

ISBN 978-80-261-0642-5, © University of West Bohemia, 2017

On Implementation and Usage of Muller

C-element in FPGA-based Dependable Systems

Petr Pfeifer and H.T.Vierhaus

Brandenburg University of Technology Cottbus-Senftenberg, Faculty of Mathematics, Computer Science,

Physics, Electrical Engineering and Information Technology (MINT), Cottbus, Germany

email: {petr.pfeifer | heinrich.vierhaus}@b-tu.de

Abstract – Muller C elements are key digital blocks

especially used in asynchronous circuits and digital

systems and correction of transient (glitch) errors.

This paper presents an overview of implementation

of Muller C elements in FPGAs. A new scheme is

proposed in this paper and the impact of LUT input

signal selection is discussed. Finally, unique

measurements and experiments performed in Xilinx

FPGAs and improved parameters are presented as well.

Keywords- Muller C-element, FPGA, Xilinx, Artix

I. INTRODUCTION AND MOTIVATION

 The Muller C-element, also called C-gate or

coincident flip-flop, is a digital circuit or logic block

widely used especially in asynchronous systems.

It has been specified formally in 1955 by American

mathematician and computer scientist

David E. Muller [1]. Implementation of this element

in ASIC (Application Specific Integrated Circuits) is

widely discussed in many publications, for example

[2,3], and many high-performance and reliable

circuits and designs exist. Even when containing or

implementing multidomain technologies, most of

today’s FPGA (Field Programmable Gate Arrays)

architectures are not designed and ready for

implementation of asynchronous systems. This paper

deals especially with the implementation of Muller C-

element in Field Programmable Gate Arrays (FPGA).

We are especially focused to SRAM-based types

and solutions using look-up table (LUT) [4].

 This paper is organized as follows: Motivation,

details about Xilinx FPGA circuits related to our

solution, our new proposed solution, performed

experiments, measurements and results.

 We have presented a small part of our novel

architecture for dependable systems already in [5].

One of the partial solution also gains from

asynchronous systems and solutions based on GALS

(Globally Asynchronous Locally Synchronous)

approach. For this our dependable system, a general

element with optional features and a better testability

was required as well. It is obvious that the LUTs used

in FPGAs do not include Muller C-element keeper

functions, nor any similar equivalent circuit. There is

some similar circuit available at device IOs, but not

internally. If a design requires the Muller C-element

capability, then one cannot (or should not) use

FPGAs. However, all the designed systems must be

tested and new architectures validated somehow.

Hence, we are back to FPGA devices, since only

FPGAs are still the best and cheapest solutions

available for prototyping and first development,

before all the final design is moved to the final ASIC

solutions, utilizing dedicated technologies and

especially designed circuits in large libraries. Doing

our best, we did not find any paper dealing in detail

with the issue of the best selection and circuits

of LUT-based Muller C-elements in modern FPGAs.

II. MULLER C-ELEMENTS IN GENERAL

 A great overview over many issues in design and

application of Muller C-elements can be found in [6].

Table 1, based on [7], shows the state truth table for

a generalized Muller C element:

Table 1: Muller C-element state table

Inputs A, B, C, … N Output Q

0 0 0 0 0 … 0 0

1 1 1 1 1 … 1 1

Other combinations previous Q

 The following figure 1 shows a general

implementation of a Muller C-element using a 2-input

multiplexer and std. IEC 60617-12 for gate symbols.

The upper AND-gate has a logic one at its output only

and only when all inputs i1 to in are set to one. In this

case, the following multiplexer selects its input 1,

which is routed from the OR gate, and hence having

one at its output until at least one of all inputs i1 to in

is set to one. In other words, OUTPUT tends toward

the value of all the inputs whenever they agree.

Figure 1. An implementation of Muller C-element using a MUX.

 Obviously, all the three parts can also be
implemented into one single component in an FPGA.
This component can be a single LUT (look-up table).
However, FPGAs are not best suited for
implementation of asynchronous systems. Hence also
the hazard behaviour of the elements in FPGAs should
be discussed. Regarding this and other issues
discussed further, [8] has focused especially on
implementations using FPGAs and issues linked to
multiplexers and signal paths. Since also metastability
is a critical part in all asynchronous or GALS systems
and those issues must be addressed and solved by
following many complicated and key design rules,
work presented in [9] can give a significant help.
Other work [10] and especially [11] shows a hazard–
free implementation of a Muller C-Element. Now we
will focus ourselves to Xilinx FPGAs.

