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Vedoućı práce: Ing. Bohumı́r Bastl, Ph.D.
Kadedra matematiky, Fakulta aplikovaných věd
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Introduction

The video [14] by R. Goldman was the inspiration which made me decide for fractals
and splines as a topic of my thesis. R. Goldman provides a brief introduction to
splines and fractals, and presents some surprising connections between these two,
seemingly unrelated geometric objects. Fractals are attractors of iterated function
systems (IFS), splines are attractors of iterated subdivision process. Spline algo-
rithms can be used to generate fractals with control points, spline curves can be
generated by IFS.

The main aim of the thesis is to bridge the gap between the spline and fractal
theory. The intention is to provide a treatment of the mathematics associated with
fractals and splines at a level which is accessible to those who are not yet familiar
with either of the subject. To the best of my knowledge, such a material is not
available in the literature. The thesis investigates a wide variety of mathematical
ideas that are related to fractals and splines. The theory is built systematically from
minimal pre-requisites, in order to introduce more complex problems later. We also
present the results of some original research.

In Chapter 1, we begin with spline theory, more precisely, with Bézier and B-
spline curves, which are widely used in Computer Aided Design and Manufacturing
(CAD and CAM), Geometric Modeling, Computer Graphics, etc. Bézier curves are,
for example, implemented in Adobe Illustrator or AutoCAD software. We present
examples of these curves and several methods for their construction, such as the de
Casteljau algorithm for Bézier curves.

In recent years, the subdivision curves and surfaces have become very popular in
computer graphics. We provide a brief introduction to subdivision curves in Chapter
2. The link between fractals and splines goes through subdivision, therefore the sub-
division process is treated in detail. Generally, subdivision curve refinement schemes
can be classified into two categories: interpolating and approximating. Interpolating
curves go through the original input points, approximating curves are not necessarily
incident with the starting set of points. The shape and smoothness of the resulting
curve (or surface) depends on the chosen rules. Some of the properties we expect
from such rules are:

• Efficiency: the new points should be computed with a small number of opera-
tions.
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• Compact support: the region over which a point influences the shape of the
final curve or surface should be small and finite.

• Local definition: the rules used to determine the location of new points should
not depend on very distant points of the original polygon.

• Simplicity: the rules determining the new polygon should be simple and there
should only be a small number of rules.

• Continuity: it should be possible to determine the continuity of the limit curve
from the refinement rules.

There are many interesting connections between subdivision curves and fractal curves,
more can be found also in Section 3.6.

Chapter 3 deals with iterated function systems and fractals. Before defining
fractals, we introduce some basic dynamical systems terminology, metric spaces, and
the notion of dimension of a set. Our main focus is on fractals generated by IFS
consisting of affine transformations. We later introduce IFS for subdivision curves
and prove that such an IFS has unique fixed point, see Section 3.6.

We present an IFS for B-spline curves and complex Bézier curves. Resorting to
complex domain shows up to be very beneficial, since we can then generate well
known fractals by the de Casteljau subdivision algorithm with complex parameter.
Such complex Bézier curves seem to be related to many interesting and varied mathe-
matical problems, but in the limited space of a diploma thesis, it is hardly possible
to investigate all the directions. However, we provide a proof that the subdivision
algorithm for Bézier curves leads, under suitable scaling, to the Takagi fractal curve
(see Theorem 3.7.3).

Finally, in Chapter 4 we present concluding remarks. We also refer the inter-
ested reader in other sources of literature concerning our topic, which is reviewed in
Appendix A.
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Chapter 1

Splines

A spline is usually defined to be a sufficiently smooth piecewise-polynomial paramet-
ric curve. Even though there exist also exponential and other types of splines, in
this work we will deal only with polynomial splines. More about exponential splines
can be found in [24].

Only a small part of splines theory is presented; our main focus is on Bézier and
B-spline curves.

In computer graphics, splines are used for free form modeling, since they are easy
to construct and allow us to design and control the shape of complex curves and
surfaces.

1.1 Bézier Curves

1.1.1 Bernstein polynomials

Bézier curves were widely popularized in 1962 by the French engineer Pierre Bézier,
who worked for Renault. In 1970 R. Forrest showed the connection between the work
of P. Bézier and the theory of Bernstein polynomials. Bernstein polynomials were
first used by the Russian mathematician S. N. Bernstein in a constructive proof for
the Stone–Weierstrass approximation theorem [19].

Definition 1.1.1. The n + 1 polynomials defined by

Bn
i (t) =

(

n

i

)

ti(1− t)n−i, i = 0, . . . , n, (1.1)

where
(

n
i

)

is a binomial coefficient, are called the Bernstein basis polynomials of
degree n.

They have the following properties:
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• The standard polynomial basis 1, t, . . . , tn can be mapped to Bernstein poly-
nomials Bn

0 , . . . , B
n
n via a linear map:















Bn
0 (t)

Bn
1 (t)
...

Bn
n−1(t)
Bn

n(t)















=















1 −n . . . n(−1)n−1 (−1)n

0 n . . . (n2 − n)(−1)n−2 n(−1)n−1

...
...

...
...

...
0 0 . . . n −n
0 0 . . . 0 1





























1
t
...

tn−1

tn















.

We can see that the linear map is represented by an upper triangular matrix
with non-zero diagonal elements, hence the map is invertible. Therefore, Bern-
stein polynomials form a basis for the vector space of polynomials of degree
n.

• Non-negativity:
Bn

i (t) ≥ 0, t ∈ [0, 1], i = 0, . . . n. (1.2)

• Recursive formula:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t), n > 1, 0 < i < n, (1.3)

where Bq
0(t) = (1 − t)q and Bq

q (t) = tq for q = 1, . . . n. The formula follows
from the recursive formula for binomial coefficients

(

n

i

)

=

(

n− 1

i− 1

)

+

(

n− 1

i

)

, i, n > 0.

• Partition of unity:

n
∑

i=0

Bn
i (t) =

n
∑

i=0

(

n

i

)

ti(1− t)n−i = (t+ 1− t)n = 1, (1.4)

which follows from the Binomial theorem.

• Symmetry:
Bn

i (t) = Bn
n−i(1− t),

which follows from the symmetry of binomial coefficients
(

n
i

)

=
(

n
n−i

)

.

1.1.2 Bézier curves

Definition 1.1.2. A Bézier curve c(t) of degree n is defined by

c(t) =

n
∑

i=0

Bn
i (t)pi, t ∈ [0, 1], (1.5)

where p0, . . . ,pn are control points and Bn
i (t) are the Bernstein basis polynomials of

degree n. A polygon with vertices p0, . . . ,pn is called the control polygon.
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Example 1.1.1. A Bézier curve of degree 3 for the control points p0 = [0, 0],p1 =
[1
2
, 1],p2 = [1, 1],p3 = [1, 0] has the the parametrization as follows:

c(t) =

(

3

2
t−

1

2
t3, 3t− 3t2

)

, t ∈ [0, 1].

The curve is shown in Figure 1.1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: A Bézier curve of degree 3. The Bézier curve is black, its control polygon
is green and its control points are blue.

Properties of Bézier curves

Proposition 1.1.1. A Bézier curve interpolates the first and last control points of
its control polygon.

Proof. Since

c(t) = (1− t)np0 +
n−1
∑

i=1

(

n

i

)

ti(1− t)n−i(t)pi + tnpn, t ∈ [0, 1],

it directly follows
c(0) =

∑n
i=0B

n
i (0)pi = p0,

c(1) =
∑n

i=0B
n
i (1)pi = pn.

(1.6)

Proposition 1.1.2. A Bézier curve is tangent to its first and last control polygon
legs. Moreover, for the first derivative of a Bézier curve with parametrization (1.5)
it holds that

c′(0) = n(p1 − p0), c′(1) = n(pn − pn−1).
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Proof. The first derivatives of the basis functions are
(

Bn
i

)′
(t) =

(

n
i

)

[iti−1(1− t)n−i − (n− i)ti(1− t)n−i−1], i = 1, . . . , n− 1.

Therefore,

c′(t) = n
[

(1− t)n−1(p1 − p0)− (n− 1)t(1− t)n−2p1

+
∑n−2

i=2

(

n−1
i

)

[iti−1(1− t)n−i − (n− i)ti(1− t)n−i−1]pi

+(n− 1)tn−2(1− t)pn−1 + tn−1(pn − pn−1)
]

,

which yields

c′(t) =
n−1
∑

i=0

Bn−1
i (t)n(pi+1 − pi). (1.7)

Thus the first derivative1 of a Bézier curve is again a Bézier curve. Substituting
value 0 and 1 into the equation (1.7) completes the proof.

Let c(t) and d(t) be two Bézier curves defined by equation (1.5). Let the first
curve c(t) be given by m+1 control points p0, . . . ,pm and the second curve d(t) be
given by n+1 control points q0, . . . ,qn. We can join the two curves together with C0

continuity by letting the last point of the first curve be incident with the first point
of the second curve. Recalling Proposition 1.1.1 we have c(1) = d(0) ⇔ pm = q0.
Further, provided that the tangent vector of the first curve at its last point is identical
to the tangent vector of the second curve at its first point, i.e. c′(1) = d′(0), the
curves are joined together with C1 continuity. Recalling Proposition 1.1.2 we obtain
equivalent condition on control points c′(1) = d′(0) ⇔ m(pm − pm−1) = n(q1 − q0).

Definition. The convex hull H(P) of a set of points P is the intersection of all
convex sets containing P, i.e., it is given by the expression

H(P) =
{

n
∑

i=0

piαi | pi ∈ P, αi ≥ 0,

n
∑

i=0

αi = 1, i = 0, . . . , n
}

. (1.8)

Proposition 1.1.3. A Bézier curve lies in the convex hull of its control points.

Proof. We can substitute Bn
i (t), t ∈ [0, 1] for αi in the equation (1.8), since Bernstein

polynomials are also non-negative (1.2) and create partition of unity (1.4). Further,
letting P = {p0, . . . ,pn} be Bézier control points we obtain

{

n
∑

i=0

piB
n
i (t), t ∈ [0, 1] |pi ∈ P

}

⊆
{

n
∑

i=0

piαi |pi ∈ P, αi ∈ R+,
n

∑

i=0

αi = 1
}

= H(P).

Therefore, a Bézier curve lies in the convex hull of its control points.

1The first derivative of a parametric curve is usually called hodograph in the context of geometric

modeling.
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Figure 1.2: Convex hull of a Bézier curve

Figure 1.2 shows the convex hull of control points of a Bézier curve. According to
[10], the importance of the convex hull property lies in what is known as interference
checking. Suppose we want to know if two Bézier curves intersect each other. If the
two convex hulls do not overlap, we are assured that the two curves do not intersect.

