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ABSTRACT
We investigate uniform versions of (metric) regularity and
strong (metric) regularity on compact subsets of Banach
spaces, in particular, along continuous paths. These two prop-
erties turn out to play a key role in analyzing path-following
schemes for tracking a solution trajectory of a parametric gen-
eralized equation or, more generally, of a differential gener-
alized equation (DGE). The latter model allows us to describe
in a unified way several problems in control and optimization
such as differential variational inequalities and control systems
with state constraints. We study two inexact path-following
methods for DGEs having the order of the grid error O(h) and
O(h2), respectively. We provide numerical experiments, com-
paring the schemes derived, for simple problems arising in
physics. Finally, we studymetric regularity ofmappings associ-
atedwith a particular case of the DGE arising in control theory.
We establish the relationship between the pointwise version
of this property and its counterpart in function spaces.

ARTICLE HISTORY
Received 31 January 2018
Accepted 7 November 2018

KEYWORDS
Control system; uniform
metric regularity; uniform
strong metric regularity;
discrete approximation;
path-following

AMS SUBJECT
CLASSIFICATION (2010)
49k40; 49J40; 49J53; 90c31

1. Introduction

We are going to investigate uniform (metric) regularity and strong (metric) reg-
ularity on compact subsets of Banach spaces of mappings which are defined
as a sum of a single-valued (possibly non-smooth) mapping and a set-valued
mapping with a (locally) closed graph. In the second section, we recall basic
definitions from regularity theory and derive a result guaranteeing that a per-
turbed problem has a solution which is similar to the classical Lyusternik-Graves
and Robinson theorem. Conditions ensuring uniform [strong] regularity along
continuous paths are obtained as a corollary. Roughly speaking, by the word ‘uni-
form’ wemean that the constants as well as the size of neighbourhoods, appearing
in the corresponding definitions, remain the same for a certain set of mappings
and/or points. These properties turn out to be the key ingredients in the proofs of
the non-smooth Robinson’s inverse function theorem [1] and Lyusternik-Graves
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theorem for the sum a Lipschitz function and a set-valued mapping with closed
graph [2]. To the best of our knowledge there is no self-contained study of these
properties in the literature and the results are scattered here and there.

In the third section, we study two (inexact) path-following methods for a
differential generalized equation (DGE), a model introduced in [3], which is a
problem to find a pair of functions x : [0,T] → R

n and u : [0,T] → R
m such

that ⎧⎪⎨⎪⎩
ẋ(t) = g(x(t), u(t)),
0 ∈ f (x(t), u(t))+ F(u(t)),
x(0) = xI ,

for all t ∈ [0,T], (1)

with a fixed T>0, single-valued functions f : R
n × R

m → R
d and g : R

n ×
R
m → R

n, a set-valued mapping F : R
m ⇒ R

d, and a given initial state xI ∈ R
n.

This model allows us to describe in a unified way several problems in control
and optimization such as differential variational inequalities and control systems
with state constraints (see [3] and references therein). The first scheme, requiring
stronger smoothness properties of the solution trajectory of (1), is based on the
modified Euler (Euler-Cauchy) method for solving differential equations and is
shown to have the grid error of orderO(h2). On the other hand, the latter scheme,
based on the Eulermethod, has the grid error of orderO(h) but requires Lipschitz
continuity of the solution trajectory only. We provide numerical experiments,
comparing the schemes derived and a standard MATLAB function ODE45, for
two simple problems arising in mechanics and electronics, respectively. The
results from [3] are extended in several directions. Namely, higher-order and
inexact schemes are investigated and a weaker (non-strong) metric regularity is
also considered.

In the fourth section, we study regularity of mappings associated with the
problem of feasibility in control, which is the problem to find a pair of functions
x : [0,T] → R

n and u : [0,T] → R
m such that

ẋ(t) = g(x(t), u(t)) and f (x(t), u(t)) ∈ Uad for a.e. t ∈ [0,T], x(0) = 0,
(2)

with T, f and g as before and a given closed convex subset Uad of R
d. Note that

we request (2) to hold for almost every t only instead of for every t in (1) with
F ≡ −Uad and xI = 0. The required ‘quality’ of the functions x(·) and u(·) will
be described later in particular statements.We focus on the interplay between the
pointwise conditions and their uniform and infinite-dimensional counterparts.
We extend several results from [3].

Basic notation. The distance fromapoint x to a subsetA of ametric space (X, �)
is d(x,A) = infy∈A �(x, y). The closure and the interior of A is denoted by clA
and intA, respectively. Given sets C, D ⊂ X, the excess of C beyond D is defined
by e(C,D) := supx∈C d(x,D).We use the convention that inf ∅ := +∞ and as we
work with non-negative quantities we set sup∅ := 0. The closed ball centred at a
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point x ∈ X with a radius r>0 is denoted by IBr(x). A set A ⊂ X is locally closed
at its point x if there is r>0 such that the set A ∩ IBr(x) is closed. Any single-
ton set will be identified with its only element, that is, we write a instead of {a}.
By F : X ⇒ Y we denote a set-valued mapping between sets X and Y , its graph,
domain, and range are the sets gph F := {

(x, y) ∈ X × Y | y ∈ F(x)
}
, dom F :={

x ∈ X | F(x) 	= ∅}, and rge F := {
y ∈ Y | ∃x ∈ X with y ∈ F(x)

}
, respectively.

The inverse of F is amappingY � y �−→ F−1(y) := {
x ∈ X | y ∈ F(x)

}
.Wewrite

f : X → Y to emphasize that the mapping f is single-valued. The space of all
single-valued linear continuous operators acting between Banach spaces X and
Y is equipped with the standard operator norm and denoted by L(X,Y). The
space R

n is equipped with the Euclidean norm, while the Cartesian product of
two or more spaces is considered with the box (product) topology. By a.e. we
mean almost every in terms of the Lebesgue measure.

2. Uniform regularity

In our analysis, we employ two key concepts from set-valued analysis called regu-
larity and strong regularity of a set-valuedmapping. Let us emphasize that unlike
definitions in [4], we prefer not to include the assumption that themapping under
consideration has a locally closed graph in any definition of regularity.

Definition 2.1: Consider metric spaces (X, �), (Y , �), a point (x̄, ȳ) ∈ X × Y ,
and a non-empty subset U × V of X × Y . A mapping F : X ⇒ Y is said to be

(i) regular on U for V if there is a constant κ > 0 such that

d
(
x, F−1(y)

) ≤ κ d(y, F(x) ∩ V) for every (x, y) ∈ U × V ;

(ii) globally regular if F is regular on X for Y ;
(iii) regular at x̄ for ȳ if ȳ ∈ F(x̄) and there are positive constants a, b, and κ

such that

d
(
x, F−1(y)

) ≤ κ d
(
y, F(x)

)
for each (x, y) ∈ IBa(x̄)× IBb(ȳ).

The infimum of κ > 0 such that the above inequality holds for some a>0
and b>0 is the regularity modulus of F at x̄ for ȳ and is denoted by
reg(F; x̄ | ȳ).

Clearly, if F is regular at x̄ for ȳ with a constant κ and neighbourhoods IBa(x̄)
and IBb(ȳ), then F is regular on IBa(x̄) for IBb(ȳ) with the same constant. On the
other hand, when the setsU andV are neighbourhoods of points x̄ and ȳ, respec-
tively, and ȳ ∈ F(x̄), then regularity of F on U for V implies regularity of F at x̄
for ȳ. The constants are the same again but neighbourhoodsmay differ [4, Propo-
sition 5H.1]. By the Banach open mapping principle, a mapping A ∈ L(X,Y) is
globally regular if and only if it is surjective.
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Definition 2.2: Consider metric spaces (X, �), (Y , �), a point (x̄, ȳ) ∈ X × Y ,
and a non-empty subset U × V of X × Y . A mapping F : X ⇒ Y is said to be

(i) strongly regular on U for V if there is a constant κ > 0 such that the
mapping σ : V � y �−→ F−1(y) ∩ U is both single-valued and Lipschitz
continuous on V = dom σ with the constant κ ;

(ii) strongly regular at x̄ for ȳ if ȳ ∈ F(x̄) and there are neighbourhoods U of x̄
and V of ȳ such that F is strongly regular on U for V.

First, we present a statement concerning perturbed [strong] regularity on a set.

Theorem 2.3: Let (X, ‖ · ‖) and (Y , ‖ · ‖) be Banach spaces, let G : X ⇒ Y be a
set-valued mapping, and (x̄, ȳ) ∈ X × Y. Assume that there are positive constants
a, b, and κ such that the set gphG ∩ (IBa(x̄)× IBb(ȳ)) is closed in X × Y and G is
[strongly] regular on IBa(x̄) for IBb(ȳ) with the constant κ . Let μ > 0 be such that
κμ < 1 and let κ ′ > κ/(1 − κμ). Then for every positive α and β such that

2κ ′β + α ≤ a and μ(2κ ′β + α)+ 2β ≤ b (3)

and for every mapping g : X → Y satisfying

‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ μ‖x − x′‖ for every x, x′ ∈ IB2κ ′β+α(x̄),
(4)

the mapping g+G has the following property: for every y, y′ ∈ IBβ(ȳ) and every
x ∈ (g + G)−1(y) ∩ IBα(x̄) there exists a [unique] point x′ ∈ IB2κ ′β+α(x̄) such that

y′ ∈ g(x′)+ G(x′) and ‖x − x′‖ ≤ κ ′‖y − y′‖. (5)

Proof: We shall imitate the proof of [4, Theorem 5G.3]. First, suppose that G is
regular on IBa(x̄) for IBb(ȳ) with the constant κ . Choose any α and β , and then
any g as in the statement. Then

y − g(x) ∈ IBb(ȳ) for each (x, y) ∈ IB2κ ′β+α(x̄)× IBβ(ȳ). (6)

Indeed, fix any such a pair (x, y). Then (4) and (3) imply that

‖y − g(x)− ȳ‖ ≤ ‖g(x̄)‖ + ‖g(x̄)− g(x)‖ + ‖y − ȳ‖ ≤ β + μ‖x − x̄‖ + β

≤ 2β + μ(2κ ′β + α) ≤ b.