 Figure 2 shows a SLICE

with purely logic LUTs, called

SLICEL. The Xilinx FPGA

architecture contains also

SLICEM structures with

RLUTs, used for

implementation of distributed

memories. Typically, two

SLICEL or one SLICEL and

one SLICEM form one CLB

(Configuration logic block).

One can find more information

in [12]. Differences between

SLICEM and SLICEL are not

important for this case, hence

we can stay with this simpler

SLICEL structure.

III. IMPLEMENTATION IN FPGA

USING LUTS AND ONE MUX

 There are more ways of

implementation of Muller

C-elements in FPGAs. Some

special structures can be found

in several special IO blocks in

selected FPGA families. Even

though new structures were

added to the Ultrascale

architecture, the very basic

LUT style still remains in all

FPGAs.

 The first implementation is

the case, when two LUTs are

used for implementation of both

the logic gates AND (in for

example LUT D) and OR only (for example in LUT

C), followed by one of multiplexers labelled MUX.

In the FPGA SLICE architecture, there are three

controllable multiplexers in total. Other multiplexer

can only be controlled by the configuration stream,

but not by one of the MUX control auxiliary signals

labelled CX, AX or BX. Using multiplexers requires

much more LUTs and interconnects resources,

because the signals need to be routed twice. There

will also be significant timing penalties, since not

only one LUT, but also an additional MUX is present

in the signal path. This solution has a clear timing

disadvantage, but can be used for intentionally slower

circuits or for multi-input solutions, where more than

five inputs are required.

IV. IMPLEMENTATION IN FPGA USING A SINGLE LUT

ONLY

 The second solution and implementation

of a Muller C-element using one single LUT has clear

advantages in saving on the FPGA resources and

configuration elements. Figure 3 shows the details

of LUTs in Xilinx and the inner real circuit

implementation [13]. Each 6-input LUT internally

consists of two 5-input patented Xilinx LUTs and one

multiplexer. Output O5 is routed to the output

of the first LUT. Output O6 is internally multiplexed

between LUTA and LUTB, using the last i5

input. The i5 input also corresponds to A6, B6, C6 or

D6 SLICE input signal. Now much more similarities

to the figure 1 can be seen. We will analyse the

impact to the timing parameters of the Muller

C-element.

 Our new proposed implementation of the advanced

Mueller C-element has the following inputs:

- Inputs A, B, C - where the output is 0, when all

three inputs are set to logic. zero, or the output is

1, when all three inputs are set to logic one; the

element keeps its previous output state otherwise.

- Input ENV - logic 1 at this input enables the

inputs A, B, C.

- Input INV - logic 1 at this input inverts the input

values.

 The last LUT input i5 is routed as a feedback
to the LUT
output. We have
used input A6/i5,
because this
internal MUX
input is a bit
faster than other
inputs, since
routed to the
internal dual
5-input LUTs,
see [13] in detail.

Figure 2. A SLICEL in a Xilinx 28 nm Artix®-7 series FPGA with examples of Muller C-element

implementation and highlighted data paths – Modified from ISE14.7 FPGA Editor.

Figure 3. The inner circuits and implement.

of 6-input LUTs in Xilinx FPGAs.

V. IMPLEMENTATION

 We have implemented the proposed solution
in Xilinx 28 nm SoCs and 20 nm FPGAs. We have
considered the following Xilinx Artix FPGA and SoC
Zynq [14] XC7Z020-1-CLG484 for our experiments,
manufactured using TSMC's 28 nm high performance
low power (28HPL) process, combining FPGA and an
ARM hardware processor into an SoC technology
solution, and as used also on the Zedboard
development kit [15]. It has a core power supply
of 1.0 V, 85K logic cells, 53200 LUTs, 106400 DFFs
and 560 KB in Block RAM. Vivado 2016.4 (Build
1733598) with optimization technique set to speed
and performance was used. Source codes were
generated in VHDL.

 Figure 4 shows the schematic of the implemented
Mueller C-element in Zynq FPGA. The LUT content
is 64’h7FFFFEFF01008000. Figure 5 shows
the exact implementation in the Artix FPGA and
Zynq SoC with the feedback route using local
interconnects and routing junction box.

