention to the case when the maximum is attained at a left-dense point.
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Lemma 5.2. Assume that (H1), (H2), (H3), (H4), (H5), and (H6) hold, and u : ℤ × [t0, T]𝕋 → ℝ is a bounded
solution of (2.1). If u(x̄, ̄t) ∈ {r, R} for some x̄ ∈ ℤ and a left-dense point ̄t ∈ (t0, T]𝕋, then u(x, t) = u(x̄, ̄t) for
all x ∈ ℤ and t ∈ [t0, ̄t]𝕋.
Proof. We consider the case when u(x̄, ̄t) = R; the case u(x̄, ̄t) = r can be treated in a similar way. We begin
by proving that

u(x̄, t) = R for all t ∈ [t0, ̄t]𝕋. (5.1)

Assume that there exists a ̄s ∈ [t0, ̄t)𝕋 such that u(x̄, ̄s) < R. Let L ≥ 0 be the Lipschitz constant for f on the
set [r, R] ×ℤ × [t0, T]𝕋. Choose a partition ̄s = s0 < s1 < ⋅ ⋅ ⋅ < sk = ̄t such that s0, . . . , sk ∈ 𝕋 and for each
i ∈ {1, . . . , k} we have either si − si−1 < 1/(L − b) or si = σ𝕋(si−1). We will use induction with respect to i to
show that u(x̄, si) < R for each i ∈ {0, . . . , k}; this will be a contradiction to the fact that u(x̄, sk) = u(x̄, ̄t) = R.

For i = 0, we know that u(x̄, s0) = u(x̄, ̄s) < R. By the weak maximum principle (which holds because
(H4)–(H6) imply (H4)–(H6)), the values of u cannot exceed R. If i ∈ {0, . . . , k − 1} is such that si+1 = σ𝕋(si),
then the induction hypothesis u(x̄, si) < R and Lemma 5.1 imply that u(x̄, si+1) < R. Otherwise, we have
si+1 − si < 1/(L − b). For each t ∈ [si , si+1)𝕋 we get(u(x̄, t) − R)∆ = au(x̄ + 1, t) + bu(x̄, t) + cu(x̄ − 1, t) + f(u(x̄, t), x̄, t)≤ (a + c)R + bu(x̄, t) + f(u(x̄, t), x̄, t) − f(R, x̄, t) + f(R, x̄, t) (by (H4) and Theorem 4.4)≤ −b(R − u(x̄, t)) + f(u(x̄, t), x̄, t) − f(R, x̄, t) (by (H4) and (H6))≤ −b(R − u(x̄, t)) + |f(u(x̄, t), x̄, t) − f(R, x̄, t)|≤ −b(R − u(x̄, t)) + L|u(x̄, t) − R|= (b − L)(u(x̄, t) − R) (by Theorem 4.4).

Notice that 1 + μ𝕋(t)(b − L) > 0 for all t ∈ [si , si+1)𝕋. Therefore, Grönwall’s inequality [4, Theorem 6.1] yields

u(x̄, si+1) − R ≤ (u(x̄, si) − R)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟<0 eb−L(si+1, si)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟>0 < 0,
which completes the proof by induction and confirms that (5.1) holds.

Let us prove that u(x̄ ± 1, t) = R for all t ∈ [t0, ̄t]𝕋. Assume that there exists a t ∈ [t0, ̄t]𝕋 such that at least
one of the values u(x̄ ± 1, t) is smaller than R. The fact that u(x̄, ⋅ ) is a constant function on [t0, ̄t]𝕋 implies
that u∆(x̄, t) = 0 (note that if t = ̄t, then t is necessarily left-dense). On the other hand,

u∆(x̄, t) = au(x̄ + 1, t) + bu(x̄, t) + cu(x̄ − 1, t) + f(u(x̄, t), x̄, t) < (a + b + c)R + f(R, x̄, t) ≤ 0,
i.e., u∆(x̄, t) < 0, a contradiction.

Once we know that u(x̄ ± 1, t) = R for all t ∈ [t0, ̄t]𝕋, it follows by induction with respect to x ∈ ℤ that
u(x, t) = R for all x ∈ ℤ and t ∈ [t0, ̄t]𝕋.
With the help of the previous two lemmas, we derive the strong maximum principle.

Theorem 5.3 (Strong maximum principle). Assume that (H1), (H2), (H3), (H4), (H5), and (H6) hold with
r = m ≤ M = R and u : ℤ × [t0, T]𝕋 → ℝ is a bounded solution of (2.1). If u(x̄, ̄t) ∈ {r, R} for some x̄ ∈ ℤ and̄t ∈ (t0, T]𝕋, then the following statements hold:
(a) If [t0, ̄t]𝕋 contains only isolated points, i.e., t0 = ρk𝕋( ̄t) for some k ∈ ℕ, and

D(x̄, ̄t) = {(x, t) ∈ ℤ × [t0, ̄t]𝕋 : t = ρj𝕋( ̄t), j = 0, . . . , k, and x = x̄ ± i, i = 0, . . . , j},
then u(x, t) = u(x̄, ̄t) for all (x, t) ∈ D(x̄, ̄t).