Fix any two distinct y, y′ ∈ IBβ(ȳ) and any x ∈ (g + G)−1(y) ∩ IBα(x̄). Let r :=
κ ′‖y − y′‖. As r ≤ 2κ ′β , the first inequality in (3) implies that

IBr(x) ⊂ IB2κ ′β+α(x̄) ⊂ IBa(x̄).

Consider the mapping

X � u �−→ Φ(u) = Φy′(u) := G−1(y′ − g(u)
) ⊂ X.

It suffices to show that there is a fixed point x′ of Φ in IBr(x), because then x′ ∈
(g + G)−1(y′) and the desired distance estimate holds. To obtain such a point x′
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we are going to apply [4, Theorem 5E.2]. The set� := gphΦ ∩ (IBr(x)× IBr(x))
is closed. Indeed, pick any sequence (xn, zn) in � converging to a point (x̃, z̃) ∈
X × X. Clearly, (x̃, z̃) ∈ IBr(x)× IBr(x). The definition of Φ and (6) imply that(

zn, y′ − g(xn)
) ∈ gphG ∩ (IBr(x)× IBb(ȳ)) ⊂ gphG ∩ (IBa(x̄)× IBb(ȳ))

for each n ∈ N.

Passing to the limit we get that (z̃, y′ − g(x̃)) ∈ gphG, that is, (x̃, z̃) ∈ gphΦ .
According to (6) we have y − g(x) ∈ G(x) ∩ IBb(ȳ) and y′ − g(x) ∈ IBb(ȳ),

thus regularity of G on IBa(x̄) for IBb(ȳ) yields that

d(x,Φ(x)) = d
(
x,G−1(y′ − g(x))

) ≤ κ d
(
y′ − g(x),G(x) ∩ IBb(ȳ)

) ≤ κ‖y − y′‖
< κ ′‖y − y′‖(1 − κμ) = r(1 − κμ).

Letu, v ∈ IBr(x) be arbitrary. Pick an arbitraryw ∈ Φ(u) ∩ IBr(x) (if there is any).
As y′ − g(u) ∈ G(w) ∩ IBb(ȳ) and y′ − g(v) ∈ IBb(ȳ), we get

d(w,Φ(v)) = d
(
w,G−1(y′ − g(v))

) ≤ κ d
(
y′ − g(v),G(w) ∩ IBb(ȳ)

)
≤ κ‖g(u)− g(v)‖.

This means that

e
(
Φ(u) ∩ IBr(x),Φ(v)

) ≤ κ‖g(u)− g(v)‖ ≤ κμ ‖u − v‖
whenever u, v ∈ IBr(x).

The assumptions of [4, Theorem 5E.2] are verified. The existence of x′ ∈
IB2κ ′β+α(x̄) satisfying (5) is established.

Now, let G be strongly regular on IBa(x̄) for IBb(ȳ) with the constant κ .
To prove the uniqueness, it is enough to show that the mapping IBβ(ȳ) �
y �−→ σ(y) := (g + G)−1(y) ∩ IB2κ ′β+α(x̄) is nowhere multivalued. Assume on
the contrary that for some y ∈ IBβ(ȳ) there are two distinct points x1, x2 ∈
σ(y). Clearly, x1 ∈ G−1(y − g(x1)) ∩ IBa(x̄) and x2 ∈ G−1(y − g(x2)) ∩ IBa(x̄).
By (6), the points y − g(x1) and y − g(x2) are in IBb(ȳ). Hence 0 < ‖x1 − x2‖ ≤
κ‖g(x1)− g(x2)‖ ≤ κμ‖x1 − x2‖ < ‖x1 − x2‖, a contradiction. �

If, in addition to the assumptions of Theorem 2.3, we have (x̄, ȳ) ∈ gphG,
then we arrive at [5, Theorem 2.3] which is a slight improvement [4, Theorem
5G.3], where it is supposed that G is regular at x̄ for ȳ with the constant κ and
neighbourhoods IBa(x̄) and IBb(ȳ).

Remark 2.4: Under the strong regularity, the reasoning used at the end of the
proof of Theorem 2.3 implies that the function σ , defined therein, is Lipschitz
continuous relative to dom σ ⊂ IBβ(ȳ) with the constant κ ′. If, in addition,(

IBα(x̄)× IBβ(ȳ)
) ∩ gph(g + G) 	= ∅, (7)

then dom σ = IBβ(ȳ) and consequently g+G is strongly regular on IB2κ ′β+α(x̄)
for IBβ(ȳ). Note that (7) holds, for example, when (x̄, ȳ) ∈ gphG.
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We also get the following uniformity result.

Corollary 2.5: Under assumptions of Theorem 2.3, let γ ∈ [0,α), δ ∈ [0,β),
and (x, y) ∈ IBγ (x̄)× IBδ(ȳ) be arbitrary. Then the mapping g+G is regular on
IBα−γ (x) for IBβ−δ(y) with the constant κ ′.

Proof: Let constants γ and δ along with a pair (x, y) be as in the premise. Set
U := IBα−γ (x) and V := IBβ−δ(y). We have to show that

d
(
u, (g + G)−1(v)

) ≤ κ ′ d(v, (g + G)(u) ∩ V) for every (u, v) ∈ U × V .

Fix any such a pair (u, v). Pick an arbitrary v′ ∈ (g + G)(u) ∩ V (if there is any).
Noting that U × V ⊂ IBα(x̄)× IBβ(ȳ), Theorem 2.3 yields u′ ∈ (g + G)−1(v)

with ‖u − u′‖ ≤ κ ′‖v − v′‖. Hence d(u, (g + G)−1(v)) ≤ ‖u − u′‖ ≤ κ ′‖v −
v′‖. As v′ ∈ (g + G)(u) ∩ V was arbitrary, the proof is finished. �

We shownow that the regularity at each point of a compact set implies uniform
regularity, that is, we can choose the same constant and neighbourhoods for all
points in this set.

Theorem 2.6: Let (P, �) be a metric space, let (X, ‖ · ‖) and (Y , ‖ · ‖) be Banach
spaces, and let � be a compact subset of P × X. Consider a set-valued mapping
F : X ⇒ Y and a mapping σ : P × X → Y such that

(i) for each z = (p, x) ∈ � the mapping X � v �−→ Gp(v) := σ(p, v)+ F(v) ⊂
Y has a locally closed graph at (x, 0) and is [strongly] regular at x for 0;

(ii) for each z = (p, x) ∈ � and each μ > 0 there is δ > 0 such that for each v,
v′ ∈ IBδ(x) and each p′ ∈ IBδ(p) we have

‖[σ(p′, v′)− σ(p, v′)] − [σ(p′, v)− σ(p, v)]‖ ≤ μ‖v − v′‖;

(iii) for each x ∈ X the function σ(·, x) is continuous.

Then there are positive constants a, b, and κ such that for each z = (p, x) ∈ � the
mapping Gp is [strongly] regular at x for 0 with the constant κ and neighbourhoods
IBa(x) and IBb(0).

Proof: Fix any z̄ = (p̄, x̄) ∈ �. Using (i), we find positive constants az̄, bz̄, and κz̄
such that the set gphGp̄ ∩ (IBaz̄(x̄)× IBbz̄(0)) is closed in X × Y and Gp̄ is regu-
lar on IBaz̄(x̄) for IBbz̄(0) with the constant κz̄. Let μz̄ := 1/(2κz̄) and κ ′

z̄ := 3κz̄.
Then κz̄μz̄ < 1 and κ ′

z̄ > 2κz̄ = κz̄/(1 − κz̄μz̄). In view of (ii), there is αz̄ ∈
(0,min{az̄/2, 3κz̄bz̄/4}) such that for each v, v′ ∈ IB2αz̄(x̄) and each p ∈ IBαz̄(p̄)
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we have

‖[σ(p, v)− σ(p̄, v)] − [σ(p, v′)− σ(p̄, v′)]‖ ≤ μz̄‖v − v′‖. (8)

Let βz̄ := αz̄/(2κ ′
z̄). Then

2κ ′
z̄βz̄ + αz̄ = 2αz̄ < az̄ and μz̄(2κ ′

z̄βz̄ + αz̄)+ 2βz̄

= αz̄

κz̄
+ αz̄

3κz̄
= 4αz̄

3κz̄
< bz̄. (9)

Now, (iii) implies that there is rz̄ ∈ (0,αz̄/2) such that

‖σ(p, x̄)− σ(p̄, x̄)‖ ≤ βz̄ for all p ∈ IBrz̄(p̄). (10)

Pick any z = (p, x) ∈ (intIBrz̄(p̄)× intIBrz̄(x̄)) ∩�. Define a mapping gp,p̄ :
X → Y by

gp,p̄(v) := σ(p, v)− σ(p̄, v), v ∈ X.

