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a b s t r a c t

A new approach for evaluating Hellmann–Feynman forces within a non-local potential is introduced.
Particularly, the case of Hellmann–Feynman theorem applied within density functional theory in
combination with nonlocal ab-initio pseudopotentials, discretized by the finite-element method, is dis-
cussed in detail. The validity of the new approach is verified using test calculations on simple molecules
and the convergence properties (w.r.t. the DFT loop) are analyzed. A comparison to other previously
published approaches to Hellmann–Feynman forces calculations is shown to document that the new
approach mitigates, for l-dependent as well as for separable forms of nonlocal pseudopotentials, the
efficiency and/or accuracy problems arising in the methods published so far.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An efficient evaluation of Hellmann–Feynman forces is es-
sential for geometry optimization tasks and for molecular dy-
namics calculations in computational material physics. In this
paper we introduce the expression for Hellmann–Feynman forces
(HF forces, HFF) used in our newly developed ab-initio real-
space code for non-periodic electronic structure calculations,
based on the density functional theory, finite element method
(FEM) (or its variant — isogeometric analysis [1,2]) and non-local
environment-reflecting pseudopotentials [3].

The most difficult part of the Hellmann–Feynman forces cal-
culation is the evaluation of the term coming from the gradi-
ent of nonlocal pseudopotentials, because the derivative of the
pseudopotentials includes not only the derivative of the poten-
tial itself, but also the derivative of the projection operators to
l-subspaces. We propose a new expression for computing this
part of the force, based on differentiating the wavefunctions
instead of the projectors.

The new expression is verified by comparing equilibrium
atomic positions (i.e. positions with zero forces) to minima of
total energies and to experimental values, for nitric oxide, carbon
dioxide and tetrafluoromethane and by comparing vibrational
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frequencies of carbon dioxide. The convergence property of the
expression is analyzed and the expression is compared to other
previously published approaches to the non-local contribution to
HF forces as regards accuracy and computational demands. This
comparison shows advantages in accuracy or/and computational
efficiency compared to so far published formulas.

Section 2 provides a short derivation of the basic formula
for calculating the Hellmann–Feynman forces. In Section 3 we
describe our efficient and numerically stable way for evaluating
the local part of the Hellmann–Feynman forces within the finite
element method. Section 4 gives a brief overview of various ap-
proaches to calculations of nonlocal components of HF forces and
illustrates the importance of incorporating all subcomponents of
the nonlocal parts. Because none of the methods for evaluating
the nonlocal HF forces components published so far has proved to
be fully satisfactory in our case, we derived a new formula, which
is described in Section 5. Section 6 presents results of sample
calculations that demonstrate the correctness of the formula. The
error of the computed HF forces is analyzed with respect to the
stopping criteria of the DFT self-consistent loop. Section 7 con-
tains a brief convergence and error analysis of the new formula
in comparison with other approaches.

2. Hellmann–Feynman forces for nonlocal pseudopotentials

Hellmann–Feynman forces are the gradients of total energy
(including the interaction energy of atomic cores) with respect
to the movement of atomic centers.
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The expression for HF forces following from the Hellmann–
Feynman theorem (see [4]) seems to be straightforward in prin-
ciple, since we use the finite element method and therefore a
fixed (independent of atomic positions) basis (the standard H1

elements with the Lagrange polynomial basis [5]). In addition, iso-
geometric analysis with Bézier extraction [6], ensuring continuity
for all quantities up to the second derivative, is available within
our code1 (and can be used if e.g. a floating basis is more effi-
cient in geometry optimization/molecular dynamics calculations).
Thus, there is no need for evaluating the so called Pulay forces or
the incomplete basis set terms [8].

However, the nonlocality of l-dependent pseudopotentials
brings similar problems as the moving basis dependent on atomic
positions: The motion of atomic centers leads to the necessity
of differentiating projections to l-subspaces, in which case the
numerical errors arise due to the singularities of the gradients
of spherical harmonics.

According to the Hellmann–Feynman theorem [9], supposing
that the fixed discretization basis is used, the forces can be
calculated from the gradient of the Hamiltonian

f⃗i = −∇etot = −∇

∑
i

wi

∫
ψ+

i Hψi =

∑
i

wi

∫
−ψ+

i (∇H) ψi

(1)

or in bra-ket notation

−∇

∑
i

wi ⟨ψi|H|ψi⟩ = −

∑
i

wi ⟨ψi|∇H|ψi⟩ , (2)

where the gradient is considered with respect to the shift of
atomic centers. It should be noted that although the proof of the
Hellmann–Feynman theorem seems to be a straightforward and
uncomplicated application of the variational principle [10], such
a simple approach is based on a bit vague assumptions. The exact
proof requires a bit more mathematical work [11].

