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1. Introduction 

Mathematical modeling of fluid flow is important in modern engineering. It allows us to im-

prove performance characteristics and increase the lifetime of modern products due to the pre-

diction of drag, lift, pressure and thermal load, pollutant emission or study of highly unsteady 

transition phenomena. Mathematical modeling is often used in cases where the application of 

the experimental method is limited such as in the case of combustion. Based on the length scale, 

these simulations can be divided into three areas. The smallest one relates to the simulation of 

combustion in the combustion chamber of gas turbines [1]. The middle one relates to modeling 

combustion in industrial chambers such as glass melting furnace [2]. The great one is focused 

on fire modeling in buildings and exteriors. Part of this topic will be discussed in the following 

paper. 

There are two possibilities for fire modeling. The first one is based on an empirical approach 

and does not include any additional equation connected with combustion modeling. The second 

approach is based on combustion modeling and it is suitable for complex geometries.  

To evaluate the fire resistance, the heat load of the wall must be overstated. The wall can be 

heated by direct contact with the hot gases or by radiation. The radiation model and its depend-

ence on the combustion model will be presented in this paper. 

2. Mathematical model 

The fire modeling is based on the following system of equations 
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where ρ is density, 𝑢𝑖  is a component of the velocity vector, 𝑝 is pressure, μ is 

a dynamic viscosity, ℎ is enthalpy, α is a coefficient of heat diffusion and μ𝑡 is 

a turbulent viscosity. Source terms in enthalpy equations represent via 𝑆ℎ. 

The empirical model is based on the combustion heat 𝑄̇ of fuel and relationship defined 

in [3,5] especially length of flames which is based on the diameter of the fire pool 

𝐿𝑓 = −1.02𝐷 + 0,0148𝑄̇
2
5. (4) 

These parameters define a cell zone where is prescribed source term in enthalpy equations. 
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If the combustion model is included, then the system of equations (1) – (3) is extended 

by transport equation for mass fraction 𝑌𝑖 
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where 𝑆𝑌𝑖
represent source terms. 

The Number of additional PDE and ODE equations is depended on the complexity 

of the combustion model. In this case is used the simplest one equation combustion model 

called “infinitelyFastChemistry” [6] which is used one constant 𝐶for tuning heat release rate. 

The radiative model has to be included in fire simulation. The P1 radiation model [7] was 

chosen first but had to be replaced by DO(discrete-ordinates) radiative model [4]. 

In order to capture the heat flux into the wall correctly, the energy equation in solid region 

has to be solved. This equation is described by following partial differential equation 
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Based on required properties a suitable solver has to been chosen. ChtMultiRegion from 

OpenFOAM [6] library is used. This solver is based on PISO algorithm and allow to solve 

coupled problem of fluid flow with heat transfer through solid region. 

3. Results 

Fire simulation is tested on simplified geometry with a defined pool (1x1 m) which is 1.5 m 

away from the wall as is shown in Fig. 1. The rate of fuel (kerosene) vaporization from 

the pool is prescribed as 0.022 kg s-1 m-2 at temperature 480 K. This amount of fuel correspond-

ing to firepower 0,96 MW. The ambient boundary conditions (300 K, 101325 Pa) is prescribed 

at free stream boundaries. 

The simulation model is shown in Fig. 1 where the pool is located at a given distance from 

the wall. The computational domain is constructed by hexa-dominant algorithm and consist 

from 488k cells. 
 

  

a) geometry description  b) example of computational domain 
 

Fig. 1. The computational domain 
 

Determining radiative heat flux is the goal of the simulation. There are compared three 

models. The first one is based on empirical approach and RANS turbulence model (“case1”). 

The second and third one is based on a simplified combustion model which is used with 

different turbulence model. The first one is based on RANS approach (“case2”) and the second 

one is based on DES approach (“case3”). The results are shown in Figs. 2 and 3. It is possible 

to see that the model based on a simplified chemical model predicting about three times greater 

radiative heat flux. This is caused by the application of the combustion model and modeling of 

radiative heat flux from three atomic molecules of H2O and CO2. The difference between the 
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turbulent model is at a height above 3 m where the higher radiative heat flux and wall 

temperature are predicted by simulation based on DES turbulence model. 
 

   

a) case1 b) case2 c) case3 
 

Fig. 2. Comparison of prediction radiative heat flux into wall by diferent model 
 

  

a) temperature b) wall heat flux 
 

Fig. 3. Profile of selected variables along wall symmetry axis 
 

The radiative heat flux intensity can be influenced by setting the combustion model constant 

𝐶. If the value is reduced, then radiative heat flux and wall temperature increased. 

If, on the other hand, the value is increased then radiative heat flux decreased. To achieve a 

similar flame temperature as in the case of the empirical model, it is necessary to select a con-

stant in the range from 20 to 50 as is possible to see in Table 1. 
 

Table 1. Overview of simulations 
 

 Combustion Turbulence C Wall heat 

flux [MW] 

Wall average 

temperature [K] 

Wall maximum 

temperature [K] 

Flame maximum 

temperature [K] 

Case 1 Emp. RANS  0.394 392 583 1405 

Case 2 Inf.Fast RANS 5 1.088 533 835 1597 

Case 3 Inf.Fast DES 5 1.183 552 829 1631 

Case 4 Inf.Fast DES 2 1.186 558 840 1711 

Case 5 Inf.Fast DES 1 1.215 556 840 1739 

Case 6 Inf.Fast DES 0.5 1.251 556 843 2269 

Case 7 Inf.Fast DES 0.1 2.283 709 1059 >2500 

Case 8 Inf.Fast DES 10 1.201 547 823 1584 

Case 9 Inf.Fast DES 20 1.174 546 814 1589 

Case 10 Inf.Fast DES 50 0.855 498 709 1320 

Case 11 Inf.Fast DES 100 0.744 460 640 1208 
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4. Conclusion 

Validation and calibration of a simplified combustion model is shown in this paper. This model 

is designed to simulate fire and temperature flux into a building wall for a study fire and struc-

tural safety of buildings. It is necessary to choose a combustion model that works with three 

and more atomic gases. These gases have a significant influence on the determination of the 

radiation heat flux. Their neglect reduces the radiation flow to 1/3. 

The calibrated model is used to simulate large fires near and inside buildings. 
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