Then Gp = Gp̄ + gp,p̄. By (8), for any v, v′ ∈ IB2αz̄(x̄) we have

‖gp,p̄(v)− gp,p̄(v′)‖ ≤ μz̄‖v − v′‖.
Using (10) we get ‖gp,p̄(x̄)‖ ≤ βz̄. Applying Theorem 2.3 we conclude that the

following claim holds: for every y, y′ ∈ IBβz̄(0) and every v ∈ G−1
p (y′) ∩ IBαz̄(x̄)

there exists v′ ∈ G−1
p (y) such that ‖v − v′‖ ≤ κ ′

z̄ ‖y − y′‖.
As z ∈ �, we have 0 ∈ Gp(x). We show next that

d(v,G−1
p (y)) ≤ κ ′

z̄ d(y,Gp(v)) for all (v, y) ∈ IBκ ′
z̄βz̄/3

(x)× IBβz̄/3(0). (11)

To see this fix any such a pair (v, y). Pick an arbitrary y′ ∈ Gp(v) (if there is any).
The choice of βz̄ and rz̄ implies that

IBκ ′
z̄βz̄
(x) = IBαz̄/2(x) ⊂ IBαz̄(x̄).

First, assume that ‖y′‖ ≤ βz̄. The claim yields v′ ∈ G−1
p (y) with ‖v − v′‖ ≤

κ ′
z̄ ‖y − y′‖. Consequently,

d(v,G−1
p (y)) ≤ ‖v − v′‖ ≤ κ ′

z̄ ‖y − y′‖.
On the other hand, assuming that ‖y′‖ > βz̄, we have ‖y′ − y‖ > βz̄ − βz̄/3 =
2βz̄/3. Then using the claim, with (y′, v) := (0, x), we find v′ ∈ G−1

p (y) such that
‖x − v′‖ ≤ κ ′

z̄ ‖y‖. Consequently,
d(v,G−1

p (y)) ≤ ‖v − x‖ + d(x,G−1
p (y)) ≤ ‖v − x‖ + ‖x − v′‖

≤ ‖v − x‖ + κ ′
z̄ ‖y‖

≤ κ ′
z̄βz̄/3 + κ ′

z̄βz̄/3 = 2κ ′
z̄βz̄/3 < κ ′

z̄‖y − y′‖.
We have shown that d(v,G−1

p (y)) ≤ κ ′
z̄ ‖y − y′‖ for any y′ ∈ Gp(v), which

proves (11).
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Summarizing, for each z = (p, x) ∈ (intIBrz̄(p̄)× intIBrz̄(x̄)) ∩� the map-
ping Gp is regular at x for 0 with the constant κ ′

z̄ and neighbourhoods
IBκ ′

z̄βz̄/3
(x) and IBβz̄/3(0), that is, the size of neighbourhoods and the constant

of regularity are independent of z in a vicinity of z̄. From the open cover-
ing ∪z̄=(p̄,x̄)∈�([intIBrz̄(p̄)× intIBrz̄(x̄)] ∩�) of � choose a finite subcovering
Oi := [intIBrz̄i (p̄i)× intIBrz̄i (x̄i)] ∩�, i = 1, 2, . . . , k. Let a = min{κ ′

z̄iβz̄i/3 | i =
1, . . . , k}, κ = max{κ ′

z̄i | i = 1, . . . , k}, and b = min{βz̄i/3 | i = 1, . . . , k}. For
any z = (p, x) ∈ � there is an index i ∈ {1, . . . , k} such that z ∈ Oi. Hence the
mapping Gp is regular at x for 0 with the constant κ and neighbourhoods IBa(x)
and IBb(0).

Under the assumption of strong regularity one uses Remark 2.4 (or the strong
regularity part of Theorem 5G.3 in [4]). �

Remark 2.7: Note that (ii) in Theorem 2.6 is satisfied, in particular, when σ has a
point-based approximation on� in the sense of Robinson [6]. Theorem 2.6 yields
[5, Lemma 0]. Moreover, given a non-empty subset � of a metric space, define
themeasure of non-compactness of� by

χ(�) := inf{r > 0 |� ⊂ �F + IBr(0) for some finite subset�F of�}.
Then Theorem 2.6 holds provided that χ(�) is strictly smaller than the infimum
of the reciprocal values of the regularity moduli of the mappings appearing in
(i). This statement is a key element in the proof of the non-smooth versions of
Robinson and Lyusternik-Graves theorems, cf. [1, Step 1] and [2, Lemma 12].

Next statement guarantees uniform [strong] regularity along continuous
paths.

Theorem 2.8: Let T>0 be fixed and let (X, ‖ · ‖) and (Y , ‖ · ‖) be Banach
spaces. Consider a set-valuedmapping F : X ⇒ Y with closed graph, amapping σ :
[0,T] × X → Y , and two continuous mappings ϕ : [0,T] → X and ψ : [0,T] →
Y such that

(i) for each t ∈ [0,T] the mapping X � v �−→ Gt(v) := σ(t, v)+ F(v) ⊂ Y is
[strongly] regular at ϕ(t) for ψ(t);

(ii) for each t ∈ [0,T] and each μ > 0 there is δ > 0 such that for each v, v′ ∈
IBδ(ϕ(t)) and each t′ ∈ IBδ(t) we have

‖[σ(t′, v′)− σ(t, v′)] − [σ(t′, v)− σ(t, v)]‖ ≤ μ‖v − v′‖;
(iii) for each x ∈ X the function σ(·, x) is continuous.

Then there are positive constants a, b, and κ such that for each t ∈ [0,T]
the mapping Gt is [strongly] regular at ϕ(t) for ψ(t) with the constant κ and
neighbourhoods IBa(ϕ(t)) and IBb(ψ(t)).



OPTIMIZATION 557

Proof: Apply Theorem 2.6 with P := [0,T] × Y , a (compact) set � :=⋃
t∈[0,T](t,ψ(t),ϕ(t)), and σ(p, x) := σ(t, x)− y, p = (t, y) ∈ P, x ∈ X. �

Clearly, we can replace the interval [0,T] by any compact metric space in the
above statement.

3. Path-following for differential generalized equations

Consider the DGE (1), with T>0, single-valued functions g : R
n × R

m → R
n

and f : R
n × R

m → R
d, a set-valued mapping F : R

m ⇒ R
d, and an initial state

xI ∈ R
n. If it is not clearly indicated otherwise we impose the following:

Standing assumptions (SA).Consider theDGE (1) and suppose that f and g are
differentiable functions with a locally Lipschitz continuous derivative, and that F
has a closed graph. Further, let a pair of functions (x̄(·), ū(·)) be a solution of (1)
such that both of themare differentiable on [0,T] andhave a Lipschitz continuous
derivative on this interval.

For an integerN>1, consider the uniform grid ti := ih, i ∈ {0, 1, . . . ,N}, with
a step size h := T/N. Given � > 0 and points (ei)N

−1
i=0 in IB�h2(0), consider the

following iteration⎧⎪⎨⎪⎩
x̃i+1 = xi + hg(xi, ui),
ei ∈ f (̃xi+1, ui)+ ∇uf (̃xi+1, ui)(ui+1 − ui)+ F(ui+1),
xi+1 = xi + h

2 (g(xi, ui)+ g(̃xi+1, ui+1)),
(12)

with (x0, u0) sufficiently close to (x̄(0), ū(0)). The reason for allowing x0 	= xI is
that for a given time interval I := [−T,T], say, one cannot expect that ū(·) is dif-
ferentiable on the whole of I in general (for example when a geometric constraint
represented by the generalized equation is a variational inequality). However, ū(·)
can be piece-wise smooth on I and the starting point x0 can be viewed as a final
iterate obtained by a numerical algorithm on the previous subinterval [−T, 0]. In
fact, this is the case in our numerical examples. As noted by an anonymous referee
the assumptions on the differentiability of ū(·) could be relaxed by employing the
averaged modulus of smoothness to obtain the same estimates when the deriva-
tive of ū(·) is of bounded variation only; also one can consider more general
Runge-Kutta approximations as in [7]. However, we prefer to keep the presen-
tation as clear as possible and use a modification of the classical trapezoidal rule
[8] in our analysis.

Lemma 3.1: Let ϕ : [a, b] → R be a function with a Lipschitz continuous deriva-
tive on [a, b]. Then there is a constant m>0 such that for each t1, t2 ∈ [a, b], with
t1 < t2, we have∣∣∣∣(t2 − t1)

2
(
ϕ(t1)+ ϕ(t2)

)−
∫ t2

t1
ϕ(t) dt

∣∣∣∣ ≤ m(t2 − t1)3.
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Proof: Let � > 0 be a Lipschitz constant of ϕ̇ on [a, b]. Fix arbitrary t1, t2 ∈
[a, b] with t1 < t2 and let h := t2 − t1. Find τ1 and τ2 in [t1, t2] such that
ϕ̇(τ1) = minτ∈[t1,t2] ϕ̇(τ ) and ϕ̇(τ2) = maxτ∈[t1,t2] ϕ̇(τ ). Consider a functionψ :
[t1, t2] → R defined by

ψ(t) := ϕ(t)− ϕ̇(τ1)+ ϕ̇(τ2)

2
t, t ∈ [t1, t2].

For each t ∈ [t1, t2], we have ϕ̇(τ1) ≤ ϕ̇(t) ≤ ϕ̇(τ2), and consequently

− �h
2

≤ −�
2
|τ1 − τ2| ≤ 1

2
(ϕ̇(τ1)− ϕ̇(τ2))

≤ ψ̇(t) ≤ 1
2
(ϕ̇(τ2)− ϕ̇(τ1)) ≤ �

2
|τ2 − τ1| ≤ �h

2
.