If the basis depends on the positions of atomic centers, the so
called Pulay forces or incomplete basis set terms (abbreviated as
IBS) arise [8]. In our case (the finite element method), the basis is
fixed and we can omit those terms. However, below in this paper
we will see a term arising from the gradient of l−projectors,
which is similar to the Pulay term, as given here:

f⃗i = −∇etot = −∇

∑
i

wi ⟨ψi|H|ψi⟩

= −

∑
i

wi

(
⟨ψi|∇H|ψi⟩ − 2 ⟨∇ψi|H|ψi⟩

)
. (3)

The total energy in the density functional theory is given by
(see e.g. [4,12])

etot =

n∑
i=1

wi

∫
ψ+

i
1
2
∇

2ψi +

∫
ψ+

i Vextψ +

∫
EH(ρ)

+

∫
EXC(ρ) + eion . (4)

where wi are occupation numbers of ψi states and Vext is the
external potential — in our case the sum of pseudopotentials of
atomic cores, each of them constituted by a long-range local part
and a short-range nonlocal l-dependent part:

Vext =

∑
a

(
V a
loc +

∑
l

V a,l
nl P

a
l

)
, (5)

where Pa
l is a projection operator into l-subspace of the ath

center.

1 Our code FENNEC (Finite Element Non-periodic Ab-Initio Electronic
structure Code) is based on the open source finite element package SfePy [7].

According to (1) there is no implicit (through the dependence
of the wavefunctions) dependence of the HF force on the posi-
tion of the atomic centers. Therefore the gradient of the total
energy contains only terms with the explicit dependence on atom
positions:

∇aetot =

∫
∇V a

locρ +

∑
l,i

wi

∫
ψ+

i ∇
(
V a,l
nl P

a
l

)
ψi + ∇eion . (6)

3. Local parts of Hellmann–Feynman force

The first term of (6) is the local2 part of electron–ion in-
teraction. The gradient of the local ion potential can be easily
evaluated as the partial derivative of the potential in the radial
space multiplied by the direction from the atomic center:∫

∇V a
locρ =

∫
∂V a

loc(r)
∂r

x⃗ − c⃗a
r

ρ . (7)

Only slightly more effort is required to evaluate the last term
of (6) expressing the repulsion of atomic cores. Without using
pseudopotentials, this term would shrink to the classical Coulom-
bic force between point charges. However, a pseudopotential
smooths the charge of the nucleus and the actual force differs
from the pure point-charges Coulombic term, as can be seen in
Fig. 1. Therefore, the ion–ion force is derived by differentiating the
ion–ion term of the total energy expression proposed e.g. in [12].

Expressing the pseudocharge ρa
ion of the ion a as

− 4πρa
ion = ∇

2V a
ion , (8)

we can express the ion–ion energy as

eion =
1
2

∑
i̸=j

∫
V i
locρ

j
ion =

1
2

∑
i

∫
V i
loc

∑
j

ρ j
ion

−
1
2

∑
i

∫
V i
locρ

i
ion . (9)

Differentiation of eion yields

∇aeion =
1
2

∫
∇aV a

loc

∑
j̸=a

ρ j
ion +

1
2

∫ ∑
i̸=a

V i
loc∇ρ

a
ion . (10)

The two terms in (10) express the forces corresponding to
charge-potential and potential-charge interactions, respectively.
The charge-potential and potential-charge forces must be equal,
therefore (10) can be evaluated using only one of these terms. The
second term of (10) suffers from much larger numerical errors
than the first one, because the gradient of ρion is in fact the third
derivative of Vloc – see (8) – and each differentiation introduces
numerical errors into the computation, as can be seen in Fig. 1.
That is the reason for using only the first term of (10) to evaluate
the ion–ion force:

∇aeion =
1
2

∫
∇aV a

loc

∑
j̸=a

ρ j
ion +

1
2

∫ ∑
j̸=a

V j
loc∇ρ

a
ion

=

∫
∇aV a

loc

∑
j̸=a

ρ j
ion . (11)

4. Nonlocal part of Hellmann–Feynman force

The most difficult term of Eq. (6) is the middle one: the
nonlocal part of electron–ion interaction. Denoting Vl = V a,l

nl , and

2 In the sense that pseudopotential can be split into its local and nonlocal
part.
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Fig. 1. Two ways of computing ion–ion repulsive forces on carbon pseudocore of CO2 molecule: Interatomic distances between the carbon atom and oxygen atoms
(molecule is stretched symmetrically) are shown on the x axis and differences between the computed force and the point-charges Coulombic force on the y axis.
Note the numerical instabilities for the second method and the fact, that the pseudocore ion–ion forces differ substantially from the Coulombic force in common
interatomic distances. (Stronger oscillations of the second method around the expected equilibrium are caused by a finer sampling in this region).

taking a sample ψ , the corresponding force coming from a given
l can be expressed as

⟨ψ |∇a (VlPl)|ψ⟩ = ⟨ψ |(∇aVl) Pl|ψ⟩ + ⟨ψ |Vl (∇aPl)|ψ⟩ , (12)

where Pl is a projection into the given l-subspace using integra-
tions over spheres

Pl |ψ⟩ =

∑
m

Yl,m

∫
θ,ϕ

Yl,mψ =

∑
m

⏐⏐Yl,m
⟩⟨
Yl,m

⏐⏐ψ ⟩ . (13)

The first term in (12) expresses a force originating from the
shift of the potential and the second term expresses the change
of the charge density in the given l-subspace that occurs due to
the shift of the centers of the l−projections.

