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Anotace
V této práci studujeme víceúrovňové předpodmiňovače. V úvodní části popíšeme
teorii víceúrovňových metod (metod multigridu). Pak spojíme dvě zajímavá té-
mata (BPX aditivní multigrid a metodu zhlazených agregací) do nové metody.
Představujeme BPX předpodmiňovač založený na metodě zhlazených agregací na
modelové úloze. Teoretický výsledek je ověřen sérií numerických experimentů.
Poslední kapitola se zabývá aplikací multigridu v modelování transportu neutronů.
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Annotation
This thesis studies multilevel preconditioners. In the introduction, we cover the
theory of multigrid methods. We then connect two interesting topics (BPX addi-
tive multigrid and smoothed aggregation method) into a new multigrid approach.
We will present a BPX preconditioner in the smoothed aggregation principle set-
tings on the model case. The theoretical results are validated by the series of
numerical experiments. The last chapter covers applications of the multigrid pre-
conditioners in the neutron transport modeling.
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‖ · ‖lp lp norm
lp space of sequences
Ck(Ω) spaces of continuous functions
‖u‖Ck ¯(Ω) Ck norm
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‖u‖Lp(Ω) Lp(Ω) norm
(·, ·) inner product
W k
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2 (Ω)

(·, ·)A A− inner product
‖ · ‖A A−norm
U Hilbert space, if not stated otherwise
A(·, ·) continuous bilinear form
‖ · ‖A energy norm
f(·) continuous linear form
A finite dimensional discretization operator
Ah fine level operator (two-level method)
AH coarse level operator (two-level method)
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E error propagation operator
Vh finite dimensional Hilbert space
V finite dimensional vector space
L number of levels
IHh restriction operator (two-level method)
IhH prolongation operator (two-level method)
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Introduction

The multigrid methods are strong tools for solving large scale algebraic systems
coming from partial differential equations. Throughout the years, it has been
developed from a simple idea to a whole family of solvers and efficient precondi-
tioners. We find it convenient to start with a brief history of the method, as it
shows that from the very beginning, the method was constantly developed along
with the evolution of computational mathematics and programming.

The history of multigrid begins with the work of R.P. Fedorenko, who was, in
the very late fifties, a scientist at the Steklov Institute under I.M. Gelfand. Fe-
dorenko described the inception in the note On the history of the Multigrid method
creation in 2001. The note was then translated by M. A. Botchev.

Fedorenko was dealing with a Poisson equation in a rectangular domain. In his
program, a 48x40 grid was used so that the unknown grid function and the right
hand side vector occupied almost all the operational memory. He used a simple
iteration method and observed a known fact, that the nonsmooth residual de-
creased fast and became smooth. After this, the decrease became slow. He then
formulated the correction equation as a problem on a coarse grid with the residual
at the right hand side. This approach probably came from a Newton method for
linear equations, which leads to a similar problem.

Fedorenko continued in his work in 1962 [21], where the method described was
called a relaxation method. In the paper [22] from 1964 a multigrid algorithm was
formulated for a five point finite difference discretization scheme of the Poisson
equation on a square. It was proven that the work needed to achieve a certain
accuracy was O(N). Fedorenko was then followed by Bakhvalov in 196l [2] .

After the first steps of multigrid, its development stopped for a couple of years.
Multigrid methods were rediscovered and developed in the seventies by Brandt
[9], [8], Hackbusch [29] and other authors and became widely known through the
eighties. Since the coarsening process in the standard approach is based on the
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geometrical grid, the original method is called the geometric multigrid and in this
thesis will be referred to as GM.

The Brandt-Hackbusch standard multigrid theory required a "regularity and ap-
proximation" assumption. It was proved using elliptic regularity of the underlying
partial differential equation as well as approximation and inverse properties of the
discrete multilevel spaces. Later, the two-level schemes were proved to converge
under weaker assumptions [29], [10]. The estimates for general multilevel method
without regularity assumptions were proved in [6]. This included convergence re-
sults for multigrid refinement applications, problems with irregular coefficients and
problems with high jumps in coefficients.

The subsequent years brought a continuing progress of high performance com-
puters. Larger and more complicated problems were solved on the unstructured
meshes and demands on efficient solvers and pre-conditioners were rising. It turned
out that problems occurred when, for example, when the anisotropic problems were
solved.

In the case of anisotropic problems, more complex smoothers are required in
order to still achieve a fast multigrid convergence.

Also, in the geometric multigrid, the prolongation matrices are closely con-
nected with the geometrical structure of the problem and it was impossible to
create a black-box solver which would create prolongation matrices based just on
the linear systems arising from the differential equations.

The algebraic multigrid (AMG) was introduced by Achi Brandt [10] as a method
for solving linear systems based on multigrid principles. In contrast to the geomet-
ric multigrid, the interplay between grids was based just on the algebraic structure
of the stiffness matrix.

We can say that in the AMG, restriction matrices are created by fast and simple
algorithms and an information about the grid is no longer required - the coarsening
process is automatic. This fact is balanced by the need of robust smoothers. If
we use term sets of variables instead of grids and single variables instead of grid
points, the AMG approach is formally the same as in the GM. We will also see
that smoothness has purely algebraic meaning. In the GM, the error after some
smoothing steps is geometrically smooth, but in AMG, the algebraically smoothed
error can be geometrically oscillatory.

For these advantages, we have to pay a price - before an actual solution phase
starts, the set-up phase has to be done. It has been shown in many examples, that
the AMG can be less efficient when the GM can be applied. Also, in many cases
the AMG performs better as a pre-conditioner than a stand alone solver.
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Since the introduction of the original method, a wide variety of AMG algo-
rithms have been developed. The classical approach was presented by Ruge and
Stüben ([42], [45]) and is based on the strong dependency of unknowns. Next to the
classical approach, there exists a class of AMG solvers based on the aggregation
principle. The smoothed aggregation (SA) approach showed up to be efficient tool
for solving various type of problems [56]. It is strong in the context of solving
large scale systems of linear algebraic equations arising from discretization of el-
liptic problems and their singular perturbations. In this thesis we focus mainly on
the SA principle.

An outline of this thesis is as follows:
The text is divided into three main parts. The first part of the thesis consists

of Chapters 1 and 2 and contains mainly a theory regarding multigrid methods.
Chapter 3 contains numerical aspects of the algorithm, programming issues and
numerical experiments. The last chapter contains a comparison of some solvers
including multigrid methods in the application coming from neutron diffusion prob-
lem.

The first chapter covers an area of the geometric multigrid and the main aim of
this chapter is to make a comprehensible introduction to the reader. We wanted to
describe a rather wide area of multigrid in a way that it would be understandable
to a interested reader without previous knowledge of the multigrid, so we start
from the basics and explain how multigrid works and it’s main principles. We will
see that multigrid can be looked at from different angles as well as there exists
different derivations of two grid method. In the end of the chapter we present some
most important convergence result of Brandt-Hackbusch and of Bramble, Pasciak,
Xu and Wang.

Chapter 2 follows by the introduction to the algebraic multigrid. The AMG
section is focused mainly on the smoothed aggregation method by Vaněk, Mandel
and Brezina. In the second part of the chapter, we propose a connection of the
interesting topics: BPX additive multigrid ([6]) and smoothed aggregation method
into a new multigrid approach. According to [6], the classical multigrid can be
viewed as a multiplicative method of Schwarz type with inexact subspace solvers
given by smoothers. As a consequence, its fundamental components contains inner
dependencies and have to be performed in a sequence. Unlike standard multigrid,
the so-called BPX pre-conditioner frame of Bramble, Pasciak, and Xu [7] is fully
additive, allowing for a parallelism on each level. We derive a convergence result
for BPX preconditioner is the SA settings on the model case.

The theoretical part is followed by numerical results and applications in Chap-
ter 3. Before we proceed to the actual results, we describe the essentials of pro-
gramming the multigrid method in parallel. We programmed a code suitable for
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solving elliptic problem by various solvers. The numerical experiments are done
for the model problem in a serial and parallel version. We provide numerical verifi-
cation of new theoretical results derived in Chapter 2. Then we present a series of
numerical experiments involving convergence of the algorithm and we also discuss
the results in context of other multigrid methods.

In the last chapter of the thesis, we focus on the applications - modeling of
the transport of neutrons in the reactor core. The model we use is the multi-
group diffusion approximation which is solved for the neutron flux and so called
critical number of the reactor. It leads to a generalized eigenvalue problem. We
implemented a module based on the finite volume method which is then used for
solving the eigenvalue problem. The main aim of this section is to do a series
of numerical experiments on the calculation of the neutron flux and the critical
number and consequently make some recommendations regarding used solvers and
preconditioners for the given problem.
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Chapter 1

Mathematical Preliminaries

In this chapter, we summarise the basic mathematical preliminaries, which will be
necessary in the later chapters. We start with the function spaces and continue
with variational formulation and solvability of the elliptic problem. More informa-
tion can be found in [17]. We then present some known facts from the theory of
FEM.

1.1 Function and Vector Spaces

1.1.1 Euclidean Space Rn

Let Rn be an n-dimensional Euclidean space and x ∈ Rn, x = (x1, . . . , xn) a vector.
The vector product 〈·, ·〉 is a function

〈·, ·〉 : Rn × Rn → R

defined by the formula

〈x,y〉 =
n∑
i=1

xiyi.

The norm ‖x‖ is defined as
‖x‖ =

√
〈x,x〉.

We will also use the space of sequences lp, 0 < p < ∞. Let (xi)
∞
i=1, xi ∈ R be

a sequence of real numbers. Then lp is a subspace of Rn consisting of sequences
(xn):

∞∑
i=1

|xi|p <∞.
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The lp norm is given by

‖xn‖lp =

(
n∑
i=1

|xi|p
) 1

p

.

1.1.2 Spaces of Continuous Functions

Let N denote the set of non-negative integers. An n-tuple

α = (α1, . . . , αn) ∈ Nn

is called a multi-index. The non-negative integer |α| := α1 + . . . αn is referred to
as the length of the multi-index α = (α1, . . . , αn). Let

Dα =
∂|α|

∂xα1
1 . . . ∂xαn

n

.

Let Ω be an open set in Rn and k ∈ N. We denote by Ck(Ω) the set of all
continuous real - valued functions defined on Ω such that Dαu is continuous on Ω
for all α = (α1, . . . , αn) with |α| ≤ k. Assuming that Ω is a bounded set, Ck(Ω̄)
will denote the set of all u in Ck(Ω) such that Dαu can be extended from Ω to a
continuous function on Ω̄.
Ck(Ω̄) can be equipped with the norm

‖u‖Ck ¯(Ω) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)|.

We denote the space of continuous functions by C(Ω̄) with the norm

‖u‖C(Ω̄) = max
x∈Ω̄
|u(x)|.

The support of a continuous function of u defined on an open set Ω ⊂ Rn is defined
as the closure in Ω of the set {x ∈ Ω : u(x) 6= 0}.

We denote by Ck
0 (Ω) the set of all u contained in Ck(Ω) whose support is a

bounded subset of Ω. Let
C∞0 (Ω) =

⋂
k≥0

Ck
0 (Ω).

1.1.3 Spaces of Integrable Functions

We consider a class of spaces that consist of Lebesgue integrable functions. Let p
be a real number, p ≥ 1, we denote by Lp(Ω) the set of all real - valued functions
defined on an open subset Ω of Rn such that∫

Ω

|u(x)|pdx <∞.
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Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
)1/p

.

An important case corresponds to taking p = 2. Then

‖u‖L2(Ω) =

(∫
Ω

|u(x)|2dx
)1/2

.

The space L2(Ω) can be equipped with the inner product

(u, v) :=

∫
Ω

u(x)v(x)dx.

Clearly ‖u‖L2(Ω) = (u, u)1/2.

Lemma 1 (The Cauchy-Schwarz inequality) Let u and v belong to L2(Ω),
then u, v ∈ L1(Ω) and

|(u, v)| ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

1.1.4 Sobolev Spaces

Let k be a nonnegative integer and suppose that p ∈ [1,∞]. We define (with Dα

denoting a derivative of order |α|)

W k
p (Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}.

W k
p (Ω) is called a Sobolev space of order k; it is equipped with the (Sobolev) norm

‖u‖Wk
p (Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

when 1 ≤ p <∞.

Letting

|u|Wk
p (Ω) :=

∑
|α|=k

‖Dαu‖pLp(Ω)

1/p

,

for p ∈ [1,∞), we can write

‖u‖Wk
p (Ω) :=

(
k∑
j=0

|u|p
W j

p (Ω)

)1/p

.
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An important special case corresponds to taking p = 2, the space W k
2 (Ω) is then

a Hilbert space with inner product

(u, v)Wk
2 (Ω) :=

∑
|α|≤k

(Dαu,Dαv).

We shall usually write Hk(Ω) instead of W k
2 (Ω). The definition of W k

p (Ω) and its
norm and semi norm, for p = 2, k = 1, give:

H1(Ω) =

{
u ∈ L2(Ω) :

∂u

∂x j
∈ L2(Ω), j = 1, . . . , n

}
,

‖u‖H1(Ω) :=

(
‖u‖2

L2(Ω) +
n∑
j=1

∥∥∥∥∂u∂x j
∥∥∥∥2

L2(Ω)

)1/2

,

|u|H1(Ω) :=

(
n∑
j=1

∥∥∥∥∂u∂x j
∥∥∥∥2

L2(Ω)

)1/2

.

For p = 2, k = 2, we have

H2(Ω) =

{
u ∈ L2(Ω) :

∂u

∂x j
∈ L2(Ω), j = 1, . . . , n,

∂2u

∂xi∂xj
∈ L2(Ω), i, j = 1, . . . , n

}
,

‖u‖H2(Ω) :=

(
‖u‖2

L2(Ω) +
n∑
j=1

∥∥∥∥∂u∂x j
∥∥∥∥2

L2(Ω)

+
n∑

i,j=1

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥2

L2(Ω)

)1/2

,

|u|H2(Ω) :=

(
n∑

i,j=1

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥2

L2(Ω)

)1/2

.

Finally, we define the Sobolev space H1
0 (Ω) as the closure of C∞0 (Ω) in the norm

‖ · ‖H1(Ω). H1
0 (Ω) is the set of all u ∈ H1(Ω) such that u is the limit in H1(Ω) of

sequence {um}∞m=1 with um ∈ C∞0 (Ω) . For sufficiently smooth ∂Ω, it holds that

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.

Definition 1 Normed linear space B equipped with a norm ‖·‖ is called a Banach
space, if it is complete with respect to the metric

ρ(u, v) = ‖u− v‖ ∀u, v ∈ B.

Definition 2 Normed linear space H is called a Hilbert space if it is complete
respect to the norm given by a product (u, v):

‖u‖ =
√

(u, u) ∀u, v ∈ H.
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1.2 Some Results from the Finite Element Meth-
ods

In this section we will deal with the topics connected with the finite element meth-
ods (FEM). We start with an existence and uniqueness of a solution of the elliptic
problem boundary value problem. To be consistent with our model considered
in the next sections, we let Ω = (0, 1) × (0, 1) be a computational domain and
V = H1

0 (Ω). We consider a variational formulation of an elliptic problem:

find u ∈ V : A(u, v) = l(v) ∀v ∈ V . (1.1)

In what follows, 〈·, ·〉 denotes the Euclidean (l2) inner product, in the relevant
vector space, A(·, ·) = (∆·,∆·) is a bilinear form and l : V → R is a linear form.
Here we need some properties of A and l.

Definition 3 The linear form l : V → R is called continuous or bounded if

∃C > 0 : |l(v)| ≤ C‖v‖ ∀v ∈ V

Definition 4 The bilinear form A : V ×V → R is called continuous or bounded if

∃Ca > 0 : |A(v, w)| ≤ Ca‖v‖‖w‖ ∀v, w ∈ V

Definition 5 The bilinear form A : V × V → R is called V-elliptic if

∃α > 0 : |A(v, v)| ≥ α‖v‖2 ∀v ∈ V

Theorem 1 (Banach fixed point theorem) Let V be a Banach space (a com-
plete vector space not necessarily having an inner product) and let φ : V → V be a
contraction, i.e.

∃c, 0 ≤ c < 1 : ‖φ(v)− φ(w)‖ ≤ c‖v − w‖ ∀v, w ∈ V .

There exists a unique u ∈ V such that

φ(u) = u.

Theorem 2 (Riesz representation theorem) Let V is a Hilbert space with in-
ner product 〈·, ·〉 and norm ‖ · ‖. Any element w ∈ V defines a continuous linear
form l ∈ V ′ by l := 〈w, v〉. On the other hand, for any continuous linear form
l ∈ V ′ there exists a unique element Rl ∈ V such that

l(v) = 〈Rl, v〉 ∀v ∈ V

Moreover, there holds ‖Rl‖ = ‖l‖V ′, i.e.