Figure 4. Schematic of the final implemented MC-element in LUT.

VI. SELECTION OF LUT INPUTS AND THE EXPERIMENT

 Up to now there has been no any publication and
detailed analysis dealing with suitable selection of
LUT inputs for optimal design of the Muller C
element. As mentioned above, the feedback is routed
to input A6/i5. In order to evaluate the circuit
performance, we have created ring oscillators using
the proposed elements. There were 29 ring oscillators
with 32 chained elements implemented in the FPGA,
each having only one (the very first) stage inverted
and followed by 31 non-inverted elements, placed one
after each other from the left down corner of the die,

from LUT A up. There is a 4 SLICE intentional inter-
ring space between each two consecutive rings with
no overlapped parts. This design ensures maximal
circuit isolation and mutual independence of all the
test circuits. The rings and circuits were created and
all the files generated by AmBRAMs tool version 2.1,
see [16] for more information.

Figure 6. Implementation of test rings in Xilinx Artix

and Zynq 7Z020 FPGA and SoC

 During the experiment, we ran many ring oscillators
on the FPGA. Routing two of them to the inputs A or
B and sampling them serves to analyse a complete set
of the Muller C-elements using BRAM blocks and
AmBRAMs tools only. Naturally, the output and
feedback signal of the Muller C-element is sampled as
well. Thanks to this solution and multiple copies with
selection of inputs without a need of re-routing, the
behaviour of this implementation of Muller C-element
can statistically be analysed. The inputs of LUT were
changed, BRAM samples were processed, and the
impact of each given configuration of input signals
was calculated and analysed. All the LUTs under test
were fixed in FPGA in their locations by constraints.
In order to perform statistical analysis on higher
number of circuits, this FPGA is populated by the
same circuit in many copies. We have acquired
131072 samples in total. It means that an acceptable
error of 0.00000763 (approx. 10-5) corresponds to a
one single sample. The following figure 6 shows the

placement of all
test rings with
chained elements
in the FPGA.
The orange dots
represent all the
utilized SLICEs
and LUTs, green
lines represent
all the used
interconnect
resources. Red-
blue objects in
the dark vertical
area are BRAM
blocks used by
the AmBRAMs
tool. There is a
small AmBRAMs
engine placed on
the chip as well.

Figure 5. Implementation in Xilinx Zynq FPGA a) CLB and interconnect view, b) LUT detail

VII. RESULTS AND DISCUSSION

 We have performed sets of 100 measurements
during our experiment. The die temperature was 44.1
± 0.2 °C, core voltage 0.994 V – 0.997 V (0.995 V is
the mean value). The minimal calculated delay per
one single element (including LUT and interconnects)
was 491 ps, the maximal value was 713 ps.
The average value was 568 ps per stage or C element,
the highest number of values is at 519 ps, median is
574 ps, mode 498 ps. Reported duty factors show that
a logic zero at the ring outputs is present with
a probability of 0.2 % (in average) higher than logic
one. The duty factors were from 47 to 53 % pointing
to small variances in internal gate thresholds. Figure 7
shows the distribution of the measured average
delays. It is not completely in the Gaussian way,
at least two subgroups are clearly visible, obviously
caused by different types of interconnect paths
utilized. A slightly moved shape is obviously caused
by self-heating and die temperature change during the
experiment.

Table 2: Muller C-element and LUT input selection

Scheme/LUT input Probability of signal equality

i0 0.5254 (+0.4%)

i1 0.5234 (0.0%, reference input)

i2 0.5230 (-0.076%)

Sampled inputs 0.5987 (0.0%, calculated refer. output)

Feedback = LUT i5 0.5986 (-0.006%, 8 samples difference)

Feedback = LUT i4 0.5974 (-0.21%, 172 samples difference)

Table 2 shows one clear fact that routing the feedback

signal to A6/i5 input is very close to the probability

calculated on raw data. It means that the difference is

6.37e-5 (0.0064%), while this one corresponds to

max. 8 different samples per all the sampled set of

data. This is sufficiently low and significant number

to say that Muller C element implementation in LUT

with feedback routed to the input i5 results in

a significantly better solution than using the other one

for the feedback signal. Using other input may result

in more delays of logic 0.

 Figure 7 shows that the measurements performed

during the experiments confirm the data in datasheets.