While the first term of (12) can be evaluated by means of
spherical projections relatively easily, the second one is more dif-
ficult. If we differentiate the projector Pl, we obtain the gradient
of the spherical harmonic functions

∇aPl = ∇a

∑
m

⏐⏐Yl,m
⟩⟨
Yl,m

⏐⏐ =

∑
m

(⏐⏐∇aYl,m
⟩⟨
Yl,m

⏐⏐+ ⏐⏐Yl,m
⟩⟨
∇aYl,m

⏐⏐) ,
(14)

with a singularity (for l > 0) at the origin. The approaches used
so far have applied various strategies to overcome this difficulty.
In the original article describing the computation of Hellmann–
Feynman forces [4] within DFT, the gradient of Yl,m is silently
neglected. In some later works, as e.g. in Quantum Monte Carlo
methods [13], where similar projections occur, authors explicitly
claim that such terms can be neglected. However, in our case, this
term forms a substantial part of the force and must be included
into the HFF computation, as can be seen in Fig. 2.

Various ways have been used to avoid the necessity to cal-
culate this problematic term within the approaches to HFF de-
scribed in literature: the analytic derivatives of planewaves are
used in [16,17]; the Kohn–Sham equations are used in [18] to
avoid the necessity to differentiate the nonlocal parts of the
force, which however implies the necessity to differentiate the
sum of Kohn–Sham energies. It would be neither simple nor
computationally efficient in our case. Another alternative, eval-
uating the special integrals over atomic spheres like in the LAPW

method [19], would be too computationally expensive within the
general finite element basis.

Probably the closest approach to our one has been published
in [20,21] for evaluating Hellmann–Feynman forces for the case
of a separable (or Kleinman–Bylander [22]) form of the pseu-
dopotential νl,n. That approach yields the following term for the
nonlocal energy

∇enl = 2 Re
∑

i

wi

∑
n,l,m

⟨
ψi
⏐⏐νl,nYl,m

⟩⟨
∇
(
νl,nYl,m

)⏐⏐ψi
⟩
. (15)

In some cases, the gradient of the projectors can be expressed
analytically (e.g. see [23] or [24]), but for a general separable
pseudopotential, the radial part must be differentiated numeri-
cally.

As the authors of [25] recommend, an improved precision
can be achieved if the projector is decomposed using the vector
spherical harmonic functions Yl,mr (where r is the radius):

∇νl,nYl,m = ∇

(νl,n
r

Yl,mr
)

=

(
∇
νl,n

r

)
Yl,mr +

νl,n

r
∇
(
Yl,mr

)
, (16)

because such decomposition makes the angular projector analyt-
ical in the origin. As we will see later in Fig. 8C, this approach is
less suitable for the case of l-dependent form of the pseudopo-
tentials (15), because the radial part must be divided by r2 and
consequently the numerical accuracy decreases.

It seems, that RMG code [26] maybe use a method similar to
our approach to avoid differentiating of projectors. However, the
papers describing the method, e.g. [27], cited by the RMG web
page, contain just differentiating of projectors without further
details of this issue.

5. Evaluating HFF using derivatives of wavefunctions

Since none of the methods mentioned above is fully satisfac-
tory in our case, we propose another way to calculate the nonlocal
terms of HF forces. Our approach is based on the simple assump-
tion that the movement of an atomic core in any direction must
result in the same force as the movement of the wavefunction
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Fig. 2. The importance of the l-subspace projectors’ derivatives in Hellmann–Feynman forces: Computed HF-forces and their nonlocal components acting on the
oxygen and nitrogen atoms in a nitric oxide molecule and on the fluorine atom in tetrafluoromethane, with and without the l-subspace projectors’ derivatives. The
expected interatomic distance (vertical dashed line) is 115 pm for nitric oxide [14] and 131.91 pm for CF4 [15].

(which is ‘‘frozen’’ due to the Hellmann–Feynman theorem) in the
opposite direction. So instead of differentiating the operator Vl (as
in (14)), making use of the Hermiticity of the Vl operator we can
state

⟨ψ | ∇aVl |ψ⟩ = −∇ψ ⟨ψ | Vl |ψ⟩ = − ⟨∇ψ | Vl |ψ⟩ − ⟨ψ | Vl |∇ψ⟩

= −2 Re ⟨∇ψ | Vl |ψ⟩ , (17)

or, in the case of the separable form of a pseudopotential,

∇enl = −2 Re
∑

i

wi

∑
n,l,m

⟨
ψ
⏐⏐νl,nYl,m

⟩⟨
νl,nYl,m

⏐⏐∇ψi
⟩
. (18)

Since the derivative terms of (17) and (18) are already ex-
pressed in the finite element basis, there are no extra compu-
tational demands for evaluating the projection into the basis
and no additional inaccuracies arise because the analytic deriva-
tives of the element basis functions are available. Moreover, the
same expression can be easily used both for the l-dependent and
separable pseudopotentials.

Note that the expression (17) a bit resembles the incomplete
basis set correction (or the Pulay term, see Eq. (3)). Although the
formal expressions seem to be (almost) the same, they express
different things. Whereas in our case the differentiation repre-
sents a spatial shift of wavefunctions (in the stable basis), the
Pulay term means ‘‘how the wavefunction changes due to the
change of the basis’’. Thus the operator ∇ represents different
differential operator in the two equations: since our basis does
not depend on atomic positions, the Pulay term is zero in our case,
but the expression (17) is not.