‖R‖V ′→V := sup
G∈V ′\{0}

‖RG‖
‖G‖V ′

= 1
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Theorem 3 (Lax-Milgram theorem) V is a Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖, A(·, ·) is continuous, V-elliptic bilinear form and l : V → R is
continuous linear form. Then the variational problem has a unique solution u ∈ V.

Now suppose that Vh is a finite-dimensional subspace of V . The dimension of the
finite element space will be denoted as n. The finite element approximation of 1.1
is:

find uh ∈ Vh : A(uh, vh) = l(vh) ∀vh ∈ Vh. (1.2)

Theorem 4 (Céa’s lemma) The finite element approximation uh to u ∈ H1
0 (Ω),

the weak solution to the problem 1.1, is the near-best fit to u:

‖u− uh‖H1(Ω) ≤
Ca
α

min
vh∈Vh

‖u− vh‖H1(Ω). (1.3)

Let us define
(v, w)A = A(v, w) ∀v, w ∈ H1(Ω)0 (1.4)

and let ‖ · ‖A denote the associated energy norm defined by:

‖v‖A = (A(v, v))1/2.

The Céa’s lemma can be written in the form

‖u− uh‖A = min
vh∈Vh

‖u− vh‖A. (1.5)

Assume A is a symmetric, positive definite matrix. We use the symbols 〈·, ·〉A
and ‖·‖A for the usual A−inner product 〈·, ·〉A = 〈A·, ·〉 and A-norm ‖·‖A = 〈·, ·〉1/2A .

Figure 1.1: The basis function ϕi
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Finally we consider the piece-wise linear finite element approximation to the
problem 1.1. The space Vh = span{ϕi}ni=1 is generated by piece-wise linear basis
functions ϕi,Vh (see fig. 1.1). The details of the construction of FEM space can
be found in [16] and [47].

1.3 Some Other Results
Let Iu ∈ Vh denote the continuous piece-wise linear function which coincides with
u at the mesh points xi, i = 0, . . . , n,

Iu(x) =
n−1∑
i=1

u(xi)ϕi(x).

The function Iu(x) is called the interpolant of u from Vh. If u ∈ H2(Ω), then
there exist a constant C1 so that

‖u− Iu‖H1(Ω) ≤ C1h
2‖D2u‖2

L(Ω).

LetM be an index set. The notation 〈·, ·〉l2(M) and ‖ · ‖l2(M) corresponds to the
Euclidean inner product and the norm on a discrete domainM defined as

〈x,y〉l2(M) =
∑
i∈M

xiyi, ‖ · ‖l2(I) = 〈·, ·〉1/2l2(M),

respectively. Here, x and y are vectors such that their entries xi, yi ∈ IR are defined
for all i ∈M. On IRN , {1, . . . , n} ⊃ M, 〈·, ·〉l2(M) is a semi-product and ‖ · ‖l2(M)

is a semi-norm.
Assume (U, ‖ · ‖U) and (V, ‖ · ‖V ) are Banach spaces and L : U → V a linear

mapping. We introduce the operator norm of L by

‖L‖U→V = sup
u∈U\{0}

‖Lu‖V
‖u‖U

.

For a symmetric, positive definite (SPD) matrix A we define a condition number

cond(A) = λmax(A)/λmin(A).

Similarly, for symmetric positive definite matrices A, B, the mutual condition
number is given by cond(A,B) = λmax(BA)/λmin(BA).

We use generic constants C, c > 0 in the usual way, for example, for ‖u‖ ≤
C‖v‖ and ‖v‖ ≤ C‖w‖ we write ‖u‖ ≤ C‖w‖. Typically, C, c are constants
independent of the finest level mesh-size and whenever relevant, also on the level
and the number of levels.
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Theorem 5 (Spectral Equivalence) Let A and B be two SPD matrices (A,B ∈
Rn×n). Matrices A and B are spectrally equivalent if for α1, α2 > 0

α1(Bv, v) ≤ (Av, v) ≤ α2(Bv, v), ∀v ∈ Rn.

If two matrices A and B are spectrally equivalent, then

α1 ≤
(B−1Av, v)B

(v, v)B
≤ α2

and α1 ≤ λmin(B−1A), λmax(B−1A) ≤ α2 and then cond(B−1A) ≤ α2

α1
.
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Chapter 2

Geometric Multigrid Methods

The purpose of the next chapter is to cover the main ideas of the geometric multi-
grid. We think that it is useful to start with the basics and follow the steps of the
historical development of the method. This chapter is divided into two sections.
In the first section, we will start with the iterative methods. We define main itera-
tive methods which are used in multigrid and describe their smoothing properties.
Then, in the second section, the two-grid method will follow and then we cover
the multigrid by subspace splitting.

2.1 Iterative Methods

Iterative methods play a fundamental role in multigrid as smoothers. It has be-
come common in the introductory sections of multigrid-based papers to show an
effect of geometrical smoothing on the simple example. We will do no different,
since it is nicely shows the smoothing behaviour to the reader.

Let V be a finite dimensional vector space. We will study iterative methods to
solve a linear system

Au = f , (2.1)

where A : V → V is a symmetric positive definite linear operator and f ∈ V is
given.

The basic idea of a single step linear iterative methods is to approximate u by
the old solution uold and use uold to get unew by solving the residual equation for
an error e. The algorithm may look like this:

13



Algorithm 2.1.1
Calculate unew:
1: calculate a residual: r = f − Auold

2: replace Ae = r by ē = Br and solve for ē
3: update: unew = uold + ē

Here, B is an approximate inverse of A and a linear operator on V again. We
can use this to get Algorithm 2.1.2.

Algorithm 2.1.2
Calculate uk+1:
1: given: u0 ∈ V
2: for k = 0, 1, 2, . . . do
3: calculate: uk+1 = uk +B(f − Auk)
4: end for

We might also use the form of Algorithm 2.1.2 such that

uk+1 = Euk + s, k = 0, 1, 2, . . . , (2.2)

where
E = I −BA, s = Bf .

Operator B plays the main role in the algorithm. If B = A−1, then the first
iteration u1 is the exact solution.

Let us assume a sequence of iterations

uk, k = 0, 1, 2 . . . (2.3)

and u∗ solution to 2.1 . Iteration scheme 2.2 is called consistent if it satisfies

u∗ = Eu∗ + s. (2.4)

If I −E is non-singular, then there is a solution u∗ to the equation (2.4). It gives

uk+1 − u∗ = E(uk − u∗) = · · · = Ek+1(u0 − u∗)

Theorem 6 Let 2.2 be a consistent scheme and E be a square matrix such that
ρ(E) < 1. Then I−E is nonsingular and the iteration (2.3) converges for any f and
u0. Conversely, if the iteration (2.3) converges for any f and u0, then ρ(E) < 1.

14



Idea of the proof: Let λ1, λ2, . . . , λn be the eigenvalues of E, then there exists a
regular matrix T such that

E = TJT−1,

where J is Jordan matrix . It holds

Ek = TJkT−1.

If
max
i
|λi(E)| < 1,

then
lim
k→∞

Jk = 0,

therefore
ek = Eke0 → 0.

In the opposite direction, if limk→∞E
k = 0, then

lim
k→∞

Jk = 0

and
|λi| < 1 ∀i.

Corollary 1 Let E be a square matrix such that ‖E‖ < 1 for some matrix norm
‖.‖. Then I − E is non-singular and the iteration in Algorithm (2.1.1) converges
for any initial vector u0.

2.1.1 Richardson Iterative Method

The first method we describe is the Richardson method. The matrix B from
Algorithm (2.1.1) is given by

B =
ω

ρ(A)
I, ω > 0,

therefore
uk+1 = uk +

ω

ρ(A)
(f − Auk), k = 0, 1, 2, . . . .

Let us consider a short example. Just for now, let A be a stiffness matrix given by
finite elements discretization of the elliptic problem with zero Dirichlet boundary
conditions.

The error of approximation uk+1 is

ek+1 =

(
I − ω

ρ(A)
A

)
ek.
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Now, we would like to represent the error ek by eigenvectors of matrix A,

ek =
∑
i

αiφi, Aφi = λiφi,

where φi is an eigenvector corresponding to eigenvalue λi. In Fig. 2.1, we see
that eigenvector corresponding to the largest eigenvalue is of high frequency, while
eigenvector corresponding to the smallest eigenvalue is smooth.

(a) Eigenvector φi corresponding to
λi = ρ(A)

(b) Eigenvector φi corresponding to the
smallest λi

Figure 2.1: High and low frequency modes

It holds that

(
I − ω

ρ(A)
A

)
ek =

∑
i

αi

(
1− ω λi

ρ(A)

)
φi.

For a fixed ω = 1, it is clear that the high frequency modes of the error corre-
sponding to λi ≈ ρ(A) are eliminated fast, while low frequency modes of the error
corresponding to λi ≈ 0 are eliminated slow.

The smoothing effect of the iterative methods is shown in Fig. 2.2. It shows
an initial residual on the left and first iterations on the right. The result is a
geometrically smooth graph of the residual. We can also see that the iterative
method as a smoother is most effective in the first couple of iterations and then
its smoothing efficiency weakens. This is the reason why in multigrid we use just
a few smoothing iterations.
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Figure 2.2: Smoothing effect of iterative methods

2.1.2 Gauss-Seidel and SOR Methods

Let V = Rn and let A ∈ Rn×n now be a symmetric positive definite matrix.
The Gauss-Seidel method in the matrix form is obtained in the following way.

Using the decomposition
A = D − L− U,

we get
(D − L)u = Uu + f

and the iterates are

uk+1 = uk − (D − L)−1(Auk − f).

If we solve each equation for ui, i-th element of u, and use it to update ui+1, the
Gauss-Seidel is then of the form

uki = (fi −
i−1∑
j=1

aiju
k
j −

n∑
j=i+1

aiju
k−1
j )/aii.

The successive over relaxation (SOR) comes from the Gauss-Seidel method and,
for ω ∈ (0, 1), we get a linear combination of k − th iteration from a Gauss-Seidel
method and previous k − 1th itereration,

xki = ω(fi −
i−1∑
j=1

aiju
k
j −

n∑
j=i+1

aiju
k−1
j )/aii + (1− ω)xki .
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2.2 Introduction to Multigrid

As we have seen in the previous section, relaxation schemes damp the oscillatory
modes of the error effectively, but smooth modes are damped slowly. The second
main part of multigrid is the residual correction idea, which means that we find a
correction of u in the coarse space by solving the residual equation Ae = r on the
coarse level.

We will start with a two level algorithm which interacts between two grids.
Let us denote the fine grid by Ωh and the coarse grid by ΩH . The processes which
provide the interplay between grids are called a restriction and a prolongation (or
an interpolation). The idea of the two-level method is outlined in Algorithm 2.2.1:

Algorithm 2.2.1 Two-grid method (TGM):

1: relax on fine mesh: uh ← Sν(uh, fh) . on Ωh

2: compute residual: rh = fh − Ahuh
3: restrict residual: rH = IHh rh
4: relax on the coarse mesh to get an error on the coarse mesh:

AHvH = rH . on ΩH

5: correct the approximation on the fine mesh: uh ← uh + IhHvH
6: postsmooth: uh ← Sν(uh, fh) . on Ωh

The notation uh ← Sν(uh, fh) means that uh results from a smoothing of uh
given by ν smoothing steps of S.

We have to define mappings from the coarse to the fine grid. Let us make an
example in the 1-D case:

We define a mapping

IhH : ΩH → Ωh.

If uh,uH are defined on Ωh,Ω2h, then

IhHuH = uh,

where IhH is a prolongator (interpolation operator) if

{
uh2j = uHj ,

uh2j+1 = (uHj + uHj+1)/2,
for 0 ≤ j ≤ n+ 1

2
.
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(In this notation, the grid index is a bottom index). In a matrix form, this reads

uh =
1

2



1
2
1 1

2
1 1

...
1
2
1


uH .

The restriction operator IHh : Ωh → ΩH can be then taken as

IHh uh = uH .

We may also consider a full weighting operator, which is in 1-D case

uHj =
1

4
(uh2j−1 + 2uh2j + uh2j+1).

In a matrix form, this reads

uH =
1

4


1 2 1

1 2 1
1 2 1 . . .

1 2 1

uh.

In the notation of 2.2, we could look at the algorithm as at the iterative process

uk+1
h = Mhu

k
h + gMh

.

The smoothing process S is also an iterative method, we can therefore put it into
this form

uk+1
h = Sukh + gh,

where S is the iteration matrix associated with S.
We take gh = 0 to get

uk+1
h = Sukh,

and the residual
rH = IHh (−AhSuh).

The algorithm becomes

uk+1
h = S(Sukh + IhHA

−1
H IHh (−AhSukh)),
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therefore
Mh = S(I − IhHA−1

H IHh Ah)S.

The matrix inside the brackets,

T = I − IhHA−1
H IHh Ah, (2.5)

is the coarse grid correction operator.

Lemma 2 When the coarse grid matrix is defined as AH = IHh AhI
h
H , then the

coarse grid operator (2.5) is a projector with respect to the Ah - inner product.

Proof:
Let us show that I − T = IhHA

−1
H IHh Ah is a projector.

(IhHA
−1
H IHh Ah)× (IhHA

−1
H IHh Ah) = IhHA

−1
H (IhHA

−1
H IHh )A−1

h IHh Ah = IhHA
−1
H IHh Ah.

The adjoint of IhHA
−1
H IHh Ah in a Ah−inner product is

(Tx,y)Ah
= (IhHA

−1
H IHh Ahx,y)Ah

= (x, IhHA
−1
H IHh Ahy)Ah

= (x, Ty)Ah
.

T is therefore self-adjoint and IhH A−1
H IHh Ah and A an A-orthogonal projector. We

will denote G = IhH A−1
H IHh Ah.

Another way to derive the two-grid method

Before we proceed to multigrid section, we would like to show another way to de-
rive the two level method, which is presented in [24]. Instead of previous geometric
properties of the iterative methods, it is connected with the algebraic approach to
the smooth/fine parts of the solution.

We will now omit the notation of h and H for the prolongator and assume two
real vector spaces IRm and IRn,m < n. We again assume A is a symmetric positive
definite matrix of order n and f ∈ IRn. We assume now that an injective linear
prolongator P : IRm → IRn, m < n is given.

The two-level method consists in the combination of a coarse-grid correction
and smoothing. The coarse-grid correction is derived by correcting an error e by a
coarse-level vector v so that the resulting error e− Pv is minimal in A-norm. In
other words, we solve the minimization problem

find v ∈ IRm so that ‖e− Pv‖A is minimal. (2.6)
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The vector Pv is an A-orthogonal projection of the error e onto Range(P ), with
the projection operator given by

G = P (P TAP )−1P TA.

From the fundamental theorem of linear algebra, we know that for a matrix A,
the space Rn can be orthogonally decomposed [13]:

Rn = Range(A)⊕ Ker(AT ).

This leads to the following lemma:

Lemma 3 Operator G is an A-orthogonal projection on the Range(P ) and T is
A-orthogonal projection on the space

Ker(P TA) = {x ∈ Rn : (Ax,w) = 0 ,∀w ∈ Range(P )}.

If Ωh is a space of fine-grid vectors, we can write

Ωh = Range(P )⊕ Ker(P TA)

For a vector e ∈ Ωh it means that it can be written as

e = es + eo,

where es ∈ Range(P ) and eo ∈ Ker(P TA). Vector es can be understood as a
smooth component of e and eo as the oscillatory component, see [13].

Now, the error propagation operator E is an operator such that

ek+1 = Eek.

Thus, the error propagation operator of the coarse-grid correction is given by
I −G = I −P (P TAP )−1P TA and the error propagation operator of the two-level
method by

ETM = Spost[I − P (P TAP )−1P TA]Spre, (2.7)

where Spre and Spost are error propagation operators of pre- and post- smothing
iterations, respectively.

The coarse-grid correction can be algorithmized as

u← u− P (P TAP )−1P T (Au− f)

and the variational two-level algorithm with post-smoothing step proceeds as fol-
lows:
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Algorithm 2.2.2
1: pre-smooth: u← Spre(u, f),
2: evaluate the residual: r = Au− f
3: restrict the residual: r2 = P T r
4: solve a coarse-level problem: A2v = r2, A2 = P TAP
5: correct the approximation: u = u− Pv
6: post-smooth: u← Spost(u, f)

The coarse-grid correction vector v is chosen to minimize the error after step
5 of Algorithm 2.2.2. Thus, in the case of a standard multigrid, the coarse-grid
correction procedure minimizes the error in an intermediate stage of the iteration.
In following sections, we will show that if we minimize the error after coarse-grid
correction with subsequent smoothing, we get the smoothed aggregation method.

2.3 The Multigid Cycle
Let us first consider a set of grids defined on the vector spaces Vl, where the total
number of grids is L.

The multigrid cycle can be derived from the two-grid cycle. In the two-grid
method, we observe that we don’t have to solve the coarse level equation exactly,
since it is also an approximation. We may replace vH by a suitable approximation.
We can apply the two grid idea again with even coarser grid. This process can be
repeated until all L levels are involved, as we see in Fig. 2.3. Level 1 corresponds
to the coarsest level.