(b) Otherwise, if [t0, ̄t]𝕋 contains a point which is not isolated, then u is constant onℤ × [t0, T]𝕋.
Remark 5.4. In order to prevent any confusion, we emphasize that the fact whether a point is isolated or not
is considered with respect to the time scale interval [t0, ̄t]𝕋, not the entire time scale 𝕋. In other words, the
statement distinguishes between the cases in which the interval [t0, ̄t]𝕋 is a finite set (part (a)) or at least
countable (part (b)).
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Proof of Theorem 5.3. We consider the case when u(x̄, ̄t) = R; the case u(x̄, ̄t) = r can be treated in a similar
way. We prove the statement by analyzing two different cases:

Case (1): Let there be a left-dense point in [t0, ̄t]𝕋. Denote
Pld = {t ∈ [t0, ̄t]𝕋 : t is left-dense} ̸= 0

and tld = supPld. Given the definition of the supremum and the fact that𝕋 is a closed set, we obtain tld ∈ 𝕋.
To show that tld is left-dense let us assume by contradiction that tld is left-scattered. Thus, tld ∉ Pld and
immediately from the definition of the supremum we get a contradiction. From the proofs of Lemmas 5.1
and 5.2 we obtain that u(x̄, t) = R for all t ∈ [t0, ̄t]𝕋, and particularly u(x̄, tld) = R. Furthermore, since tld is
left-dense, Lemma 5.2 yields that

u(x, t) = R for all x ∈ ℤ, t ∈ [t0, tld]𝕋. (5.2)

There remains to prove the statement for t ∈ [tld, T]𝕋. From (5.2) we get that u(x, t0) = u0x = R for all
x ∈ ℤ, and thus r = m = M = R. Consequently, since (H6) holdswith r = m = M = R, Theorem4.4 (weakmax-
imum principle) yields that

R ≤ u(x, t) ≤ R, i.e., u(x, t) = R for all x ∈ ℤ, t ∈ [t0, T]𝕋.
Case (2): Let us assume that [t0, ̄t]𝕋 does not contain any left-dense point.
Subcase (i): If [t0, ̄t)𝕋 does not contain any right-dense point, i.e., [t0, T]𝕋 contains only isolated points, then
part (a) of the theorem follows immediately from Lemma 5.1.

Subcase (ii): Let there exist a right-dense point in [t0, ̄t)𝕋. Denote
Prd = {t ∈ [t0, ̄t)𝕋 : t is right-dense} ̸= 0

and trd = supPrd. From the fact that ̄t is left-scattered and from the definition of the supremum we obtain
trd < ̄t. Moreover, since 𝕋 is closed, there is trd ∈ 𝕋. Further, we show that trd is right-dense as well. Indeed,
let us assume that trd is right-scattered, i.e., trd ∉ Prd. Then trd is an unattained supremum of Prd and there
exists a sequence {tn}∞n=1 ⊂ Prd such that tn ↗ trd. This would imply that trd is left-dense, a contradiction.
Thus, trd is right-dense.

From the definition of trd, the sequence of predecessors of ̄t, namely{ρj𝕋( ̄t)}∞j=1 ⊆ (trd, ̄t]𝕋,
is well-defined and satisfies ρj𝕋( ̄t) ↘ trd. Let us assume that x ∈ ℤ is arbitrary but fixed, i.e., x = x̄ + i0 or
x = x̄ − i0 for some i0 ∈ ℕ0. We consider the case x = x̄ + i0; the other case is similar. Lemma 5.1 implies
that for all j ≥ i0 there is

u(x, ρj𝕋( ̄t)) = u(x̄ + i0, ρj𝕋( ̄t)) = R.
Then the continuity of the function u(x, ⋅ ) yields that

R = lim
j→∞ u(x, ρj𝕋( ̄t)) = u(x, trd),

and since x ∈ ℤ is arbitrary, there is u(x, trd) = R for all x ∈ ℤ.
Nowwe prove that u(x, t) = R for x ∈ ℤ and t ∈ [t0, trd]𝕋. We use the backward induction principle in the

variable t (see [4, Theorem 1.7 and Remark 1.8]):∙ Above we have shown that for t = trd there is u(x, trd) = R for all x ∈ ℤ.∙ Let t ∈ (t0, trd]𝕋 be left-scattered and u(x, t) = R for all x ∈ ℤ. Then Lemma 5.1 immediately implies that
u(x, ρ𝕋(t)) = R for all x ∈ ℤ.∙ Let t ∈ [t0, trd)𝕋 be right-dense and u(x, s) = R for all x ∈ ℤ and s ∈ (t, trd]𝕋. Then again from the conti-
nuity of the functions u(x, ⋅ ) we obtain

R = lim
s→t+ u(x, s) = u(x, t) for all x ∈ ℤ.
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∙ We do not have to consider the case when t ∈ (t0, trd]𝕋 is left-dense, since we assume that [t0, trd]𝕋 does
not contain any such point.