To summarize, the Hellmann–Feynman force within the finite
element method (FEM) in real space can be simply expressed and

evaluated as

∇etot =

∫
ρ∇Vloc − 2

∑
i

wi Re
∫

∇ψ+

i

∑
j,l

V j,l
nlψi

+

∫ ∑
a̸=k

∇V k
locρ

a
ion . (19)

6. Verification of the HFF formula and its convergence

We have verified and tested our newly developed expression
for the molecules of nitric oxide, carbon dioxide and tetrafluo-
romethane, with interatomic distances scaled by a variable factor
β .

Hexahedral meshes, with cubical elements near atomic sites
with the edge length α, and substantially larger elements in
distances greater than 2.4 a.u. from atomic centers were used for
the calculations below. The distance from any atomic center to
the domain boundary was at least 16 a.u.

The convergence of the calculated HF forces and their de-
pendence on the inter-atomic distance for the carbon dioxide
molecule is plotted in Fig. 3. The relative shift of the equilib-
rium interatomic distance with respect to the experimental value
(116.3 pm, see [14]) is 0.82, which is comparable to the other
methods and is in the expectable range if we consider applying
DFT with a simple form of the XC-functional for a molecule.

The next a bit surprising result was that the computed HF
forces were much smoother, evincing much smaller fluctuations,
than the numerical derivative of calculated total energy. As the
magnitude of fluctuations of total energy is greater than the dif-
ference between the numerical derivative of total energy and cal-
culated HF forces, we can conclude that the calculated HF forces
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Fig. 3. The calculated HF force acting along the x-axis on the first oxygen atom in carbon dioxide, varying with the mesh size (the parameter α is the linear size
of the smallest element, in atomic units). e′

tot denotes the derivative of the total energy w.r.t. the interatomic distance, divided by two (stretching of the molecule
affects two oxygen–carbon interactions). The red e′

tot curves correspond to HFF calculated by differentiating the total energy numerically: there the wavefunctions
are recalculated for each change of atomic position. We provide those curves for comparison with the HF-theorem-based curves, where the wavefunctions are frozen.

Fig. 4. The convergence of HF interatomic force in CO2 molecule and in diatomic
TiN, with regard to the mesh element size. The reference value is the force
for the finest mesh (α = 0.45). β denotes spatial scale factor for interatomic
distances w.r.t the equilibrium position. Error is computed as the L2 norm of
the function fα(β) − fref(β) on interval ⟨0.7, 1.4⟩. Positive/negative errors of
equilibrium positions are represented by full/empty circles or triangles. The
reference value for the equilibrium distance of TiN is taken from the most
precise calculation since the diatomic TiN cannot be compared with common
data for crystalline TiN in this respect.

agree with the numerical derivatives of total energy within the
precision of our total energy calculations and that our approach
offers a numerically stable way to calculate HF forces.

The convergence of the HF forces and the equilibrium position
among atoms in CO2 molecule with regard to the mesh element
size is shown in Fig. 4. The reference values were those obtained
for the finest mesh (α = 0.45).

The results of similar accuracy have been achieved for HF force
in nitric oxide molecule and tetrafluoromethane molecule, where
the relative errors of expected interatomic distances were only
0.232% and 0.15% w.r.t. the expected values of 115 pm [14] and

131.91pm [15], respectively, and the inaccuracy of the obtained
distance of zero HF forces with respect to the computed minima
of total energy was less than one per mille. The calculated HF
forces for both molecules can be seen in Fig. 2.

We would like to emphasize that the experimental values
above were used just as reference values for comparing the
calculations mutually, without making a greater effort to obtain
the best agreement with experimental values. Such an effort
– including the use of more sophisticated exchange–correlation
term and pseudopotentials tuning – would lead to even more
precise and numerically more stable results.

We also verified the convergence of HF forces w.r.t. the inter-
atomic distance in the diatomic titanium nitride, in order to test
the convergence also for transition metals. Figs. 4, 5 show that
the errors in the case of diatomic titanium nitride converge in a
similar manner as in the case of carbon dioxide. The convergence
with the mesh element size for TiN seems to be slower than for
CO2, but it should be noted that it always depends on the param-
eters of the used pseudopotential — softer and less transferable
pseudopotentials generally converge faster.

For a stricter verification of our code for HF forces and of
its convergence properties we have calculated vibrational fre-
quencies of the symmetric mode (often called v1, see [28]) of
carbon dioxide molecule. As the vibrational frequency is in fact
a derivative of HF force (and second derivative of total energy), it
is usually much more sensitive to the computational errors than
equilibrium position and therefore it is a suitable benchmark for
the precision of the method.

The vibrational frequencies have been calculated from the
force acting on carbon atom displaced by 0.005 a.u., using a
simple model of linear harmonic oscillator. Our results match the
data obtained from the experiment [29] quite well and document
good convergence properties of our proposed formula — see
Fig. 6.