Remark 7 We would like to mention that in algebraic multigrid, it is a habit
to denote the coarsest level as L and in the AMG section, we will stick to AMG
notation.

Figure 2.3: Scheme of geometric multigrid
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To define the multigrid algorithm, we need the system of linear prolongators

I ll−1 : IRnl−1 → IRnl , nL = n, nl−1 < nl, l = 1, . . . , L− 1

and the smoothing iterative procedures Sl(·, ·) : IRnl × IRnl → IRnl on all levels
l = L, . . . 2. Then, the multigrid algorithm is defined as follows:

Given the system 2.1, the prolongators I ll−1, the smoothers Sl(·, ·), l = L, . . . 2,
the right-hand side f ∈ IRn and parameter ν, γ > 0, set AL = A, Al−1 =
(I ll−1)TAlI

l
l−1, l = L, . . . 2 and f1 = f . For a given input iterate x ∈ IRn, per-

form the iteration x←MG(x, f) given by Algorithm 2.3.1.

Algorithm 2.3.1 MG(x, f)
1: for l=L:2 do
2: pre-smoothing: perform ν iterations of xl ← Sl(xl, f l)
3: coarse-level correction: set f l−1 = (I ll−1)T (f l − Alxl)
4: if l = 2 then
5: solve directly: Al−1x

l−1 = f l−1

6: else
7: set xl−1 = 0 and perform γ iterations of xl−1 ←MG(xl−1, f l−1)
8: end if
9: correct the approximation on the level l by xl ← xl + I ll−1x

l−1

10: post-smoothing: perform ν iterations of xl ← Sl(f l,xl)
11: end for

Some special choices of L and γ will give us well known types of algorithms.
For L = 2 algorithm reduces to two-level method, γ = 1 gives us so called V −cycle
and γ ≥ 2 W − cycle.

We will be interested especially in the V − cycle and if do not say otherwise,
the multigrid method will be referred to as V − cycle.

Let γ = 1, we compare the error propagation operators of MG and the two
grid method. The V − cycle error propagation operator El is gives by

E0 = 0,

El = Sνl (Il − I ll−1(Il−1 − El−1)A−1
l−1I

l
l−1Al)S

ν
k .

The difference between the two-grid operation

El = Sνl (Il − I ll−1A
−1
l−1I

l−1
l Al)S

ν
l

and the above iteration operator Ml is that A−1
l−1 is replaced by

Il−1 − El−1A
−1
l−1.
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2.3.1 Multigrid by Subspace Splitting

In this section, we will look at multigrid in a standard variational setting. We will
see that multigrid in general can be seen as a method of a Schwarz type, both
additional and multiplicative. In the later sections, we will be interested in the
additive one. This topic was studied by Xu in [60], [63] and [61].

We follow Xu and start first with an abstract theory considering problem

A(u, v) = (f, v), ∀v ∈ Vh,

given a finite dimensional Hilbert space Vh. We consider the decomposition of Vh:

Vh =
L∑
i=1

Vi, (2.8)

where the finite dimensional subspaces satisfy

V1 ⊂ V2 ⊂, . . . ,⊂ Vh.

We define orthogonal projections:

Pl,Ql : Vh → Vl

by
(Plu, vl)A = (u, vl)A, ∀u ∈ Vh, vl ∈ Vl,

and
(Qlu, vl) = (u, vl), ∀u ∈ Vh, vl ∈ Vl.

We also define Al : Vl → Vl as the restriction of A on Vl

A(ul, vl) = (Alul, vl), ∀ul, vl ∈ Vl. (2.9)

It follows that
AlPl = QlA. (2.10)

We will consider two approaches - parallel and successive subspace correction
algorithms. The parallel subspace correction (PSC) leads to the so called BPX or
MDS additive algorithms and successive subspace correction (SSC) to the multi-
plicative multigrid.
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Parallel subspace correction

We try to solve an equation on each subspace Vl:

Alel = Qlr.

We, again, solve the equation approximately:

ēl = RlQlr,

where Rl : Vl → Vl is a subspace solver.

Definition 6 (additive preconditioner ) The operator B from 2.1.2 is then
given by

B =
L∑
i=1

RiQi. (2.11)

The additive preconditioner is used in following algorithm:

Algorithm 2.3.2 Additive Schwarz Method/Parallel Subspace Correction
given: uk ∈ Vh
1: for l = 1 : L− 1 do
2: restrict: rl = Ql(f − Auk)
3: solve: ēl = Rlrl
4: end for
5: correct on each subspace: uk+1 = uk +

∑L
l=1 ēl

Algorithm 2.3.2 leads to a type of additive multigrid. There exist variants of
additive multigrid, for example MDS method [65] or BPX method [6] which will
be discussed later.

Succesive subspace correction

The succesive subspace method is given by a multiplicative preconditioner:

Definition 7 ( multiplicative preconditioner) The multiplicative preconditioner
B based on subspaces Vl is defined as

B = (I − E)−1, (2.12)

where
E = (I − TL) . . . (I − T1) and Tl = RlQlA.
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The multiplicative preconditioner results in the following method:

Algorithm 2.3.3 Multiplicative Schwarz Method/Successive Subspace Cor-
rection
1: set uk0 = uk ∈ Vh
2: for l = 1 : L do
3: ēl = RlQl(f −Aukl−1)
4: ukl = ukl−1 + ēl
5: end for
6: uk+1 = ukL

Here, we can see that classical V − cycle can be seen as the SSC method.

Matrix representations of SSC and PSC methods

Let Il : Vl → Vh be a natural inclusion and a unique matrix Il ∈ Rn×nl , which is
a matrix representation of Il. For each l, we assume that {ϕl1, . . . , ϕlnl

} is a basis
of Vl. Since Vl ⊂ Vh, every basis function of Vl can be represented in terms of the
basis of Vh so that

(ϕl1, . . . , ϕ
l
nl

) = (ϕ1, . . . , ϕn)Il.

For every vl =
∑nl

i=1 cliϕli , we define a mapping πl : Rnl → Vl as

πlcl :=

nl∑
i=1

cliϕli

and
πTl vl = ((vl, ϕl1), . . . , (vl, ϕlnl

))T .

We also define
G = {(ϕi, ϕj)}ni,j=1,

Gl = {(ϕli, ϕlj)}
nl
i,j=1.

Then L2 projector Ql can be given as

Ql = πlG
−1
l πTl .

Matrix representation of Ql is given by

Ql = Il(I
T
l Il)

−1
l ITl . (2.13)

If Rl is a matrix representation ofRl, then matrix formulation of the preconditioner
B is

B =
J∑
l=0

IlRlI
T
l . (2.14)
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Remark 8 The difference between PSA and SSC is that in SSC, the residual is
updated successively on each level. In PSC, the subspace corrections uses restric-
tions from the finest level and the subspace corrections can be done separately
on each level. The SSC has much better convergence rates, see [40], but PSC is
attractive due to it’s natural parallelism. In practice, additive algorithms are used
as a preconditioners for conjugated gradient method.

2.3.2 Convergence Estimates

In this section, we focus on some important convergence estimates for multigrid
algorithm. To show the convergence of the multigrid algorithm, we have to show
that for the multigrid error operator El,

‖El‖A ≤ δ

holds with δ < 1.
There exist different approaches to proof that El is a contraction. The assump-

tions and convergence proofs differ for two-level method, W − cycle and V − cycle.
The first proof of the multigrid convergence was a work of Braess and Hack-

busch [5]. Proofs based on Braess/Hackbusch approach need a certain form of
regularity as a assumption and use the concept of smoothing and approximation
property. Results coming from this framework variate whether we can provide full
or partial regularity and one or more smoothing steps. The proof of convergence,
where an assumption of the regularity is not necessary (regularity free multigrid) is
based on multilevel space splitting and was analyzed by Bramble, Pasciak, Wang
and Xu in [6].

The regularity-assuming theorems are based on two properties. The approxi-
mation property in a certain sense is a measure of how good the coarse-grid solution
is. The efficient smoother has to fulfill the smoothing property.
Let Vh be a finite dimensional Hilbert space. We follow [4] and introduce two
Sobolev spaces V+, V− so that

Vh ⊂ V+ ↪→ V−,

(which means that the space V+ is continuously embedded in V− i.e. for two
normed spaces V+ ⊂ V−, there exists constant C ≥ 0 such that for every x ∈ V+ :
‖x‖V− ≤ C‖x‖V+).

The Galerkin projection is given by

Ph : V+ → Vh.
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Let α be a positive constant. The approximation property (A1) holds if

‖u− Phu‖V− ≤ chα‖u‖V+ ∀u ∈ V+, . (A1)

where α > 0 is a positive constant. In other words, the approximation property
measures how the coarse-grid solution approximates the fine grid solution.

Now, we introduce a smoother R and smoothing operator S = I − RA, which
is characterized by the smoothing property (S1):

‖Sνvh‖V+ ≤
ch−σ

φ(ν)
‖vh‖V− ∀vh ∈ Vh. (S1)

The function φ(ν) satisfies φ(ν)→∞ as ν →∞. This abstract framework allows
for a definition of high frequency elements vh:

‖vh‖V+ ≈ h−α‖vh‖V− (2.15)

and low frequency elements vh:

‖vh‖V+ ≈ ‖vh‖V− . (2.16)

Let u be a high frequency node as in 2.15, then then inserting u in the smoothing
property, smoother Sν is an effective contraction operator.

The effective interplay between approximation and smoothing property means
that smoother satisfying smoothing property effectively eliminates the high fre-
quency parts of the error and coarse grid correction eliminates the remaining parts
of the error.

As a choice of the two spaces we take V+ = H1
0 , V = L2, α = 1 and

[V−, V+] = [‖ · ‖, ‖ · ‖A].

Theorem 9 Assume property (A1) holds, a symmetric smoother R satisfies prop-
erty (S1) and ‖Sm‖ ≤ C holds. Then the two-grid method converges with sufficient
steps ν:

‖ETG‖ ≤ Cη(ν).

Proof. Proof can be found in [15]

Self-Adjoint Problem

Let A be a symmetric and positive definite matrix. We also assume that R is a
symmetric smoother and satisfies property (R):

‖u‖A ≤ (R−1u, u), ∀u ∈ Vh. (R)

Assume that R is symmetric and ‖Sν‖ ≤ C. The smoothing property (S2) is given
as:

‖u‖ ≤ CSρA(Ru, u), ∀u ∈ Vh (S2)
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Theorem 10 (Braess, Hackbusch) Consider multigrid error propagation ma-
trix El of the V −cycle with a symmetric smoother S. Assume that S satisfies prop-
erties (R) and (S2) and approximation property (A1) hold. Then for C = CACS

‖El‖A ≤
C

C + 2ν

holds.

Proof. Proof is given in [5]

Remark 11 Now, let A and A be continuous level and finite element discretiza-
tion operators of problem 1.1. To verify the approximation property, we need an
assumption of the regularity such as: given f ∈ L2(Ω) there is a weak solution
u ∈ H2(Ω) of Au = f such that

‖u‖H2(Ω) ≤ C‖f‖L2(Ω).

Then it can be shown (e.g. in [15]) that the smoothing and approximation assump-
tions are satisfied and the multigrid V − cycle has a contraction number smaller
than one independent of l (with respect to ‖ · ‖A). The approximation property
in L2 norm is proved by using Aubin-Nitsche duality argument [46] which needs
regularity as an assumption.

The convergence proof without the assumption of the regularity was given in
[6]. We first set Ul to be a hierarchy of coarse spaces Ul = Range(I l1), where I l1 is
a composite prolongator I l1 = I ll−1 . . . I

2
1 .

Theorem 12 (Bramble-Pasciak-Xu-Wang) Assume there are linear mappings

Ql : UL → Ul, l = 1, . . . , L, QL = I

so that
‖(Ql −Ql−1)u‖2

l ≤
C1

λl
‖u‖2

A ∀u ∈ Ul, l = 2, . . . , L

and
‖Ql‖A ≤ C2 ∀l = 1, . . . , L.

We also assume smoothers

Sl(xl, fl) = (I −RlAl)xl +Rlfl,

where Rl are symmetric positive definite matrices such that I − RlAl are Al-
symmetric positive definite and

Cr(Rlu,u)Rnl ≥
‖u‖2

Rnl

ρ(Al)
∀u ∈ Rnl , l = 1, . . . , L− 1.
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Then, for the error propagation operator E of the multigrid algorithm holds

‖E‖A ≤ 1− 1

CL
, C = (1 + C

1/2
2 + (CrC1)1/2)2.

Proof. Proof is given in [6]

2.3.3 Summary of Chapter 1

Before we move to the AMG section, we would like to make a short summary to
the most important parts of multigrid presented in the first chapter. We will see
that the main principles of geometric multigrid are preserved also in the algebraic
multigrid, although the main components of the algorithm are constructed purely
algebraically.

The multigrid methods belong to a wide family of iterative solvers and uses
several grids to effectively eliminates both oscillatory and non-oscillatory parts of
the error. This is their main advantage against simple iterative methods (Section
2.1), which operates only on one layer. Simple iterative methods eliminate high
frequency elements of the error after a few iteration steps and then the method
converges slowly. Multigrid methods use the simple iterative methods to smooth
the error, but then projects the error to the coarser grid, where the low frequency
modes of the error are eliminated by coarse grid correction.

Considering two-level method, according to Lemma 3, the the error can be
written as a sum of the smooth component (∈ Range P ) and oscillatory component
(∈ Ker (P TA)). We have also shown that the two level method is derived from
solving the minimization problem 2.6 in A norm.

The projection operator from fine to the coarse level is the interpolation op-
erator and the operator from coarse grid to a fine level is the prolongator. In our
text we consider only prologator I ll−1 and set the interpolation operator simply as
a transpose of the prolongator I ll−1.

Prongators are usually constructed by the process of refining the mesh from
the coarse level to a fine level by representing the coarse level basis functions by
the fine level basis functions (Fig. 2.4).
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Figure 2.4: Example of basis function on coarse level (left) represented by the basis
function o the finer level (right)

The construction of the prolongator operator is geometrical. The situation is
simple in 1D case, but sometimes it is very complicated to create a prolongator
in a case of complicated meshes in 2D and 3D or when we are not able to create
structure of prolongators along with creating of the mesh. In the next chapter, we
overcome this problem by constructing the prolongator purely algebraically, given
the matrix A.

The uniform convergence of two-level method, V − cycle and W − cycle was
proven by various tools. The first proof of uniform convergence of V − cycle was
given by Hackbush and uses the introduction of approximation and smoothing
property. The smoothing property ensures that simple iteration method chosen as
a smoother will eliminate the oscillatory parts of the error. The smoothed error is
then projected to the coarse grids, where the rest of the error is eliminated. The
effectivity of the coarse grid correction is ensured by the approximation property.

The proof of uniform convergence based on different principle (regularity-free
multigrid) was given by Bramle, Pasciak, Xu and Wang.
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Chapter 3

Algebraic Multigrid

In Chapter 1, we have seen that in the standard multigrid, the coarsening process
is chosen a priori and the way the prolongators are created is therefore fixed. The
smoothing process is chosen so that we are able to ensure an interplay between
smoothing and restriction processes. The algebraic multigrid (AMG) is a multilevel
method based on a multigrid principle, in which the smoothness is defined purely
algebraically. In the AMG, we select a fixed smoother a priori and the coarsening is
created so that the whole algorithm converges. This strategy could be motivated by
a situation where the prolongation/restriction matrices cannot be created during
the coarsening process or when we want to create a black-box solver without
previous knowledge of the grid.

In this chapter, we describe the basic idea and components of the algebraic
multigrid and then the rest of the chapter chapter will be mainly focused on the
smoothed aggregation method considered as a standard method or as setting for
the BPX preconditioner.

Remark 13 Previously we described the geometric multigrid in which the pro-
longation and restriction operators are constructed along with the geometry by
refining the coarsest level. The AMG creates a set of coarse spaces automatically
from the fine mesh. From now on, the levels will be therefore numbered from
fine to the coarse one.

In the AMG, we would like to apply similar techniques like in the geometric
multigrid, but without having the exact information about the grid. The same
fundamental components are used - there is a set of levels, smoother, transfer
operators between levels and a solver for the coarsest level.

In the geometric multigrid we had the variables ui at the grid points, which
were known spatial locations. We then selected a subset of these locations as a
coarse grid. In the AMG, we don’t know the exact location of the variables ui, but
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we try to find a subset of ui as the coarse grid unknowns, given only the algebraic
information. If the vector of unknowns has components {u1, . . . , un}, then the fine
grid points are {1, 2, . . . , n}.

The sense of smoothness is also different in the AMG. The local behavior of an
algebraically smooth error can be (loosely) expressed as

efine ≈ Pecoarse.

As we will see later, we do not necessarily get a geometrically smooth residuum as
it was before.

