
SDR All-channels Receiver for FHSS Sensor
Network

Tomáš Jakubík, Jiří Jeníček
Faculty of Mechatronics, Informatics and Interdisciplinary Studies

Technical University of Liberec
Email: tomas.jakubik@tul.cz, jiri.jenicek@tul.cz

Abstract—This paper introduces an idea of a spread
spectrum wireless sensor network with minimal current
consumption and minimal input delay. As a first step
towards this goal, this paper describes design and basic
testing of needed base station receiver. The receiver
can receive multiple Gaussian Frequency Shift Keying
(GFSK) devices communicating at once on different
Frequency Hopping Spread Spectrum (FHSS) channels.
The intended frequency is 868 Short Range Device (SRD)
band, but the results could be applied to different symbol
rates and frequencies. Simulations were made to verify
that the receiver is able to receive multiple packets at
once. Live tests on RTL-SDR showed that the receiver
has parameters comparable to a commercial GFSK chip.

Keywords—FHSS, Low-power, Sensor Network, SDR

I. INTRODUCTION

This article intends to bring new ideas into the area
of home automation and security. There we can find
small cheap devices communicating on SRD sub-GHz
band (known also as 868MHz band). Large portion of
those devices are sensors which need to live from few
µA. We can see two major directions of development in
this area. There is high-speed Wi-Fi which is too power
hungry for sensor network. And there are various IOT
networks, but none is reliable and fast for a device like
smoke detector.

Existing solution for home alarm is typically a single
frequency network with sleeping sensors and always
listening hub. Sleeping sensor conserves energy and
starts transmitting immediately when input changes.
This way, it is not easy to introduce spread spectrum
to improve on signal reliability and bandwidth usage.

One of the simplest forms of spread spectrum,
FHSS, requires synchronization that increases power
consumption or takes a long time to initialize. It
is possible to design FHSS network with fast syn-
chronization, as we already explored [1], but certain
disadvantages remain.

A. FHSS network with sleeping devices

Different approach is to put another specialized
receiver into the hub. A receiver listening on all
channels would eliminate the problem with synchro-
nization. Sensor device could sleep as in single fre-
quency solution. On signal change, the sensor could
choose randomly one of its preferred channels and start
transmitting immediately. Network hub would receive
the message, know the important information without

any delay, and respond on the same frequency with
regular transceiver. The response might be a simple
acknowledge or FHSS synchronization data.

The task at hand is to create a receiver for hub that
works on many channels concurrently. It would not
be profitable to design new radio integrated circuit for
the amounts produced in this area of electronics. The
remaining solution is to use existing mass produced
electronics for Software Defined Radio (SDR) and put
necessary development into software. For the develop-
ment we used an RTL-SDR receiver [2], but the ideal
target would be an embedded MCU and demodulator.

II. DESIGN

The lowest level modulation, binary GFSK with
BT = 0.5, is given by the available hardware for
sensors. Frequency deviation, symbol rate and channel
spacing could be set to needs of the receiver.

A. Receiving Symbols

Simplified binary FSK signal might look as

s = A · sin
(
2πt · (F0 ± Fdev)

)
(1)

where F0 is carrier frequency, and Fdev is frequency
deviation. The sign can switch each Ts symbol du-
ration. Signal s is received, demodulated, sampled
and digitized. This analogue part of the SDR was
investigated thoroughly and is still under heavy devel-
opment [3]. The digital signal first enters a Fast Fourier
Transform (FFT) to receive all channels at once.

The FFT at the input of the software part has bins
set to frequency F0 of each channel. Signal s won’t fit
precisely to any bin. Best it can do is

s = A · sin(2πtF0 ± 2πtFdev) (2)

where 2πF0 is the bin frequency and A with

±2πtFdev = ϕ(t) (3)

are amplitude and phase, products of the FFT bin.
The phase is linearly changing with time. Practical

implementation would have to take care of continuity
of the phase between symbols. For Minimum Shift
Keying (MSK), which is a special case of FSK, or
GFSK this comes naturally. In such case, this can be
called Continuous Phase Modulation (CPM).