Proposition 1.1.4. A Bézier curve is variation diminishing, i.e., the number of
intersections of a straight line with a Bézier curve is no greater than the number of
intersections of the line with its control polygon.

Proof can be found in [10, Section 6.3].
This property guarantees that a Bézier curve oscillates less than its control poly-

gon.

1.1.3 The de Casteljau algorithm

Points on a Bézier curve can be constructed by the de Casteljau algorithm, which
is an alternative way that was introduced by Paul de Casteljau already in 1959. He
worked for Citroën and his work was kept a secret by Citroën for a long time [11].
P. de Casteljau and P. Bézier had different approaches and they introduced Bézier
curves independently, but P. Bézier could publish his work first.

According to [10], the de Casteljau algorithm is based on a generalization of
the construction of a parabola by repeated linear interpolation for curves of higher
degree. We deal with this case first.

Let p0,p1,p2 be any three non-collinear points in R3, let t ∈ R. Define

p1
0(t) = (1− t)p0 + tp1,

p1
1(t) = (1− t)p1 + tp2,

p2
0(t) = (1− t)p1

0(t) + tp1
1(t).

(1.9)

Inserting the first two equations into the third one, we obtain

p2
0(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2. (1.10)

7



Equation (1.10) is a quadratic expression in t and p2
0(t) traces a parabola as t

varies from −∞ to +∞. This construction consists of repeated linear interpolation
and its geometry is illustrated in Figure 1.3. For t ∈ [0, 1], c(t) lies inside the triangle
formed by p0,p1,p2.

Let us denote ratio(a,b, c) the ratio of three collinear points a,b, c, that is

ratio(a,b, c) =
a− b

c− b
.

The ratios of points in 1.9 are

ratio(p0,p
1
0,p1) = ratio(p1,p

1
1,p2) = ratio(p1

0,p
2
0,p

1
1) = t/(1− t).

From analytic geometry we know the following theorem, which proves that our con-
struction is correct. This theorem describes a property of parabolas, and the de
Casteljau algorithm can be viewed as its constructive counterpart, see also [10, Sec-
tion 4.1].

Theorem 1.1.1 (Three tangent theorem). Let a,b, c be three distinct points on
a parabola. Let the tangent at b intersect the tangents at a and c in e and f ,
respectively. Let the tangents at a and c intersect in d. Then ratio(a, e,d) =
ratio(e,b, f) = ratio(d, f , c).

Figure 1.3: Construction of a parabola by repeated linear interpo-
lation

The construction of a parabola can be generalized to generate a polynomial curve
of arbitrary degree n. This gives rise to the de Casteljau algorithm:
Let p0, . . . ,pn ∈ R3 be given set of control points and t ∈ [0, 1] , set







p0
i (t) = pi

pk
i (t) = (1− t)pk−1

i (t) + tpk−1
i+1 (t)

{

k = 1, . . . , n
i = 0, . . . , n− k

(1.11)
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Then pn
0 (t) is the point with parameter value t on the Bézier curve of degree n given

by the control points p0, . . . ,pn.

The coefficients pk
i (t) can be arranged into a schematic triangular array of points,

called the de Casteljau scheme. The example of the cubic case is:

p0

p1 p1
0

p2 p1
1 p2

0

p3 p1
2 p2

1 p3
0.
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1.2 B-spline curves

B-spline curves were originally investigated by N. Lobachevsky in the nineteenth
century. They were constructed as convolutions of certain probability distributions.
The modern theory of spline approximation started with a paper of I. J. Schoenberg
in 1956; more about the history of B-spline curves and surfaces can be found in [10].

B-spline curves can be viewed as a generalization of Bézier curves because they
consist of a sequence of polynomial curve segments, i.e., they consist of a sequence
of Bézier curves.

1.2.1 B-spline basis functions

Definition 1.2.1. Let T = (t0, t1, . . . , tm) be a nondecreasing sequence of real num-
bers called a knot vector. Let p0, . . . ,pj be given control points, let n be the degree
of basis functions such that

n = m− j − 1.

Then the B-spline basis functions Nn
i of degree n are defined as

N0
i (t) =

{

1 if ti ≤ t < ti+1,
0 otherwise

Np
i (t) = t−ti

ti+p−ti
Np−1

i (t) +
ti+p+1−t

ti+p+1−ti+1
Np−1

i+1 (t),
(1.12)

where p = 1, 2, . . . , n and i = 0, . . . , m− p− 1.

This definition encompasses the de Boor algorithm for B-spline basis functions.
Different approaches defining B-spline basis functions can be found in [24] or [10].

The recursion formula (1.12) shows that a B-spline basis function of degree n is
a linear combination of two lower-degree basis functions, see also Example 1.2.1.

We list the following properties of B-spline basis functions without proving them,
since the proofs are not straightforward and can be found in [11].

• Partition of unity:
j

∑

i=0

Nn
i (t) = 1 t ∈ [tn, tm−n].

• Positivity: ∀n ∈ N : Nn
i (t) > 0 on (ti, ti+n).

• Local support: suppNn
i (t) = (ti, ti+n).

• Smoothness: B-spline basis functions of degree n are Cn−1– continuous if all
the inner knots are distinct.

• Basis functions are just shifted copies of each other if the knots are all distinct
and equidistantly distributed.
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Example 1.2.1. Let T = (0, 1, 2, 3), then the basis functions are

N0
0 (t) =

{

1 t ∈ [0, 1)
0 otherwise

N0
1 (t) =

{

1 t ∈ [1, 2)
0 otherwise

N0
2 (t) =

{

1 t ∈ [2, 3]
0 otherwise.

We can see thatN0
i (t) for i = 0, 1, 2 are piecewise constant functions. If we substitute

them into the formula (1.12) again, we obtain

N1
0 (t) = tN0

0 (t) + (2− t)N0
1 (t),

N1
1 (t) = (t− 1)N0

1 (t) + (3− t)N0
2 (t),

N2
0 (t) = t

2
N1

0 (t) +
3−t
2
N1

1 (t).

After evaluation, the equations become

N1
0 (t) =











t 0 ≤ t < 1

2− t 1 ≤ t < 2

0 otherwise

N1
1 (t) =











−1 + t 1 ≤ t < 2

3− t 2 ≤ t ≤ 3

0 otherwise.

As expected, the functions N1
0 (t), N

1
1 (t) are piecewise linear. Further,

N2
0 (t) =



















t2

2
0 ≤ t < 1

−3
2
+ 3t− t2 1 ≤ t < 2

1
2
(−3 + t)2 2 ≤ t ≤ 3

0 otherwise

.

The function N2
0 (t) is piecewise quadratic. The functions N1

0 (t), N
1
1 (t), and N2

0 (t)
are shown in Figure 1.4.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 1.4: B-spline basis functions: N1
0 (blue), N1

1 (violet), and N2
0

(ochroid).

Now, we explain the purpose of a knot vector T = (t0, t1, . . . , tm) from Definition
1.2.1. The knots subdivide the domain over which B-spline basis functions are de-
fined. A basis function Nn

i is completely determined by the n+2 knots ti, . . . , ti+n+1.
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Therefore, the knot vector determines the properties of B-spline basis functions as-
sociated to it.

If a knot ti appears r–times, i.e., ti = ti+1 = · · · = ti+r−1, r > 1, then ti is a
multiple knot of multiplicity r. Otherwise it is a simple knot, see Examples 1.2.1
and 1.2.2. The basis function Nk

i (t) is C
k−r– continuous at a knot of multiplicity r.

Thus, increasing multiplicity decreases the level of continuity. On the other hand,
increasing degree of basis functions increases continuity.

If the knot values are evenly spaced, the knot vector is called uniform, otherwise
it is non-uniform. Further, if first and last knots have multiplicity n + 1, the knot
vector is called non-periodic. In contrary, if the first and last knots are simple, the
knot vector is said to be periodic. See the table bellow with some examples of such
knot vectors.

knot vector periodic non-periodic

uniform T = (0, 1, 2, 3, 4) T = (0, 0, 0, 1
3
, 2
3
, 1, 1, 1)

non-uniform T = (0, 1, 5, 8, 15) T = (0, 0, 0, 1
5
, 4
5
, 1, 1, 1)

Example 1.2.2. Let T1 = (0, 1, 2, 3, 4, 5, 6, 7) be a uniform periodic knot vector
and T2 = (0, 0, 0, 1, 2, 3, 3, 3) be a uniform non-periodic knot vector. For both knot
vectors, there are (7−p−1) B-spline basis functions of degree p. The basis functions
of degree 2 are shown in Figure 1.5.

2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Figure 1.5: Basis functions of degree 2 for the knot vector T1 (left) and for the
knot vector T2 (right).

1.2.2 B-spline curves

Definition 1.2.2. Let T = (t0, t1, . . . , tm) be a knot vector. Let p0, . . . ,pj be given
control points. Determine the degree of each curve segment as

n = m− j − 1.
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Then the curve defined by

c(t) =

j
∑

i=0

piN
n
i (t), (1.13)

where Nn
i (t) are B-spline basis functions of degree n, is a B-spline curve of degree n.

If the knot vector is not non-periodic, then the B-spline curve does not interpolate
its first and last control points. Such a B-spline curve is called floating. Repeating
the first and last knot (n+ 1)–times causes the curve to be tangent to the first and
the last leg of its control polygon. Such curves are said open B-spline curves. A
periodic B-spline curve of degree n is a B-spline curve which closes on itself. This
requires that the first n control points are identical to the last n ones, and the lengths
of the first n parameter intervals in the knot set are identical lengths of the last n
intervals.

Example 1.2.3. Let T = (0, 0, 0, 1, 2, 3, 3, 3) be a uniform non-periodic knot vector
as in Example 1.2.2. Let the control points be p0 = [0, 0],p1 = [1, 4],p2 = [4, 4],p3 =
[5,−1],p4 = [7, 0]. The degree of each segment is n = m − j − 1 = 7 − 4 − 1 = 2.
The B-spline curve for this knot vector and control points has parametrization

c(t) =

4
∑

i=0

piN
2
i (t).

The curve is shown in Figure 1.6.

1 2 3 4 5 6 7

-1

1

2

3

4

Figure 1.6: The B-spline from Example 1.2.3 is composed of three
quadratic polynomial segments.
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Properties of B-spline curves

• Convex hull property: B-spline curves lie in the convex hull of their control
points [11].

• Variation diminution: A B-spline curve is variation diminishing, i.e., a B-spline
curve has no more intersections with any line/plane than does its control poly-
gon [11].