One of the first AMG algorithm [11] was a generalization of geometric multi-
grid for solving systems of equations. The early convergence results for two level
method were obtained in [11], [3] and using variational approach in [36]. Sharper
result was given in [66], [19] and [20]. Multilevel result for finite element equation
in auxilary space framework is given in [62] for quasi-uniform meshes.

In the following text, the multilevel cycle will be treated as the standard V − cycle
(Alg. 2.3) with the AMG components, if not stated otherwise.

3.1 Coarsening Process

The main task for the AMG is to create set of levels and prolongators by some
coarsening approaches, given only the fine-level variables. We will describe only
the classical approach of Ruge-Stüben and smoothed aggregation, but many coars-
ening techniques were developed, among others energy-minimization AMG [64],
spectral AMGe [33], [12] and unsmoothed and smoothed aggregation AMG [39],
[38] and [53].

The Classical Approach

The classical approach is the one of Ruge-Stüben [42], [45] based on strong de-
pendency of the unknowns: to develop an an interplay between two levels, the set
of unknowns is split between C or F variables. A subset C of the unknowns is
selected for the coarse variables and the rest of the unknowns is called the fine
subset F , see Fig. 3.1.
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Figure 3.1: The C/F splitting

The C/F splitting is based on the strong dependence. The unknown i is
strongly dependent on the unknowns j in the set

Si = {j : −Aij ≥ θmax
k
Aij},

where θ < 1. The actual algorithm is then described in [45].
The algebraical definition of smoothness also suggest that algebraically smooth
error doesn’t have to be geometrically smooth. In Fig. 3.2a there is an which
arised from solving anisotropic problem

εuxx + uyy = 0.

We assume our computational domain is a square 〈−1, 1〉×〈−1, 1〉 and 0 ≤ ε << 1.
In Fig.3.2a there is a algebreaically smooth error which is geometrically smooth in
x direction, but geometrically oscillatory in the y direction, due to the anisotropy
(Fig.3.2b). The AMG coarsening is done in the x direction only (semicoarsening).
The advantage of the AMG is that the semicoarsening arises from the coarsening
algorithm in contrast with the geometric multigrid.

(a) Geometrically oscillatory error (b) Error in x and y direction

Figure 3.2: Error after iterations of Gauss-Seidel method
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The Aggregation Methods

Other approach to the coarsening belongs to the family of the aggregation methods.
The AMG solvers of aggregation type are based on fast and heuristic method of
aggregation in which the fine level variables are subdivided into aggregates. An
examle of geometrical depiction of aggregates is shown in Fig. 3.3. Every aggregate
is then associated with one coarse variable on the next level.

Figure 3.3: Aggregates for 2D problem

It can be viewed as an piecewise constant interpolation from the coarse level
variables to the associated aggregates. The aggregation itself is done by some au-
tomatic and fast algorithm. The aggreggation-based AMG however are inefficient
solvers and also preconditioners. The main two problems of this approach are the
poor convergence and also strong h−dependency. On the the other hand, the con-
vergence of the constant interpolation can be improved by additional smoothing,
which leads to the smoothed aggregation method, described in the next section.

3.2 Smoothed Aggregation Method
The smoothed aggregation method (SA) was developed by Petr Vaněk and first
introduced in [50], [49]. This approach is based on the principle of the tentative
prolongator P l

l+1 and the smoothed prolongator I ll+1 = SlP
l
l+1, where Sl is some

polynomial in Al. The tentative prolongator is created by some fast and easy to
compute aggreggation-based algorithm. Most general way of how to obtain the
tentative prolongator is by unknowns aggregation technique that is described in
[53]. The smoothed prolongator created from the tentative prolongator by smooth-
ing and is used in the actual algorithm. An optimal convergence was proven for
the multilevel method in [53] (the convergence result is independent of resolution
h).

In the following part of the text, we present and summarize the main ideas
of smoothed aggregation. We then focus on the actual process of creating the
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aggregates and theoretical result of Vaněk, Mandel and Brezina.

3.2.1 SA Two-Level Method

In this section, we describe the two-level SA method.
For the reader’s convenience, let us begin with the example in 1D. Consider

the the 1D Laplace equation discretized on a mesh consisting of n1 = 3n2 nodes.
We create a system of aggregates:

{{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}}

forming the disjoint covering of the set {1, . . . , n1}.
The simplest tentative prolongator P 1

2 for the problem is constructed so that
the columns of P 1

2 are (up to the scaling) 0 or 1 vectors with disjoint nonzero
structure. Each column corresponds to disaggregation of one IRn2 variable into
three IRn1 variables; nonzero structure of the j-th column corresponds to the j-th
aggregate. So, P 1

2 can be thought of as a piece-wise constant interpolation in a
discrete sense.

P 1
2 is then given by:

P 1
2 =



1 ·
1 ·
1 ·

1 ·
1 ·
1 ·

· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·

· 1
· 1
· 1



. (3.1)

The second step is that the tentative prolongator is smoothed by a linear prolon-
gator smoother. The particular choices of the smoother will be discussed later.
The columns of the tentative prolongator creates the discrete basis functions with
no overlap. The situation is depicted in Fig. 3.4.
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Figure 3.4: Aggregates in 1D and associated basis functions (on the left) and
smoothed basis functions (on the right)

Smoothing of the prolongator creates the overlap of discrete basis functions
like in the finite elements method. Using just plain aggregation leads to use of
constant basis functions and a poor convergence of the method. Smoothing of the
prolongator improves the convergence of the method. More detail will be given in
the following section.

Another way to derive the two-grid method

Now, we derive the two-level method from solving a minimization problem and
compare it with the approach in the geometric MG section (problem 2.6). The
standard two-level method minimizes the error in an intermediate stage of the
iteration, while we are interested in minimizing the final error after coarse-grid
correction and smoothing. The smoothing of prologator manipulates the range of
the prolongator to the post-smoother so that the resulting iteration is most effi-
cient.

We will now take a closer look at the two level SA method, as we presented in [24].
In the smoothed aggregation method, we construct the coarse-grid correction to
minimize the error after coarse-grid correction with subsequent smoothing, which
means the final error on the exit of the iteration procedure.

Let S be the error propagation operator of the post-smoother. Throughout
this section we assume that S is sparse. This is due to the fact that the above
minimization problem leads to smoothed prolongator IhH = SP h

H and we need a
sparse coarse-level matrix AH = (IhH)TAIhH . The additive point-wise smoothing
methods have, in general, sparse error propagation operator; this is the case of
Jacobi method or Richardson’s iteration.

For a multilevel method with post-smoothing only, the error after coarse-grid
correction and subsequent smoothing is given by

S(e− P h
Hv), (3.2)

where v is a correction vector and e the error on the entry of the iteration proce-
dure. We choose v so that the error in (3.2) is minimal in A-norm, that is, for
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n > m, we solve the minimization problem

find v ∈ IRm such that ‖S(e− P h
Hv)‖A is minimal. (3.3)

Since ‖S(e−P h
Hv)‖A = ‖e−P h

Hv‖STAS, the minimum is attained for v satisfying

〈STAS(e− P h
Hv), P h

Hw〉 = 0 ∀w ∈ IRm.

We have 〈STAS(e− P h
Hv), P h

Hw〉 = 〈(P h
H)TSTAS(e− P h

Hv),w〉, hence the above
identity is equivalent to (P h

H)TSTASP h
Hv = (P h

H)TSTASe and setting IhH = SP h
H ,

it becomes
(IhH)TAIhHv = (IhH)TASe. (3.4)

Here, e is the error on the entry of the iteration procedure. Assume for now that
IhH is injective. Then by (3.4), we have v = ((IhH)TAIhH)−1(IhH)TASe and the error
after coarse-grid correction and subsequent smoothing is given by

S(e−P h
Hv) = S

[
e− IhH((IhH)TAIhH)−1(IhH)TASe

]
=
[
I − IhH((IhH)TAIhH)−1(IhH)TA

]
Se.

(3.5)
By comparing the operator

E =
[
I − IhH((IhH)TAIhH)−1(IhH)TA

]
S (3.6)

on the right-hand side of (3.5) with (2.7), we identify E as the error propagation
operator of the variational multigrid with smoothed prolongator IhH = SP h

H and
pre-smoothing step given by u← S(u, f). The algorithm is as follows:

Algorithm 3.2.1

1: pre-smooth: u← S(u, f)
2: evaluate the residual: r = Au− f
3: restrict the residual: rH = (IhH)T r
4: solve the coarse-level problem: AHv = rH , AH = (IhH)TAIhH
5: correct the approximation: u← u− IhHv

We summarize our considerations in the form of a theorem.

Theorem 14 The error propagation operator E in (3.6) (the error propagation
operator of Algorithm 3.2.1) satisfies the identity

‖Ee‖A = inf
v∈IRm

‖S(e− P h
Hv)‖A

for all e ∈ IRn.
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Proof. The proof follows directly from the fact that Algorithm 3.2.1 was derived
from variational objective (3.3).

Remark 15 One may also start with the variational objective to minimize the
final error after performing the pre-smoothing, the coarse-grid correction and the
post-smoothing. Such extension is trivial, the pre-smoother has no influence on
the coarse-grid correction operator I−IhH((IhH)TAIhH)−1(IhH)TA and influences only
its argument. Indeed, asuming the error propagation operator of the pre-smoother
is S∗ (the A-adjoint operator), the final error is given by S(S∗e − P h

Hv) and we
solve the minimization problem

for e ∈ IRn find v ∈ IRm : ‖S(S∗e− P h
Hv)‖A is minimal. (3.7)

Fundamentally, this is the same minimization problem as (3.3);to derive the corre-
sponding algorithm, it is simply sufficient to follow our manipulations from (3.3)
to (3.5) with e ← S∗e. This way, we end up with a two-level method that has
the error propagation operator

E =
[
I − IhH((IhH)TAIhH)−1(IhH)TA

]
SS∗, (3.8)

that is, with the algorithm 3.2.2.

Algorithm 3.2.2
1: pre-smooth: u← St(u, f)
2: pre-smooth: u← S(u, f)
3: evaluate the residual: r = Au− f
4: restrict the residual: rH = (IhH)T r
5: solve the coarse-level problem: AHv = rH , AH = (IhH)TAIhH
6: correct the approximation: u← u− Pv

where St is an iterative method with error propagation operator S∗, S is an iter-
ative method with error propagation operator S .

We summarize the content of Remark 15 as a theorem.

Theorem 16 The error propagation operator (3.8) of Algorithm 3.2.2 satisfies
the identity

‖Ee‖A = inf
v∈IRm

‖S(S∗e− P h
Hv)‖A

for all e ∈ IRn.

Proof. The proof follows directly from the fact that Algorithm 3.2.2 was derived
from variational objective (3.7).

40



3.2.2 Coarsening Method

In the previous section, we described the advantages of using the smoothed pro-
longator. It is constructed from a tentative prolongator. The aim is to get the
tentative prolongator by a fast and automatic algorithm.

At first, we describe a method by Vaněk, Mandel and Brezina in [55]. We
start with a disjoint decomposition of the degrees of freedom on each level into
aggregates. Every aggregate on the level l can be considered as the degree of
freedom on the level l + 1.

For a given ε define the strongly coupled neighborhood of node i as

N l
i (ε) = {j : |aij| ≥ ε

√
aiiajj} ∪ {i} (3.9)

The aggregates are now created in algorithm 3.2.3 and the tentative prolongator
Pl (here, we use Pl instead of P l

l+1 for simplicity) is defined by the aggregates Ci
l :

(Pl)ij =

{
1 if i ∈ C l

j

0 otherwise .

Algorithm 3.2.3 Aggregation
Let Al of order nl and ε be given. Generate a disjoint covering {C l

i}
nl+1

i=1 of the set
{1, . . . , nl} as follows.
1: Set R = {1, . . . , nl } and j = 0
2: Select disjoint strongly coupled neighborhoods as the initial attempted cover-

ing: If there exists a strongly coupled neighborhood N l
i (ε) ⊂ R, set j ← j + 1,

C l
j ← N l

i (ε), R← R\C l
j. Repeat until R does not contain any strongly coupled

neighborhood.
3: Add each remaining i ∈ R to one of the sets already selected to which it is

strongly connected, if possible:

• Copy C̃ l
k = C l

k, k = 1, . . . , j

• If there exists i ∈ R and k such that N l
i (ε)∩C̃ l

k 6= 0 then set C l
k ← C l

k∪{i}
• Repeat until no such i exists

4: Make the remaining i ∈ R into aggregates that consist of subset of strongly
coupled neighborhoods: If there exists i ∈ R, set j ← j + 1 and C l

k ∩ N l
i (ε).

Repeat until R = 0.

In [55], it is then suggested to improve the tentative prolongator by a smoothing
step

Il = (I − ωD−1AFl )Pl,
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where AFi = (aFij) is the filtered matrix given by

aFij =

{
aij if j ∈ N l

i (ε)
0 otherwise

}
if i 6= j,

aFii = aii −
nl∑

j=1,j 6=i

(aij − aFij).

In [55], it is suggested to use

ε = 0.08(0.5)l−1, ω =
2

3
.

3.2.3 Generalized Aggregation

Now, having the system of aggregates from algorithm 3.2.3, the general way to
create a system of tentative prolongators from aggregates is described in [53]. Our
aim is to create a hierarchy of tentative prolongators such that for a given n1 × r
matrix B1

RangeB1 ⊂ RangeP 1
l , P 1

l = P 1
2 . . . P

l−1
l , l = 1, . . . , L− 1. (3.10)

The Range of matrix B1 specifies, which functions on the finest level will be
represented exactly on all levels. Matrix B1 is chosen as a kernel of stiffness
matrix without essential boundary conditions.

We create P l
l+1 and a nl+1 matrix Bl+1 so that

P l
l+1B

l+1 = Bl. (3.11)

Prolongator P l
l+1 is is constructed form a given system of aggregates {A}Nl

i=1 . Ag-
gregates can be constructed as in the method 3.2.3. The property 3.11 is enforced
to each of aggregates. The columns of P l

l+1 corresponding to aggregate Ali=1 are
created by orthonormalized restrictions of the columns of Bl on aggregate Ali=1.

Algorithm 3.2.4 Construction of tentative prolongator

1: Partition the vector Bl into nl+1 blocks Bl
i, i = 1, . . . , nl

2: Ql
i ←

Bl
i

‖Bl
i‖

3: Bl+1
i ← ‖Bl

i‖
4: P l

l+1 = diag(Ql
i), Bl+1 ← (Bl+1

1 , . . . Bl+1
nl+1

)T
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Figure 3.5: The tentative prolongator P l
l+1

Following [53], the smoothing is then given as follows: Let the smoothing of
the prolongator is given by a smoother Sl, Sl : Rnl → Rnl ,

Sl = I − 4

3λ̄Ml
M−1

l Al, (3.12)

where λ̄Ml ≥ ρ(M−1
l Al) and Ml = (P 1

l )TP 1
l

Result of Vanek, Mandel and Brezina

In the end of this section, we would like to show a result of result of Vanek, Mandel
and Brezina, [53]. Before we proceed to the main theorem, we now describe the
effect of smoothing the prolongator for a two-level method. In [54], it was shown
that that the essential convergence condition for a two-level method is a form of
weak approximation property: Assume there exists a constant C so that for every
u ∈ IRn there exists v ∈ IRm

‖u− Pv‖IRn ≤ C/
√
λ̄‖u‖A, n > m, (3.13)

(λ̄ is a known upper bound of ρ(S2A)). We can compare this with similarly looking
condition of A. Brandt for the two level method [10]: Let assume there exists a
constant C so that for every u ∈ IRn there exists v ∈ IRm

‖u− Pv‖IRn ≤ C/
√
ρ(A)‖u‖A.

For a special choice of smoother, we can achieve

ρ(S2A) << ρ(A),
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which means weak approximation property 3.13 is much weaker (easier to satisfy).
In [54], authors suggest a construction of such a smoother.

Now, we present the result of [53]. Let us define a composite aggregate Ãli=1

as the aggregate Ali=1, understood as the corresponding set of supernodes on the
finest level.

Theorem 17 Let the prolongator smoothers Sl be given by 3.12 and the tentative
prolongators given by algorithm 3.2.4. Assume there is a constant CA > 0 such
that for every u ∈ Rn1 and every l = 1, . . . , L− 1

Nl∑
i−1

min
w∈Rr

‖u−B1w‖2
l2(Ãl

i=1)
≤ CA

9l−1

λ̄1

‖u‖A. (3.14)

The inequality 3.14 induces, how well is a fine vector approximated by aggregates
by vectors B1.

Remark 18 As an example let B1 be represented by a single constant on the
finest level. To verify 3.14, we have to use Poincaré-Friedrichs inequality

inf
c∈R
‖u(x)− c‖L2(Ω) ≤ Cdiam(Ω)|u|H1(Ω) ∀u ∈ H1(Ω) (3.15)

aggregate by aggregate.

3.3 BPX Algorithm in SA Setting

In this part, we will present the theory based on the BPX algorithm in the setting
of smoothed aggregations. In the previous sections we did not use the bold font
for vectors. But in the following section we distinguish between normal and bold
font. The notation will be sometimes slightly changed according to our article [25].

