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Abstract – Muller C elements are key digital blocks 

especially used in asynchronous circuits and digital 

systems and correction of transient (glitch) errors. 

This paper presents an overview of implementation 

of Muller C elements in FPGAs. A new scheme is 

proposed in this paper and the impact of LUT input 

signal selection is discussed. Finally, unique 

measurements and experiments performed in Xilinx 

FPGAs and improved parameters are presented as well. 
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I. INTRODUCTION AND MOTIVATION 

     The Muller C-element, also called C-gate or 

coincident flip-flop, is a digital circuit or logic block 

widely used especially in asynchronous systems. 

It has been specified formally in 1955 by American 

mathematician and computer scientist 

David E. Muller [1]. Implementation of this element 

in ASIC (Application Specific Integrated Circuits) is 

widely discussed in many publications, for example 

[2,3], and many high-performance and reliable 

circuits and designs exist. Even when containing or 

implementing multidomain technologies, most of 

today’s FPGA (Field Programmable Gate Arrays) 

architectures are not designed and ready for 

implementation of asynchronous systems. This paper 

deals especially with the implementation of Muller C-

element in Field Programmable Gate Arrays (FPGA). 

We are especially focused to SRAM-based types 

and solutions using look-up table (LUT) [4]. 

     This paper is organized as follows: Motivation, 

details about Xilinx FPGA circuits related to our 

solution, our new proposed solution, performed 

experiments, measurements and results.  

     We have presented a small part of our novel 

architecture for dependable systems already in [5].  

One of the partial solution also gains from 

asynchronous systems and solutions based on GALS 

(Globally Asynchronous Locally Synchronous) 

approach. For this our dependable system, a general 

element with optional features and a better testability 

was required as well. It is obvious that the LUTs used 

in FPGAs do not include Muller C-element keeper 

functions, nor any similar equivalent circuit. There is 

some similar circuit available at device IOs, but not 

internally. If a design requires the Muller C-element 

capability, then one cannot (or should not) use 

FPGAs. However, all the designed systems must be 

tested and new architectures validated somehow. 

Hence, we are back to FPGA devices, since only 

FPGAs are still the best and cheapest solutions 

available for prototyping and first development, 

before all the final design is moved to the final ASIC 

solutions, utilizing dedicated technologies and 

especially designed circuits in large libraries. Doing 

our best, we did not find any paper dealing in detail 

with the issue of the best selection and circuits 

of LUT-based Muller C-elements in modern FPGAs. 

II. MULLER C-ELEMENTS IN GENERAL 

     A great overview over many issues in design and 

application of Muller C-elements can be found in [6]. 

Table 1, based on [7], shows the state truth table for 

a generalized Muller C element: 

Table 1: Muller C-element state table 

Inputs A, B, C, … N Output Q 

0 0 0 0 0 … 0 0 

1 1 1 1 1 … 1 1 

Other combinations previous Q 
 

    The following figure 1 shows a general 

implementation of a Muller C-element using a 2-input 

multiplexer and std. IEC 60617-12 for gate symbols. 

The upper AND-gate has a logic one at its output only 

and only when all inputs i1 to in  are set to one. In this 

case, the following multiplexer selects its input 1, 

which is routed from the OR gate, and hence having 

one at its output until at least one of all inputs i1 to in  

is set to one. In other words, OUTPUT tends toward 

the value of all the inputs whenever they agree.  

 

Figure 1. An implementation of Muller C-element using a MUX. 

     Obviously, all the three parts can also be 
implemented into one single component in an FPGA. 
This component can be a single LUT (look-up table). 
However, FPGAs are not best suited for 
implementation of asynchronous systems. Hence also 
the hazard behaviour of the elements in FPGAs should 
be discussed. Regarding this and other issues 
discussed further, [8] has focused especially on 
implementations using FPGAs and issues linked to 
multiplexers and signal paths. Since also metastability 
is a critical part in all asynchronous or GALS systems 
and those issues must be addressed and solved by 
following many complicated and key design rules, 
work presented in [9] can give a significant help. 
Other work [10] and especially [11] shows a hazard–
free implementation of a Muller C-Element. Now we 
will focus ourselves to Xilinx FPGAs. 



 

 

     Figure 2 shows a SLICE 

with purely logic LUTs, called 

SLICEL. The Xilinx FPGA 

architecture contains also 

SLICEM structures with 

RLUTs, used for 

implementation of distributed 

memories. Typically, two 

SLICEL or one SLICEL and 

one SLICEM form one CLB 

(Configuration logic block). 

One can find more information 

in [12]. Differences between 

SLICEM and SLICEL are not 

important for this case, hence 

we can stay with this simpler 

SLICEL structure. 