• Differentiation: Derivative of a B-spline curve is again a B-spline curve. Simi-
larly as for Bézier curves, also for B-spline curves it holds

c′(t) =
d

dt

j
∑

i=0

Nn
i (t)pi =

j−1
∑

i=0

Nn−1
i+1 (t)

n

ti+n+1 − ti+1

(pi+1 − pi), (1.14)

where n is the degree of the original B-spline curve. Therefore, the deriva-
tive of a B-spline curve is another B-spline curve of degree n − 1 on the
original knot vector with a new set of j control points q0, . . . ,qj−1, where
qi =

n
ti+n+1−ti+1

(pi+1 − pi) [29].
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Chapter 2

Subdivision curves

Subdivision curves are defined recursively. The goal of the subdivision process is to
obtain effectively a limit curve that is smooth and has given properties.

The process starts with a given set of control points, a refinement scheme is
applied to them, and new vertices are generated. New vertices create a new control
polygon and the process is repeated.

Iteratively repeating this process infinitely many times yields the limit subdivision
curve. But in geometric modeling, where the subdivision curves are mostly used, it
is usually sufficient to approximate the curve within tolerance by its control polygon
after several iterations.

There are many refinement schemes, we present subdivision schemes for Bézier
and B-spline curves, and also four-point subdivision. The important part of this
chapter is Section 2.1, where subdivision matrices are studied.

2.1 Binary subdivision schemes

Subdivision schemes for curves are defined by a set of rules that take in a set of
control points Pk as input and produce a new, refined set of control points Pk+1 as
output. In this text, we consider binary subdivision schemes for curves which are
defined by two sets of rules of the general form

pk+1
2i =

∑

j αjp
k
j+i,

pk+1
2i+1 =

∑

j βjp
k
j+i,

where αj and βj are numerical coefficients and

∑

j

αj =
∑

j

βj = 1. (2.1)
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These binary subdivision rules can also be written in matrix form as

S =





























. . . . . . . . . . . . . . . . . . . . .

. . . β0 β1 β2 β3 β4 . . .

. . . α−1 α0 α1 α2 α3 . . .

. . . β−1 β0 β1 β2 β3 . . .

. . . α−2 α−1 α0 α1 α2 . . .

. . . β−2 β−1 β0 β1 β2 . . .

. . . α−3 α−2 α−1 α0 α1 . . .

. . . β−3 β−2 β−1 β0 β1 . . .

. . . . . . . . . . . . . . . . . . . . .





























. (2.2)

Then we can write
Pk = SPk−1 = SkP0. (2.3)

Denote λ0 ≥ λ1 ≥ . . . λj the eigenvalues of the matrix S. With respect to the value
λ0, we can think about these 3 cases:

• λ0 > 1 ⇒ Pk → ∞ and the subdivision process does not converge,

• λ0 < 1 ⇒ |λi| < 1 ⇒ Pk → 0 and the control polygon converges to single zero
point,

• λ0 = 1 > λ1 ≥ · · · ≥ λj yields that the subdivision process converges to the
limit curve [26].

The representation of the subdivision in the form (2.2) allows to build an iterated
function system (IFS) corresponding to the curve with control points P0 and sub-
division matrix S. More about IFS for subdivision curves can be found in Section
3.6.

2.2 The de Casteljau subdivision

The de Casteljau algorithm, which was introduced in Subsection 1.1.3, can be viewed
as a subdivision scheme, a method for finding new control points q0(t), . . . ,qn(t) and
r0(t), . . . , rn(t) from the original control points p0, . . . ,pn. These new control points
represent the original Bézier curve restricted to the parameter intervals [0, t] and
[t, 1], respectively.

The new control points can be computed from the formulas

qk(t) =

k
∑

j=0

Bk
j (t)pj, k = 0, . . . , n,

rk(t) =

n
∑

j=k

Bn−k
n−j (t)pk+n−j, k = 0, . . . , n.

(2.4)
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Figure 2.1: The de Casteljau algorithm for a cubic Bézier curve. On the left
side is an illustration of the data flow. The Bézier curve is on the right.

The de Casteljau subdivision for a cubic Bézier curve c(t), t ∈ [0, 1] is shown in
Figure 2.1. The schematic picture on the left shows the data flow; each interior node
is computed by adding two previous points multiplied by (1− t) and t, respectively.
For instance, q1(t) = (1 − t)p0 + tp1. The points q0(t), . . . ,q3(t) on the left side of
the triangle are the new control points for the segment of the original Bézier curve in
the interval [0, t]. The points r0(t), . . . , r3(t) on the right side of the triangle are the
control points for the segment of the original Bézier curve in the interval [t, 1]. The
picture on the right illustrates the geometric interpretation of the algorithm. The
two identical points q3(t), r0(t) lie on the Bézier curve, i.e. q3(t) = r0(t) = c(t).

Matrix form The de Casteljau subdivision algorithm given in equation (2.4) can
be rewritten into the following matrix form:







q0
...
qn






=











B0
0(t) 0 . . . 0

B1
0(t) B1

1(t) . . . 0
...

...
...

...
Bn

0 (t) Bn
1 (t) . . . Bn

n(t)

















p0
...
pn






= L(t) ·P







r0
...
rn






=











Bn
0 (t) Bn

1 (t) . . . Bn
n(t)

0 Bn−1
0 (t) . . . Bn−1

n−1
...

...
...

...
0 0 . . . B0

0(t)

















p0
...
pn






= R(t) ·P

(2.5)

The matrices L(t), R(t) represent left and right subdivision scheme for Bézier
curves. Starting with the original control points and applying these matrices repeat-
edly generates a sequence of control polygons that converge to the original Bézier
curve. Example 2.2.1 illustrates this approach.
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The matrices L(t), R(t) are square invertible matrices, therefore we can investi-
gate their eigenvectors and eigenvalues. Their eigenvalues for t = 1

2
are

λi =
(1

2

)i

, i = 0, . . . , n,

the corresponding eigenvector for λ0 = 1 is eigenvector of ones v0 = (1, 1, . . . , 1).
Further, for convergent subdivision schemes, the subdivision matrices have eigenval-
ues of the form 1 > λ1 ≥ λ2 . . . , which in our case holds.

Example 2.2.1. As in Example 1.1.1 we construct a Bézier curve of degree 3 for
the control points P = {[0, 0], [0.5, 1], [1, 1], [1, 0]}, but we use the equation (2.5) of
the de Casteljau subdivision algorithm. The first level of iteration is

Q1 = L(1
2
) ·P =









1 0 0 0
1
2

1
2

0 0
1
4

1
2

1
4

0
1
8

3
8

3
8

1
8









.









0 0
1
2

1
1 1
1 0









R1 = R(1
2
) ·P =









1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1









.









0 0
1
2

1
1 1
1 0









.

Applying the matrices L(1
2
), R(1

2
) on the new control points Q1, R1 gives control

points at level 2. Repeating this process iteratively generates control polygons that
converge to the Bézier curve. Some of the iterations are shown in Figure 2.2.

2.3 B-spline subdivision

Such as in the case of Bézier curves, there exist subdivision schemes converging to
uniform B-spline curves of arbitrary degree. The following theorem is due to J. M.
Lane and R. F. Riesenfeld [22].

Theorem 2.3.1. Let P = {p0, . . . ,pj} be a control polygon and T = (t0, t1, . . . , tm)
be a uniform knot vector with mesh size 1. Let

c(t) =

j
∑

i=0

piN
n
i (t), t ∈

[

n

2
, j −

n

2

]

be the uniform B-spline curve of degree n with 2 ≤ n ≤ j. Then

c(t) = c1(t) =

2j−n+2
∑

i=0

pn
i N

n
i (t), t ∈

[

n

2
, j −

n

2

]

,
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Figure 2.2: The de Casteljau subdivision algorithm. The original control
polygon is black, the new control polygon after one iteration is blue, control
polygon after two iterations is red.

where T1 = (t0, . . . , t2m+1) is a new uniform knot vector with mesh size 1
2
, and the

points pm
i are defined recursively by



























p2
i =

{

pi/2 i even
p(i−1)/2 + p(i+1)/2

2
i odd

i = 0, 1, . . . , 2j,

pn
i =

pn−1
i + pn−1

i+1

2
i = 0, 1, . . . , 2j + n + 2, n > 2.

(2.6)

Proof can be found in [22].
Thus, given the B-spline curve of degree n with integral knot spacing and the control
polygon P, the control points for the same curve in terms of the B-spline basis over
the refined mesh 0, 1/2, 1, . . . , j − 1/2, j are given by (2.6).

The recursion equation (2.6) can be solved explicitly and the Lane-Riesenfeld
algorithm can be thus derived.

Lane-Riesenfeld algorithm Given an initial set of control points P0, the control
points at level Pk+1 are given by the rules



























pk+1
2i =

1

2n

bn+1

2
c

∑

j=0

(

n + 1

2j

)

pk
i−1+j

pk+1
2i+1 =

1

2n

bn
2
c

∑

j=0

(

n + 1

2j + 1

)

pk
i+j .

(2.7)

19



The limit curve is a uniform B-spline curve of degree n, which is Cn−1– continuous
(see [31]).

Example 2.3.1. From equations (2.7) it follows that the subdivision scheme for
uniform quadratic B-spline curves is

{

pk+1
2i = 3

4
pk
i +

1
4
pk
i+1

pk+1
2i+1 = 1

4
pk
i +

3
4
pk
i+1.

(2.8)

This subdivision scheme is also known as Chaikin algorithm and it was presented
in 1974 by George Chaikin [31]. He introduced this effective method for generating
smooth curves based on some geometric rules between points, in contrast to exact
mathematical models based on parametrization.

Example 2.3.2. By equations (2.7), the subdivision scheme for uniform cubic B-
spline curves is

{

pk+1
2i = 1

8
pk
i−1 +

3
4
pk
i +

1
8
pk
i+1

pk+1
2i+1 = 1

2
pk
i +

1
2
pk
i+1.

(2.9)

The related local1 subdivision matrix is

S =













1
8

3
4

1
8

0 0
0 1

2
1
2

0 0
0 1

8
3
4

1
8

0
0 0 1

2
1
2

0
0 0 1

8
3
4

1
8













.

Let P0 be initial control points, then control points at level k can be expressed as:

Pk = SPk−1 = SkP0.

The first level of iteration for the cubic case is

P1 =













p1
0

p1
1

p1
2

p1
3

p1
4













=













1
8

3
4

1
8

0 0
0 1

2
1
2

0 0
0 1

8
3
4

1
8

0
0 0 1

2
1
2

0
0 0 1

8
3
4

1
8

























p0
−1

p0
0

p0
1

p0
2

p0
3













.