3.3.1 Introduction

In the previous text, we dealt with the classical multigrid. It can be seen as
a multiplicative method of Schwarz type with inexact subspace solvers given by
smoothers ([6]). It has to be performed as a successive algorithm which, preventing
from large-scale parallelism. Unlike standard multigrid, the so-called BPX pre-
conditioner frame of Bramble, Pasciak and Xu [7] is fully additive, allowing for
parallelism of a single coarse-space basis function on each level. The sufficient
conditions for its convergence and the mathematical requirements on its efficient
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implementation are, however, different from the ones for multiplicative multilevel
iterative methods, despite the fact that the sufficient conditions look similar.

The smoothed aggregation algebraic multigrid coarsening technique was proved
to be very efficient in solving large systems of linear algebraic equations arising
from the discretization of elliptic problems ([49, 53, 52, 54]).

The smoothed aggregation method was, however, developed and analyzed in
the context of traditional multiplicative multigrid. Here, we use smoothed aggre-
gation in the BPX frame and analyze the convergence of the resulting iterative
method applied to a model example.

In the unpublished technical report [55], authors made a first attempt to ana-
lyze the smoothed aggregation method in the context of standard multigrid. The
report contains merely a sketch of the theory. It is necessary to establish the
resolution-independent equivalence of discrete and continuous L2-norms∥∥∥∥∥∑

i

xiϕ
l
i

∥∥∥∥∥
L2

≈ scaling

(∑
i

x2
i

)1/2

(3.16)

for the hierarchy of coarse-spaces span{ϕli}i. The equivalence was used to prove the
weak approximation property needed to verify the assumptions of the regularity-
free abstract multigrid convergence theory of [6].

In [53], for the standard multigrid, the need for this equivalence is avoided by
fully algebraic means. In the context of the BPX pre-conditioner, however, equiv-
alence (3.16) is unavoidable. The of the BPX pre-conditioner requires the com-
putationally cheap implementation of the approximate l2-projections onto coarse-
spaces; such implementation must avoid the action of the inverse of the Gram
matrix. Thus, for the coarse-space basis, we need a Gram matrix that has an
inverse that can be approximated by the inverse of its diagonal. For this reason,
we will return to the method of analysis outlined in [55] and developed it fully for
the case of model geometry.

For BPX pre-conditioner based on smoothed aggregation we prove, assuming
model geometry and H1−equivalent form, that the condition number of the pre-
conditioned system grows at most as O(L2), where L is the number of levels.

Presented theory requires the coarse-space bases (or their supports) to form a
system of disjoint macroelements covering the entire computational domain. The
macroelement function is spanned solely by the set of associated basis functions; no
other basis functions are allowed to intersect the macroelement with their supports.
Such macroelements are obviously formed in the case of regular geometry. In the
general case, however, the smoothed aggregation coarse-space bases tend to form
the macroelements as well. The equivalence of discrete and continuous L2-norms is
therefore very likely to hold for unstructured aggregation formed on unstructured
meshes.
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The interpolation estimates (the weak approximation property of the coarse-
space bases with the l2−norm of the left-hand-side measured on the finest level)
are more or less standard variation on the finite element theory of [16], used in a
variety of forms in many works, for example [53]. In a BPX context, those estimates
had to be carried out for smoothed aggregation coarse-space basis functions, that
we, using an algebraic trick, avoided in [53]. Here, only the weak approximation
property of pure aggregations had to be proved.

3.4 BPX pre-conditioner in operator setting
In this section we define the BPX pre-conditioner and give a convergence bound.
At the end of the section, we describe the implementation of the method assuming
the system of prolongators is given. Up to minor technical details that suit our
purpose, this section follows [7].

In what follows, we often use symbol A for A 1. Denote σl to be the largest
eigenvalue of A l. Assume σ̄l ≥ σl, l = 1, . . . , L is an upper bound, σ̄l+1 ≤ σ̄l.
Let Q l : U → Ul be an orthogonal projection and Q̃ l : U → Ul its spectrally
equivalent approximation. The BPX pre-conditioner is defined by

B =
1

σ̄1

Q̃ 1 +
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)
Q̃ l. (3.17)

Since Q 1 = I , where I denotes the identity mapping, we can also set Q̃ 1 =
Q 1 = I. Note that by rearranging the sums and setting ˜QL+1 = 0 we get

B =
1

σ̄1

Q̃ 1 +
L∑
l=2

1

σ̄l
Q̃ l −

L∑
l=2

1

σ̄l−1

Q̃ l

=
L∑
l=1

1

σ̄l
Q̃ l −

L−1∑
l=1

1

σ̄l
Q̃ l+1 −

1

σ̄L
Q̃ L+1

=
L∑
l=1

1

σ̄l

(
Q̃ l − Q̃ l+1

)
. (3.18)

In the following theorem, we give a convergence bound of [7]. Since the proof is
relatively simple and we prove a slightly different statement than the authors of
[7] (with the upper bounds σ̄l in the place of the actual maximal eigenvalues σl),
we provide the proof in detail for readers’ convenience.

Theorem 19 ([7]) Assume there is a constant C1 independent of l and L such that
for every u ∈ U and every level l = 1, . . . , L, the exact projections Q l, Q L+1 = 0,
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satisfy

‖(I − Q l+1)u‖2
U ≤

C1

σ̄l
a(u, u). (3.19)

In addition, we assume operators Q̃ l, l = 1, . . . , L, are spectrally equivalent to
projections Q l in the sense that

c2 (Q lu, u)U ≤
(
Q̃ lu, u

)
U
≤ C2 (Q lu, u)U ∀u ∈ U, l = 1, . . . , L (3.20)

with constants C2 ≥ c2 > 0 independent of l and L, l = 1, . . . , L − 1. Last, we
assume that σ̄l+1 ≤ σ̄l for all levels l = 1, . . . , L− 1. Then

c2

C1L
a(u, u) ≤ a (BA u, u) ≤ C2L a(u, u) ∀u ∈ U. (3.21)

The following proof is a genuine work of Bramble, Pasciak and Xu. The upper
bound is more or less straightforward. The proof of coercivity (the lower bound)
is similar to the proof of Lion’s lemma.

Proof. Let us set B ex to be operator B with Q̃ l = Q l for all levels l. Let
u ∈ U . By (3.17) and (3.32), we have

a (BA u, u) =
1

σ̄1

(
Q̃ 1A u, A u

)
U

+
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)(
Q̃ lA u, A u

)
U

and

a (B exA u, u) =
1

σ̄1

(Q 1A u, A u)U

+
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)
(QlA u, A u)U

with
c2 (Q lA u, A u)U ≤

(
Q̃ lA u, A u

)
U
≤ C2 (Q lA u, A u)U

by (3.20). Therefore

c2 a (B exA u, u) ≤ a (BA u, u) ≤ C2 a (B exA u, u) ∀u ∈ U.

It is therefore sufficient to prove (3.21) with B ex in the place of B and c2 = C2 = 1.
Set UL+1 = ∅. Define Wl to be the orthogonal complement of Ul+1 in Ul, that

is,
Wl = {u ∈ Ul : (u,w)U = 0 ∀w ∈ Ul+1}, l = 1, . . . , L.
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Clearly, spaces Wl, l = 1, . . . , L, form an orthogonal decomposition of U and the
operatorsQ l−Q l+1 are orthogonal projections onto the respective spacesWl. As a
consequence of this orthogonality, (3.32) and (3.18), using properties of orthogonal
projections

Q l −Q l+1 = (Q l −Q l+1)2 = (Q l −Q l+1)∗

(∗ denotes the adjoint operator) and the Pythagorean Theorem,

a (B exA u, u) =
L∑
l=1

1

σ̄l
a ((Q l −Q l+1)A u, u)

=
L∑
l=1

1

σ̄l
((Q l −Q l+1)A u, A u)U

=
L∑
l=1

1

σ̄l

(
(Q l −Q l+1)2A u, A u

)
U

=
L∑
l=1

1

σ̄l
((Q l −Q l+1)A u, (Q l −Q l+1)A u)U

=
L∑
l=1

1

σ̄l
‖(Q l −Q l+1)A u‖2

U (3.22)

=
L∑
l=1

1

σ̄l

(
‖Q lA u‖2

U − ‖Q l+1A u‖2
U

)
≤

L∑
l=1

1

σ̄l
‖Q lA u‖2

U . (3.23)

Let P l be a(·, ·)−orthogonal projection onto Ul, l = 1, . . . , L and u, v ∈ U . Since
P l is a(·, ·)-symmetric, P l = I on Ul, Q l is symmetric and I−Q l is the orthogonal
projection onto U⊥l (⊥ denotes the orthogonal complement),

(Q lA u, v)U = (A u, Q lv)U = (A u, P lQ lv)U = (A P lu, Q lv)U
= (A lP lu, Q lv)U = (A lP lu, Q lv)U + (A lP lu, (I − Q l) v)U
= (A lP lu, v)U ,

hence
Q lA = A lP l

and therefore

‖Q lA u‖2
U = ‖A lP lu‖2

U ≤ σ̄l a (P lu,P lu) ≤ σ̄la(u, u).
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This estimate together with (3.23) prove the upper bound of (3.21) with B ex in
the place of B and C2 = 1.

To establish the lower bound of (3.21), we estimate using

I =
L∑
l=1

(Q l −Q l+1) ,

the fact that I − Q l is orthogonal projection onto U⊥l and Cauchy-Schwarz in-
equality,

a(u, u) =
L∑
l=1

a ((Q l −Q l+1)u, u)

=
L∑
l=1

((Q l −Q l+1)u, A u)U

=
L∑
l=1

((Q l −Q l+1)u, (Q l −Q l+1)A u)U

=
L∑
l=1

[((I − Q l)u, (Q l −Q l+1)A u)U

+ ((Q l −Q l+1)u, (Q l −Q l+1)A u)U ]

=
L∑
l=1

((I − Q l+1)u, (Q l −Q l+1)A u)U

≤
L∑
l=1

‖(I − Q l+1)u‖U ‖(Q l −Q l+1)A u‖U .

Thus, by assumption (3.19), Cauchy-Schwarz inequality and (3.22) we get

a(u, u) ≤
L∑
l=1

(
C1

σ̄l

)1/2

a1/2(u, u) ‖(Q l −Q l+1)A u‖U

≤ C
1/2
1 a1/2(u, u)

(
L∑
l=1

1

σ̄l
‖(Q l −Q l+1)A u‖2

U

)1/2 ( L∑
l=1

12

)1/2

= (C1L)1/2 a1/2(u, u) a (B exu, u)1/2 .

Assume u 6= 0. Dividing the above estimate by a1/2(u, u) and squaring the result
we get

(B exu, u) ≥ 1

C1L
a(u, u),
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proving the first inequality of (3.21) for B ex in the place of B and c2 = 1. For
u = 0, (3.21) holds trivially. This completes our proof.

Here, we describe implementation of the method. The exact projection opera-
tors in the matrix form are

Q l = Ql = I1
l

(
(I1
l )T I1

l

)−1
(I1
l )T , l = 1, . . . , L. (3.24)

We choose the inexact projections to be the operators Ql with the matrix (I1
l )T I1

l

replaced by its diagonal, that is

Q̃l = Q̃l = I1
l D
−1
l (I1

l )T , Dl = diag
(
(I1
l )T I1

l

)
, l = 1, . . . , L. (3.25)

The action of BPX preconditioner (3.17) is given by the following algorithm:

Algorithm 3.4.1
given: x ∈ IRn

1: evaluate the action y = Bx ∈ IRn of preconditioner B = B by

y =
1

σ̄1

x +
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)
I1
l D
−1
l (I1

l )Tx, Dl = diag
(
(I1
l )T I1

l

)
. (3.26)

In (3.26), σ̄l is an upper bound of

σl = λmax (A l) = sup
x∈ Range(I1l )\{0}

‖x‖2
A

‖x‖2
= sup

x∈IRnl\{0}

‖I1
l x‖2

A

‖I1
l x‖2

, l = 1, . . . , L.

(3.27)
The implementation of the method will be discussed more in detail in the later

section.

3.5 Smoothed aggregation prolongators in model
case

In the smoothed aggregation method ([49, 50, 53]) we create prolongator I ll+1

(assuming prolongators I1
2 , . . . , I

l−1
l are already given) in the form

I ll+1 = SlP
l
l+1.

Here, Sl is an nl × nl sparse linear prolongator smoother being the first degree
polynomial in Al = (I1

l )TAI1
l and P l

l+1 an nl × nl+1 tentative prolongator given by
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unknowns aggregation. The tentative prolongator is responsible for the approxi-
mation, while the prolongator smoother enforces the smoothness of the coarse-level
spaces. The simplest prolongator P l

l+1 will be given in this section. For the most
general form of tentative prolongator applicable to non-scalar problems on un-
structured meshes, see [53].

Let Ω = (0, 1) × (0, 1) be a computational domain. We consider a model
problem

find u ∈ H1
0 (Ω) : a(u, v) = f(v) ∀v ∈ H1

0 (Ω). (3.28)

Here, a(·, ·) = (∇·,∇·)L2(Ω) and f(·) ∈ (H1
0 (Ω))−1. The problem is discretized by

P1 elements on a uniform triangular mesh obtained from a regular square mesh
when each square is broken by connecting its left lower and right upper vertices
with a straight edge. We assume the number of interior nodes in the direction of
both axes x and y is 3L−1.

On the finest level, we form the aggregates (index sets of vertices) {A1
i }9L−2

i=1 by
grouping the mesh vertices into 3× 3 regular, square groups. For each aggregate,
the central vertex represents the aggregate on the second level. Thus, we have
mesh vertices on level 2 and the procedure can be repeated, giving rise to the
hierarchy of the aggregates {Ali}9L−l−1

i=1 , l = 1, . . . , L− 1 and the hierarchy of nodal
points {vli}

nl
i=1, l = 1, . . . , L, with vli being the central point of the aggregate Al−1

i .
Then, we define the tentative prolongators

(P l
l+1)ij =

{
1 for i ∈ Alj,
0 otherwise , (3.29)

i = 1, . . . , nl, j = 1, . . . , nl+1, nl = 9L−l, l = 1, . . . , L − 1. Thus, P l
l+1 is a 0/1

matrix with disjoint nonzero structure. Each column of P l
l+1 corresponds to the

disaggregation of one IRnl+1 variable into nine IRnl variables. Thus, P l
l+1 can be

thought of as a piecewise constant coarsening in a discrete sense.
Next we specify the prolongator smoother. Let λ̄1 ≥ λmax(A) be an available

upper bound. We set
λ̄l = λ̄1 (3.30)

for all levels l = 2, . . . , L. In Lemma 4, we will show that λmax(Al) ≤ λ̄l. Define
prolongator smoothers Sl by

Sl = I − 4

3

1

λ̄l
Al, l = 1, . . . L− 1. (3.31)

The parameter 4
3
is chosen because, in a certain sense, it minimizes the upper bound

of λmax(S2
l Al). The details are obvious from (3.37) in the proof of Lemma 4.

The choice of the upper bounds σ̄l ≥ σl needed in (4.7) is addressed by Re-
mark 24.
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3.6 Verification of the assumptions of the abstract
theory

Let (U, (·, ·)U , ‖ · ‖U) be a Hilbert space. Consider a problem

find u ∈ U : a(u, v) = f(v) ∀v ∈ U.

Here, a(·, ·) is a symmetric bilinear form coercive and continuous on U and f(·) ∈
U−1 (U−1 is the dual space). Let

U = U1 ⊃ U2 ⊃ . . . ⊃ UL

be a hierarchy of nested Hilbert spaces with the inner product inherited from U .
For each l = 1, . . . , L, define operator A l : Ul → Ul by

a(ul, vl) = (A lul, vl)U ∀ul, vl ∈ Ul. (3.32)

Define the coarse-level basis functions ϕli = π1I
1
l e

l
i, l = 1, . . . , L, i = 1, . . . , nl.

Here, π1 is the finest level finite element interpolator

π1 : x ∈ IRn 7→
∑
i

xiϕ
1
i

with {ϕ1
i }ni=1 being the finest level finite element basis and eli the i-th canonical

basis vector of IRnl .