III. IMPLEMENTATION IN FPGA 

USING LUTS AND ONE MUX 

     There are more ways of 

implementation of Muller 

C-elements in FPGAs. Some 

special structures can be found 

in several special IO blocks in 

selected FPGA families. Even 

though new structures were 

added to the Ultrascale 

architecture, the very basic 

LUT style still remains in all 

FPGAs. 

     The first implementation is 

the case, when two LUTs are 

used for implementation of both 

the logic gates AND (in for 

example LUT D) and OR only (for example in LUT 

C), followed by one of multiplexers labelled MUX. 

In the FPGA SLICE architecture, there are three 

controllable multiplexers in total. Other multiplexer 

can only be controlled by the configuration stream, 

but not by one of the MUX control auxiliary signals 

labelled CX, AX or BX. Using multiplexers requires 

much more LUTs and interconnects resources, 

because the signals need to be routed twice. There 

will also be significant timing penalties, since not 

only one LUT, but also an additional MUX is present 

in the signal path. This solution has a clear timing 

disadvantage, but can be used for intentionally slower 

circuits or for multi-input solutions, where more than 

five inputs are required. 

IV. IMPLEMENTATION IN FPGA USING A SINGLE LUT 

ONLY 

     The second solution and implementation 

of a Muller C-element using one single LUT has clear 

advantages in saving on the FPGA resources and 

configuration elements. Figure 3 shows the details 

of LUTs in Xilinx and the inner real circuit 

implementation [13]. Each 6-input LUT internally 

consists of two 5-input patented Xilinx LUTs and one 

multiplexer. Output O5 is routed to the output 

of the first LUT. Output O6 is internally multiplexed 

between LUTA and LUTB, using the last i5 

input. The i5 input also corresponds to A6, B6, C6 or 

D6 SLICE input signal. Now much more similarities 

to the figure 1 can be seen. We will analyse the 

impact to the timing parameters of the Muller 

C-element. 

     Our new proposed implementation of the advanced 

Mueller C-element has the following inputs: 

- Inputs A, B, C - where the output is 0, when all 

three inputs are set to logic. zero, or the output is 

1, when all three inputs are set to logic one; the 

element keeps its previous output state otherwise. 

- Input ENV - logic 1 at this input enables the 

inputs A, B, C. 

- Input INV - logic 1 at this input inverts the input 

values. 

     The last LUT input i5 is routed as a feedback 
to the LUT 
output. We have 
used input A6/i5, 
because this 
internal MUX 
input is a bit 
faster than other 
inputs, since 
routed to the 
internal dual 
5-input LUTs, 
see [13] in detail. 

 
Figure 2. A SLICEL in a Xilinx 28 nm Artix®-7 series FPGA with examples of Muller C-element 

implementation and highlighted data paths – Modified from ISE14.7 FPGA Editor. 

 
Figure 3. The inner circuits and implement. 

of 6-input LUTs in Xilinx FPGAs. 
 



 

 

V. IMPLEMENTATION 

     We have implemented the proposed solution 
in Xilinx 28 nm SoCs and 20 nm FPGAs. We have 
considered the following Xilinx Artix FPGA and SoC 
Zynq [14] XC7Z020-1-CLG484 for our experiments, 
manufactured using TSMC's 28 nm high performance 
low power (28HPL) process, combining FPGA and an 
ARM hardware processor into an SoC technology 
solution, and as used also on the Zedboard 
development kit [15]. It has a core power supply 
of 1.0 V, 85K logic cells, 53200 LUTs, 106400 DFFs 
and 560 KB in Block RAM. Vivado 2016.4 (Build 
1733598) with   optimization technique set to speed 
and performance was used. Source codes were 
generated in VHDL. 

     Figure 4 shows the schematic of the implemented 
Mueller C-element in Zynq FPGA. The LUT content 
is 64’h7FFFFEFF01008000. Figure 5 shows 
the exact implementation in the Artix FPGA and 
Zynq SoC with the feedback route using local 
interconnects and routing junction box.  

 
Figure 4. Schematic of the final implemented MC-element in LUT. 

VI. SELECTION OF LUT INPUTS AND THE EXPERIMENT 

     Up to now there has been no any publication and 
detailed analysis dealing with suitable selection of 
LUT inputs for optimal design of the Muller C 
element. As mentioned above, the feedback is routed 
to input A6/i5. In order to evaluate the circuit 
performance, we have created ring oscillators using 
the proposed elements. There were 29 ring oscillators 
with 32 chained elements implemented in the FPGA, 
each having only one (the very first) stage inverted 
and followed by 31 non-inverted elements, placed one 
after each other from the left down corner of the die, 

from LUT A up. There is a 4 SLICE intentional inter-
ring space between each two consecutive rings with 
no overlapped parts. This design ensures maximal 
circuit isolation and mutual independence of all the 
test circuits. The rings and circuits were created and 
all the files generated by AmBRAMs tool version 2.1, 
see [16] for more information. 