The first derivative of the phase is

dϕ(t)

dt
= ±2πFdev (4)

ISBN 978-80-261-0722-4, c©University of West Bohemia, 2018



and that is exactly the bit of information we are
interested in. We look at sign of dϕ(t)dt and decide on the
received symbol. In practice, it has to be replaced by
discrete approximation, in the simplest by a difference
of two consecutive samples. Each sample ϕ(t) must be
in range of 〈0, 2π). If it goes above or below, it wraps
around. The same has to be done with the difference.
That limits phase difference which can be detected to

ϕ

[
t

Tc

]
− ϕ

[
t− Tc
Tc

]
∈ 〈−π, π) (5)

where Tc is duration of the samples at the output of
FFT. Maximum detectable frequency deviation is

2πTc ·max(Fdev) = π (6)

max(Fdev) =
1

2Tc
(7)

Normally, the sampling time could be synchronized
with the received signal to minimize the intersymbol
interference [4] [5]. Here, several individual devices
transmit their symbols randomly shifted in time. It
wouldn’t help to synchronize sampling to only one
of them, and interpolating the signal for each channel
separately would be too complicated. For a 30 ppm
quartz crystal, Tc

2 shift happens after 8333 symbols or
1042 bytes. That is several times more than longest
packet of most similar systems, so the symbol syn-
chronization was simplified to the bare minimum. We
selected Ts = 2Tc and sum two neighboring samples.

The condition for maximal received frequency devi-
ation can now be expressed as

max(Fdev) =
1

2Tc
=

1

Ts
(8)

which compared to MSK modulation (Fdev = 1
4Ts

)
gives three-quarter margin for noise and oscillator
imperfections.

Channel size, respective size of the FFT frequency
bin, is equal to sampling frequency at the output,
Fch = 1/Tc. The size must be greater than bandwidth
used by the communication to fit the signal inside
provided channel. It is hard to estimate bandwidth of
GFSK, but Carson’s rule can give a rough estimate of

Fbw = 2 ·
(
BT

Ts
+ Fdev

)
(9)

where BT is Gaussian filter bandwidth bit period
product. For GMSK (GFSK and MSK together) with
BT = 0.5 it would simplify to Fbw = 1.5

Ts
. That gives

another condition on sampling rate

Fch =
1

Tc
≥ Fbw =

1.5

Ts
(10)

Ts ≥ 1.5Tc (11)

which is satisfied by previously selected Ts = 2Tc and
a small reserve remains for the bandwidth estimate.

Using higher Fdev than GMSK would increase the
signal bandwidth, and force us to increase Ts to Tc
ratio and decrease the amount of useful data. Since
GMSK has been successfully used for decades, there
is no need to increase Fdev .

ang

abs
FFT

ch0
I

Q . . .

64
sample

FIFO

＋
－

preamble
xcorr

≥

syncword
xcorr

data
receive

diff
& wrap

4 sample
average

chN

e
n
a
b

le
 &

 l
o
ck

＋
－ &

lo
ck

＋
－ &

lo
ck

Fig. 1. Basic scheme.

An RTL-SDR dongle has limited IQ sample rate of
2.4MSample/s which limits the received bandwidth.
To comply with EN 300 220 [6], the size of the
FFT has to be 64 as it is the lowest possible power
of 2. Some of these channels can be permanently
silent to avoid neighboring communication or reserved
channels. Channels are 37.5 kHz apart, symbol rate has
to be 1/Ts = 18.75 kBaud/s and frequency deviation
Fdev = 4.6875 kHz. Channels were put from 865MHz
up, so no LDC/HR reserved channel is overlapped.
LDC/HR channels cannot be used by FHSS.

B. Processing Packets

Each packet starts with preamble and syncword.
Preamble is an alternating sequence used for syn-
chronization. Syncword is a pseudo-random value, se-
lected beforehand, to know when preamble ends, useful
data start and to differentiate between systems with
the same modulation. We’ve chosen running cross-
correlation to detect preamble and syncword. Match
on the syncword also sets the symbol synchronization.
After syncword, it is common to include length of the
useful data in the packet. At the packet’s end, there is
usually a Cyclic Redundancy Check (CRC).

To compensate offset of carrier frequencies, we have
used an averaging filter. The averaging filter has length
of 4 samples. Length in multiples of 4Tc will get
frequency offset from the alternating preamble. The
offset is stored in a barrel buffer of 64 values. At
time of syncword match the last value is used for
symbol decision. The buffer delays valid offset value,
because at time of syncword match, the filter has
already processed the syncword.

Now the simplified scheme of the receiver can be
seen at Fig. 1. Individual blocks can be enabled only
at time they are needed to save on computational
power. Only the FFT needs to be always on. The
conditions enabling next stage are: absolute signal
power, preamble cross correlation and syncword cross
correlation. Everything must be protected by a hys-
teresis or failsafe timeout. Absolute signal power is
expected to keep high during the whole packet, so
there can be a condition resetting everything on packet
failure. But both cross correlations should fall before



6 8 10 12 14 16 18 20

SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 R

a
te

 [
1
]

518400 packets simulated

Fig. 2. Simulation, AWGN.

the packet ends, so there needs to be a protective
timeout resetting the receiver if something fails.