We also tested the dependence of the error in HF forces
(w.r.t. reference values obtained from self-consistent states) on
the degree of convergence of the DFT loop (i.e. on the precision
of the solution of Kohn–Sham equations). Our calculations show
nearly linear dependence of the size of the HFF error on the L2
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Fig. 5. Comparison of convergence of the HF-forces for diatomic titanium nitride and carbon dioxide. The parameter α is the edge length of the smallest elements
of the mesh. The reference force fref is the force for the finest mesh (α = 0.45).

Fig. 6. Convergence of symmetric vibrational frequencies of CO2 molecule with respect to the mesh element size and number of degrees of freedom, compared to
other published experimental and computed results. Axis is in logarithmic scale, with compressed region below 105 (on the x-axis) and above 1550 (on the y-axis)
to cover whole convergence curve while emphasizing the region relevant to the most accurate results. The convergence properties of the calculations done by other
methods, even if the numbers of degrees of freedom are indicated in the references, can be roughly compared only in the case of finite differences (denoted by △),
because of essentially different character of bases and of resulting matrices in the other methods.

norm of the DFT error, see Fig. 7, regardless of the system and/or
spatial stretching of the system. This dependence can be used as a
reasonable estimate of the error of the computed HF forces. It can
be also used for determination of the stopping criteria for the DFT
loop, e.g. in geometry optimizations of more complex systems.

7. Convergence and fluctuations of various methods for com-
puting HF forces

A series of calculations to compare the errors and convergence
rates of six methods for evaluating the nonlocal components of
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Fig. 7. Convergence of HF forces with respect to the stopping criterion of the
DFT loop. The DFT error magnitude is computed as L2 norm of the difference
between the input and output charge densities of each DFT iteration. The HF
forces from the last – fully converged (DFT error magnitude < 10−7) – step
of the DFT loop serve as the reference forces FRef

HFF . Empty/full points denote
negative/positive differences to the reference values. β is the spatial scale factor
(stretching the molecule). The Anderson/Pulay mixing scheme [30,31] was used
in the DFT loop to achieve the self-consistent state.

Hellmann–Feynman forces is shown in Fig. 8. Using the series of
meshes with varying base element edge length α (described in
the previous section), we compare the results of various methods
and assess these results in comparison with reference values
obtained for the finest mesh (α = 0.7). We can see that all the
methods converge to the same solution. This solution is smooth
and corresponds to the derivative of the total energy (as verified
in the previous section).

Four of the compared methods use separable pseudopoten-
tials (A, B, C, E in Fig. 8) and two of them use l-dependent
pseudopotentials (D, F). The methods A to D express HF-forces
directly using the HF theorem (1), where the methods A and D
use the approach proposed in this paper, i.e. differentiating of
the wavefunctions (for separable and l-dependent pseudopoten-
tial, respectively), whereas B and C differentiate the projectors
of the separable pseudopotentials — here the singularity of the
analytical gradient of the separable pseudopotential is treated by
projecting into the FEM basis (B) or using the vector spherical
harmonics for l > 0 (C, see (16)).

On the other hand, methods E and F use the numerical differ-
entiation of the total energy in separable (E) and l-dependent (F)
pseudopotentials. In both cases, wavefunctions – according to the
HF theorem (1) – remain ‘‘frozen’’ during differentiating.

We do not consider the numerical differentiation of the to-
tal energy with non-frozen wavefunctions (i.e. without employ-
ing the HF theorem) in this section. The need of recalculating
wavefunctions for various atomic positions made such methods
uncompetitive as regards both efficiency and accuracy: computa-
tional demands and the inaccuracies of wavefunctions (numerical
as well as arising from non-fully converged DFT-loop or incom-
pleteness of the FEM basis, see Fig. 3) practically disqualify this
approach.

Fig. 8 is complemented by Table 1 showing the asymptotic
complexity of operations of the considered methods in terms of
the discretization parameters.

7.1. Discussion of the methods

In the following section we will assess the accuracy of the
considered methods, taking the computational demands into ac-
count. Note that the oscillations – that can create false local

Table 1
The asymptotic complexity of the methods considered in Fig. 8 for computing
the non-local part of the HF-forces acting on one atom, in terms of the
discretization parameters. Both ΘE and ΘP cannot be easily expressed using
quantities above, as they depend in a complicated way on the mesh geometry
(especially the dependence of ΘE on ne is strongly non-monotonic for various
meshes covering the same spatial volume, as can be seen in Fig. 8 D and F).
The short range of nonlocal pseudopotential components is not employed in the
expressions above; by employing that feature, ne would correspond only to the
number of elements within the nonlocal pseudopotential component support.
Symbol Meaning

nψ Number of ψi
nP Number of projectors of separable pseudopotential of the atom
nlm Number of l,m components of l-dependent pseudopotential
ne Number of elements of the FEM mesh (function of the α in the

graphs above)
nqp Number of quadrature points in each element
nbf Number of basis functions in a single finite element
nfd Number of points used for numerically differentiating etot
nrp Number of points in the radial mesh for the projection of the

wavefunctions into the L-space
nap Number of points in the angular mesh for the projection of the

wavefunctions into the L-space
ΘP L2 asymptotic complexity of the projection into the FEM basis
ΘE Asymptotic complexity of evaluating a quantity in the FEM basis

in a given point

Method Asymptotic computational time complexity

A nψnPnenbf + nPnenqpnbf
B nψnPnenbf + nPnenqpnbf + nPΘP
C nψnPnenbf + nPnenqpnbf
D nψnlmnenqp + nψnlmnrpnapΘE
E nfdnψnPnenbf
F nfdnψnlmnenqp + nfdnψnlmnrpnapΘE

minima or spoil the convergence of the minimization algorithm
– might interfere the accuracy of the whole computation more
than a constant error that only shifts the equilibrium position a
bit. From this point of view, a worse precision has been achieved
using the expressions that differentiate the separable pseudopo-
tential, either analytically or numerically (see Fig. 8C and E),
compared to those using the gradient of wavefunctions (A and
D).