Thus maxτ∈[t1,t2] |ψ̇(τ )| ≤ �h/2. Basic calculus and the mean value theorem
imply that∣∣∣∣h2 (ϕ(t1)+ ϕ(t2)

)−
∫ t2

t1
ϕ(t) dt

∣∣∣∣
=
∣∣∣∣h2 (ψ(t1)+ ψ(t2)

)−
∫ t2

t1
ψ(t) dt

∣∣∣∣
=
∣∣∣∣∣
∫ t1+h/2

t1
[ψ(t1)− ψ(t)] dt +

∫ t2

t1+h/2
[ψ(t2)− ψ(t)] dt

∣∣∣∣∣
≤ max
τ∈[t1,t2]

|ψ̇(τ )|
(∫ t1+h/2

t1
(t − t1) dt +

∫ t2

t1+h/2
(t2 − t) dt

)

= max
τ∈[t1,t2]

|ψ̇(τ )|
(
h2

8
+ h2

8

)
≤ �

8
h3.

As � is independent of both t1 and t2, settingm := �/8 we finish the proof. �

Theorem 3.2: In addition to (SA), suppose that for each t ∈ [0,T] the mapping

R
m � v �−→ Gt(v) := f (x̄(t), ū(t))+ ∇uf (x̄(t), ū(t))(v − ū(t))+ F(v) ⊂ R

d

(13)
is [strongly] regular at ū(t) for 0. Then for any � > 0 there are N0 ∈ N and pos-
itive constants α and d̄ such that for each N > N0, each (x0, u0) ∈ IB�h2(x̄(0))×
IB�h2(ū(0)), and each (ei)N−1

i=0 in IB�h2(0), where h := T/N, there are [uniquely
determined] points (xi, ui) ∈ R

n × R
m, i ∈ {1, . . . ,N}, generated by the itera-

tion (12), with the initial point (x0, u0), such that (xi, ui) ∈ IBα(x̄(ti))× IBα(ū(ti))
for each i ∈ {1, . . . ,N} satisfying

max
0≤i≤N

‖xi − x̄(ti)‖ ≤ d̄h2 and max
0≤i≤N

‖ui − ū(ti)‖ ≤ d̄h2. (14)
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Proof: Let a (continuous) function σ be defined by σ(t, v) := f (x̄(t), ū(t))+
∇uf (x̄(t), ū(t))(v − ū(t)), (t, v) ∈ [0,T] × R

m. For each t ∈ [0,T] and eachμ >
0, the continuity of the function s �−→ ∇uf (x̄(s), ū(s)) at t yields a constant δ > 0
such that

‖∇uf (x̄(t′), ū(t′))− ∇uf (x̄(t), ū(t))‖ < μ

whenever t′ ∈ (t − δ, t + δ) ∩ [0,T],

consequently, for any such t′ and arbitrary v, v′ ∈ R
m we have

‖[σ(t′, v′)− σ(t, v′)] − [σ(t′, v)− σ(t, v)]‖
= ‖[∇uf (x̄(t′), ū(t′))− ∇uf (x̄(t), ū(t))](v′ − v)‖
≤ μ‖v − v′‖.

Theorem 2.8, with ϕ := ū(·) andψ ≡ 0, yields positive constants a, b, and κ such
that for each t ∈ [0,T] the mapping Gt is [strongly] regular at ū(t) for 0 with the
constant κ and neighbourhoods IBa(ū(t)) and IBb(0). Find �1 > 0 such that both
x̄(·) and ū(·) are Lipschitz continuous on [0,T] with the constant �1. Let r>0 be
such that x̄([0,T])+ aIBRn ⊂ rIBRn and ū([0,T])+ aIBRm ⊂ rIBRm . Pick �2 > 0
such that f, g, and ∇uf are Lipschitz continuous on the (compact) set rIBRn ×
rIBRm . Let

κ ′ := 2κ , μ := 1/(3κ), and � := max{1, �1, �2}. (15)

By the basic calculus, for every u, u′ ∈ rIBRm and every x ∈ rIBRn , we have

‖f (x, u′)− f (x, u)− ∇uf (x, u)(u′ − u)‖ ≤ �

2
‖u′ − u‖2. (16)

Let

α := min{1, a/2, 1/(6�κ), a/(16κ�), 3κb/(20κ�+ 1)} and β := 2�α. (17)

We show the following claim: For any (t, u, x, y) ∈ [0,T] × IBα(ū(t))×
IBα(x̄(t))× IBβ(0), there is a [unique] point w ∈ IBα(ū(t)) such that y ∈ f (x, u)+
∇uf (x, u)(w − u)+ F(w) and

‖w − ū(t)‖ ≤ κ ′�(‖x − x̄(t)‖ + ‖u − ū(t)‖2 + ‖y‖).
To prove this, fix any such (t, u, x, y) and consider a function ϕ : R

m → R
d

defined by

ϕ(v) := f (x, u)+ ∇uf (x, u)(v − u)− f (x̄(t), ū(t))

− ∇uf (x̄(t), ū(t))(v − ū(t)), v ∈ R
m.

We are going to use Theorem 2.3 (with G := Gt and g := ϕ). Note that Gt has
closed graph. Clearly (15) implies κμ < 1 and κ ′ > 3κ/2 = κ/(1 − μκ).We also
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get

2κ ′β + α = (8κ�)α + α ≤ a/2 + a/2 = a,

and, consequently, we obtain that

μ(2κ ′β + α)+ 2β = 8κ�α + α

3κ
+ 4α� = α

20κ�+ 1
3κ

≤ b.

As u ∈ IBα(ū(t)) ⊂ IBa(ū(t)) ⊂ rIBRm and x ∈ IBα(x̄(t)) ⊂ IBa(x̄(t)) ⊂ rIBRn , by
(16) we get

‖ϕ(ū(t))‖ = ‖f (x̄(t), ū(t))− f (x, u)− ∇uf (x, u)(ū(t)− u)‖
≤ ‖f (x̄(t), ū(t))

− f (x, ū(t))‖ + ‖f (x, ū(t))− f (x, u)− ∇uf (x, u)(ū(t)− u)‖

≤ �‖x̄(t)− x‖ + �

2
‖ū(t)− u‖2 < �α + �α2 ≤ 2�α = β . (18)

Since 2�α ≤ 1/(3κ) = μ, for arbitrary v, v′ ∈ R
m, we have

‖ϕ(v)− ϕ(v′)‖ = ‖(∇uf (x, u)− ∇uf (x̄(t), ū(t))(v − v′)‖
≤ �

(‖x − x̄(t)‖ + ‖u − ū(t)‖)‖v − v′‖
≤ 2�α‖v − v′‖ ≤ μ‖v − v′‖.

Moreover, observing that ϕ + Gt = f (x, u)+ ∇uf (x, u)(· − u)+ F, we get

ϕ(ū(t)) = f (x, u)+ ∇uf (x, u)(ū(t)− u)− f (x̄(t), ū(t))

∈ f (x, u)+ ∇uf (x, u)(ū(t)− u)+ F(ū(t)) = (ϕ + Gt)
(
ū(t)

)
.

Hence ū(t) ∈ (ϕ + Gt)−1(ϕ(ū(t))) and ϕ(ū(t)) ∈ IBβ(0). Remembering that y ∈
IBβ(0). Theorem 2.3 implies that there is w ∈ (ϕ + Gt)−1(y) such that ‖w −
ū(t)‖ ≤ κ ′‖y − ϕ(ū(t))‖. Then y ∈ f (x, u)+ ∇uf (x, u)(w − u)+ F(w) and (18)
implies that

‖w − ū(t)‖ ≤ κ ′(‖y‖ + �‖x − x̄(t)‖ + �‖u − ū(t)‖2),
which proves the claim because � ≥ 1.

Use Lemma 3.1 to find m>0 such that for each τ1, τ2 ∈ [0,T], with τ1 < τ2,
we have∥∥∥∥(τ2 − τ1)

2
(
g(x̄(τ1), ū(τ1))+ g(x̄(τ2), ū(τ2))

)−
∫ τ2

τ1

g(x̄(t), ū(t)) dt
∥∥∥∥

≤ m(τ2 − τ1)
3. (19)

Pick an arbitrary� > 0. Let

q := max{4�2,�, κ ′�,T2,m}, λ := 4q3, and d̄ := q
(
TλeTλ + 4q

)
.
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ChooseN0 ∈ N such that 2d̄ < N0 and qT ≤ N0 min{α,β}. Fix anyN > N0 and
let h := T/N. Then

h <
T
N0

≤
√q
N0

<

√q
2d̄

<
1
2

and h ≤ qh < q
T
N0

≤ min{α,β}. (20)

Let (x0, u0) ∈ IB�h2(x̄(0))× IB�h2(ū(0)) and (ei)
N−1
i=0 in IB�h2(0) be arbitrary. For

each i ∈ {0, 1, . . . ,N}, let ti := ih and ci := λieλih. Since q ≥ �, we have

‖x0 − x̄(0)‖ ≤ qh2 = (c0h + q)h2 and

‖u0 − ū(0)‖ ≤ qh2 < q(c0h + 4q)h2.

As qh2 < qh/2 < α/2 we have (x0, u0) ∈ IBα(x̄(t0))× IBα(ū(t0)). We proceed
by induction. Suppose that for some i ∈ {0, 1, . . . ,N − 1} a point (xi, ui) ∈
IBα(x̄(ti))× IBα(ū(ti)) verifies

‖xi − x̄(ti)‖ ≤ (cih + q)h2 and ‖ui − ū(ti)‖ ≤ q(cih + 4q)h2. (21)

We will show that there are [uniquely determined] points x̃i+1, xi+1 ∈
IBα(x̄(ti+1)) and ui+1 ∈ IBα(ū(ti+1)) satisfying (12) such that (21) holds for
i:= i+1.