Eigenvalues of the matrix S are λ0 = 1, λ1 = 1/2, λ2 = 1/4 and λ3 = λ4 = 1/8,
which satisfies the condition for convergent subdivision scheme.

1Local subdivision matrix is a basic representation matrix of the binary subdivision rules without

respect to number of control points.
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2.4 Four-point subdivision

The four-point interpolating subdivision scheme was introduced by Dyn et al. [6].
It is defined as follows: for the initial set of control points P0 = {p0

j ∈ Rd}, let

Pk = {pk
j}

2kn+2
j=−2 be the set of control points at level k ∈ N0, andPk+1 = {pk+1

j }2
k+1n+2

j=−2

be defined recursively by the following rule:
{

pk+1
2j = pk

j , −1 ≤ j ≤ 2kn + 1,

pk+1
2j+1 = (1

2
+ ω)(pk

j + pk
j+1)− ω(pk

j−1 + pk
j+2), −1 ≤ j ≤ 2kn,

(2.10)

where ω is a tension parameter.
Geometric meaning of the tension parameter ω is illustrated in Figure 2.3. The

midpoint vector is marked by e = 1
2
(pk

j + pk
j+1)−

1
2
(pk

j−1 + pk
j+2).

Figure 2.3: Geometric interpretation of the tension
parameter ω > 0.

Continuity of the limit curves depends on the tension parameter ω. It is proved
that the four-point scheme for the value ω = 1

16
gives limit curves which are almost

C2-continuous.
But this subdivision method is not only an important tool for the fast generation

of smooth curves from initial control points. It can be also an efficient tool for
the fast generation of fractals. The limit curve of the four-point binary subdivision
process can be fractal for some special values of the tension parameter ω. Authors in
[17] analyze the fractal properties of this subdivision scheme and apply the obtained
results to the generation of fractal curves and surfaces.

Theorem 2.4.1. For −1
2
< ω < 0 or 1

4
≤ ω < 1

2
, the limit curve of the four-point

scheme is a fractal curve.

Proof of this theorem can be found in [17].
Nevertheless, for ω = 1

16
, the limit curve of the four-point scheme is C1-continuous

and can reproduce cubic polynomials.
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Chapter 3

Iterated function systems

In this chapter we define iterated function systems and study some of their properties.
We first recall some standard terminology from dynamical systems and contraction
mappings.

3.1 Basic dynamical systems terminology

Let X be any set, and let f : X → X be a mapping. Let fk denote the kth iterate
of f , where

f 0(x) = x
fn(x) = f(fn−1(x)) for n = 1, 2, . . . .

(3.1)

An iterative scheme (fn) given by (3.1) is called a discrete dynamical system. Further,
the sequence (xn)

∞
n=0 on X given by

x0 ∈ X
xn = f(xn−1) for n = 1, 2, . . . .

(3.2)

is called the (forward) orbit through x0.
A fixed point of a mapping f : X → X of a set X into itself is an x ∈ X which

is mapped onto itself, that is
f(x∗) = x∗,

the image f(x) coincides with x.
A point x ∈ X is said to be periodic point if fT (x) = x for some T > 0. An

orbit (xn) is called periodic if all its points are periodic, that is ∀k ∈ N, xk = xk+T .
The smallest positive T is called the (minimal) period. A point x ∈ X is eventually
periodic if there exist a positive integer N such that xN = fN(x) is periodic or the
set {x1, x2, . . . } is finite. An orbit is eventually periodic if all its points are eventually
periodic.

Thus a fixed point is a periodic orbit with period T = 1.
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A closed set A ⊂ X is an attractor for f , if f(A) = A and there exists a neigh-
borhood U of A and a positive integer N such that fN(U) ⊂ U and

A =
∞
⋂

t=1

f t(U).

The set U is called a fundamental neighborhood of A. Further, the open set

B =
⋃

t>0

(f t)−1(U)

is called the basin of attraction of A.

Example 3.1.1. Let X = R and f : R → R be a linear mapping in the form
f(x) = λx, λ ∈ R. The point x∗ = 0 is a fixed point for all values of λ ∈ R, since
f(0) = λ0 = 0. The nth iteration of f is fn(x) = λn(x), that is,

xn = λnx. (3.3)

If |λ| < 1, then the sequence (3.3) converges to 0 for all x ∈ R; therefore x∗ = 0 is
the global attractor with basis of attraction equal to the whole set R.
If λ = −1, then we have xn = (−1)nx and all points x ∈ R− {0} are periodic with
period T = 2.

Example 3.1.2. Let X = Rm and f : Rm → Rm be a linear mapping in the form
f(x) = Mx, M ∈ Rm×m is a real square matrix. Equation (3.2) is now of the form

x0 = (x1, x2, . . . , xm)
>

xn = Mnx0 n = 1, 2, . . . .
(3.4)

Notice that x are vectors ofm real variables. For a fixed point the following condition
must hold







x1
...
xm






=







x1,1 . . . x1,m
... . . .

...
xm,1 . . . xm,m













x1
...
xm






. (3.5)

Vector x∗ = (0, . . . , 0)
>

, which is called the zero vector, is a fixed point of the
mapping. Further, if there exists an eigenvalue λ1 = 1 such that Mv1 = λ1v1 = v1,
then the entire eigenspace1 of λ1 consists of fixed points. Generally, there does not
have to be such an eigenvalue.
On the other hand, if all eigenvalues of M are |λi| < 1, i = 1, . . . , m, then the powers
Mn of M converge to zero matrix [33]. More precisely:

lim
n→∞

Mn = 0 ⇔ |λi| < 1, i = 1, . . . , m. (3.6)

Therefore, the sequence xn given by equation (3.5) converges to the zero vector for
any x ∈ Rm. The zero vector is the global attractor with basin of attraction equal
to the whole space Rm.

1Eigenspace of λ1 is the union of the zero vector 0 and the set of all eigenvectors corresponding

to eigenvalue λ1.
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3.2 Complete metric spaces

When introducing dynamical systems no particular conditions are imposed on the
set X , neither we needed any notion of distance on X . For our purpose, we need
to define a distance between two sets, as well as the notion of dimension of a set.
Therefore we introduce metric spaces and, in particular, complete metric spaces,
where all Cauchy sequences are convergent. We start with a definition of a metric
space.

Definition. A metric space is a pair (X, d), where X is a set and d is a metric on
X , that is, a function defined on X ×X such that for all x, y, z ∈ X we have:

(M1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y.

(M2) d(x, y) = d(y, x) (Symmetry).

(M3) d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

In what follows we will work with complete metric spaces, since, as noticed above,
they are necessary for our investigation.

Definition. A sequence xn in a metric space X = (X, d) is said to be Cauchy if for
every ε > 0 there is an N = N(ε) such that

d(xm, xn) < ε ∀m,n > N. (3.7)

The space X is said to be complete if every Cauchy sequence in X converges (that
is, has a limit which is an element of X).

Definition 3.2.1. Let X = (X, d) be a metric space. A mapping f : X → X is
called a contraction on X if there is a non-negative real number s < 1 such that for
all x, y ∈ X

d(f(x), f(y)) ≤ s · d(x, y), 0 ≤ s < 1. (3.8)

The smallest such number s is called the contractivity factor for f . If the equality
holds, i.e. if d(f(x), f(y)) = s · d(x, y), then f is called a contracting similarity.

If f is a linear contracting similarity, then f transforms sets into geometrically
similar sets. An iterative scheme of a contraction f given by (3.1) is a special case
of a dynamical system, whose importance is expressed in the next theorem.

Theorem 3.2.1 (Banach fixed point theorem). Let X = (X, d), X 6= ∅, be a com-
plete metric space and let f : X → X be a contraction on X. Then f has precisely
one fixed point. Such a fixed point is an attractor, whose basin of attraction is the
whole space X.
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The proof can be found in [21, Section 5.1].
Further, we work with compact sets in order to introduce metric space (H(X), dH),

which is the ideal space for studying fractal geometry. Let us recall that a subset
A of a metric space is said to be compact if every sequence in A has a convergent
subsequence whose limit is an element of A. A subset A of Rn is compact iff A is
closed and bounded.

Definition. Let (X, d) be a complete metric space. The collection of all nonempty
compact subsets of X is called the hyperspace of compact subsets (of X) and is
denoted by H(X).

We are going to define a metric on H(X) which turns it into complete metric
space.

Definition. Let (X, d) be a complete metric space, x ∈ X,B ∈ H(X). Define

d(x,B) = min{d(x, y) | y ∈ B}. (3.9)

The quantity d(x,B) is called the distance from the point x to the set B. Further,
let A,B ∈ H(X). Define

d(A,B) = max{d(x,B) | x ∈ A}. (3.10)

d(A,B) is called the distance from the set A ∈ H(X) to the set B ∈ H(X).

It is easy to verify that d(A,B) 6= d(B,A) in general (e.g., if A is a proper subset
of B). To make this distance symmetric, we define Hausdorff metric.

Definition. We define on the set H(X) a function dH : H(X)×H(X) → R by

dH(A,B) = max{d(A,B), d(B,A)}, (3.11)

where d is given by (3.9) and (3.10). The function dH is Hausdorff metric on H(X).

It can be shown that the metric space (H(X), dH) is complete (the interested
reader is referred to [2, Section 7]).

3.3 Iterated function systems

We now define a contraction mapping on H(X).

Definition. Let (X, d) be a complete metric space and let 1 < N ∈ N. Let fi : X →
X, i = 1, . . . N be a collection of contraction mappings with respective contractivity
factors si. Define a mapping F : H(X) → H(X) such that

F (A) =

N
⋃

i=1

fi(A) ∀A ∈ H(X). (3.12)

The system (X ;F ) is called a (hyperbolic) iterated function system (IFS).
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The operator F : A 7→
⋃N

i=1 fi(A) defined above is also known as Hutchinson
operator (or Barnsley operator).
Any finite set of contraction mappings on a complete metric space defines a hy-
perbolic iterated function system (IFS). Even though the notation IFS does not
necessarily implies contraction mappings, i.e., IFS does not have to be hyperbolic,
we will restrict ourself to the hyperbolic case and further will use notation IFS in
the meaning of hyperbolic IFS.

Theorem 3.3.1 (Hutchinson). Let (X ;F ) be an IFS. The transformation F : H(X) →
H(X), as defined above, is a contraction mapping on the complete metric space
(H(X), dH) with contractivity factor s = max{si | i = 1, . . . , N}.

The proof can be found in [18].

Remark. Let us recall that for a contraction mapping F with contractivity factor s,
the following must hold

dH(F (B), F (C)) ≤ s · dH(B,C) ∀B,C ∈ H(X).