From the anti-hermiticity of the bilinear form (∗ · ∇∗) follows

Re
(
νl,nYl,m · ∇ψi

)
= − Re

(
∇νl,nYl,m · ψi

)
(20)

and therefore that the computation using the gradient of pro-
jector (Fig. 8C) is mathematically equivalent to our presented
method (differentiating ψ , Fig. 8A). The two cases differ only
by numerical errors caused by the differentiation: while using
derivatives of a separable pseudopotential leads to integrating
previously differentiated projectors of the separable pseudopo-
tential, our new method allows to do both steps – differentiating
and integrating – ‘‘at once’’ during the FEM assembling. More-
over, the basis functions have polynomial derivatives that are
more suitable for the numerical quadrature [32] used in the
FEM assembling than the derivatives of projector functions of
the separable pseudopotential. Thus, it is no surprise that our
proposed method results in smaller numerical fluctuations as can
be seen by comparing Fig. 8A and C.

The poor numerical precision of differentiating separable
pseudopotentials (Fig. 8C and E) can be improved by projecting
the pseudopotentials into the FEM basis prior to the differenti-
ation, as in (Fig. 8B). This approach eliminates both sources of
errors noted in the previous paragraph. Since the pseudopoten-
tials can be projected into the FEM basis quite precisely, the
resulting error is nearly the same as in our proposed method
(Fig. 8A). However, the projections of pseudopotentials into FEM
basis are computationally expensive, whereas the projections
of wavefunctions have been already prepared. Therefore, our
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Fig. 8. Convergence of the HF-force acting on N atom in NO molecule with the mesh element size (the parameter α is the linear size of the smallest element, in
atomic units) for various approaches. The curves show the numerical error of HFF (in Ha/a.u.) related to the reference force obtained using the finest mesh. The
x axes show the interatomic distance (in a.u.), with equilibrium marked by the vertical dotted line. Small subgraphs show the computational time in a logarithmic
scale.

newly proposed method provides a significant improvement in
computational efficiency compared to that approach.

The results obtained using l-dependent potentials (Fig. 8D and
F) do not suffer from the inaccuracy of the gradient evaluation,
but they have another disadvantage: evaluation of the spherical
integrals (we use Lebedev quadrature for integration on spheres,
see [33]) is not a natural approach for the finite element method,
therefore its computational expenses do not depend on the mesh
size. Or even worse: for smaller meshes with larger elements,
the projection from real space to the reference element, that is
necessary for evaluating the integral, can be more demanding
than for finer meshes.3 This behavior, that may look strange

3 Our additional numerical tests show a strong dependence of the
computational demands on the geometry of the used mesh.

at first sight, is caused by the fact that the same number of
integration points for the radial integration is needed for a fine
and for a coarse mesh. Solving the L2 projection on larger ele-
ments of the coarse mesh can require more computational time
to achieve the same accuracy of interpolation than solving the
same problem on a finer mesh. This behavior is very disagreeable
because it interferes with using a coarse mesh as a fast and
cheap preprocessing for obtaining a reasonable guess for initial
positions of atoms.

In some cases, the numerical derivative of the total energy
using the l-dependent pseudopotentials (Fig. 8F) offers better
computational efficiency than the newly proposed method. How-
ever, none of the methods was implemented with all possible
optimizations. In addition, when using a particular HFF evalua-
tion method in combination with a particular electronic-structure
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code, the efficiency of HFF evaluation depends very much on
which quantities have been already precalculated in the code
for other purposes. Therefore the presented computational times
are only indicative and they can serve more to show how the
computational time scales with the system size, than to compare
the methods mutually. The computational expenses for eval-
uating the matrix elements of separable pseudopotentials can
be substantially reduced by taking the full advantage of the
short-ranged nature of the non-local pseudopotential compo-
nents, evaluating the integrals only on the mesh elements within
the spatial scope of the nonlocal part of each pseudopotential;
in that case, ne in Table 1 would correspond only to the num-
ber of elements within the nonlocal pseudopotential component
support. It could clearly reduce the computational expenses for
evaluating the integrals substantially (as the experience with sim-
ilar techniques from other codes, e.g. [26,34], confirms), whereas
the similar way in the case of l-dependent pseudopotentials – the
short range radial mesh – has been already employed in the above
calculations.

Moreover, the l-dependent pseudopotentials provide a worse
precision near the equilibrium position according to our test
calculations. Last but not least, the numerical derivatives of the
total energy suffer from much stronger fluctuations (due to the
inaccuracies of the numerical differentiation), i.e. they are not as
smooth, compared to the forces obtained by differentiating the
wavefunctions, as can be seen in Fig. 8 near the equilibrium po-
sition (where the forces were calculated for varying interatomic
distances with a fine step).