Let x̃i+1 be defined by the first equality in (12). Clearly, for any s ∈ [ti, ti+1],
we have

‖g(xi, ui)− g(x̄(s), ū(s))‖
≤ �(‖xi − x̄(s)‖ + ‖ui − ū(s)‖)

≤ �(‖xi − x̄(ti)‖ + �(s − ti)+ ‖ui − ū(ti)‖ + �(s − ti))

= �(‖xi − x̄(ti)‖ + ‖ui − ū(ti)‖)+ 2�2(s − ti). (22)

As cih < TλeTλ and �d̄h < q/4, using (22) and (20) we get

‖̃xi+1 − x̄(ti+1)‖ =
∥∥∥∥xi + hg(xi, ui)− x̄(ti)−

∫ ti+1

ti
g(x̄(s), ū(s)) ds

∥∥∥∥
≤ ‖xi − x̄(ti)‖ +

∫ ti+1

ti
‖g(xi, ui)− g(x̄(s), ū(s))‖ ds

≤ ‖xi − x̄(ti)‖ + �h(‖xi − x̄(ti)‖ + ‖ui − ū(ti)‖)+ �2h2

= (1 + �h)‖xi − x̄(ti)‖ + �h‖ui − ū(ti)‖ + �2h2

≤ (1 + �h)(cih + q)h2 + �d̄h3 + �2h2

= (
cih + �(cih + q)h + q + �d̄h + �2

)
h2

<
(
cih + �d̄h + q + �d̄h + q/4

)
h2

<
(
cih + q/4 + q + q/4 + q/4

)
h2

<
(
cih + 2q

)
h2 < (d̄/q)h2 = h(d̄h)/q < h/2 < α/2. (23)
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In particular x̃i+1 ∈ IBα(x̄(ti+1)). Remembering that cih < TλeTλ, (21) and (20)
yield that

‖ui − ū(ti+1)‖ ≤ ‖ui − ū(ti)‖ + ‖ū(ti)− ū(ti+1)‖ < q(TλeTλ + 4q)h2 + �h

= (d̄h)h + �h <
√
qh < α. (24)

Clearly, ei ∈ IBβ(0). The claim with t := ti+1, y := ei, x := x̃i+1, and u := ui
together with (23), (24), and (20) yields a [unique] point ui+1 ∈ IBα(ū(ti+1)) such
that

ei ∈ f (̃xi+1, ui)+ ∇uf (̃xi+1, ui)(ui+1 − ui)+ F(ui+1)

satisfying

‖ui+1 − ū(ti+1)‖ ≤ q(‖̃xi+1 − x̄(ti+1)‖ + ‖ui − ū(ti+1)‖2 + ‖ei‖)
< q

(
cih + 2q + q +�

)
h2 ≤ q(cih + 4q)h2. (25)

As ci < ci+1, we obtain the latter estimate in (21)with i:= i+1. Let xi+1 be defined
by the last equality in (12). Now (19), (21), (23), (25), and (20) imply that

‖xi+1 − x̄(ti+1)‖

=
∥∥∥∥xi + h

2
(
g(xi, ui)+ g(̃xi+1, ui+1)

)− x̄(ti)−
∫ ti+1

ti
g(x̄(s), ū(s)) ds

∥∥∥∥
≤ ‖xi − x̄(ti)‖ + mh3 + h

2
∥∥g(xi, ui)+ g(̃xi+1, ui+1)

−g(x̄(ti), ū(ti))− g(x̄(ti+1), ū(ti+1))
∥∥

≤ (cih + q)h2 + mh3 + �h
2
(‖xi − x̄(ti)‖

+ ‖ui − ū(ti)‖ + ‖̃xi+1 − x̄(ti+1)‖ + ‖ui+1 − ū(ti+1)‖
)

≤ (ci + m)h3 + qh2

+ �h
2
(
(cih + q)h2 + q(cih + 4q)h2 + (cih + 2q)h2 + q(cih + 4q)h2

)
< (ci + q)h3 + h3

4
(
q(cih + q)+ q2(cih + 4q)

+ q(cih + 2q)+ q2(cih + 4q)
)+ qh2

= ci
(
1 + (q + q2)h/2

)
h3 + (q + 3q2/4 + 2q3)h3

+ qh2 < ci(1 + 4q3h
)
h3 + 4q3h3 + qh2

= ci
(
1 + λh

)
h3 + λh3 + qh2 ≤ λieλ(i+1)hh3 + λeλ(i+1)hh3 + qh2

= λ(i + 1)eλ(i+1)hh3 + qh2 = (ci+1h + q)h2.
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The first estimate in (21) with i:= i+1 is proved. Since (ci+1h + q)h2 <
d̄h2 < qh/2 < α/2, we have xi+1 ∈ IBα(x̄(ti+1)). The induction step is com-
plete and so is the proof by noting that for each i ∈ {0, 1, . . . ,N} we have
cih ≤ TλeTλ. �

If ū(·) is only Lipschitz continuous on [0,T], one can consider the following
iteration: {

xi+1 = xi + hg(xi, ui),
ei ∈ f (xi+1, ui)+ ∇uf (xi+1, ui)(ui+1 − ui)+ F(ui+1).

(26)

Using a similar technique as in the proof of Theorem 3.2 we obtain:

Theorem 3.3: Consider the DGE (1) and suppose that f and g are differ-
entiable functions with a locally Lipschitz continuous derivative, and that F
has a closed graph. Let a pair of functions (x̄(·), ū(·)) be a solution of (1)
such that both x̄(·) and ū(·) are Lipschitz continuous on [0,T]. Suppose that
for each t ∈ [0,T] the mapping Gt in (13) is [strongly] regular at ū(t) for
0. Then for any � > 0 there are N0 ∈ N and positive constants α and d̄
such that for each N > N0, each (x0, u0) ∈ IB�h(x̄(0))× IB�h(ū(0)), and each
(ei)N−1

i=0 in IB�h(0), where h := T/N, there are [uniquely determined] points
(xi, ui) ∈ R

n × R
m, i ∈ {1, . . . ,N}, generated by the iteration (26), with the initial

point (x0, u0), such that (xi, ui) ∈ IBα(x̄(ti))× IBα(ū(ti)) for each i ∈ {1, . . . ,N}
satisfying

max
0≤i≤N

‖xi − x̄(ti)‖ ≤ d̄h and max
0≤i≤N

‖ui − ū(ti)‖ ≤ d̄h. (27)

The above statement is a slight extension of [3, Theorem 5.1]. Next, we dis-
cuss two basic examples from engineering, which can be formulated either as
a DGE or an ODE with a Lipschitz continuous right-hand side. We compare
schemes (12) and (26) with the method ODE45 which is used with the absolute
error tolerance 10−12 to get a reference solution trajectory. All simulations are
performed in MATLAB.

Example 3.4: Consider a particle of massm>0 connected by a rigid, weightless
rod of length � > 0 to a base by means of a pin joint that can rotate in a plane due
to gravity. In addition, the pendulum can have a contact with two walls made of
a very flexible material which are at a distance r>0 from a pin joint. The con-
tact force acting on the mass at time t is denoted by u(t); and ϕ1(t) and ϕ2(t)
denote the angular displacement and the angular velocity at time t, respectively
(see Figure 1).
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Figure 1. Mechanical model from Example 3.4.

The equations of motion of the system are⎧⎪⎪⎨⎪⎪⎩
ϕ̇1(t) = ϕ2(t),

ϕ̇2(t) = −g
�
sinϕ1(t)− 1

�m
H(ϕ1(t)),

ϕ1(0) = γ1, ϕ2(0) = γ2,

for all t ∈ [0,T],

with given initial conditions γ1, γ2 ∈ R, a gravitational acceleration g=9.81
ms−2, and u(t) = H(ϕ1(t)) describing the dependence of the contact force on
the angular displacement. We assume that

H(ϕ) =

⎧⎪⎨⎪⎩
argsinh(ϕ − arcsin (r/�)) for ϕ > arcsin (�/r),
argsinh(ϕ + arcsin (r/�)) for ϕ < − arcsin (�/r),
0 otherwise.

The corresponding DGE has form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̇1(t) = ϕ2(t),
ϕ̇2(t) = − g

�
sinϕ1(t)− 1

�mu(t),
0 ∈ −ϕ1(t)+ sinh u(t)+ arcsin (r/�)∂| · |(u(t)),
ϕ1(0) = γ1, ϕ2(0) = γ2,

for all t ∈ [0,T],

where ∂ denotes a subdifferential in the sense of convex analysis. The solution
for � = m := 1, r := sin 1, T := 2, γ1 = π/3, and γ2 = 0 is in Figure 2. The grid
errors with respect to the solution obtained by ODE45 are in Figure 3. For both
the schemes (12) and (26), we use the discretion step h = 10−5 and ei = 0, i ∈
{0, 1, . . . ,N − 1}.

Example 3.5: Consider a circuit in Figure 4 involving the four-diodes bridge
full-wave rectifier, a resistor with a resistance R>0, a capacitor with the capac-
itance C0 > 0 and an inductor with the inductance L>0. Denote vC a voltage
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Figure 2. The solution from Example 3.4. (a) The first component ϕ1, (b) The second component
ϕ2 and (c) The third component u.