Therefore, according to Banach theorem (Theorem 3.2.1), F has its unique fixed
point A∗ ∈ H(X), which obeys

A∗ = F (A∗) =
N
⋃

i=1

fi(A
∗),

and is given by
A∗ = lim

i→∞
F i(B) for any B ∈ H(X). (3.13)

Definition. The fixed point A∗ ∈ H(X) described in the remark above is called the
attractor of the IFS (X ;F ) .

If fi are linear contracting similarities (see Definition 3.2.1), the unique attractor
A is the union of smaller copies of itself.

3.4 Fractals

To deal with fixed points of IFS, we need to reconsider the notion of dimension of
a set. More precisely, we will define Hausdorff and box dimension. Such dimensions
tell us how densely an object occupies the metric space in which it lies. Intuitively,
we think about a line as about 1-dimensional object, whereas a smooth surface is
2-dimensional. But how about the Siérpinski gasket? It apparently occupies more
space than a smooth curve but less space that a surface. It is necessary to quantify
such a property and for that reason introduce new notion of dimension.

We define the so called box dimension or box-counting dimension, which was
introduced by Russian mathematician A. N. Kolmogorov and it is also know as
Kolmogorov capacity. It uses covering by closed cubes, but closed balls can be used
equivalently.
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Definition. Let M be a bounded subset of Rn, n ∈ N, and let ε > 0 be given. For
x0 ∈ M , denote by

Wε(x0) = {x ∈ Rn | ‖ x− x0 ‖= ε/2} (3.14)

the n-dimensional sphere with radius ε > 0 and center x0. Denote by N (M) the
minimum number of such spheres required to cover the set M , i.e.,

Nε(M) = inf{n ∈ N | M ⊆
n
⋃

i=1

Wε(xi) ; xi ∈ M}

Then the box dimension of the set M is defined by

dimB(M) = lim
ε→0+

ln(Nε(M))

ln(1/ε)
, (3.15)

provided the limit exists.

Box dimension is easy to use and it is adequate for our purpose. But it is loose in
some cases, e.g., the set M = Q ∩ [0, 1] is a set of zero measure, but dimB(M) = 1.

For completeness of this text we define the Hausdorff dimension, which was in-
troduced in 1918 by the German mathematician Felix Hausdorff. As stated in [9],
Hausdorff dimension has the advantage of being defined for any set. A major disad-
vantage is that in many cases it is hard to calculate or to estimate by computational
methods. According to [24], the explicit computation of the Hausdorff dimension is
rather difficult since it involves taking the infimum over covers consisting of balls of
radius less than or equal to a given ε > 0. Whereas the box dimension involves only
covers by balls of radius equal to ε or covers by cubes, therefore a slight simplification.

Note that some authors refer to Hausdorff dimension as Hausdorff-Besicovitch
dimension.

Hausdorff dimension

Let M be a bounded subset of Rn and x0 ∈ M . Let

Br(x0) = {x ∈ M | ‖ x− x0 ‖< r} (3.16)

be the ball of radius r > 0 with center at x0. Here ‖ . ‖ denotes Euclidean norm
on Rn. Choose ε > 0 and cover M by balls of radius 0 < ri ≤ ε centered at points
xi ∈ M :

M ⊆ Bri(xi).

For s ≥ 0, consider the quantity

Hs
ε(M) = inf

{ ∞
∑

i=1

|ri|
s | M ⊆ Bri(xi); 0 < ri ≤ ε

}

(3.17)
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and define
Hs(M) = lim

ε→0+
supHs

ε(M). (3.18)

Since Hs
ε1
(M) ≥ Hs

ε2
(M), for ε2 > ε1 > 0, the above limit superior exists and is an

element of [0,∞]. According to [24], it is easy to verify that the function s 7→ Hs
ε(M)

is nondecreasing for 0 < ε < 1.
Now assume that 0 < ε < 1 and that t > s ≥ 0. Then,

∞
∑

i=1

|ri|
t ≤ εt−s

∞
∑

i=1

|ri|
s

and, therefore,
Ht

ε(M) ≥ εt−sHs
ε(M).

If Hs(M) < ∞, then

0 ≤ lim
ε→0+

supHt
ε(M) ≤

(

lim
ε→0+

εt−s
)(

lim
ε→0+

supHs
ε(M)

)

= 0.

On the other hand, if Ht(M) < ∞, then

lim
ε→0+

supHs
ε(M) ≥

(

lim
ε→0+

εs−t
)(

lim
ε→0+

supHt
ε(M)

)

= ∞.

The quantity Hs(M) thus exhibits a 0 −∞ behavior. Based on these observations,
one defines the Hausdorff dimension of M by

dimH(M) = inf{s ≥ 0 | Hs(M) = 0} = sup{s ≥ 0 | Hs(M) = ∞}, (3.19)

i.e., as such a value of s at which Hs(M) jumps from 0 to ∞.

Now we can define fractals. We are concerned with fractals generated from IFS
consisting of affine transformations, these fractals are generally self-similar and it is
possible to count their box dimension.

Definition. A subset of Rn is called fractal if its box dimension is not an integer.

In our context, fractals are invariably fixed points of IFSs. However, this con-
struction is more general.

3.5 Affine IFS

Affine transformations are an important class of iterated function systems, with
which many of the best-known fractals are generated. In this section, we look closer
on this class of transformations.
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Definition. A transformation f : Rn → Rn of the form

f(x) = Ax+ b, (3.20)

where A is a square regular matrix n× n and b is n-dimensional vector, is called an
affine transformation.

Thus an affine transformation is a linear transformation represented by matrix
A followed by a translation in the form of a real vector b ∈ Rn. The fixed point
equation for f reads

x∗ = Ax∗ + b.

A simple manipulation yields

x∗ = (I−A)−1b, (3.21)

where I is the n× n identity matrix. The matrix (I−A) is invertible if and only if
its determinant is not zero, or equivalently, 1 is not an eigenvalue of A.

We want to represent f in matrix form in homogenous coordinates (since we use
this form for IFS of subdivision curves). For this purpose we use an augmented
matrix and an augmented vector2, and define a new (n + 1)× (n + 1) matrix M of
the form:

M =

(

A b
0, . . . , 0 1

)

.

The equation (3.20) is then as follows:

f











x1
...
xn

1











=

(

A b
0, . . . , 0 1

)











x1
...
xn

1











. (3.22)

It is useful to work with equation (3.22), since the iterations of the function f
can be written as powers of the augmented matrix M, i.e.,

fk(x) = Mkx.

Using the new form (3.22), for a fixed point the following must hold:
(

x∗

1

)

=

(

A b
0 1

)(

x∗

1

)

.

After multiplication we obtain

x∗ = (A b)(x∗ 1)> = Ax∗ + b

1 = (0 1)(x∗ 1)> = 0 · x∗ + 1 · 1 = 1,

2An augmented vector is a vector that is augmented with and extra dimension.
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Therefore, provided the fixed point exists, it is identical to the fixed point in equation
(3.21).

We would like to know when a set of affine transformations has unique fixed
point.

Definition. A map f is eventually contractive if there exist a positive integer n such
that fn is contractive. Such a smallest exponent n is called the exponent of eventual
contractivity [12].

Moreover, an IFS F is eventually contractive if there exists some positive integer
n such that F n is contractive. The integer n specifies the number of iterations re-
quired of F before the system is contractive [20]. All contractive maps are eventually
contractive, but not vice–versa.

Theorem 3.5.1. An affine transformation f given by matrix A ∈ Cn×n and trans-
lation vector b ∈ Cn is eventually contractive if all eigenvalues of A are within unit
circle.

Proof. If |λi| < 1, i = 1, . . . , n, then the powers Ak of A converge to zero matrix
[33], that is:

lim
k→∞

Ak = 0 ⇔ |λi| < 1, i = 1, . . . , n.

The eventual contractivity ensures that the fixed point from equation (3.21) is
unique. To this end we state the following theorem.

Theorem 3.5.2. If X is a complete metric space and f : X → X is a mapping such
that some iterate fN : X → X is a contraction, then f has a unique fixed point.
Moreover, the fixed point of f can be obtained by iteration of f starting from any
x0 ∈ X [4].

The proof can be found in [4, Section 3]. Since the metric space (Cn, dH) is
complete, an affine transformation satisfying the conditions of Theorem 3.5.1 has a
unique fixed point, which obeys the equation (3.21).

3.6 IFS for subdivision curves

In this section we deal with IFS created from binary subdivision schemes. We show
that an IFS can be constructed for all binary subdivision curves. Informally, given
a subdivision matrix S constructed by the rules (2.2), we break the matrix into two
suitable square matrices S1,S2 of smaller size, and we apply all products of Si of
length k to the control points (p0, . . . ,pn)

>, then the control polygon converges to
the the limit curve as k approaches ∞.
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Such an IFS is constructed from transformations fi : R
n+1 → Rn+1 by defining

fi(X) = XP−1SiP = XMi, (3.23)

where P is a square matrix which was created from the matrix of control points
(p0, . . . ,pn)

> by adding columns from identity matrix and a column of ones corre-
sponding to homogenous component of the coordinates.

The equation Mi = P−1SiP from (3.23) corresponds to a change of basis of the
vector space Rn+1, where P is the change-of-basis matrix, Si represents the linear
transformation fi in the old basis, and Mi represents fi in the new basis.

Because the elements in a row of Si sum up to 1 (see equation (2.1)), and the last
column of P is a column of ones, the last column of SiP is also a column of ones.
Further, the last column of P−1SiP is a column of the identity matrix because the
last column of P is a column of ones and P−1P = I. Thus the matrix Mi = P−1SiP
has the following form:

Mi =











m0,0 . . . 0
...

...
...

mn−1,0 . . . 0
mn,0 . . . 1











. (3.24)

The last row is the translational vector. Thus, equation (3.23) is the transpose
of an affine transformation of the form (3.22). Therefore we can rewrite (3.23) as
follows

fi(x 1) = (x 1)

(

Ai 0
bi 1

)

. (3.25)

According to Theorem 3.5.1, the mapping fi is eventually contractive if all eigen-
values of the matrix Ai are within the unit circle. If this is the case, then Theorem
3.5.2 implies that the fixed point given by

x∗ = bi(I−Ai)
−1

is unique.
In order to show that our mappings have unique fixed points, we prove the fol-

lowing theorem.

Theorem 3.6.1. The eigenvalues of the matrix Ai from equation (3.25) are all
within the unit circle.