Therefore we conclude that the method A – differentiating
the wavefunctions with the separable pseudopotentials – seems
to be the most suitable method for applications within the FEM
combined with the non-local potentials. The proposed approach
offers both the sufficient numerical accuracy and the computa-
tional efficiency and outperforms the other methods considered
within the scope of this study.

7.2. Notes on efficiency with respect to other codes

The accuracy of the calculations increases with decreasing the
parameter α (the smallest mesh edge length), while the prob-
lem size in terms of the number of degrees of freedom (DoF’s)
increases as well, proportional to 1/α3. More DoF’s usually lead
to higher computational demands, but, in the FEM basis, the
efficiency is affected not only by the number of DoF’s, but also by
the number of non-zero elements in Hamiltonian matrix, by the
number of the rank-k updates, by the computational demands of
projecting quantities to the basis and by computational demands
for finding the reference element coordinates of points in general
positions (the last factor can be hardly expressed in terms of
the DoF’s number, because for large elements the solutions are
often not faster than for a larger number of smaller elements).
Therefore – with respect to more general aims of the paper – we
want to avoid dealing with the details too specific for particular
basis types. In addition, seen from the viewpoint of the overall
computational time, the HFF evaluations are not the bottleneck
for most codes, including FENNEC (in our benchmarks, the HFF
evaluation takes a few per cent of the total elapsed time: below
1% for the largest of the tasks solved above, and it diminishes
progressively with increasing problem size). For the relevance of
comparison of particular HFF evaluation algorithms, their preci-
sion, numerical stability and the absence of oscillations are much
more important factors, which we tried to demonstrate in the
paper.

Study limitations. Deliberately we neither give the comparison of
the efficiency of our code4 for calculating electronic structure as
a whole with other codes nor we associate the algorithms for
evaluating non-local potential components listed in Fig. 8 with
particular other codes. That association could be disputable since
many authors do not state how they solve this problem, and
even if they have indicated something in past, it could have been
changed. Our capabilities and the objective feasibility to analyze
other codes (to determine which algorithms they actually use)
are limited and our goal is not to criticize other codes, much
less to decide which one of other codes can be classified as a
comparative standard. In this paper we focus on a particular
problem – evaluating HFF in a potential with non-local com-
ponents – and we try to give an overview of algorithms and
approaches to solve that problem that is common for (at least)
all the methods employing pseudopotentials, which has not been
– to our knowledge – published so far.

8. Conclusion

In this paper we present a new approach for calculating
the Hellmann–Feynman forces in non-local pseudopotentials dis-
cretized using the finite element method, within the density
functional theory. The correctness of the present method and
numerical properties of the newly proposed formula have been
demonstrated by calculations on simple molecules.

Also, very advantageous convergence properties of the newly
proposed formula have been demonstrated, which can be used for
a reasonable guess of computational error due to misconvergence
of the DFT loop and for determination of the proper value for
stopping criteria for the DFT self-consistent loop.

Special attention have been focused on the nonlocal part of
the Hellmann–Feynman force formula. For that, the precision
and computational efficiency were compared to other methods
such as numerically differentiating the total energy and other
approaches published up to now for evaluating the Hellmann–
Feynman forces. This comparison documents that the proposed
approach cures the performance and precision problems that
arise in other methods, both for the l-dependent and separable
forms of non-local pseudopotentials.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Czech Science Foundation,
Czech Republic, project no. GA17-12925S. The first author ac-
knowledges the support by CEDAMNF project, Czech Republic,
reg. no. CZ. 02.1.01 co-funded by the ERDF as part of the Min-
istry of Education, Youth and Sports OP RDE programme, Czech
Republic. The third author was supported by the Czech Science
Foundation, Czech Republic, project no. GA17-14840S.

4 The FENNEC code is still in the pre-release stage: we plan to describe it
properly together with releasing the whole code as an open-source.



Please cite this article as: M. Novák, J. Vackář and R. Cimrman, Evaluating Hellmann–Feynman forces within non-local pseudopotentials, Computer Physics Communica-
tions (2019) 107034, https://doi.org/10.1016/j.cpc.2019.107034.

10 M. Novák, J. Vackář and R. Cimrman / Computer Physics Communications xxx (xxxx) xxx

References

[1] R. Cimrman, M. Novák, R. Kolman, M. Tůma, J. Vackář, Mathematics and
Computers in Simulation (2016).

[2] R. Cimrman, M. Novák, R. Kolman, M. Tůma, J. Plešek, J. Vackář, Appl. Math.
Comput. (2017).

[3] J. Vackář, O. Čertík, R. Cimrman, M. Novák, O. Šipr, J. Plešek, Advances in
the Theory of Quantum Systems in Chemistry and Physics, Springer, 2012,
pp. 199–217.

[4] J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12 (21) (1979) 4409.
[5] P. Ciarlet, J. Lions, in: P. Ciarlet (Ed.), Finite element methods, in: Handbook

of numerical analysis / general, vol. Vol., North-Holland, 1991, URL http:
//books.google.cz/books?id=nyknAQAAIAAJ.