Figure 3. Errors of the solution from Example 3.4. (a) Grid errors of the scheme (12) and (b) Grid
errors of the scheme (26).
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Figure 4. The circuit from Example 3.5.

across the capacitor, iC a current through the capacitor, iL a current through
the inductor, iDF1, iDF2, iDR1, iDR2 currents through the diodes, and vDF1, vDF2,
vDR1, vDR2 voltages across the diodes, respectively. Using the Kirchhoff ’s laws,
this problem can be described as a particular DGE (see [9]) called a differential
linear complementarity problem (system) in the form⎧⎪⎨⎪⎩

ẋ(t) = Ax(t)+ Bu(t),
0 ≤ Cx(t)+ Du(t) ⊥ u(t) ≥ 0,
x(0) = xI ,

t ∈ [0,T], (28)

where

x :=
(
vC
iL

)
, A :=

⎛⎜⎝0 − 1
C0

1
L

0

⎞⎟⎠ , B :=
⎛⎝0 0 − 1

C0

1
C0

0 0 0 0

⎞⎠ ,

u :=

⎛⎜⎜⎝
−vDR1
−vDF2
iDF1
iDR2

⎞⎟⎟⎠ , C :=

⎛⎜⎜⎝
0 0
0 0

−1 0
1 0

⎞⎟⎟⎠ , D :=

⎛⎜⎜⎜⎜⎜⎝
1
R

1
R

−1 0
1
R

1
R

0 −1

1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

the symbol ⊥ denotes a complementarity relation, and inequalities in R
4 are

understood coordinate-wise. From (28) we have vDR1(t) = −max{vC(t), 0},
vDF2(t) = −max{−vC(t), 0}, iDF1(t) = 1/Rmax{vC(t), 0}, and iDR2(t) = 1/R
max{−vC(t), 0} for each t ∈ [0,T]. Hence the problem is equivalent to the system
of ordinary differential equations, in the form

ẋ(t) = Ax(t)+ Bu(t), t ∈ [0,T], and x(0) = xI .

For the simulation we use library LCP1 and assume that C0 := 10−6, L:=0.01,
R:=1000, T:=0.005, and xI := [10, 0]. For both the schemes (12) and (26), we
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Figure 5. Graphs of the solution from Example 3.5. (a) The first component of x(·), (b) The second
component of x(·), (c) The first component of u(·), (d) The second component of u(·), (e) The third
component of u(·) and (f ) The fourth component of u(·).

use the discretion steph = 10−8 and ei = 0, i ∈ {0, 1, . . . ,N − 1}. Graphs of solu-
tion components are in Figure 5 while grid errors are in Figure 6. We note that
the maximal grid error means the biggest error of elements of u or x at the points
of the grid.

To conclude this section, let us point out that a similar technique, can be used
also in the case of a parametric generalized equation, which is a problem for a
fixed function p : [0,T] → R

n, find a function z : [0,T] → R
n such that

p(t) ∈ f (z(t))+ F(z(t)) for all t ∈ [0,T], (29)

where a constant T>0, a function f : R
n → R

n and a set-valued mapping F :
R
n ⇒ R

n are given. This problem can be used, for example, for modelling static
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Figure 6. Errors of the solution from Example 3.5. (a) Maximal grid error of the scheme (12) and
(b) Maximal grid error of the scheme (26).

problems from electronics, that is, when no capacitors and inductors appear in
the circuit [10–13].

For an integer N>1, define the uniform grid ti := ih, i ∈ {0, 1, . . . ,N}, with a
step size h := T/N. Given � > 0 and points (ei)N

−1
i=0 in IB�h2(p(ti+1)), we study

a predictor-corrector scheme in the form{
ei ∈ f (zi)+ ∇f (zi)(vi+1 − zi)+ F(vi+1),
p(ti+1) ∈ f (vi+1)+ ∇f (vi+1)(zi+1 − vi+1)+ F(zi+1),

(30)

where z0 is sufficiently close to the exact solution of (29) at time t:=0. Uni-
form regularity along a continuous path was used in [14] to obtain the following
extension of the main result from [15].

Theorem 3.6: Let z̄ : [0,T] → R
n be a Lipschitz continuous solution of the prob-

lem (29), where p : [0,T] → R
n is Lipschitz continuous, f : R

n → R
n has a locally

Lipschitz continuous derivative on whole of R
n, and F : R

n ⇒ R
n has a closed

graph. Suppose that for each t ∈ [0,T] the mapping

R
n � v �−→ Gt(v) := f (z̄(t))+ ∇f (z̄(t))(v − z̄(t))+ F(v) ⊂ R

n

is [strongly] regular at z̄(t) for p(t). Then there is α > 0 such that for any � > 0
there are constants N0 ∈ N and c>0 such that for each N > N0 and each z0 ∈
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IB�h4(z̄(t0)), where h := T/N, there are [uniquely determined] points (zi)Ni=1 gen-
erated by the iteration (30), with the initial point z0 and arbitrarily chosen points
(ei)N−1

i=0 in IB�h2(p(ti+1)), such that zi ∈ IBα(z̄(ti)) for each i ∈ {0, . . . ,N} and

max
0≤i≤N

‖zi − z̄(ti)‖ ≤ ch4. (31)

The point ei appearing in (30) can be interpreted as a sufficiently precise pre-
diction at time ti of the (possibly unknown) value of p(ti+1). Then we wait until
the precise value of p(ti+1) is known and compute a correction zi+1. On the other
hand, taking ei := p(ti)+ hp′(ti), i ∈ {0, 1, . . . ,N − 1}, we have ‖ei − p(ti+1)‖ ≤
�h2 provided that p′(·) exists and is Lipschitz on [0,T] with the constant 2�.
Hence the algorithm proposed in [4, Section 6G] is a particular case of (30).
Finally, instead of p(ti+1) in the latter inclusion of (30) one can take any ẽi ∈
IB�h4(p(ti+1)), that is, the corrector step can be done via an inexact method
(which is always the case in practice). Finally, let us note that sufficient conditions
(of different type) guaranteeing the existence of a Lipschitz continuous solution
z̄(·) of (29) can be found either in [14, Theorem 6] or [3, Theorem 11].

4. Uniform regularity and regularity in function spaces

In case that the solution trajectory is not continuous (or even defined) on the
whole time interval we can derive the following statement.

Theorem 4.1: Let T>0 and S be a non-empty subset of [0,T]. Consider a pair of
bounded functions x̄ : S → R

n and ū : S → R
m such that

0 ∈ f (x̄(t), ū(t))+ F(ū(t)) for each t ∈ S,

with a continuous f : R
n × R

m → R
d having a continuous derivative ∇uf and F :

R
m ⇒ R

d having a closed graph. Let � := ∪t∈S(x̄(t), ū(t)) and for each (x, u) ∈
cl� define a mapping

R
m � v �−→ Gx,u(v) := f (x, u)+ ∇uf (x, u)(v − u)+ F(v) ⊂ R

d. (32)

Then the following statements are equivalent:

(i) for each (x, u) ∈ cl� the mapping Gx,u is [strongly] regular at u for 0;
(ii) there are positive constants a, b, and κ such that for each (x, u) ∈ cl�

the mapping Gx,u is [strongly] regular at u for 0 with the constant κ and
neighbourhoods IBa(u) and IBb(0);

(iii) there are positive constants a, b, and κ such that for each t ∈ S the map-
ping Gt in (13) is [strongly] regular at ū(t) for 0 with the constant κ and
neighbourhoods IBa(ū(t)) and IBb(0).
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Proof: Assume that (i) holds. Define a (compact) set � := cl(∪t∈S(x̄(t), ū(t),
ū(t))) and a (continuous) function σ(x, u, v) := f (x, u)+ ∇uf (x, u)(v − u),
(x, u, v) ∈ R

n × R
m × R

m. Note that (x, u, v) ∈ � if and only if v=u and
(x, u) ∈ cl�. Theorem 2.6 yields positive constants a, b, and κ such that for
each (x, u, u) ∈ � the mapping Gx,u is [strongly] regular at u for 0 with the con-
stant κ and neighbourhoods IBa(u) and IBb(0). Since (x̄(t), ū(t), ū(t)) ∈ � and
Gt = Gx̄(t),ū(t) for each t ∈ S, (iii) is proved.

Assume that (iii) holds. Let κ ′ := 2κ and μ := 1/(3κ). Then κμ < 1 and
κ ′ > κ/(1 − κμ). Pick r>0 such that x̄(S)+ aIBRn ⊂ rIBRn and ū(S)+ aIBRm ⊂
rIBRm . As f and∇uf are continuous, they are uniformly continuous on a compact
set� := rIBRn × rIBRm . Find β > 0 such that both 2κ ′β + β < a andμ(2κ ′β +
β)+ 2β < b; and also that for each (x, u) ∈ � and each (x′, u′) ∈ (IB2κ ′β+β(x)×
IB2κ ′β+β(u)) ∩� we have

‖∇uf (x′, u′)− ∇uf (x, u)‖ < μ and ‖f (x′, u′)− f (x, u)

− ∇uf (x′, u′)(u′ − u)‖ < β .

Fix any (x, u) ∈ cl� ⊂ �. Then 0 ∈ Gx,u(u) since f is continuous and gph F is
closed. Find t̄ ∈ S such that (x, u) ∈ IBβ(x̄(t̄))× IBβ(ū(t̄)). Then Gx,u = Gt̄ + g,
with

g(v) = f (x, u)+ ∇uf (x, u)(v − u)− f (x̄(t̄), ū(t̄))

− ∇uf (x̄(t̄), ū(t̄))(v − ū(t̄)), v ∈ R
m.