Proof. As we stated in Section 2.1, in the case of convergent subdivision schemes,
the subdivision matrices Si have eigenvalues of the form λ0 = 1 > λ1 ≥ · · · ≥ λn.
The matrix Mi = P−1SiP from (3.23) has the same eigenvalues as the matrix Si,
since the equation corresponds just to a change of basis and such a change does not
alter the eigenvalues of the matrices.
Further, let us recall that the characteristic equation of the matrix Mi reads

det(Mi − λI) = 0.
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Because the matrixMi is always of the form (3.24), its eigenvalue λ0 = 1 is associated
to its last column, which is a column of the identity matrix.
Therefore, the matrix Ai has precisely the eigenvalues λ1 ≥ · · · ≥ λn, which are all
within the unit circle.

3.6.1 IFS for uniform B-spline curves

Let us recall that binary subdivision scheme for a uniform B-spline curves of degree
n is



























pk+1
2i =

1

2n

bn+1

2
c

∑

j=0

(

n + 1

2j

)

pk
i−1+j

pk+1
2i+1 =

1

2n

bn
2
c

∑

j=0

(

n + 1

2j + 1

)

pk
i+j

It is possible to construct IFS for any uniform B-spline curves, where the knot vector
is uniform and periodic.

Let us assume that a uniform B-spline curve is given by m + 1 control points
p0, . . . ,pm, then the subdivision matrix S from equation (2.2) is always (2m + 2 −
n) × (m + 1) and we break it into two matrices S1, S2 such that the last n rows of
S1 are identical to first n rows S2 and both are (m + 1) × (m + 1) matrices. The
algorithm is illustrated in Examples 3.6.1 and 3.6.2.

Example 3.6.1. The subdivision scheme for uniform cubic B-spline curves is
{

pk+1
2i = 1

8
pk
i−1 +

3
4
pk
i +

1
8
pi+1,

pk+1
2i+1 = 1

2
pk
i +

1
2
pk
i+1.

(3.26)

We will generate uniform cubic B-spline curve with control points P = {p0 =
[0, 0],p1 = [1, 2],p2 = [3, 2.5],p3 = [3.5, 0]}. Using the equations (3.26), resorting to
matrix form and breaking the matrix into two matrices, we obtain

S1 =









1
2

1
2

0 0
1
8

3
4

1
8

0
0 1

2
1
2

0
0 1

8
3
4

1
8









, S2 =









1
8

3
4

1
8

0
0 1

2
1
2

0
0 1

8
3
4

1
8

0 0 1
2

1
2









.

We can now construct IFS consisting of two transformations f1, f2 for our subdivision
curve

f1(X) = XP−1S1P = XM1,
f2(X) = XP−1S2P = XM2,

where

P =









0 0 1 1
1 2 0 1
3 2.5 0 1
3.5 0 0 1









.
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The matrices M1,M2 have the form

M1 =

(

A1 0
b1 1

)

,M2 =

(

A2 0
b2 1

)

.

Eigenvalues of matrices A1,A2 are all within unit circle, therefore f1 and f2 are
eventually contractive mappings and the IFS has unique attractor, which is the the
B-spline subdivision curve.

To generate the subdivision curve, we apply the IFS on any initial set of points.
We choose the set of points X0 = {[4, 0], [4, 4]} and iteratively repeat the process.
The process is illustrated in Figure 3.1. The black curve in both the figures is the
subdivision curve which was created from its parametrization, the pink dots are
points Xi+1 = f1(Xi)

⋃

f2(Xi). We see that the set X0 converges to the subdivision
curve fast.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

Figure 3.1: The subdivision curve is black, its control polygon is green, the pink
dots are points X , left figure shows points X after two iterations, on the right
are points X after 8 iterations.

Example 3.6.2. The subdivision scheme for uniform quadratic B-spline curves is

{

pk+1
2i = 1

4
pk
i−1 +

3
4
pk
i ,

pk+1
2i+1 = 3

4
pk
i +

1
4
pk
i+1.

(3.27)

We will generate uniform quadratic B-spline curve with control points P0 = {p0 =
[0, 0],p1 = [1, 4],p2 = [4, 4],p3 = [5,−1],p4 = [7, 0]}. Using the equations (3.27) we
construct subdivision matrix S, which is 8× 5, and break it into two matrices 5× 5:

S1 =













3
4

1
4

0 0 0
1
4

3
4

0 0 0
0 3

4
1
4

0 0
0 1

4
3
4

0 0
0 0 3

4
1
4

0













, S2 =













0 1
4

3
4

0 0
0 0 3

4
1
4

0
0 0 1

4
3
4

0
0 0 0 3

4
1
4

0 0 0 1
4

3
4













.
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We can now construct IFS consisting of two transformations f1, f2 for our subdivision
curve

f1(X) = XP−1S1P = XM1,
f2(X) = XP−1S2P = XM2,

where

P =













0 0 1 0 1
1 4 0 1 1
4 4 0 0 1
5 −1 0 0 1
7 0 0 0 1













.

The matrices M1,M2 have the form

M1 =

(

A1 0
b1 1

)

,M2 =

(

A2 0
b2 1

)

.

Eigenvalues of matrices A1,A2 are all within unit circle, therefore f1 and f2 have
unique fixed points. The unique fixed point of transformation f1 is

x∗
1 = b1(I−A1)

−1 =

(

1

2
, 2,

1

2
,
1

2

)

,

which corresponds to the point [1
2
, 2] in R2. The unique fixed point of transformation

f2 is

x∗
2 = b2(I−A2)

−1 =

(

6,−
1

2
, 0, 0

)

,

which corresponds to the point [6,−1
2
]. The limiting curve in R2 has to interpolate

these two fixed points.
We iterate the IFS with chosen initial conditionsX0 = {[0, 0], [1, 4], [2, 4], [4, 0], [5, 0]}

to generate the subdivision curve, see Figure 3.2. The black curve in both the figures
is the subdivision curve which was created from its parametrization, the pink dots are
points Xi+1 = f1(Xi)

⋃

f2(Xi). We see that the set X0 converges to the subdivision
curve, which interpolates the fixed points

[

1
2
, 2
]

and
[

6,−1
2

]

, as expected.

3.7 IFS for complex Bézier curves

The de Casteljau algorithm gives a subdivision scheme for Bézier curves with real
parameter r, as introduced in Section 2.2. In this section we extend the de Casteljau
subdivision scheme to the case of complex parameter t ∈ C.

Resorting to complex domain gives interesting results, and many famous fractals
can be generated by this method. We introduce an IFS for complex Bézier curves as
follows. The IFS is constructed from transformations f1 and f2 by defining

f1(X) = PL>(t)P−1X = LX, f2(X) = PR>(t)P−1X = RX, (3.28)
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Figure 3.2: The subdivision curve is black, its control polygon is green, the pink
dots are points X , left figure shows points X after two iterations, on the right
are points X after 8 iterations.

where L(t),R(t) are the de Casteljau subdivision matrices (2.5) and P is a square
matrix which was created from the matrix of control points (p0, . . . ,pn) by adding
rows from identity matrix and a row of ones corresponding to homogenous component
of the coordinates.

Equation (3.28) is just a transposed equivalent to equation (3.23), therefore all
the statements valid for subdivision IFS are right also for the case of IFS for Bézier
curves.

We want to show that the attractor of the de Casteljau IFS for unit segment is
connected for all

t ∈ C, |t| < 1 ∧ |1− t| < 1.

We will prove this by using the following theorem.

Theorem 3.7.1. Let {X ; f1, f2} be a hyperbolic IFS with attractor A. Let f1 and f2
be one-to-one3 on A. If

f1(A) ∩ f2(A) = ∅,

then A is totally disconnected. If

f1(A) ∩ f2(A) 6= ∅,

then A is connected.

Proof can be found in [2, Chapter 2].
In order to use Theorem 3.7.1 we have to check the contractivity of f1 and f2. By

equation (3.28), the subdivision matrices for a Bézier segment with control points 0
and 1, and subdivision parameter t generate the transformations f1, f2 : C → C as
follows:

f1

(

z
1

)

=

(

t 0
0 1

)(

z
1

)

, f2

(

z
1

)

=

(

1− t t
0 1

)(

z
1

)

. (3.29)

3injective function
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These equations represent the affine transformations f1, f2 in augmented matrix form
(3.22), where A1 = t, b1 = 0, A2 = 1− t, and b2 = t. For the mappings f1, f2 to be
contractive, the following must hold:

‖ A1 ‖ = |t| < 1

‖ A2 ‖ = |1− t| < 1.

That is, for all t ∈ C, |t| < 1 ∧ |1 − t| < 1, the IFS consisting of f1 and f2 is a
hyperbolic IFS and has a unique attractor A. We illustrate the domain of t over
which is the IFS hyperbolic in Figure 3.3.

0

i

10

i

1

Figure 3.3: The domain of t, over which is IFS {C; f1, f2} hyperbolic,
is the intersection of two open spheres |t| < 1 and |1− t| < 1.

Further, by equation (3.21), fixed points of f1, f2 are

z∗1 = (I−A1)
−1b1 = (1− t)−10 = 0

z∗2 = (I−A2)
−1b2 = (t)−1t = 1.

The fixed points 0 and 1 are naturally elements of the attractor A. Now we are ready
to state and prove the following theorem.

Theorem 3.7.2. Let f1 and f2 be transformations defined by subdivision matrices
for a Bézier segment with control points 0 and 1, and subdivision parameter t ∈ C,
as in equation (3.29). Let |t| < 1 ∧ |1 − t| < 1. Then the attractor A of the IFS
{C; f1, f2} is connected.

Proof. We have shown in the previous paragraphs that f1 and f2 are contractions
for all t ∈ C, |t| < 1 ∧ |1 − t| < 1. Since f1 and f2 are linear transformations, they
are one-to-one on A. Further, point z∗1 = 0 is the fixed point of f1 and z∗2 = 1 is the
fixed point of f2, and both of them are elements of A. According to Theorem 3.7.1,
A is connected if f1(A) ∩ f2(A) 6= ∅. We have

f1

(

z∗2
1

)

=

(

t 0
0 1

)(

1
1

)

=

(

t
1

)

,

f2

(

z∗1
1

)

=

(

1− t t
0 1

)(

0
1

)

=

(

t
1

)

.
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That is, f1(z
∗
2) = f2(z

∗
1) ⇒ f1(A) ∩ f2(A) 6= ∅, which completes the proof.

Remark. Equations (3.29) can be articulated differently. The mappings f1, f2 as
linear transformations in one variable z ∈ C are of the form

f1(z) = tz f2(z) = (1− t)z + t, (3.30)

where |t| < 1 and |1− t| < 1. These transformations and their extensions have been
studied by the Swiss mathematician G. De Rham. More can be found in [8, Chapter
16].