 
Figure 6. Implementation of test rings in Xilinx Artix 

and Zynq 7Z020 FPGA and SoC 

   During the experiment, we ran many ring oscillators 
on the FPGA. Routing two of them to the inputs A or 
B and sampling them serves to analyse a complete set 
of the Muller C-elements using BRAM blocks and 
AmBRAMs tools only. Naturally, the output and 
feedback signal of the Muller C-element is sampled as 
well. Thanks to this solution and multiple copies with 
selection of inputs without a need of re-routing, the 
behaviour of this implementation of Muller C-element 
can statistically be analysed. The inputs of LUT were 
changed, BRAM samples were processed, and the 
impact of each given configuration of input signals 
was calculated and analysed. All the LUTs under test 
were fixed in FPGA in their locations by constraints. 
In order to perform statistical analysis on higher 
number of circuits, this FPGA is populated by the 
same circuit in many copies. We have acquired 
131072 samples in total. It means that an acceptable 
error of 0.00000763 (approx. 10-5) corresponds to a 
one single sample. The following figure 6 shows the 

placement of all 
test rings with 
chained elements 
in the FPGA. 
The orange dots 
represent all the 
utilized SLICEs 
and LUTs, green 
lines represent 
all the used 
interconnect 
resources. Red-
blue objects in 
the dark vertical 
area are BRAM 
blocks used by 
the AmBRAMs 
tool. There is a 
small AmBRAMs 
engine placed on 
the chip as well. 

 
Figure 5. Implementation in Xilinx Zynq FPGA a) CLB and interconnect view, b) LUT detail 



 

 

VII. RESULTS AND DISCUSSION 

    We have performed sets of 100 measurements 
during our experiment. The die temperature was 44.1 
± 0.2 °C, core voltage 0.994 V – 0.997 V ( 0.995 V is 
the mean value). The minimal calculated delay per 
one single element (including LUT and interconnects) 
was 491 ps, the maximal value was 713 ps. 
The average value was 568 ps per stage or C element, 
the highest number of values is at 519 ps, median is 
574 ps, mode 498 ps. Reported duty factors show that 
a logic zero at the ring outputs is present with 
a probability of 0.2 % (in average) higher than logic 
one. The duty factors were from 47 to 53 % pointing 
to small variances in internal gate thresholds. Figure 7 
shows the distribution of the measured average 
delays. It is not completely in the Gaussian way, 
at least two subgroups are clearly visible, obviously 
caused by different types of interconnect paths 
utilized. A slightly moved shape is obviously caused 
by self-heating and die temperature change during the 
experiment. 

Table 2: Muller C-element and LUT input selection 

Scheme/LUT input Probability of signal equality 

i0 0.5254 (+0.4%) 

i1 0.5234 (0.0%, reference input) 

i2 0.5230 (-0.076%) 

Sampled inputs 0.5987 (0.0%, calculated refer. output) 

Feedback = LUT i5 0.5986 (-0.006%, 8 samples difference) 

Feedback = LUT i4 0.5974 (-0.21%, 172 samples difference) 
 

Table 2 shows one clear fact that routing the feedback 

signal to A6/i5 input is very close to the probability 

calculated on raw data. It means that the difference is 

6.37e-5 (0.0064%), while this one corresponds to 

max. 8 different samples per all the sampled set of 

data. This is sufficiently low and significant number 

to say that Muller C element implementation in LUT 

with feedback routed to the input i5 results in 

a significantly better solution than using the other one 

for the feedback signal. Using other input may result 

in more delays of logic 0. 

     Figure 7 shows that the measurements performed 

during the experiments confirm the data in datasheets. 

One has to be sure also about the input signal 

conditions. Obviously, very short signal peaks below 

approximately 490 ps may be filtered internally in 

FPGAs and may not be observed out of the generating 

circuits. It is due to internal capacitances especially 

 on the connections and distributions path, but also 

due to signal conditioning circuits implemented in 

the SLICEM or CLB units. Signals with returning 

transitions longer than approx. 720 ps will properly be 

latched by this circuit. This value also limits the 

overall Muller C-element circuit performance and 

impacts the performance of all the entire 

asynchronous system created on base of this 

implementation and C-element unit.  

VIII. CONCLUSION 

     This paper is focused on the area of Muller 

C-element in asynchronous digital circuits and 

dependable systems using FPGAs. A new LUT-based 

solution was presented, being suitable also for many 

areas of industry applications. This solution was 

analysed in detail and with respect to the internal real 

FPGA circuits. Our proposed solution with improved 

parameters was successfully implemented. All the 

measurements performed during the experiments and 

the results clarify the impact of the real FPGA 

internal circuit structures to the final performance of 

Muller C-elements. This contribution shows that even 

the very basic circuits and implementations of the 

element in FPGAs can easily be improved just by 

adding the right set of constraints, which can also be 

generated automatically during the development.  
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