Lemma 4 Assume λ̄1 ≥ λmax(A) is an available upper bound satisfying λ̄1 ≤
Cλmax(A). Set λ̄l = λ̄1 for all levels l = 1, . . . , L. There is a constant C > 0
independent of the mesh-size h, level l and basis function number i such that for
all l = 1, . . . , L, i = 1, . . . , nl,

‖ϕli‖H1(Ω) ≤ C, (3.33)

‖ϕli‖L2(Ω) ≤ Chl, hl = 3l−1h (3.34)

and
λmax(Al) ≤ λ̄l ≤ C. (3.35)

Proof. Assume the first inequality of (3.35) holds for level l, 1 ≤ l < L. We
will show that λ̄l+1 = λ̄l = λ̄1 satisfies the first inequality of (3.35) as well. We
estimate
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λmax(Al+1) = sup
x∈IRnl+1\{0}

〈Al+1x,x〉
‖x‖2

= sup
x∈IRnl+1\{0}

〈AlSlP l
l+1x, SlP

l
l+1x〉

‖x‖2

= sup
x∈IRnl+1\{0}

〈S2
l AlP

l
l+1x, P

l
l+1x〉

‖x‖2

≤ λmax(S
2
l Al) sup

x∈IRnl+1\{0}

‖P l
l+1x‖2

‖x‖2
. (3.36)

Next we estimate λmax(S2
l Al) in terms of λ̄l. By the spectral mapping theorem,

λmax(S
2
l Al) = λmax

((
I − 4

3

1

λ̄l
Al

)2

Al

)

= max
λ∈σ(Al)

(
1− 4

3

1

λ̄l
λ

)2

λ

= λ̄l max
λ∈σ(Al)

(
1− 4

3

λ

λ̄l

)2
λ

λ̄l

≤ λ̄l max
t∈[0,1]

(
1− 4

3
t

)2

t

=
1

9
λ̄l. (3.37)

Since each aggregate contains exactly 9 degrees of freedom, it holds that

‖P l
l+1x‖2

‖x‖2
= 9 (3.38)

for all x ∈ IRnl . This identity, (3.36) and (3.37) give

λ̄l+1 ≡ λ̄l ≥ λmax(Al+1).

The proof of the first inequality of (3.35) follows by induction with λ̄1 ≥ λmax(A).
Now, the well-known bound λmax(A) ≤ C ([16]) with C independent of h, gives
the second inequality of (3.35).

The estimate (3.33) is a consequence (3.35). Indeed,

|ϕli|2H1(Ω) = (∇π1I
1
l e

l
i,∇π1I

1
l e

l
i)L2(Ω) = 〈A1I

1
l e

l
i, I

1
l e

l
i〉

= 〈Aleli, eli〉 ≤ λmax(Al)‖eli‖2 ≤ C.
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Since theH1(Ω)-norm and theH1(Ω)-seminorm are equivalent onH1
0 (Ω) by Friedrich’s

inequality, we get the statement (3.33).
Let us prove (3.34). It is well-known ([16]) that

ch‖x‖ ≤ ‖π1x‖L2(Ω) ≤ Ch‖x‖ ∀x ∈ IRn1 (3.39)

with constants C ≥ c > 0 independent of h. We estimate using %(Sl) = λmax(I −
4
3

1
λl
A) ≤ 1, (3.38) and (3.39),

‖ϕli‖L2(Ω) = ‖π1I
1
l e

l
i‖L2(Ω)

≤ Ch‖I1
l e

l
i‖

= Ch‖S1P
1
2 I

2
l e

l
i‖

≤ Ch%(S1)‖P 1
2 I

2
l e

l
i‖

≤ Ch‖P 1
2 I

2
l e

l
i‖

= 3Ch‖I2
l e

l
i‖

= . . . =

= 3l−1Ch‖I lleli‖
= Chl.

This constitutes the proof of (3.34).
To make our theory comprehensible, we introduce the notion of macroelement.

The macroelement has two aspects: the set of associated basis functions {ϕi}i∈τ (τ
is an index set) and the geometrical domain T (understood closed) that contains
the intersection of their supports, that is,

T ⊃
⋂
i∈τ

suppϕi. (3.40)

The essential properties of the macroelements 〈T, {ϕj}j∈τ 〉 are:

1. Property (3.40),

2. the closed domains T have disjoint interiors and cover the entire computa-
tional domain,

3. except for the basis functions ϕi, i ∈ τ , associated with the macroelement,
no other basis functions are allowed to intersect int T with their supports.

The function on macroelement is therefore a linear combination of macroelement
basis functions {ϕi}, i ∈ τ satisfying (3.40) with no other basis functions involved.
The rigorous definition folows:
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Definition 8 Consider a computational domain Ω and a system of basis functions
{ϕi}, with (well-defined) supports contained in Ω̄. Let {Ti} be a family of closed
domains Ti ⊂ Ω̄ such that

a) ⋃
i

Ti = Ω̄ and intTi ∩ int Tj = ∅ for i 6= j, (3.41)

b) for every Ti there is an index set τi such that the corresponding set of basis
functions {ϕj}j∈τi satisfies⋂

j∈τi

suppϕj ⊂ Ti and suppϕj ∩ int Ti = ∅ ∀ j 6∈ τi. (3.42)

Then we call the system {〈Ti, {ϕj}j∈τi〉}i a system of macroelements on Ω.

Remark 20 Clearly, the finite elements as concieved in [16] are, according to
Definition 8, also macroelements.

It is a matter of routine to show that for Poisson equation discretized using P1
elements on a uniform grid, the coarse-space basis functions obtained by smoothed
aggregation using the aggregates consisting of three neighboring nodes are in fact
P1 basis functions as well, see [56]. The coarse-level resolution is 3× the fine-level
resolution. The macroelements are then formed by overlaps of supports of two
adjacent basis functions and are identical with coarse P1 elements.

Before introducing our macroelements and proving their properties, we need
several auxiliary statements:

Lemma 5 The coarse-level spaces satisfy the following properties:

a) The coarse-level matrices follow the nine point scheme; entry alij of Al =
(I1
l )TAI1

l can be nonzero only for directly adjacent (in the 9-point scheme)
aggregates Al−1

i and Al−1
j on the level l−1. On the first level, the adjacency of

the aggregates is considered assuming an underlying 9-point scheme instead
of a 7-point scheme.

b) Apart from the vertices directly adjacent to the boundary with essential bound-
ary condition, the vector of ones 1l ∈ IRnl forms the kernel of Al, i.e.

(Al1l)i = 0 (3.43)

for all vertices vli not adjacent to the boundary with essential boundary con-
dition. Adjacency to the boundary is considered assuming an underlying
9-point scheme extended to the boundary nodes, see Fig. 3.6.
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c) Apart from boundary with an essential boundary condition, the discrete basis
functions I1

l e
l
i form a decomposition of unity in the sense that

(I1
l 1l)i =

(
nl∑
j=1

I1
l ej

)
i

= 1 (3.44)

for all fine-level vertices v1
i that belong to the (closed) square Ω̄l

int with ver-
tices vlic1 ,v

l
ic2
,vlic3 ,v

l
ic4

adjacent to the corners of the unit square Ω. The
continuous basis functions ϕli = π1I

1
l e

l
i satisfy

nl∑
i=1

ϕli = 1 on Ω̄l
int, (3.45)

see Fig. 3.6.

d) Support of each of the basis functions ϕli = π1I
1
l e

l
i satisfies

supp ϕli ⊂ Ωl
supp,i,

with Ωl
supp,i being a (closed) square with side-length 2hl = 2 · 3l−1h and the

center of gravity located in vli. Apart from ∂Ω, the vertices and edge mid-
points of Ωl

supp,i are vertices vlj, j ∈ N l
i \ {i}, see Fig. 3.6. Here, N l

i denotes
the neighbourhood of i in the nine-point scheme.

Proof. Let us prove statement a). Assume the stencil of Al−1 follows the
nine point scheme. Let Al−1

i and Al−1
j be two aggregates. Clearly, alij of Al =

(I l−1
l )TAl−1I

l−1
l can be nonzero only if supp I l−1

l eli and supp I l−1
l elj are directly ad-

jacent sets (in the 9-point scheme) of vertices on level l−1. Since I l−1
l = Sl−1P

l−1
l ,

where Sl is a first-degree polynomial in Al−1 and P l−1
l is given by disaggregation

(supp P l−1
l eli = Al−1

i ), the supports supp I l−1
l eli and supp I l−1

l elj are adjacent only
for two directly adjacent aggregates Al−1

i and Al−1
j . The proof of a) now follows

by induction, with the fact that the matrix A = A1, being a finite element stiffness
matrix, follows the seven-point scheme which is a subset of the nine-point scheme.

Let us prove statement b). Assume vertex vli is not adjacent to the boundary
with essential boundary condition. Recall that matrices Al on all levels follow the
nine-point scheme. Assume statement b) holds on the level l − 1. To prove our
statement on the level l, it is sufficient to establish that∑

j∈N l
i

alij = 0,
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Figure 3.6: Coarse-level geometry

where N l
i is the neighborhood of i in the nine-point scheme. Clearly,∑

j∈N l
i

alij =
∑
j∈N l

i

〈Al−1eli, e
l
j〉

=
∑
j∈N l

i

〈Al−1S
2
l−1P

l−1
l eli, P

l−1
l elj〉

= 〈Al−1S
2
l−1P

l−1
l eli,

∑
j∈N l

i

P l−1
l elj〉. (3.46)

Further, supp Al−1S
2
l−1P

l−1
l eli = supp Al−1(I −ωAl−1)2P l−1

l eli is contained in Al−1
i

with 3 layers added, which equals Al−1
i with adjacent aggregates added. Therefore

we have∑
j∈N l

i

P l−1
l elj


k

= 1 for k ∈ N ≡
⋃
j∈N l

i

Al−1
j ⊃ supp Al−1S

2
l−1P

l−1
l eli. (3.47)

Denote int N to be the interior of the above set N ⊂ {1, . . . , nl−1}, defined as

int N = {k : N l−1
k ⊂ N}∩{k : vl−1

k is not a vertex adjacent to the boundary ∂Ω}.
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Figure 3.7: Coarse-level geometry

Clearly,
supp S2

l−1P
l−1
l eli ⊂ int N .

From this, (3.46), and (3.47) it follows that∑
j∈N l

i

alij = 〈Al−1S
2
l−1P

l−1
l eli,1l−1〉

= 〈S2
l−1P

l−1
l eli, Al−11l〉

= 〈S2
l−1P

l−1
l eli, Al−11l〉l2(int N )

= 0

as
(Al−11l−1)k = 0 ∀ k ∈ int N ⊂ int {1, . . . , nl−1},

by assumption, proving b) for level l. The proof of b) on all levels follows by
induction, with the fact that the finite element stiffness matrix satisfies b).

Let us prove c). Consider a set M ⊂ {1, . . . , nl}. Let x ∈ IRnl be the vector
such that xli = 1 for all i ∈ M. By property b), (Alx)k = 0 ∀ k ∈ int M and
therefore yl = Slx = (I−ωAl)x satisfies yi = 1 for all i ∈ intM. Assume c) holds
for an intermediate Ikl with some k ∈ {2, . . . , l}, that is,

(Ikl 1l)p = 1 ∀p : vkp ∈ Ω̄l
int.
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(See c).) Then, (P k−1
k Ikl 1l)p = 1 for all vertices vk−1

p ∈ Ω̄l
int, with one layer of

vertexes added. The vector

y = Ik−1
l 1l = Sk−1P

k−1
k Ikl 1l

therefore satisfies yp = 1 for all p such that vlp ∈ Ω̄l
int. The proof now follows

by induction, with the fact that I ll1l = 1l satisfies c). Property (3.45) is a direct
consequence.

To prove d), it is sufficient to show that

{v1
j , j ∈ supp I1

l e
l
i} ⊂ int Ωl

supp,i. (3.48)

Assume
{vkj , j ∈ supp Ikl eli} ⊂ int Ωl

supp,i (3.49)

for some k ∈ {2, . . . , l}. Consider the set

ωl,k−1
i = supp P k−1

k Ikl−1e
l
i =

⋃
j∈supp Ikl−1e

l
i

Ak−1
j .

Obviously, for the set ω̃l,k−1
i consisting of ωl,k−1

i with one layer of surrounding
vertices added, that is,

ω̃l,k−1
i = ωl,k−1

i ∪ {j ∈ N k−1
p , p ∈ ωl,k−1

i },

the corresponding set of vertices is contained in int Ωl
supp,i. The proof of (3.49) for

k − 1 in place of k is completed by the fact that

supp Ik−1
l eli = supp (I − ωAk−1)P k−1

k Ikl eli ⊂ ω̃l,k−1
i .

The proof of (3.49) for all k ∈ 1, . . . , l follows by induction, with the fact that (3.49)
obviously holds for k = l.

For l > 1, let us connect vertices vlj, j = 1, . . . , nl by the regular square mesh
extended to the boundary ∂Ω, see Fig. 3.6. This mesh consists of squares; let us
choose a numbering of those squares (including those adjacent to the boundary)
and denote them {T li }. For each square T li define an index set τ li of numbers of
vertices vli that are its corner vertices. (Note that there are no vertices vli located
at ∂Ω.)

Lemma 6 For l > 1, the system {〈T li , {ϕlj}j∈τ li 〉}i, ϕ
l
j = π1I

1
l e

l
j, is a system of

macroelements on Ω.
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Proof. We verify the conditions of Definition 8.
Obviously, squares T lj have disjoint interiors and cover entire computational

domain Ω. Thus, (3.41) holds.
By Lemma 5 d), vertices vli are located at centers of gravity of squares Ωl

supp,i ⊃
supp ϕli. Clearly,

T li =
⋂
j∈τ li

Ωl
supp,j ⊃

⋂
j∈τ li

supp ϕlj.

and for j 6∈ τ li
intT li ∩ supp ϕlj ⊂ intT li ∩ Ωl

supp,j = ∅.

This proves (3.42).

Lemma 7 For l > 1, basis functions ϕli, i = 1, . . . , nl, satisfy the following prop-
erties:

1. The H1(Ω)-seminorm and L2(Ω)-norm of each ϕli, l = 1, . . . , L, i = 1, . . . , nl,
are bounded by

|ϕli|H1(Ω) ≤ C (3.50)

and
‖ϕli‖L2(Ω) ≤ Chl. (3.51)

Here, C > 0 is a constant independent of mesh-size h, level l, and basis
function number i.

2. For T li that is not adjacent to a boundary with an essential boundary condi-
tion, the quadruple of associated basis functions (τ li = {i1, i2, i3, i4}) satisfies

4∑
j=1

ϕlij = 1 on T li .

3. On the edges of an interior macroelement T li , the traces of basis functions
satisfy

tr ϕli1 = 0 on e2 ∪ e3,

tr ϕli2 = 0 on e3 ∪ e4,

tr ϕli3 = 0 on e4 ∪ e1,

tr ϕli4 = 0 on e1 ∪ e2.

In the above identity, the edges ej of T li (in the local numbering) and vertices
vlij are numbered in the same way as on the reference element as depicted in
Fig. 3.8.
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Figure 3.8: Reference square

Proof. The statement No. 1 follows directly from Lemma 4.
Statement No. 3 of our lemma follows by Lemma 5 d). The decomposition of

unity (Statement 2.) follows by Lemma 5 c) and d). This completes our proof.

Lemma 8 Let T̂ be a unit square with edges and vertices as depicted on Fig. 3.8.
Define the set G = {(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4)T} ⊂ [H1(T̂ )]4, where each function ϕ̂i is asso-
ciated with vertex v̂i, by the following properties:

1. There is a positive, finite constant C such that

‖ϕ̂i‖H1(T̂ ) ≤ C, i = 1, . . . , 4. (3.52)

2. The functions ϕ̂i, i = 1, . . . , 4, satisfy the decomposition of unity
4∑
i=1

ϕ̂i = 1 on T̂ . (3.53)

3. The traces tr ϕ̂i ∈ H1/2(∂T̂ ) of functions ϕ̂i, i = 1, . . . , 4, on the boundary
∂T̂ , denoted later simply as ϕ̂i, satisfy

ϕ̂1 = 0 on ê2 ∪ ê3,

ϕ̂2 = 0 on ê3 ∪ ê4,

ϕ̂3 = 0 on ê1 ∪ ê4,

ϕ̂4 = 0 on ê1 ∪ ê2.

See Fig. 1.

Define the Gram matrix

G = G(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4) ≡ {gij = (ϕ̂i, ϕ̂j)L2(T̂ )}
4
ij=1.

There is a positive constant c dependent exclusively on C such that

λmin(G) ≥ c > 0

for all quadruples (ϕ̂1, ϕ̂5, ϕ̂3, ϕ̂4)T ∈ G.
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Proof. Let us prove that the basis functions ϕ̂i, i = 1, . . . , 4 are linearly inde-
pendent. Assume for now the contrary, i.e.

4∑
i=1

ciϕ̂i = 0 with some ci 6= 0.

By property No. 3, ϕ̂3 = ϕ̂4 = 0 on ê1. Hence, by the assumption of the decom-
position of unity (3.53),

ϕ̂1 + ϕ̂2 = 1 on ê1 (3.54)

and, by the assumption of the linear dependence,

c1ϕ̂1 + c2ϕ̂2 = 0 on ê1, (3.55)

with c1 6= 0 or c2 6= 0. Let us say that c1 6= 0. We will show that proper-
ties (3.54), (3.55) and c1 6= 0 exclude each other.

By (3.55) and (3.54) it follows that

(c1 − c2)ϕ̂1 = −c2 on ê1.