Example 3.7.1. In this example we generate the attractor A of the IFS introduced
in this section. We start with a segment between the points 0 and 1, and plot the
resulting curve after 15 iterations for various t ∈ C in Figures 3.4 and 3.5. Some
more cases can be found in Example 3.7.2.

-0.5 0.5 1.0 1.5

-0.5

0.5

1.0

Figure 3.4: For t = 1
2
+

√
3
3
i, the limiting curve resembles the Lévy C curve.

3.7.1 The Takagi curve

The Takagi fractal curve, also called Blancmange function, is a continuous function
which is nowhere differentiable. The Takagi function is defined on the unit interval
by

T (x) =

∞
∑

n=0

σ(2nx)

2n
,

where σ(x) is defined by σ(x) = minn∈Z |x− n|, that is, σ(x) is the distance from x
to the nearest integer.

The Takagi curve can be approximated by a complex Bézier curve, which we show
in the following paragraphs.
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Figure 3.5: Here t = 1
4
+

√
3
4
. The resulting curve after 15 iterations is not

quite the limiting curve, i.e. the attractor of given IFS. The closer is t to the
boundary of the domain of t over which are f1 and f2 contractive, the slower is
the convergence to the limiting curve.

Let d be a finite binary code d = [d1, d2, ..., dn], dk ∈ {0, 1}. We associate two
rational numbers to it,

r(d) =

n
∑

k=1

dk
2k

=
j

2n
, j ∈ N (3.31)

and

u(d) =

n
∑

k=1

dk, (3.32)

that is, u is the number of ones in the binary expansion of j.
The following lemma will be needed in our analysis.

Lemma 3.7.1. Let d = [d1, ..., dn], n ≤ m and r(d) = j
2n

, j < 2n. Then

T
(

r(d) +
1

2m
)

− T
(

r(d)
)

=
m− 2u(d)

2m
. (3.33)

The proof can be found in [1, p. 19].
The connection between the de Casteljau algorithm and the Takagi curve rests

on the following lemma.

Lemma 3.7.2. Let d = [d1, d2, ..., dn], dk ∈ {0, 1} be a finite binary code and r(d)
be a rational number associated to it as in equations (3.31) and (3.32). Let L,R
be the de Casteljau subdivision matrices (3.28) with control points in homogenous
coordinates p0 = (0, 1)>,p1 = (1, 1)>, and complex parameter t = 1

2
+ iy, |y| small

enough. Define matrix M(d) as

M(d) = M(d1)M(d2) . . .M(dn),
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where M(0) = L and M(1) = R.
Further, let s(d) be the first coordinate of M(d)p0. Then

s(d) = r(d) + 2 i y T (r(d)) +O(y2). (3.34)

Proof. We proof the equation (3.34) by mathematical induction on the length n of
d. The de Casteljau complex subdivision matrices for the corresponding IFS (3.28)
are

L =

(

t 0
0 1

)

=

(

1
2
+ iy 0
0 1

)

,

R =

(

1− t t
0 1

)

=

(

1
2
− iy 1

2
+ iy

0 1

)

.

1. The base case n = 1: Either d = [0] or d = [1], for d = [0] we have
(

s([0])
1

)

= L

(

0
1

)

,

which yields
0 = 0 + 2 i y T (0),

that is, 0 = 0 and equation (3.34) holds. If d = [1], we obtain
(

s([1])
1

)

= R

(

0
1

)

,

which yields
1

2
+ iy =

1

2
+ 2 i y

1

2
,

hence equation (3.34) holds as well.

2. The induction hypothesis for n = k: Assume that for d = [d1, . . . , dk],
equation (3.34) holds. Denote rk = r(d), sk = s(d), and Mk = M(d). Equation
(3.34) can be rewritten as

sk = rk + 2 i y T (rk) +O(y2). (3.35)

Further, denote uk the number of ones in the vector d = [d1, . . . , dk], that is,

uk =
k

∑

i=1

di.

Notice that the matrix Mk has always the following form:

Mk =

(
(

1
2
− iy

)uk
(

1
2
+ iy

)k−uk sk
0 1

)

. (3.36)
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3. The inductive statement for n = k+1: We prove that if the equation (3.35)
holds, then for d′ = [d1, . . . , dk, dk+1] the equation (3.34) is also true. We have

r(d′) =
k+1
∑

i=1

di
2i

= rk +
dk+1

2k+1

M(d′) = MkM(dk+1).

Either d′ = [d1, . . . , dk, 0] or d′ = [d1, . . . , dk, 1]. The case d = [d1, . . . , dk, 0] is
immediate, because r(d′) = rk, M(0) = L, and we can write

(

s(d′)
1

)

= Mk

(

1
2
+ iy 0
0 1

)(

0
1

)

= Mk

(

0
1

)

=

(

sk
1

)

,

that is, s(d′) for d′ = [d1, . . . , dk, 0] is equal to sk and the statement (3.34) holds.

The proof for the case d′ = [d1, . . . , dk, 1] is not so straightforward. For dk+1 = 1,
M(1) = R, and we have

r(d′) = rk +
1

2k+1
(3.37)

and

M(d′) = MkR =

(
(

1
2
− iy

)uk+1(1
2
+ iy

)k−uk
(

1
2
− iy

)u(1
2
+ iy

)k+1−u
+ sk

0 1

)

,

which yields
(

s(d′)
1

)

= M(d′)

(

0
1

)

=

(
(

1
2
− iy

)uk
(

1
2
+ iy

)k+1−uk + sk
1

)

.

Hence s(d′) satisfies the equation

s(d′) =
(1

2
− iy

)uk
(1

2
+ iy

)k+1−uk + sk. (3.38)

We must prove that

s(d′) = r(d′) + 2 i y T (r(d′)) +O(y2). (3.39)

From (3.37), r(d′) = rk +
1

2k+1 . We also substitute s(d′) in equation (3.39) by expres-
sion in (3.38). Thus equation (3.39) becomes

(

1

2
− iy

)uk
(

1

2
+ iy

)k+1−uk

+ sk = rk +
1

2k+1
+ 2 i y T

(

rk +
1

2k+1

)

+O(y2).

Furthermore, from induction hypothesis (3.35), sk = rk +2 i y T (rk). After substitu-
tion we obtain
(

1

2
−iy

)uk
(

1

2
+iy

)k+1−uk

+rk+2 i y T (rk) = rk+
1

2k+1
+2 i y T

(

rk+
1

2k+1

)

+O(y2).
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In the next step we use the binomial theorem to express

(

1

2
− iy

)uk
(

1

2
+ iy

)k+1−uk

=
1

2k+1
+

k + 1− 2uk

2k
iy +O(y2),

and we substitute this expression in the previous equation, that is,

1

2k+1
+

k + 1− 2uk

2k
iy +O(y2) + 2 i y T (rk) =

1

2k+1
+ 2 i y T

(

rk +
1

2k+1

)

+O(y2).

After some manipulation, we obtain

k + 1− 2uk

2k+1
iy + i y T (rk) = i y T

(

rk +
1

2k+1

)

+O(y2).

From Lemma 3.7.1, we know that the following equation holds:

k + 1− 2u

2k+1
+ T (rk) = T

(

rk +
1

2k+1

)

,

which completes the proof.

In order to formulate the statement about approximation of the Takagi curve, we
define the following scaling map

g : C× R → C g(z, y) = Re(z) + y i Im(z). (3.40)

Theorem 3.7.3. Let A∗(y) ∈ C be the attractor of the de Casteljau IFS (3.28)
for the Bézier curve with control points 0 and 1, and complex subdivision parameter
t = 1

2
+ iy, as in Lemma 3.7.2. Let T = {x+ iT (x) | x ∈ [0, 1]} be the graph of the

Takagi function. Then the set

A∗ = lim
y→0

g
(

A∗(y),
1

2y

)

(3.41)

contains the set T .

Proof. According to Theorem 3.7.2, the curve A∗ is connected. The Takagi curve is
continuous. Therefore it is sufficient to prove pointwise convergence of the complex
Bézier curve A∗ to the Takagi curve T on a dense set of points. The control points
0 and 1 are both in A∗ and T . Also the points s(d) from equation (3.34) are all in
A∗(y) (as we have proven in Lemma 3.7.2), thus points g(s(d), 1

2y
) are in A∗. As d

runs through all finite binary codes, the points g(s(d), 1
2y
) are dense in A∗, and A∗

approximates T in infinitely many points.
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Figure 3.6: The purple curve is g(A∗(y), 1
2y
), which for y = 1

2
becomes the Lévy

C curve. The orange curve is the graph of Takagi curve T .
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Figure 3.7: Left figure shows g(A∗(y), 1
2y
) (purple) for y = 1

4
, on the right is

y = 1
8
, the orange curve is the Takagi curve.

Example 3.7.2. The properties of the attractor A∗(y) depend strongly on y. In
Figures 3.6–3.8 we plot g(A∗(y), 1

2y
) for various values of y, and T for comparison.

In all cases, the algorithm is iterated 15 times.
For y = 1

4
, the curve A∗(y) still creates crunodes. On the other hand, A∗(y)

seems to start creating cusps instead of crunodes for y = 1
8
.

Remark. The experimental evidence suggests that A∗ = T , but in order to prove
this statement we would have to establish uniform convergence. We consider the
following.
Let A∗(y) ∈ C be the attractor of the de Casteljau IFS (3.28) for the Bézier curve
with control points 0 and 1, and complex subdivision parameter t = 1

2
+ iy. Let

T ∗(y) = {x+ 2 i y T (x) | x ∈ [0, 1]}. Then, as y → 0,

dH(A
∗(y), T ∗(y)) = O(y2), (3.42)
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Figure 3.8: Here y = 2−10 and g(A∗(y), 1
2y
) is incident with T . That is, we can

only see T , which is the orange curve on the picture.

where dH is the Hausdorff distance in C. The error term O(y2) is probably limited,
its real part dominates, but it is not clear where the maximum error is achieved.

In Conjecture 3.7.1, we argue that the Takagi curve appears to be present in
every Bézier curve where the subdivision parameter has a vanishing imaginary part.

Conjecture 3.7.1. Let c = c(α) be a Bézier curve with complex control points P.
Let A∗(y) be the attractor of the de Casteljau IFS (3.28) with control points P and
complex subdivision parameter t = 1

2
+ iy, as in Theorem 3.7.3. Then

dH
(

A∗(y), c(g(T, 2y))
)

= O(y), y → 0, (3.43)

where dH is the Hausdorff distance in C.

We illustrate the above conjecture with the following example.