[6] M.J. Borden, M.A. Scott, J.A. Evans, T.J. Hughes, Internat. J. Numer. Methods
Engrg. 87 (1–5) (2011) 15–47.

[7] R. Cimrman, V. Lukeš, E. Rohan, Adv. Comput. Math. (2019).
[8] P. Pulay, Mol. Phys. 17 (2) (1969) 197–204.
[9] H. Hellmann, J. Chem. Phys. 3 (1) (1935) 61.

[10] P. Hohenberg, W. Kohn, Phys. Rev. 136 (3B) (1964) B864.
[11] D. Carfì, Atti Accad. Peloritana Pericolanti-Classe Sci. Fisiche Mat. Nat. 88

(1) (2010).
[12] J. Pask, P. Sterne, Modelling Simulation Mater. Sci. Eng. 13 (3) (2005) R71.
[13] A. Badinski, R. Needs, Phys. Rev. E 76 (3) (2007) 036707.
[14] N. Greenwood, A. Earnshaw, Chemistry of the Elements, second ed.,

Butterworth-Heinemann, 1997.
[15] X.-G. Wang, E.L. Sibert III, J.M. Martin, J. Chem. Phys. 112 (3) (2000)

1353–1366.
[16] B. Himmetoglu, A. Floris, S. Gironcoli, M. Cococcioni, Int. J. Quantum Chem.

114 (1) (2014) 14–49.

[17] S.P. Lewis, C. Wei, E. Mele, A.M. Rappe, Phys. Rev. B 58 (7) (1998) 3482.
[18] K.-M. Ho, C.-L. Fu, B. Harmon, Phys. Rev. B 28 (12) (1983) 6687.
[19] R. Yu, D. Singh, H. Krakauer, Phys. Rev. B 43 (8) (1991) 6411.
[20] X. Jing, N. Troullier, D. Dean, N. Binggeli, J.R. Chelikowsky, K. Wu, Y. Saad,

Phys. Rev. B 50 (16) (1994) 12234.
[21] M. Alemany, M. Jain, L. Kronik, J.R. Chelikowsky, Phys. Rev. B 69 (7) (2004)

075101.
[22] L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48 (1982) 1425–1428.
[23] T. Miyazaki, D. Bowler, R. Choudhury, M. Gillan, J. Chem. Phys. 121 (13)

(2004) 6186–6194.
[24] D. Novoselov, D.M. Korotin, V. Anisimov, J. Phys.: Condens. Matter 27 (32)

(2015) 325602.
[25] J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D.

Sánchez-Portal, J. Phys.: Condens. Matter 14 (11) (2002) 2745.
[26] J. Bernholc, M. Hodak, W. Lu, J. Phys.: Condens. Matter 20 (29) (2008)

294205.
[27] M. Hodak, S. Wang, W. Lu, J. Bernholc, Phys. Rev. B 76 (8) (2007) 085108.
[28] G. Aldoshin, S. Yakovlev, Mech. Solids 50 (1) (2015) 33–43.
[29] J.-L. Teffo, O. Sulakshina, V. Perevalov, J. Mol. Spectrosc. 156 (1) (1992)

48–64.
[30] D.G. Anderson, J. ACM 12 (4) (1965) 547–560.
[31] V. Eyert, J. Comput. Phys. 124 (2) (1996) 271–285.
[32] J. Liesen, Z. Strakoš, Krylov Subspace Methods: Principles and Analysis,

Oxford University Press, 2013.
[33] V. Lebedev, D. Laikov, Doklady Mathematics, Vol. 59, MAIK

Nauka/Interperiodica, 1999, pp. 477–481.
[34] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C.

Payne, Z. Kristallogr.-Crystal. Mater. 220 (5/6) (2005) 567–570.

http://refhub.elsevier.com/S0010-4655(19)30369-8/sb1
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb1
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb1
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb2
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb2
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb2
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb3
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb3
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb3
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb3
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb3
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb4
http://books.google.cz/books?id=nyknAQAAIAAJ
http://books.google.cz/books?id=nyknAQAAIAAJ
http://books.google.cz/books?id=nyknAQAAIAAJ
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb6
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb6
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb6
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb7
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb8
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb9
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb10
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb11
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb11
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb11
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb12
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb13
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb14
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb14
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb14
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb15
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb15
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb15
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb16
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb16
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb16
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb17
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb18
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb19
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb20
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb20
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb20
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb21
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb21
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb21
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb22
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb23
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb23
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb23
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb24
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb24
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb24
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb25
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb25
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb25
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb26
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb26
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb26
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb27
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb28
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb29
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb29
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb29
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb30
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb31
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb32
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb32
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb32
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb33
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb33
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb33
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb34
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb34
http://refhub.elsevier.com/S0010-4655(19)30369-8/sb34

	Evaluating Hellmann–Feynman forces within non-local pseudopotentials
	Introduction
	Hellmann–Feynman forces for nonlocal pseudopotentials
	Local parts of Hellmann–Feynman force
	Nonlocal part of Hellmann–Feynman force
	Evaluating HFF using derivatives of wavefunctions
	Verification of the HFF formula and its convergence
	Convergence and fluctuations of various methods for computing HF forces
	Discussion of the methods
	Notes on efficiency with respect to other codes

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