Let c2 6= 0. Then ϕ̂1 = const 6= 0 on ê1. Since ϕ̂1 = 0 on ê2 by property
No. 3, it follows that there is a jump in the trace of ϕ̂1 at the point v̂2 and thus,
ϕ̂1 6∈ H1/2(∂T̂ ), which contradicts the trace theorem, as ‖ϕ̂1‖H1(T̂ ) ≤ C < +∞.

Consider now the case of c2 = 0. Then, by (3.55) c1ϕ̂1 = 0, hence by (3.54) it
follows that c1(1− ϕ̂2) = 0 on ê1. Since c1 6= 0 by the assumption, it follows that
ϕ̂2 = 1 on ê1. Since ϕ̂2 = 0 on ê4, there is a jump in the trace of ϕ̂2 at the point
v̂1, hence ϕ̂2 6∈ H1/2(∂T̂ ), which contradicts the trace theorem. Thus, c1 6= 0 leads
to the contradiction for any c2, hence c1 = 0.

Due to the double axial symmetry of T̂ (with respect to both x and y), it
follows that

∑4
i=1 ciϕ̂i = 0 implies c1 = c2 = c3 = c4 = 0 and therefore the basis

functions ϕ̂i, i = 1, . . . , 4, are linearly independent.
Since G is a Gram matrix corresponding to the linearly independent basis, the

functional
Φ(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4) = λmin(G(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4))

is a positive functional on G. By the Cauchy-Schwarz inequality, entries gij =

(ϕ̂i, ϕ̂j)L2(T̂ ) are continuous bilinear forms on L2(T̂ ), hence continuous functionals
on G. At the same time, eigenvalues of G depend continuously on the entries gij.
Thus, Φ is a continuous, positive functional on [L2(T̂ )]4. In the rest of the proof
we will show that the set G is compact in [L2(T̂ )]4. Clearly, the set G is bounded
in [H1(T̂ )]4, hence weakly precompact. Further, the set G is convex. Indeed, for
two functions ϕ̂i, ϕ̂′i such that

‖ϕ̂i‖H1(T̂ ) ≤ C, ‖ϕ̂′i‖H1(T̂ ) ≤ C
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and α, β non-negative numbers such that α + β = 1, it holds that

‖αϕ̂i + βϕ̂′i‖H1(T̂ ) ≤ α‖ϕ̂i‖H1(T̂ ) + β‖ϕ̂i‖H1(T̂ ) ≤ (α + β)C = C.

For two quadruples of functions {(ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4)T} and {(ϕ̂′1, ϕ̂′2, ϕ̂′3, ϕ̂′4)T} satisfy-
ing equality constraints No. 2 and No. 3, their convex combination {αϕ̂i+βϕ̂′i}4

i=1,
α+ β = 1, α, β ∈ IR+

0 , satisfies conditions No. 2 and No. 3 too. Thus, G is convex
and weakly precompact. Since G is closed in [H1(T̂ )]4 and convex, it is weakly
closed, hence weakly compact in [H1(T̂ )]4. By Rellich’s theorem, G is compact in
[L2(T̂ )]4.

Summing up, Φ is a continuous positive functional on G ⊂ [L2(T̂ )]4, with G
being a compact set. Thus, Φ attains its positive minimum on G, proving our
statement.

Remark 21 Let ϕ̂i, i = 1, . . . , 4 be basis functions satisfying assumptions of
Lemma 8, G the corresponding L2(T̂ )-Gram matrix, and û =

∑4
i=1 uiϕ̂i, u =

(u1, u2, u3, u4)T ∈ IR4. Then,

‖û‖2
L2(T̂ )

=

(
4∑
i=1

uiϕ̂i,
4∑
j=1

ujϕ̂j

)
L2(T̂ )

=
4∑
i=1

4∑
j=1

(ϕ̂i, ϕ̂j)L2(T̂ )uiuj = 〈Gu,u〉.

(3.56)
Hence, by Lemma 8 it follows that

‖û‖2
L2(T̂ )

= ‖u‖2
G ≥ λmin(G)‖u‖2 ≥ c‖u‖2. (3.57)

At the same time, (3.56) gives

‖û‖2
L2(T̂ )

≤ λmax(G)‖u‖2, (3.58)

where

|gij| = (ϕ̂i, ϕ̂j)L2(T̂ ) ≤ ‖ϕ̂i‖L2(T̂ )‖ϕ̂j‖L2(T̂ ) ≤ ‖ϕ̂i‖H1(T̂ )‖ϕ̂j‖H1(T̂ ) ≤ C.

Thus, by Gershgorin’s theorem,

λmax(G) ≤ C.

This bound, (3.58), and coercivity estimate (3.57) yield uniform norm equivalence

c‖u‖2 ≤ ‖û‖2
L2(T̂ )

≤ C‖u‖2

with constants C ≥ c > 0 dependent exclusively on constant C in (3.52).
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T̂ T
φl
i

Figure 3.9: The macroelement transformation

Lemma 9 Consider the affine mapping φ(·) : IR2 → IR2 that maps unit square T̂
onto square T with the side-length H and the left lower vertex located at b ∈ IR2.
The mapping is given by

φ(x̂) =

[
H 0
0 H

]
x̂ + b. (3.59)

See Fig. 3.9. Let u ∈ H1(T ). Define the transformed function û ∈ H1(T̂ ) by

û(x̂) = u(φ(x̂)). (3.60)

Then it holds that

‖û‖L2(T̂ ) = H‖u‖L2(T ) (3.61)
|û|H1(T̂ ) = |u|H1(T ). (3.62)

Proof. The proof follows by the elementary transformation of the integrals.

Remark 22 Let T li be an interior macroelement. From Lemma 7 and Lemma 9
it follows that the associated basis functions ϕlij , j = 1, . . . , 4, transformed by the
mapping (3.59) via (3.60) (that is, resulting functions ϕ̂j, j = 1, . . . , 4) satisfy the
assumptions of Lemma 8. Indeed, by Lemma 7 it follows that ‖ϕlij‖H1(T l

i ) ≤ C.
Hence by Lemma 9 it follows that ‖ϕ̂j‖H1(T̂ ) ≤ C. Assumptions No. 2 and No. 3
of Lemma 8 follow from properties No. 2 and No. 3 proved in Lemma 7.

Lemma 10 Define the level l interpolation operator

πl : x ∈ IRnl 7→
nl∑
i=1

xiϕ
l
i, l = 1, . . . , L. (3.63)

There are positive constants C ≥ c independent of mesh-size h and level l such
that level l = 1, . . . , L and every u ∈ IRnl, the following norm equivalence holds:

chl‖u‖ ≤ ‖πlu‖L2(Ω) ≤ Chl‖u‖. (3.64)
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Proof. Let us prove first the left inequality of (3.64). Define Ωl
int to be the union

of all macroelements T li that are not adjacent the boundary with the essential
boundary condition, and T li to be the set of indices of basis functions associated
with macroelement T li . Assume T li is an interior macroelement. The entries of the
set T li = {j1, j2, j3, j4} are ordered in the same way as vertices in Fig. 3.8.

Let us consider the affine mapping φli that maps the unit square T̂ onto T li as
in Lemma 9. Consider a function u = πlu, u ∈ IRnl . Clearly,

u =
∑
j∈T l

i

ujϕ
l
j on T

l
i .

Define the transformed function

û(x̂) = u(φli(x̂)), x̂ ∈ T̂ .

Further, define the transformed basis

ϕ̂k(x̂) = ϕljk(φli(x̂)), k = 1, . . . , 4.

Then,

û(x̂) =
4∑

k=1

ujkϕ̂k(x̂). (3.65)

By Remark 22, transformed basis functions {ϕ̂k}4
k=1 satisfy the assumptions of

Lemma 8. Hence, denoting G = {(ϕ̂i, ϕ̂j)L2(T̂ )}4
i,j=1, the Gram matrix correspond-

ing to the transformed basis, we have the estimate∥∥∥∥∥
4∑
i=1

wiϕ̂i

∥∥∥∥∥
2

L2(T̂ )

= 〈Gw,w〉 ≥ λmin(G)‖w‖2 ≥ c
4∑
i=1

w2
i ∀w ∈ IR4.

See Remark 21. By this inequality, (3.65), and Lemma 9, it follows that

‖u‖2
L2(T l

i ) = h2
l ‖û‖2

L2(T̂ )
= h2

l

∥∥∥∥∥
4∑

k=1

ujkϕ̂k

∥∥∥∥∥
2

L2(T̂ )

≥ ch2
l

4∑
k=1

u2
jk

= ch2
l

∑
j∈T l

i

u2
j .

Since each degree of freedom i belongs to at least one set T lj , the previous inequality
gives

‖u‖2 ≤
∑

∀T l
i⊂Ωl

int

∑
j∈T l

i

u2
j ≤ C−1h−2

l

∑
∀T l

i⊂Ωl
int

‖u‖2
L2(T l

i ) ≤ C−1h−2
l ‖u‖

2
L2(Ω),

completing the proof.
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The second inequality of (3.64) is more or less trivial. Define the global Gram
matrix

Gl = {(ϕli, ϕlj)L2(Ω)}nl
i,j=1.

The (minimal) constant C in the second inequality of (3.64) is then
√
λmax(Gl).

(See Remark 21.) The matrix Gl contains at most 9 non-zeroes per row and the
non-zeroes can be estimated by the Cauchy-Schwarz inequality and Lemma 7 by

|glij| ≤ ‖ϕli‖L2(Ω)‖ϕlj‖L2(Ω) ≤ Ch2
l .

By Gershgorin’s theorem, λmax(Gl) ≤ Ch2
l and the proof follows.

Corollary 2 For Gram matrix Ml = (I1
l )T I1

l , l = 1, . . . , L, corresponding to the
discrete basis {I1

l e
l
i}
nl
i=1, the diagonal matrix Dl = diag(Ml) is uniformly spectrally

equivalent in the sense that the equivalence

c‖x‖Ml
≤ ‖x‖Dl

≤ C‖x‖Ml
∀x ∈ IRnl (3.66)

holds with constants C ≥ c > 0 independent of h and l. As a consequence, as-
sumption (3.20) holds for Q̃ l = Q̃l and Q l = Ql given by (4.5) and (4.6).

Proof. From (3.64) follows the uniform norm equivalence

c3l−1‖x‖ ≤ ‖I1
l x‖ = ‖x‖Ml

≤ C3l−1‖x‖ ∀x ∈ IRnl .

Hence Ml is well-conditioned. The eigenvalues of Dl satisfy

λi(Dl) ≡ (Dl)ii = ‖eli‖2
Ml

=
‖eli‖2

Ml

‖eli‖2
∈ [λmin(Ml), λmax(Ml)] ⊂ [c3l−1, C3l−1],

proving (3.66).
From (3.66) follows C−1‖ · ‖M−1

l
≤ ‖ · ‖D−1

l
≤ c−1‖ · ‖M−1

l
and therefore

C−1〈Qlu,u〉 = C−1〈M−1
l (I1

l )Tu, (I1
l )Tu〉 ≤ 〈D−1

l (I1
l )Tu, (I1

l )Tu〉
= 〈Q̃lu,u〉 ≤ c−1〈M−1

l (I1
l )Tu, (I1

l )Tu〉 = c−1〈Qlu,u〉 ∀u ∈ U

with constants C ≥ c > 0 from (3.66), proving assumption (3.20) of Theorem 19.

Lemma 11 (Scaled Poincaré and Friedrich’s inequality) Let T be a square
domain with side of length H. Then there is a constant C > 0 independent of H
(and, characteristic for a square) such that (Poincaré inequality)

inf
c∈IR
‖u− c‖L2(T ) ≤ CH|u|H1(T ) ∀u ∈ H1(T ). (3.67)

and (Friedrich’s inequality)

‖u‖L2(T ) ≤ CH|u|H1(T ) ∀u ∈ H1
0,Γ(T ) ≡ {u ∈ H1(T ) : tr u = 0 on Γ}, (3.68)

if Γ ⊂ ∂T contains at least one edge of T .
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Proof. The proof follows from Poincaré and Friedrich’s inequalities on a unit
square by scaling, using Lemma 9.

Figure 3.10: Extended macroelement

For each vertex vli we introduce a ball Bl
i ⊂ Ω with center in vli that has

measure about µ(T lj), in the sense that there are constants C ≥ c > 0 independent
of mesh-size h, level l, and basis function number i such that

ch2
l ≤ µ(Bl

i) ≤ Ch2
l , (3.69)

see Fig. 3.10. For convenience, we assume that the balls Bl
i do not intersect each

other. We encapsulate each domain

T lj ∪
⋃
i∈T l

j

Bl
i

into (the nearly smallest possible) square T̃ lj . Clearly, the intersections of the
extended macroelements T̃ lj are bounded, that is, there is finite integer N indepen-
dent of level such that each x ∈ Ω belongs to at most N extended macroelements
T̃ li .

Both for the interior and for the boundary macroelement, define the local
interpolation operator Πl

i : L2(T̃ li )→ L2(T li ) by

Πl
iu =

∑
j∈T l

i

(
1

µ(Bl
j)

∫
Bl

j

udx

)
ϕlj. (3.70)

Here, T li is an index set of the numbers of basis functions associated with T li .
Next we prove L2(Ω)-stability of the local interpolation operator.
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Lemma 12 Both for the interior and for the boundary macroelement T li , the map-
ping Πl

i is stable in the L2-norm, in the sense that

‖Πl
iu‖L2(T l

i ) ≤ C‖u‖L2(T̃ l
i ) ∀u ∈ L2(T̃ li ) (3.71)

with positive constant C independent of the level l, mesh-size h, and macroelement
number i.

Proof. We estimate using the definition of Πl
i in (3.70), the triangle inequality,

the Cauchy-Schwarz inequality, L2-bound (3.34), and (3.69). We have

‖Πl
iu‖L2(T l

i ) =

∥∥∥∥∥∥
∑
j∈T l

i

(
1

µ(Bl
j)

∫
Bl

j

udx

)
ϕlj

∥∥∥∥∥∥
L2(T l

i )

≤
∑
j∈T l

i

(
1

µ(Bl
j)

∫
Bl

j

udx

)
‖ϕlj‖L2(T l

i )

≤ Chl
∑
j∈T l

i

1

µ(Bl
j)

(u, 1)L2(Bl
j)

≤ Chl
∑
j∈T l

i

1

µ(Bl
j)
‖u‖L2(Bl

j)‖1‖L2(Bl
j)

≤ C
∑
j∈T l

i

‖u‖L2(Bl
i)
.

Further, by the Cauchy-Schwarz inequality,

∑
j∈T l

i

‖u‖L2(Bl
j) ≤

∑
j∈T l

i

‖u‖2
L2(Bl

j)

1/2∑
j∈T l

i

12

1/2

≤ 2‖u‖L2(T̃ l
i ).

The proof follows from last two estimates.
The proof of the following lemma uses the key argument of finite element

approximation theory.

Lemma 13 For both the interior and the boundary macroelement T li , the interpo-
lation operator Πl

i defined in (3.70) satisfies the estimate

‖u− Πl
iu‖L2(T l

i ) ≤ Chl|u|H1(T̃ l
i ) ∀u ∈ H1

0,∂T̃ l
i∩∂Ω

(T̃ li ) (3.72)

with constant C > 0 independent of h, l, and i. In addition, the interpolation
operator

Πl : u ∈ H1(Ω) 7→
nl∑
i=1

(
1

µ(Bl
1)

∫
Bl

i

udx

)
ϕli (3.73)
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satisfies
‖u− Πlu‖L2(Ω) ≤ Chl|u|H1(Ω) ∀u ∈ H1

0 (Ω) (3.74)

with constant C > 0 independent of h and l.

Proof. By Lemma 12 it follows that

‖I − Πl
i‖L2(T̃ l

i )→L2(T l
i ) ≤ ‖I‖L2(T̃ l

i )→L2(T l
i ) + ‖Πl

i‖L2(T̃ l
i )→L2(T l

i ) ≤ C. (3.75)

Let T li be an interior macroelement and T li the set of basis functions associated
with T li . By Lemma 7 it follows that∑

j∈T l
i

ϕli = 1 on T li .

Hence, for any constant function c defined on T̃ li it holds that

Πl
ic =

∑
j∈T l

i

(
1

µ(Bl
i)

∫
Bl

i

cdx

)
ϕlj = c

∑
j∈T l

i

ϕlj = c on T li . (3.76)

Let u ∈ H1(T̃ li ). By (3.76) and (3.75), for any constant c it holds that

‖u− Πl
iu‖L2(T l

i ) = ‖u− c− (Πl
iu− c)‖L2(T l

i )

= ‖u− c− (Πl
iu− Πl

ic)‖L2(T l
i )

= ‖(I − Πl
i)(u− c)‖L2(T l

i )

≤ ‖I − Πl
i‖L2(T̃ l

i )→L2(T l
i )‖u− c‖L2(T̃ l

i )

≤ C‖I − Πl
i‖L2(T̃ l

i )→L2(T l
i )‖u− c‖L2(T̃ l

i ).

In the above estimate we choose

c = argminq∈IR‖u− q‖L2(T̃ l
i ).