One has to be sure also about the input signal

conditions. Obviously, very short signal peaks below

approximately 490 ps may be filtered internally in

FPGAs and may not be observed out of the generating

circuits. It is due to internal capacitances especially

 on the connections and distributions path, but also

due to signal conditioning circuits implemented in

the SLICEM or CLB units. Signals with returning

transitions longer than approx. 720 ps will properly be

latched by this circuit. This value also limits the

overall Muller C-element circuit performance and

impacts the performance of all the entire

asynchronous system created on base of this

implementation and C-element unit.

VIII. CONCLUSION

 This paper is focused on the area of Muller

C-element in asynchronous digital circuits and

dependable systems using FPGAs. A new LUT-based

solution was presented, being suitable also for many

areas of industry applications. This solution was

analysed in detail and with respect to the internal real

FPGA circuits. Our proposed solution with improved

parameters was successfully implemented. All the

measurements performed during the experiments and

the results clarify the impact of the real FPGA

internal circuit structures to the final performance of

Muller C-elements. This contribution shows that even

the very basic circuits and implementations of the

element in FPGAs can easily be improved just by

adding the right set of constraints, which can also be

generated automatically during the development.

REFERENCES

[1] D. E. Muller, “Theory of asynchronous circuits. Report no. 66,”
Digital Computer Laboratory, Univ. Illinois Urbana-Champ., 1955.

[2] Jackson AH, Tyrell AM, “Asynchronous embryonic. ICES 2001,”
Japan,2001. pp. 88–97.

[3] Nachiketa Das, Pranab Roy, Hafizur Rahaman, “Bridging fault
detection in cluster based FPGA by using Muller C element,”
Computers & Electrical Engineering, Vol. 39, Issue 8, Nov. 2013.

[4] Ian Kuon, Russell Tessier, and Jonathan Rose, “FPGA
Architecture: Survey and Challenges”, Foundations and Trends in
Electronic Design Automation, Volume 2, Issue 2, Feb. 2008.

[5] Petr Pfeifer, H.T. Vierhaus: " A new area-efficient reconfigurable
encoder architecture for flexible error detection and correction in
dependable communication systems", IEEE BEC2016, Estonia,
October 2016, DOI: 10.1109/BEC.2016.7743735

[6] Oleg Petlin, Steve Furber, Designing C-elements for Testability,
Technical Report UMCS-95-10-2, Computer Science, University of
Manchester, UK, 1995.

[7] Yoshiya Komatsu, Masanori Hariyama, and Michitaka Kameyama ,
“Area-Efficient Design of Asynchronous Circuits Based on Balsa
Framework for Synchronous FPGAs,” Int'l Conf. Reconfigurable
Systems and Algorithms ERSA'12 , pp 113-118.

[8] L. Fesquet, B. Folco, M. Steiner and M. Renaudin, "State-holding
in Look-Up Tables: application to asynchronous logic," 2006 IFIP
Internat. Conference on Very Large Scale Integration, Nice, 2006.

[9] Thomas Polzer, Andreas Steininger, „Metastability
Characterization for Muller C-Elements,“ 2013 23rd International
Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), Karlsruhe, Sept. 2013, pp.164-171.

[10] Maheswaran, “Implementing Self-Timed Circuits in Field
Programmable Gate Arrays,” MS Thesis, Univ. Calif. Davis, 1995.

[11] Kapilan Maheswaran, V. Akella, “Hazard-Free Implementation
of the Self-Timed Cell Set in a Xilinx FPGA”, doi:10.1.1.39.4276

[12] K.Chapman, ”Multiplexer Design Techniques for Datapath
Performance with Minimized Routing Resources”, Xilinx XAPP522,

v1.2, Oct. 31, 2014
[13] Xilinx, “7 Series

FPGAs Configurable
Logic Block”, UG474,
v1.8, Sept. 2016

[14] Xilinx, DS190 -
Zynq-7000 All
Programmable SoC
Overview, v1.11, 2017

[15] Digilent, “ZedBoard
development kit”, http://

www. zedboard.org/,
Product/Zedboard

[16] Petr Pfeifer,
“AmBRAMs tools”,
FPL2015, doi:10.1109/
FPL.2015.7293963 and
http://www.ambrams.org Figure 7. Measurement results using MATLAB toolbox

a) 3D visualization, b) histogram of measured values