III. SIMULATION

The receiver implemented in Matlab Simulink was
tested by a simulation. The RTL-SDR module returns
preprocessed baseband complex signal in single float-
ing point type. It is equivalent to synthetic e2πift or
to the output of the comm.GMSKModulator() function.
That simplifies the test and doesn’t require almost any
changes in the receiver model.

All simulations were done with signal passed
through Additive White Gaussian Noise channel. It is
the simplest method, but it should be enough to test
this receiver. Individual channels of this receiver are
relatively thin, and the receiver doesn’t presume any
multipath effects nor frequency distortions. Frequency
specific effects would be interesting with comparison
to single frequency system, but that is not specific for
this receiver and it has already been studied [7].

The input to all simulations were packets with 20
useful data bytes. That is 31 bytes in total, including
all overhead. Perhaps it is more common to simu-
late bit error rates, but here the success depends on
syncword match and frequency offset elimination, so
whole packets were simulated. No error correcting
code was used and single erroneous bit means the
packet is not received successfully. The received data
were compared with the data sent, because the CRC
used (CRC-16-IBM) offers only a basic protection.

Packets were multiplied by step window passed
through Gaussian filter to smooth the power rise and
fall. Similar process is done by real transmitters. Ad-
ditionally, a random time in range between 1 sample
and 2 symbols was prepended before the packet. And
complement of that time was appended after the packet
to have constant length. This was to test the syncword
match and the symbol detection.

A. Receiving packets through AWGN channel

Fig. 2 depicts simulation of different Signal to Noise
Ratio (SNR) and the resulting packet success rate. The
SNR was corrected for the fact that the FFT filters
out 63

64 of the noise. The SNR level set to the AWGN
channel was decreased by approximately −18 dB.

SNRoffset = 10 · log10
(

1

64

)
≈ −18 dB (12)

0 0.2 0.4 0.6 0.8 1

Offset [Channel BW]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 R

a
te

 [
1

]

200000 packets simulated

Fig. 3. Simulation, offset dependency.

10 15 20 25

SNR [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 R

a
te

 [
1
]

33060150 packets simulated

1

10

20

30

40

50

60

64

N
 -

 n
u

m
b

e
r 

o
f 

c
o

n
c
u

rr
e

n
t 

p
a

c
k
e

ts

Fig. 4. Simulation, concurrent packets.

The figure shows that the receiver starts receiving
between 10 and 16 dB of SNR with 15 dB for 0.95
success rate.

B. Receiving with frequency offset

Fig. 3 shows how the receiver is influenced by the
frequency offset of the transmitter. This simulation was
done with random SNR on the AWGN channel in range
between 12 and 16 dB.

The left curve on Fig. 3 falls after 0.2. The receiver
stops receiving when transmitter shifts for more than
0.2 · 37.5 kHz = 7.5 kHz. This is perhaps slightly less
than normal GFSK receiver would. It is also less than
the predicted value of 0.75

Ts
= 14.0625 kHz, but that

would be only at ideal conditions without any noise.
The right curve is the same curve flipped, when the
receiver starts receiving the packet on a wrong channel.

C. Multiple packets received at once

Fig. 4 shows how the receiver works when multiple
packets are running simultaneously. Instead of one
packet in previous simulations, N individual packets
were generated separately and then summed together.
In this simulation the random shift of the packets was
increased to between 1 sample and 16 bytes. This
should be closer to reality where the chance of packets
starting at the exact same time is negligible.

Concurrent packets were randomly spread between
available channels by using permutation and picking
first N elements. This was to prevent collisions, so
there were no two packets at the same frequency at
the same time.



Data at Fig. 4 shows decrease of success rate with
increasing number of concurrent packets. The receival
success rate for one single packet was quickly at 1, but
is only slowly rising for 64 packets at once. Even at
this case of entirely full radio spectrum, the receival
success rate reaches 0.9 above 20 dB of SNR. For the
real scenario where only a few packets are expected at
the same time, the change is negligible.

IV. REAL TEST

This time the Matlab Simulink receiver was con-
nected to RTL-SDR hardware. This device is con-
structed on a base of DVB-T USB dongle. The regular
DVB-T receiver is switched to raw mode and sends
IQ samples through USB to host PC. It is a cheap
alternative to professional tools, essential for students
to explore SDR.