The backward induction principle implies that u(x, t) = R for all x ∈ ℤ and t ∈ [t0, trd]𝕋.
Finally, it remains to prove that u(x, t) = R for x ∈ ℤ and t ∈ [trd, T]𝕋. Since u(x, t0) = u0x = R for all x ∈ ℤ,

there is r = m = M = R and, analogously to above, we can use Theorem 4.4 (weak maximum principle) to
show that

R ≤ u(x, t) ≤ R, i.e., u(x, t) = R for all x ∈ ℤ, t ∈ [t0, T]𝕋.
Corollary 5.5. Assume that (H1), (H2), (H3), (H4), (H5), and (H6) hold with r = m ≤ M = R. Suppose that
u : ℤ × [t0, T]𝕋 → ℝ is a bounded solution of (2.1). If there is a point td ∈ [t0, T)𝕋 that is not isolated and
if the initial condition u0 is not constant, then

r < u(x, t) < R for all x ∈ ℤ, t ∈ (td , T]𝕋.
Proof. Assumeby contradiction that there exist x̄ ∈ ℤ, ̄t ∈ (td , T]𝕋 such that u(x̄, ̄t) ∈ {r, R}. Since td ∈ [t0, ̄t)𝕋
and td is not isolated, part (b) of Theorem 5.3 yields that u is constant onℤ × [t0, T]𝕋, a contradiction to the
assumption that u0 is not constant.

The following remarks explainwhy the original conditions (H4)–(H6) are not sufficient to establish the strong
maximum principle, and had to be replaced by their stronger counterparts (H4)–(H6).

Remark 5.6. (H4) is too weak for the strongmaximumprinciple; we need the constants a, c ∈ ℝ to be strictly
positive. Indeed, let us consider the linear transport equation

∂u
∂t
(x, t) = −u(x, t) + u(x − 1, t), x ∈ ℤ, t ∈ [0, T],

u(x, 0) = {{{1, x ≥ 0,
0, x < 0,

i.e., the initial-value problem (2.1) with a = 0, b = −1, c = 1, and f ≡ 0. Then the unique bounded solution is
given by (see [30, Corollary 4.3])

u(x, t) = {{{{{{{
x∑
j=0 tjj! e−t , x ≥ 0, t ∈ [0, T],
0, x < 0, t ∈ [0, T].

Thus, the strong maximum principle does not hold.

Remark 5.7. To see that (H5) does not suffice, consider the time scale𝕋 = ℕ0 and the following linear equa-
tion (f ≡ 0):

u∆(x, t) = 12u(x + 1, t) − u(x, t) + 12u(x − 1, t), x ∈ ℤ, t ∈ ℕ0,
which corresponds to (2.1) with a = c = 1

2 , b = −1 and f ≡ 0. This equation holds if and only if
u(x, t + 1) = 12u(x + 1, t) + 12u(x − 1, t), x ∈ ℤ, t ∈ ℕ0.

For the initial condition

u(x, 0) = {{{1, x is even,
0, x is odd,

we obtain

u(x, 1) = {{{0, x is even,
1, x is odd,

which violates the strong maximum principle.

Brought to you by | Zapadoceska univerzita v Plzni - University of West Bohemia
Authenticated

Download Date | 3/5/19 7:02 AM



A. Slavík, P. Stehlík and J. Volek, Lattice reaction-diffusion equations | 321

Remark 5.8. Finally, let a, b, c be an arbitrary triple satisfying (H4), and 𝕋 = μℕ0 = {0, μ, 2μ, . . .}, where
μ > 0 satisfies (H5). Consider problem (2.1) with

u0x = {{{1, x ̸= 0,
0, x = 0, and f(u, x, t) = (b + 1μ )(1 − u).

We have m = 0 and M = 1. For r = 0 and R = 1 the function f satisfies (H6), but not (H6). Using (2.1), we
calculate

u(0, μ) = μau(1, 0) + (1 + μb)u(0, 0) + μcu(−1, 0) + μf(u(0, 0), 0) = μ(a + c) + (1 + μb) (H4)= 1.

Therefore, u(0, μ) = 1 = R, but u(0, 0) = 0, which contradicts the strong maximum principle.

Funding: All three authors acknowledge the support by the Czech Science Foundation, grant number
GA15-07690S.
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