Example 3.7.3. We construct the attractor A∗(y) for the de Casteljau IFS (3.28)
with complex control points P = {p0 = 0,p1 = 1

2
+ 2i,p2 = 1

2
} and complex

subdivision parameter t = 1
2
+ iy, in this example y = 10−2. We denote T ∗(y) =

g(T, 2y). We construct c(T ∗(y)), where c(α) is a Bézier curve with the same control
points P. That is,

c(T ∗(y)) =
2

∑

k=0

(

2

k

)

(

x+ 2 i y T (x)
)k(

1− x− 2 i y T (x)
)2−k

pk, x ∈ [0, 1]. (3.44)

The attractor A∗(y) and the Bézier curve c(T ∗(y)) are shown in Figure 3.9.
In Figure 3.9 we can not quite see any difference between A∗(y) and c(T ∗). Even

if we look on a small scaled detail, we will not see any difference after sufficiently
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Figure 3.9: Left figure shows points A∗(y) after 12 iterations, on the right is
curve c(T ∗).

many iterations of A∗(y). In Figure 3.10 we plot a small segment of c(T ∗), as it is
expressed in equation (3.44), for x ∈ [0, 1

10
], and for comparison A∗(y) after several

iterations. Obviously, A∗(y) approximates c(T ∗) quite well.
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Figure 3.10: The orange curve is c(T ∗), the purple curve is A∗(y). In the left
figure is A∗(y) after two iterations, in the middle is A∗(y) after six iterations,
and on the right is after ten iterations.
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Chapter 4

Summary

The aim of the thesis is to show some connections between subdivision algorithms of
geometric modeling and iterated function systems of fractal theory. In addition, we
provide rigorous treatment of material that has appeared recently in the literature.

We start with Bézier and B-spline curves and describe subdivision methods for
the construction of these curves. These include the Casteljau algorithm, our main
interest, and the four–point subdivision method, which generates fractal curves for
some tension parameter.

After introducing some basic concepts of dynamical systems, we deal with metric
spaces, the Banach fixed point theorem, hyperbolic iterated function systems (IFS),
and the notion of dimension of a set. Fractals are then introduced as attractors of
IFS, whose box dimension is not an integer.

Then, we deal with affine transformations and IFS for subdivision curves, which
turn out to be IFS consisting of affine transformations. One of the main contributions
of the thesis is a proof that an IFS for subdivision curves has unique fixed point
(Section 3.6). In order to do so, we use the fact that given submatrices of subdivision
matrices are eventually contractive (Theorem 3.5.1).

IFS for complex Bézier curves give rise to a new way of generating fractals. We
prove that the curves generated by IFS for complex Bézier curve with control points
0 and 1 are connected (Theorem 3.7.2), and then show that a complex Bézier curve
approximates the Takagi fractal curve (Theorem 3.7.3), in a suitable limit. We
conjecture that the Takagi curve is present in every Bézier curve (of higher degree as
well), if the subdivision parameter has vanishing imaginary part and the real part is
equal to 1

2
.

The fractals generated by the complex de Casteljau subdivision algorithm have
control points, with which the shape of a curve can be controlled. We illustrate this
process for the case of the Takagi curve (Example 3.7.3), thereby generating fractals
with control points.

A natural question is whether this fact finds applications in geometric modeling.
More explicitly, we ask:
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• Is there some practical use of IFSs for subdivision curves and surfaces?

• What are the advantages of using IFSs instead of classical subdivision algo-
rithms or parametrization?

• Can we create IFS for complex Bézier surfaces?

• Can we use these fractals with control points for geometric modeling, e.g.,
modeling of mountain ranges?

• Does this method allow us to unify modeling of fractal-like objects and smooth
surfaces?

When rendering attractors of IFSs for subdivision curves, we used a deterministic
algorithm, based on recursive computation of a sequence of sets, starting from an
initial set of points. There is an alternative random iteration algorithm, which is
worth exploring. It allows one to define addresses for points on fractals. These are
of great interest, because they encode a Bézier curve as a map of the unit interval
into the (possibly complex) plane or space. We could also use random algorithms to
generate fractals with ”shades”, which, mathematically, would correspond to non-
trivial measures.

Further questions arising in this context are:

• Is the random iteration algorithm more effective than the classical subdivision
algorithm for subdivision curves/surfaces?

• What fractal curves and surfaces can be generated by the complex de Casteljau
algorithm?

In the limited space of a diploma thesis, we could not answer some of the question
that appeared during our work. These questions might be interesting topics for
further research.

46



Appendix A

A short review of related literature

Deterministic splines and stochastic fractals are both techniques for free-form shape
modeling. The paper [32] deals with developing constrained fractals, a hybrid of
splines and fractals, which can be used to model realistic terrains. Mathematical
models for generating free-form shapes can be classified as deterministic or stochastic.
Splines offer precise shape control through adjusting their control points. But splines
are smooth and therefore less useful for modeling natural objects such as mountain
ranges. Contrariwise, stochastic fractals provide fine detail modeling, therefore can
be used for modeling of complex natural objects. On the other hand, the classical
approach for their modeling offers only limited control over the shape.

Constrained fractals is a technique which provides both detail and control. Au-
thors define controlled–continuity splines as splines with rigidity and tension parame-
ter functions, which provide local control over continuity and smoothness of a spline.
Controlled–continuity splines form the deterministic component of constrained frac-
tals. For instance, some of the approaches in stochastic subdivision techniques are
a random perturbing of points at each subdivision step, or a refinement of random
midpoint displacement.

Authors propose a multi-resolution stochastic relaxation algorithm. Their physi-
cal model with energy functions presents control over the shape by determining the
local energy. A constrained fractal is a physically–based model using the energy
minimization principles (this is the deterministic component), and bombarding the
spline shape with point masses impacting at random velocities (this is the stochastic
component).

Author of [25] provides a brief summary of spline (mostly B–splines) and fractal
function theory, and shows some of the relationship between splines and fractal
functions.

Fractal functions can be constructed via fixed points of Read-Bajraktarevic op-
erators T on a compact subset of Rn. Such a contractive operator has its unique
fixed point F, which is called an (R-valued) fractal function. In short, the Read-
Bajractarevic operators consist of real polynomials pMi and contractive mappings
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ui. The graphs of fractal functions may be fractal sets with non-integral Hausdorff-
Besicovitch dimension, but there also exist fixed points that are of class Cm, m ∈ N.
Such a fractal function depends on the set of polynomials pMi . Fractal analogs of
B-spline functions are fractal functions, where the polynomials pi are B-spline basis
functions.

Author also introduces Besov space Bs
q(L

p) and Triebel-Lizorkin space F s
q (L

p),
the theory of which has rich applications to partial differential equations and approx-
imation theory. Furthermore, it is proved that under certain conditions, a fractal
function F is an element of F s

q (L
p) and Bs

q(L
p).

Fractals are attractors, fixed points of iterated function systems. R. Goldman in
[13] shows on several examples that Bézier curves are attractors of the de Casteljau
subdivision algorithm and presents a new algorithm for rendering Bézier curves.

Fractals from IFS are self-similar curves, they are generated from scaled down
copies of themselves. Each segment of a Bézier curve is itself a Bézier curve, from
this perspective they are self-similar. Therefore, according to the author, Bézier
curves are also fractal curves. The de Casteljau subdivision algorithm is used to
split a Bézier curve into two Bézier segments. R. Goldman rewrites the de Casteljau
subdivision as two matrices L, M. Starting with the original Bézier control points,
and applying these matrices repeatedly generates a sequence of control polygons
that converge to the Bézier curve. In order to converge to the Bézier curve, we have
to start with the Bézier control polygon, which is the main difference between this
iteration and IFS for fractals.

Next, author resorts to matrices Lp, Mp, which represent, according to the au-
thor, contractive mappings. Thus, the set {Lp,Mp} is an iterated function system.
Starting the iteration with any compact set, the process will converge to the Bézier
curve.

Subdivision schemes generate self-similar curves and surfaces. Authors in [15]
derive the IFS for many different subdivision curves and surfaces without extraor-
dinary vertices, such as B-splines and piecewise Bézier subdivision surfaces. They
also show how to build a subdivision schemes to generate self-similar fractals such as
the Siérpinski gasket, and present fractals with control points. Any curve generated
by an arbitrary stationary subdivision scheme can be generated by an IFS. Authors
show how this method of generating splines by IFS can handle end-point conditions if
the knot spacing is non-uniform. The IFS for an arbitrary spline consist of functions
fi, which are derived from control points and subdivision matrices. Authors provide
a method for creating such an IFS for many subdivision curves and surfaces.

Authors of [16] deal with the so called ”inverse problem” of fractal theory, i.e.,
with the determination of a model for approximating natural data, creation of a
geometrical model for a given natural object. The model has to be simple, compact,
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and easy to manipulate. Among models satisfying these demands is fractal interpo-
lation function model (FIF), which was introduced by Barnsley in [2]. This article
presents an approximation method based on a model that generalizes IFS model and
free form curves, and synthesize both.

The quality of the approximation is given by an evaluation criterion, which is
usually a given distance between the two comparable objects. Mostly Hausdorff
distance between two sets is used in fractal modeling. Hausdorff distance is difficult
to compute and takes some constraints on both models. In order to measure distance
between two curves, the curves have to have unified representation (e.g., parametric
curve).

Authors therefore propose a new distance χ2 between two functions GQ, G
′
Q,

which is based on the parametrization of the curves to compare. This new measure
allows to compare two curves Q,Q′ which can be obtained by different sampling
functions. This new criterion is used to approximate natural rough curves using the
presented fractal model, more specifically, fractal free form curve model.

Projected IFS attractors are then defined in barycentic coordinate system. The
iteration semigroup constituted by matrices with barycentric columns allows this
model resorting to projected IFS attractors in order to unify the IFS model and the
free form representation used in CAGD 1. Authors test their method on a model of
mountains.

Fractal properties of selected interpolatory subdivision schemes and their appli-
cation in fractal generation are studied in [17]. Authors are concerned with fractal
properties of the four-point binary and three-point ternary interpolatory subdivision
scheme. Depending on the tension parameter ω of the four-point scheme, the subdi-
vision scheme can generate fractal curves. Authors analyze this property and prove
that the limit curves for some specific values of ω are fractal curves.

1Computer Aided Geometric Design
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[31] SLABÁ, K. Interpolatory subdivision schemes for curves. Master thesis. Uni-
versity of West Bohemia in Plzen, Faculty of Applied Sciences, Department of
Mathematics, 2011. [in Czech].

[32] SZELISKI R., TERZOPOULOS D. From Splines to Fractals. In Computer
Graphics. Volum 23, Number 3, July 1989, p. 51-60.

[33] THEYS, J. Joint Spectral Radius: theory and approximation. PhD thesis. Uni-
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