The receiver was running in Matlab Simulink in an
infinite real-time simulation. Transmitter was a custom
electronics with STM32L0 MCU and CC1200 RF
transceiver. It sent packets with 20 bytes of useful
data. First four bytes were hardware address of the
transmitter. Following was one byte with a channel on
which the packet was sent. Next two bytes were 16 bit
counter incremented with each packet. The counter was
used to evaluate missing packets. For each received
packet, number of received packets was incremented
by 1 and number of missed packets was incremented
by counter difference minus 1. The rest of the packet
were fixed values to validate the received data.

The transmitter started by 2ms receiving, followed
by a transmission of the packet. The receiving part
was implemented as Listen Before Talk (LBT) (some-
times called Clear Channel Assessment (CCA)) to
prevent collisions from influencing the results. This
was repeated on different channels. The transmitter
was incrementing frequency channels by one on each
packet. This simplifies processing of the received data,
as all missed packets can be pinned to a given channel.
Random channel selection, as in FHSS, would require
knowing the random selection at the receiver.

Several tests were made inside an old university
building. For the transmitter on the same table approx-
imately 1m apart, 99.90% of packets were received.
Interesting is, that few packets were received as copies
on neighboring channel. There is a significant distor-
tion in the signal, because the receiver gain is set to
maximum. The reason, as before, is not to attenuate
other transmitters by tuning to one.

When the transmitter was one floor up and 30m far,
the success rate reached even higher 99.98%.

The test at Fig. 5 was done with transmitter two
floors up, about 50m far and behind complicated
wall structure. 95.03% of packets were successfully
received. At this distance, the transmission on a sin-
gle channel wasn’t received by the same transceiver
CC1200. The Fig. 5 shows that the receiver is bad at
the border channels close to the Nyquist frequency.

The overall performance of the receiver would re-
quire much more elaborate measurements and labo-
ratory environment. Still, it is seen that the receiver

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

Channel [0~63]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
c
c
e
s
s
 R

a
te

 [
1
]

Received 23289 (95.03%) out of 24507 packets

Fig. 5. Real test at range limit of CC1200.

works at a reasonable distance, considering thick walls
and floors of an old building. When compared with
single channel chip receiver, this SDR receiver is at
least comparable if not better.

V. CONCLUSION AND FUTURE GOALS

The created receiver is able to function as a hub
in the concept of low-power FHSS network. The next
step is to shrink it to a convenient size.

In this configuration the 64 sample FFT must be
done in Tc ≈ 26 µs which could be done on Cortex-M4
MCU [8]. As the embedded platform we choose
embedded kit LPC-Link2 and custom module with
R820T, the demodulator used in RTL-SDR. The MCU
has fast ADCs and enough computational power.

The receiver implemented on an embedded platform
should be an affordable simple solution for companies
developing small wireless electronics. Price of this
solution will be slightly higher than for ordinary FHSS,
but the advantages will likely compensate for the
investment.

ACKNOWLEDGMENT

This work was supported by Student Grant Scheme
2018 of Technical University of Liberec.

REFERENCES

[1] T. Jakubík and J. Jeníček, “Asymmetric Low-power FHSS
Algorithm,” in Proceedings of the IEEE 13th International
Workshop On Electronics, Control, Measurement, Signals and
their Application in Mechatronics, 2017.

[2] M. A. Wickert and M. R. Lovejoy, “Hands-on Software Defined
Radio Experiments with the Low-cost RTL-SDR Dongle,” in
2015 IEEE Signal Processing and Signal Processing Education
Workshop, 2015.

[3] A. Collins, All Programmable RF-Sampling Solutions, Xilinx,
2017.

[4] M. Rice, Digital Communications: A Discrete-Time Approach.
Pearson Education, Inc., 2009.

[5] M. ur Rehman Awan and P. Koch, “Combined Matched Filter
and Arbitrary Interpolator for Symbol Timing Synchronization
in SDR Receivers,” in Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2010 IEEE 13th International
Symposium on, 2010.

[6] EN 300 220-2, ETSI Std., Rev. 3.1.1, 2017.
[7] N. H. Motlagh, “Frequency Hopping Spread Spectrum: An Ef-

fective Way to Improve Wireless Communication Performance,”
Advanced Trends in Wireless Communications, 2011.

[8] Digital signal processing for STM32 microcontrollers using
CMSIS, STMicroelectronics, 2016.


		2018-10-14T10:21:24-0400
	Certified PDF 2 Signature