Then ‖g(ū(t̄))‖ = ‖f (x, u)− f (x̄(t̄), ū(t̄))− ∇uf (x, u)(u − ū(t̄))‖ < β . More-
over, for any v, v′ ∈ R

mwehave ‖g(v)− g(v′)‖ = ‖[∇uf (x, u)− ∇uf (x̄(t̄), ū(t̄))]
(v − v′)‖ ≤ μ‖v − v′‖. Applying Theorem 2.3, with α := β , and using a similar
reasoning as in the proof of Theorem 2.6 we conclude that the mapping Gx,u is
[strongly] regular at u for 0 uniformly in (x, u) ∈ cl�. Hence (ii) holds. Clearly,
(ii) implies (i). �

The above statement is a generalization of [3, Theorem 7], where strong regu-
larity is considered only, because it requests point-wise [strong] regularity on the
closure of the range of the solution instead of on the closure of its graph. The func-
tion x̄(·) can be either an input signal in a parametric generalized equation (29)
or a state trajectory of the DGE (1). In the latter case, x̄(·) is continuous on
S = [0,T], so if ū(·) has closed range, then the uniform [strong] regularity of
Gt in (13) on S is equivalent to its point-wise [strong] regularity on S. We also get
the following uniform version of the Lyusternik-Graves and Robinson theorem
which implies [3, Theorem 9] under substantially weaker assumptions.

Theorem 4.2: Let T, S, x̄(·), ū(·), f, and F be as in Theorem 4.1. Then the mapping
Gt = f (x̄(t), ·)+ F is [strongly] regular at ū(t) for 0 uniformly in t ∈ S if and only
if so is the mapping Gt in (13).
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Proof: Suppose that there are positive constants a, b and κ such that for each
t ∈ S the mapping Gt in (13) is [strongly] regular at ū(t) for 0 with the con-
stant κ and neighbourhoods IBa(ū(t)) and IBb(0). Let β , κ ′, μ, r, � be as in
the proof of (iii) ⇒ (ii) in Theorem 4.1. Fix any t ∈ S. Let gt(v) := f (x̄(t), v)−
f (x̄(t), ū(t))− ∇uf (x̄(t), ū(t))(v − ū(t)), v ∈ R

m. Then gt(ū(t)) = 0 and for any
v, v′ ∈ IB2κ ′β+β(ū(t)) we have

‖gt(v)− gt(v′)‖ = ‖f (x̄(t), v)− f (x̄(t), v′)− ∇uf (x̄(t), ū(t))(v − v′)‖

= ‖
∫ 1

0

(∇uf (x̄(t), v′ + s(v − v′))

− ∇uf (x̄(t), ū(t))
)
(v − v′) ds‖

≤ μ‖v − v′‖.
As in Theorem 4.1 we conclude that the mapping Gt = gt + Gt is [strongly] reg-
ular at ū(t) for 0 uniformly in t ∈ S. The converse implication follows in the same
way. �

Before continuing we set up notions used later.
Notation (N). Let a constant T>0, twice differentiable functions f : R

n ×
R
m → R

d and g : R
n × R

m → R
n, and a closed convex subset Uad of R

d be
given. Consider the problem (2). The controls u(·) are assumed to be in U :=
L∞([0,T],Rm), the space of essentially bounded and measurable functions on
[0,T] with values in R

m considered with the norm ‖u(·)‖∞ := ess sup‖u(·)‖,
u(·) ∈ U . The state trajectories x(·) belong to X := W1,∞

0 ([0,T],Rn), the space
of Lipschitz continuous functions on [0,T] with values in R

n satisfying x(0) =
0 equipped with the norm ‖x(·)‖X = ‖x(·)‖∞ + ‖ẋ(·)‖∞, x(·) ∈ X . Let V :=
X × U ,R := L∞([0,T],Rn), P := L∞([0,T],Rd),

Uad := {u(·) ∈ U | u(t) ∈ Uad for a.e. t ∈ [0,T]},
and W := R × P . Given a solution (x̄(·), ū(·)) ∈ V of (2) we set A(t) =
∇xg(x̄(t), ū(t)),B(t) = ∇ug(x̄(t), ū(t)),C(t) = ∇xf (x̄(t), ū(t)),D(t) = ∇uf (x̄(t),
ū(t)), and f̄ (t) = f (x̄(t), ū(t)) for a.e. t ∈ [0,T]. Let � be the fundamental
matrix solution of the linear equation ż = A(t)z, that is, d

dt�(t, τ) = A(t)�(t, τ),
�(τ , τ) = I.

Consider a set-valued mapping H : V ⇒ W defined by

V � (x(·), u(·)) �−→ H(x(·), u(·)) :=
(
ẋ(t)− g(x(t), u(t))
f (x(t), u(t))− Uad

)
⊂ W

along with its shifted partial linearization H at (x̄(·), ū(·)) defined for each
(z(·), v(·)) ∈ V by

H(z(·), v(·)) :=
(

ż(t)− A(t) z(t)− B(t) v(t)
f̄ (t)+ C(t) z(t)+ D(t) v(t)− Uad

)
⊂ W ,
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a mapping K : U ⇒ P defined as

K[v(·)](t) : = f̄ (t)+ C(t)
∫ t

0
�(t, τ)B(τ )v(τ ) dτ

+ D(t) v(t)− Uad, v(·) ∈ U ,

andmappingsGt , Gt : R
m → R

d, t ∈ S, defined, respectively, for each v ∈ R
m by

Gt(v) := f (x̄(t), v)− Uad and Gt(v) := f̄ (t)+ D(t)(v − ū(t))− Uad.

Now we are ready to formulate and prove the main result of this section
generalizing [3, Theorem 3].

Theorem 4.3: Under the notation (N), the following assertions are equivalent:

(i) H is regular at (x̄(·), ū(·)) for 0;
(ii) H is regular at (0, 0) for 0;
(iii) K is regular at 0 for 0;
(iv) there is a subset S of [0,T] having full Lebesgue measure such that the

mapping Gt is regular at ū(t) for 0 uniformly in t ∈ S;
(v) there is a subset S of [0,T] having full Lebesgue measure such that the

mapping Gt is regular at ū(t) for 0 uniformly in t ∈ S;
(vi) there is δ > 0 such that for every w(·) ∈ P with ‖w(·)‖∞ < δ there is v(·) ∈

U with ‖v(·)‖∞ ≤ 1 such that

f̄ (t)+ C(t)
∫ t

0
�(t, τ)B(τ )v(τ ) dτ + D(t)v(t)+ w(t) ∈ Uad

for a.e. t ∈ [0,T];

(vii) there are δ > 0 and r>0 such that for every w(·) ∈ P with ‖w(·)‖∞ < δ

there is a pair (z(·), v(·)) ∈ rIBX × rIBU such that

f̄ (t)+ C(t) z(t)+ D(t) v(t)+ w(t) ∈ Uad for a.e. t ∈ [0,T].

Proof: Define a bounded linearmappingQ : R → X byQ[r(·)](t) = ∫ t
0 �(t, τ)

r(τ ) dτ for t ∈ [0,T]. Let ν := max{‖A(·)‖∞, ‖B(·)‖∞, ‖C(·)‖∞, ‖D(·)‖∞,
‖x̄(·)‖∞, ‖ū(·)‖∞}.

Applying the Lyusternik-Graves theorem [4, Theorem 5E.6] and substitut-
ing z(·) = x(·)− x̄(·) and v(·) := u(·)− ū(·), we obtain that (i) ⇔ (ii). By
Theorem 4.2 we have (iv) ⇔ (v) because x̄(·) is continuous and ū(·) is essentially
bounded.

To prove that (ii) ⇔ (iii), note that given r(·) ∈ R, one has that ż(t)−
A(t)z(t) = r(t) for a.e. t ∈ [0,T] and z(0) = 0 if and only if z(t) = Q[r(·)](t),
t ∈ [0,T]. This implies that having (r(·), p(·)) ∈ H(z(·), v(·)) is the same as hav-
ingw(t) ∈ K[v(·)](t) forw(t) = p(t)− C(t)Q[r(·)](t), that is, we can replace the
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differential expression in H with the integral one and then drop the variable z.
Moreover, ‖w(·)‖∞ is bounded by a quantity proportional to ‖(r(·), p(·))‖W .

As K has a closed convex graph, (iii) ⇔ (vi) by Robinson-Ursescu theorem
[4, Theorem 5B.4]. If (vi) holds then setting z(t) := Q[B(·)v(·)](t), t ∈ [0,T],
we get (vii) with r := max{1, ν‖Q‖}.

Suppose that (vii) holds. We shall establish (v). Pick β > 0 such that w̄β(·) ≡
(β ,β , . . . ,β) ∈ R

d has ‖w̄β(·)‖∞ < δ. Let {w1,w2, . . . } be a countable dense
subset of IBβ(0). For any i ∈ N, the function wi(·) ≡ −wi has ‖wi(·)‖∞ ≤
‖w̄β(·)‖∞ < δ, thus there is a subset Si of [0,T] having a full Lebesgue measure
along with a pair (zi(·), vi(·)) ∈ rIBX × rIBU such that

f̄ (t)+ C(t) zi(t)+ D(t)vi(t)− wi ∈ Uad for all t ∈ Si.

Without any loss of generality assume that ‖zi(t)‖ ≤ r and ‖vi(t)‖ ≤ r when-
ever t ∈ Si. Then S := ∩∞

i=1Si has a full Lebesgue measure. Without any loss
of generality assume that ‖C(t)‖ ≤ ν and ū(t) is defined whenever t ∈ S. Fix
any t ∈ S. Define a mapping Ft(z, v) := f̄ (t)+ C(t) z + D(t) v − Uad, (z, v) ∈
R
n × R

m. For every i ∈ N we have wi ∈ Ft(rIBRn × rIBRm). Hence the image of
rIBRn × rIBRm under Ft (having a closed convex graph) is dense in IBβ(0), and
consequently applying Robinson-Ursescu theorem [16, Theorem 6.22] we get
that Ft is regular at (0, 0) for 0 with modulus r/β . In particular, the regularity
modulus does not depend on the choice of t ∈ S. Let� be the set in Theorem 4.1.
Fix any (x, u) ∈ cl�. Let

Fx,u(z, v) := f (x, u)+ ∇xf (x, u)z + ∇uf (x, u)v − Uad, (z, v) ∈ R
n × R

m.

Then 0 ∈ Fx,u(0, 0) since f is continuous and Uad is closed. Since ∇xf and ∇uf
are continuous, the uniformity of the regularity moduli of mappings Ft and the
Lyusternik-Graves theorem imply that Fx,u is regular at (0, 0) for 0. Thus the
mappingF ′

x,u(z, v) := Fx,u(z, v − u), (z, v) ∈ R
n × R

m, is regular at (0, u) for 0.
Since w ∈ F ′

x,u(z, v) if and only if w − ∇xf (x, u)z ∈ Gx,u(v), where Gx,u is the
mapping in (32) with F ≡ −Uad, we conclude that Gx,u is regular at u for 0.
Theorem 4.1 implies that (v) holds.

Suppose that (v) holds. We shall establish (ii) and the theorem will be proved.
Assume without any loss of generality that

sup{‖A(t)‖, ‖B(t)‖, ‖C(t)‖, ‖D(t)‖, ‖ū(t)‖, ‖x̄(t)‖} ≤ ν for each t ∈ S.

Theorem 4.1 implies that there are positive constants a, b and κ such that for any
(x, u) ∈ cl�, with� := ∪t∈S(x̄(t), ū(t)), the mapping

Gx,u(v) := f (x, u)+ ∇uf (x, u)(v − u)− Uad, v ∈ R
m,

is regular at u for 0 with the constant κ and neighbourhoods IBa(u) and IBb(0).
Pick � > κ and then β ∈ (0,min{a/�, b}/2). Let � := IBβ(0)× cl� and con-
sider a mapping

� � (y, x, u) �−→ Σ(y, x, u) := G−1
x,u (y) ∩ IB�‖y‖(u) ⊂ R

m.
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Given w := (y, x, u) ∈ �, the regularity of Gx,u at u for 0 implies that there is
v ∈ G−1

x,u (y) such that ‖u − v‖ ≤ �‖y‖ (with the strict inequality when y 	= 0),
which means that v ∈ Σ(w). The set Uad is both closed and convex hence so is
G−1
x,u (y), and consequently also Σ(w). We showed that domΣ = � and Σ has

closed convex values.
SinceΣ(w) ⊂ IB�‖y‖(u) for any w ∈ � andΣ(0, x̄, ū) = {ū} for each (x̄, ū) ∈

cl�, the mapping Σ is continuous at any point of the set �0 := {0} × cl�. We
will show that Σ is inner semi-continuous on � \�0. To see this fix an arbi-
trary w̄ = (ȳ, x̄, ū) ∈ � \�0 and then any v̄ ∈ Σ(ȳ, x̄, ū). LetOv̄ be any open set
containing v̄.

First, assume that ‖v̄ − ū‖ < �‖ȳ‖. As v̄ ∈ IB�‖ȳ‖(ū) ⊂ IBa/2(ū) and ȳ ∈
IBβ(0) ⊂ IBb/2(0) the mapping Gx̄,ū is regular at v̄ for ȳ with the constant κ (cf.
Corollary 2.5). Thus the mapping Φ := Gx̄,ū(·)− ȳ is regular at v̄ for 0 with the
same constant. Define the function g for eachw = (y, x, u) ∈ � and each v ∈ R

m

by

g(w, v) := f (x, u)+ ∇uf (x, u)(v − u)− y − f (x̄, ū)− ∇uf (x̄, ū)(v − ū)+ ȳ.

Let S(w) := {v ∈ R
m | 0 ∈ Gx,u(v)− y = Φ(v)+ g(w, v)}, w = (y, x, u) ∈ �.

The continuity of ∇uf and the implicit form of the Lyusternik-Graves theorem
[4, Theorem 5E.5] imply that there are positive constants λw̄ and δw̄ such that

S(w′) ∩ IBδw̄(v̄) ⊂ S(w)+ λw̄‖w − w′‖IBRm whenever w,w′ ∈ IBδw̄(w̄) ∩�.

As S(w̄) = Φ−1(0) � v̄, takingw′ := w̄we get a function s : IBδw̄(w̄) ∩� → R
m

such that

y ∈ Gx,u
(
s(w)

)
and ‖s(w)− v̄‖ ≤ λw̄‖w − w̄‖

for each w = (y, x, u) ∈ IBδw̄(w̄) ∩�.

As ‖v̄ − ū‖ < �‖ȳ‖ and the function s is continuous at w̄ with s(w̄) = v̄, there is
a neighbourhoodOw̄ of w̄ = (ȳ, x̄, ū) withOw̄ ⊂ IBδw̄(w̄) such that

s(w) ∈ Ov̄ and ‖s(w)− u‖ < �‖y‖ for each w = (y, x, u) ∈ Ow̄ ∩�.

Consequently, s(w) ∈ G−1
x,u (y) ∩ IB�‖y‖(u) ∩ Ov̄ = Σ(w) ∩ Ov̄ for each w =

(y, x, u) ∈ Ow̄ ∩�. SoΣ(w) ∩ Ov̄ 	= ∅ for each w ∈ Ow̄ ∩�.
On the other hand, if ‖v̄ − ū‖ = �‖ȳ‖ then find v̂ ∈ Σ(w̄) with ‖v̂ − ū‖ <

�‖ȳ‖ (which exists as we have seen right after the definition of Σ). Since the set
Σ(w̄) is convex and contains both v̂ and v̄, there exists ṽ ∈ Σ(w̄) ∩ Ov̄ such that
‖ṽ − ū‖ < �‖ȳ‖. By the previous case, there is a neighbourhood Ow̄ of w̄ such
thatΣ(w) ∩ Ov̄ 	= ∅ for every w ∈ Ow̄ ∩�.

In both the cases we showed that Σ is inner semi-continuous at (w̄, v̄).
Hence Σ is inner semi-continuous on whole of �. Michael selection theorem
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[4, Theorem 5J.5] yields a continuous mapping σ such that

σ(y, x, u) ∈ G−1
x,u (y) and ‖σ(y, x, u)− u‖ ≤ �‖y‖

for each (y, x, u) ∈ IBβ(0)× cl�.

Let c ∈ (0,β/(ν + 1)) and �c := {(z, t, p) ∈ R
n+1+d | t ∈ S, ‖z‖ ≤ c, ‖p‖ ≤ c}.

Clearly, for each (z, t, p) ∈ �c we have p − C(t)z ∈ IBβ(0). Define the function

�c � (z, t, p) �−→ u(z, t, p) := σ(p − C(t)z, x̄(t), ū(t)).

Then for any t ∈ S (hence for a.e. t ∈ [0,T]), the function (z, p) �−→ u(z, t, p)
is continuous. For every {(z, p) | (z, t, p) ∈ �c for some t ∈ S}, the function S �
t �−→ u(z, t, p) is measurable as a composition of a continuous function and a
measurable function; and

‖u(z, t, p)− ū(t)‖ = ‖u(z, t, p)− u(0, t, 0)‖ ≤ �(‖p‖ + ν‖z‖)
whenever (z, t, p) ∈ �c.

Choose� > 0 such that

�T(1 + �ν)eν(1+�ν)T < c. (33)

Fix arbitrary functions p(·) ∈ P and r(·) ∈ Rwith ‖p(·)‖∞ < � and ‖r(·)‖∞ <

�. Consider the initial value problem

ż(t) = A(t)z(t)+ B(t)(u(z(t), t, p(t))− ū(t))+ r(t)

for a.e. t ∈ [0,T], z(0) = 0. (34)

The right-hand side of this differential equation is a Carathèodory function, and
also the initial condition z(0) = 0 ∈ int IBc(0). Hence there is a maximal interval
[0, τ ] ⊂ [0,T] such that there exists a solution z(·) ∈ X of (34) on [0, τ ] with
values in IBc(0), and if τ < T then ‖z(τ )‖ = c. Suppose that τ < T. Then for
each t ∈ [0, τ ] we have

‖z(t)‖ ≤
∫ t

0

(
ν‖z(s)‖ + ν�(�+ ν‖z(s)‖)+�

)
ds

< �T(1 + �ν)+ ν(1 + �ν)

∫ t

0
‖z(s)‖ ds.

Applying the Grönwall lemma and using (33), we get ‖z(t)‖ < �T(1 +
�ν)eν(1+�ν)T < c for each t ∈ [0, τ ]. In particular, ‖z(τ )‖ < c, a contradiction.
Hence τ = T and there exists a solution z(·) of (34) on the entire interval [0,T]
such that z(t) ∈ int IBc(0) for each t ∈ [0,T]. Let v(t) := u(z(t), t, p(t))− ū(t),
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t ∈ [0,T]. Then (z(·), v(·)) ∈ V , z(0) = 0, and

ż(t) = A(t)z(t)+ B(t)v(t)+ r(t),
p(t) ∈ f̄ (t)+ C(t)z(t)+ D(t)v(t)− Uad,

for a.e. t ∈ [0,T].

Hence (r(·), p(·)) ∈ H(z(·), v(·))). As H has a closed convex graph, Robinson-
Ursescu theorem implies (ii). �

It seems that one can formulate a similar statement when a constant mapping
F ≡ −Uad is replaced by a general F : R

m → R
d with a closed convex graph,

which would be a regularity version of [3, Theorem 13]. This is out of the scope
of the current work and is a subject for future research.

Note

1. It is available on: https://www.mathworks.com/matlabcentral/fileexchange/20952-lcp—
mcp-solver–newton-based-?requestedDomain=www.mathworks.com
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