Hence, by the previous inequality and the scaled Poincaré inequality (3.67), (3.72)
follows.

To prove (3.72) for a boundary macroelement is even simpler. Let u ∈ H1
0,∂Ω∩∂T̃ l

i

(Ω).
We use (3.75) and the scaled Friedrich’s inequality (3.68) to estimate

‖u− Πl
iu‖L2(T l

i ) ≤ ‖I − Πl
i‖L2(T̃ l

i )→L2(T l
i )‖u‖L2(T̃ l

i ) ≤ Chl|u|2H1(T̃ l
i )
.

This completes the proof of (3.72).
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To prove (3.74) we use the obvious identity

‖u− Πlu‖L2(T l
i ) = ‖u− Πl

iu‖L2(T l
i ),

the local estimate (3.72), and the fact that every point x ∈ Ω belongs to at most
N < +∞ extended macroelements T̃ li . Thus,

‖u− Πlu‖2
L2(Ω) =

∑
∀T l

i⊂Ω

‖u− Πlu‖2
L2(T l

i )

=
∑
∀T l

i⊂Ω

‖u− Πl
iu‖2

L2(T l
i )

≤ C
∑
∀T l

i⊂Ω

h2
l |u|2H1(T̃ l

i )

≤ Ch2
l |u|2H1(Ω).

Lemma 14 There is a constant cσ > 0 independent of h, l and L such that

σ̄l ≡
cσ

9l−1
≥ σl (3.77)

for all l = 1, . . . , L. In addition, there is a constant C > 0 independent of h,
l, and L such that for every u ∈ U = IRn1, the exact orthogonal projections
Q l = Ql : U → Ul, UL+1 = ∅, QL+1 = 0, satisfy

‖u−Ql+1u‖ ≤
C√
σ̄l
‖u‖A, l = 1, . . . , L. (3.78)

Proof. To estimate the spectral bound (3.77) we use the norm equivalence
proved in Lemma 10. By (4.8),

σl = sup
x∈IRnl\{0}

〈AI1
l x, I

1
l x〉

‖I1
l x‖2

= sup
x∈IRnl\{0}

〈Alx,x〉
‖I1

l x‖2
,

where by (3.64) and πl = π1I
1
l ,

‖I1
l x‖2 ≥ ch−2

1 ‖π1I
1
l x‖2 = ch−2

1 ‖πlx‖2
L2(Ω) ≥ c

(
hl
h1

)2

‖x‖2 ∀x ∈ IRnl . (3.79)

The previous two inequalities, together with (3.35), give

σl ≤ C

(
h1

hl

)2

sup
x∈IRnl\{0}

〈Alx,x〉
‖x‖2

≤ C

(
h1

hl

)2

λmax(Al) ≤ C

(
h1

hl

)2

,
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proving (3.77).
We will prove (3.78) for approximate projections Q̄l : U → Ul defined by

Q̄l = π−1
1 Πlπ1, l = 2, . . . , L and Q̄L+1 = 0. The result for the exact projection

then follows by minimizing property of the orthogonal projection.
Let l < L and u ∈ U . We estimate using Lemma 13, norm equivalence (3.39),

and hl+1 = 3hl,

‖u− Q̄l+1u‖ = ‖(I − π−1
1 Πl+1π1)u‖

≤ Ch−1
1 ‖π1(I − π−1

1 Πl+1π1)u‖L2(Ω)

= Ch−1
1 ‖(I − Πl+1)π1u‖L2(Ω)

≤ C
hl+1

h1

|π1u|H1(Ω)

≤ C
hl
h1

|π1u|H1(Ω)

= C
hl
h1

‖u‖A. (3.80)

For l = L, we have by hL = 1/2 (since there is only one degree of freedom
located in the center of Ω), and by Friedrich’s inequality (3.68) for T = Ω,

‖u− Q̄L+1u‖ = ‖u‖ ≤ Ch−1
1 ‖π1u‖L2(Ω) ≤ h−1

1 C|π1u|H1(Ω) ≤ C
hL
h1

‖u‖A,

proving (3.80) for l = L.
Statement (3.78) follows from (3.77) and estimate (3.80).
Now we are ready to formulate the final convergence theorem.

Theorem 23 For model problem (3.28) and smoothed aggregation based coarse-
spaces Ul = Range(I1

l ) with prolongators I ll+1 as defined in Section 3.5, the BPX
preconditioner B = B given by Algorithm 3.4.1 satisfies the estimate

c

L
‖u‖2

A ≤ 〈BAu,u〉A ≤ CL‖u‖2
A ∀u ∈ U (3.81)

with constants C ≥ c > 0 independent of h and L.

Proof. The proof consists in the verification of the assumptions of Theorem 19.
Assumption (3.19) follows from Lemma 14. Assumption (3.20) holds by virtue of
Corollary 2.

Remark 24 (Choice of σ̄l.) In practice, it is relatively difficult to determine upper
bounds σ̄l ≥ σl in (3.27) computationally. From Lemma 14, we know that there is
a constant cσ > 0 independent of h, l, and L such that

σ̄l ≡
cσ

9l−1
≥ σl, l = 1, . . . , L.
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To get an efficient preconditioner, it is not neccessary to determine the constant
cσ. In (4.7), it is sufficient to use

σ̃l =
1

9l−1
, l = 1, . . . , L

in the place of σ̄l = cσ/9
l−1. Obviously, this leads to the scalar multiple B̃ = c−1

σ B.
This simplification does not alter the convergence estimate since

cond(A, B̃) = cond(A, c−1
σ B) = cond(A,B) ≤ C

c
L2.

Here, C, c are constants from (3.81).

Remark 25 By the means very similar to those used in Sect. 3.6, for operators
Q̃l, it is possible to verify assumptions of the abstract convergence result of [6]
with uniform constants. Then, for a standard multiplicative multigrid, we get
the estimate of the convergence rate in the energy norm in the form 1 − C/L.
Compared to the former result of [53], where the convergence rate deteriorates
with the power of 3 of L, this is an improvement.
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Chapter 4

Implementation and Numerical
Experiments

In this chapter, we focus on the numerical aspects of algorithms presented in the
previous text. The main aim of this chapter is to do a series of numerical exper-
iments to prove a validity of the theoretical convergence results of the SA BPX
algorithm.

Implementation is done in software Matlab and programming language Fortran
90. Before we proceed to the numerical results, we describe all the essential parts
that have to be dealt with while programming multigrid algorithm. The first task
is to consider carefully which sparse storage format we will use, since we work with
large sparse matrices. Then, we make use of the naturally parallel characteristic
of the SA BPX algorithm and implement it in parallel (OpenMP parallelization
in Fortran). We have to take the algorithm to parts to find out which parts of
the multigrid algorithm are suitable to be done in parallel and which are not. As
a solver, we use the preconditioned conjugated gradients method. Finally in the
end of the chapter, we present a series of numerical experiments.

4.1 Sparse Matrices Storage Formats

Matrices coming from the finite elements discretizations are sparse and potentially
large. It is essential to store them in some sparse matrix format. To store an
information about an element, we keep usually three arrays with an information
about a value and a placement of the element instead of keeping two-dimensional
dense array.

In our implementation, we use three storage formats: coordinate, compressed
sparse row and compressed sparse column.
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Coordinate format

The coordinate format (COO) consists of three real arrays. An array a contains
entries of the matrix and two integer arrays ai and aj contain row indices and
column indices.

The order of entries is stored in arrays is arbitrary.

Example 1

An example of COO format might look like this:

A =


0 1 0 2 0
0 0 3 0 0
0 0 0 0 0
0 0 4 5 6
0 0 7 0 0

 ,

then
a = [1, 2, 3, 4, 5, 6, 7],

ai = [1, 5, 4, 4, 2, 1, 4],

aj = [2, 3, 3, 4, 3, 4, 5].

CSR Structure

The storage of nonzero elements can be done such that we go across all the rows
and we store all the elements in the order how they appeared. We denote nnz
as the number of nonzero elements. In compressed sparse row format (CSR), the
three arrays have following meaning:

a: a real array of length nnz containing nonzero elements of A,
ai : an integer array of positions in the column,
aj : an integer array, where i-th entry points to the beginning of the i-th row

in the array ai. The length of the array is N + 1, where N is number of rows.

The array aj from previous example is now

aj = [1, 3, 4, 4, 7, 8].

CSC Structure

The compressed sparse column format (CSC) is similar to the CSR format. In this
case we go across columns instead of rows.
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Remark 26 In Matlab software, the sparse matrices are created in COO format.
In our Fortran implementation we use mainly CSR format (or CSC, if it is conve-
nient). The implementation has to be treated carefully since for some cases it is
more practical to use CSR format and in some CSC format. It will be explained
later.

4.2 Multigrid Programming Essentials

In every program based on the multigrid algorithm, we have to overcome some
problems arising from the algorithm. To be more specific, let us assume we would
like to solve a system Au = f . Then, before we progress to the multigrid solver, we
have to create a system of prolongator and restriction operators and representation
of A on every level l, l = 1, . . . , L. The representation of A on the coarse levels
is done by so called Galerkin principle: Al+1 = (I ll+1)TAlI

l
l+1 (we continue using

AMG numbering). In algebraic multigrid, prolongators and coarse matrices Al are
created by algebraic principles and without knowing the exact differential operator.

After we create all the multigrid components on every level, we proceed to the
actual solver. Both algorithms can be therefore implemented in two steps, set-up
phase and solver phase.

The set-up phase

Let us look more closely at the set-up phase of an AMG multigrid, particularly at
the SA algorithm. It can be summarized in the following scheme:

For l = 1, L do
1.) coarsening

- partition fine level nodes into disjoint aggregates by a fast heuristic algo-
rithm

2.) definition of prolongators and restrictions
- define tentative prolongator P l

l+1 such that nonzero structure of the j-th
column corresponds to the j-th aggregate
- define smoothed prolongators I ll+1 by applying one smoothing step on
tentative prolongator: I ll+1 = SlP

l
l+1

- define restriction as (I ll+1)T

3.) definition of coarse matrices
Al+1 = (I ll+1)TAlI

l
l+1

We would like to develop some parts of the set-up phase a bit more:
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add 1.) We create aggregates by means of the greedy algorithm described
in Alg. 3.2.3. This process works with the conception of strongly
coupled neighborhood (3.9) which, among others, ensures that the
structure of aggregates will follow semi-coarsening pattern for
anisotropic problems. The aggregates are created by successive
colouring the adjacency graph of matrix A by three sweeps of the
greedy method in total.

add 2.) The tentative prolongator is created column-wise by aggregates.
Smoothing of the prolongator is usually done by applying one step
of a smoother S which is in a polynomial of A. The exception could
be problems with aggressive coarsening, see [51]. We have to keep
in mind that by smoothing of the prolongator, we have to ensure
the nonzero pattern. Adding more nonzero elements to the system
would slower whole algorithm.

add 3.) Regardless of whether we use classical or smoothed aggregation
AMG, the computation of coarse matrices involves a product of
three matrices.

Remark 27 We would like to mention that we are interested in the paralleliza-
tion of the additive SA-BPX preconditioner and we will not go deeper into the
possibilities of parallelization of the set up phase. Depending on the architecture,
there are plenty of options of how to implement smoothers, aggregates and coarse
matrices in parallel. Reader can see [48], [18], [59] and [30].

The solver phase

After the set-up phase, we proceed to solving a system Au = f . The multiplicative
and additive multigrid have following steps:

1.) smoothing
Smoothing is done by some simple iterative method like damped Jacobi
method or in the case of SA-BPX the smoother Rl is simply λ−1

l I.
2.) restriction

The operation of restriction and prolongation is a matrix-vector multipli-
cation. In parallel implementation the multiplication of Ax can be done
naturally in parallel for a matrix in CSR format. The situation changes,
if we consider transposed matrix - vector multiplication. The rows of the
sparse matrix becomes its columns and the multiplication therefore cannot
be treated in the same way as matrix times vector. We have to think if we
want to store both restriction and prolongation matrices in matrix formats
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because it is convenient for our parallel implementation or we store only
one of them and execute transposed matrix - vector multiplication (it will
be discussed in the next section).

3.) solver
In the classical multiplicative multigrid on the coarsest level we solve the
system, if the system is small, we use a direct method.

4.) prolongation (add 2.)

In the additive multigrid, the smoothing and restriction can be done in paral-
lel which will be described later.

4.2.1 Parallel Programming Models

While studying algorithms involved in multigrid, we find out that some parts could
be executed independetly on other parts in parallel. In this section we make a brief
introduction into the concept of parallel programming.

We now assume a matrix times vector multiplication y = Ax.
for i = 1 to n do

sum = 0
for j = 0 to n do

sum = sum+ a(i, j)x(j)
end for
y(i) = sum

end for
The parallelization can be done such that each threads is assigned by a few of

rows of the matrix and then the computations for inter loop are done sequentially.
As an example we take an n = 6 and divide the tasks into two threads:

thread 1:
for i = 1, 2, 3 do

sum = 0
for j = 0 to n do

sum = sum+ a(i, j)x(j)
end for
y(i) = sum

end for
thread 2:
for i = 4, 5, 6 do

sum = 0
for j = 0 to n do

sum = sum+ a(i, j)x(j)
end for
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y(i) = sum
end for

We have to be careful when we want to compute a summation in parallel. If we
decided to parallelize the sum = sum+ b(j) for j = 1, . . . , N similarly like in the
example, each of the threads would be assigned by part of vector b and then it
would sum the elements of b. But since sum is depending on its value from a
previous loop, the results given by each thread would be therefore wrong.

We can ask, if the doubling the number of cores would lead to halving of the
time needed to the computations.

Amdahl’s Law states that potential program speedup is defined by the fraction
of code p that can be parallelized:

speedup =
1

(1− p)
.

However, certain problems can involve increasing speedup by increasing the prob-
lem size. Problems that increase the percentage of parallel time with their size are
more scalable than problems with a fixed percentage of parallel time.

4.2.2 Parallelization with OpenMP

Some of the problems offer the possibility to be divided into discrete parts that
will be treated concurrently. The instructions are then assigned to each part and
executed simultaneously:

1. Single Instruction
The most simple type of computer performs one instruction (such as reading
from memory, addition of two values) per cycle, with only one set of data.

2. Multiple Instruction
This applies to all computers which contain only on processing core (with
multi-core CPUs, single-CPU systems can have more than one processing
core, making them MIMD systems). Combining several processing cores or
processors, a computer can process several instructions and data sets per
cycle.

The system architectures are generally:

1. Shared Memory
In these systems with a shared memory, all processors are connected to a
common memory. Usually all the processors are identical and have equal
memory access.
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2. Distributed Memory
The processors are connected to each other and each processor has its own
local memory. The demands imposed on the communication network are
lower than in the case of a shared memory system, as the communication
between processors may be slower than the communication between processor
and memory.

In the implementation we will use the OpenMP interface. We therefore describe
the basics of programming with OpenMP and mention the directives, which we
will need laters.

OpenMP is an Application Program Interface (API) that may be used to ex-
plicitly direct multi-threaded, this is in shared memory parallelism. Comprised of
three primary API components: Compiler Directives, Runtime Library Routines
and Environment Variables.

We will use the API specifications for Fortran.

Directives

In Fortran, OpenMP directives are specified by using special comments that are
identified by unique sentinels. Compilers can therefore ignore OpenMP directives
and conditionally compiled code if support of the OpenMP API is not provided
or enabled.

OpenMP directives for Fortran are specified as follows:

sentinel directive-name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel.

Free Source Form Directives

The following sentinel is recognized in free form source files:

!$omp

The sentinel can appear in any column as long as it is preceded only by white space
(spaces and tab characters). It must appear as a single word with no intervening
character.

parallel Construct

!$omp parallel [clause[[,] clause]...]
structured-block
!$omp end parallel
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Description:
When a thread encounters a parallel construct, a team of threads is created to
execute the parallel region. The thread that encountered the parallel construct
becomes the master thread of the new team, with a thread number of zero for
the duration of the new parallel region. All threads in the new team, including
the master thread, execute the region. Once the team is created, the number of
threads in the team remains constant for the duration of that parallel region.

Worksharing Constructs

The OpenMP API defines the following worksharing constructs, and these are de-
scribed in the sections that follow:
loop construct
sections construct
single construct
workshare construct

Tasking Constructs

master Construct

The master construct specifies a structured block that is executed by the master
thread of the team.

critical Construct

The critical construct restricts execution of the associated structured block to
a single thread at a time.

!$omp critical [(name)]
structured-block
!$omp end critical [(name)]

atomic Construct

The atomic construct ensures that a specific memory update is accessed atom-
ically.
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Execution Environment Routines

The omp_get_num_threads routine returns the number of threads in the current
team.

The omp_set_num_threads routine sets the number of threads for the parallel
region.

The omp_get_thread_num returns the thread number, within the current team,
of the calling thread.

4.3 Implementation of the Model Problem
In this section we describe the implementation of BPX in the smoothed aggregation
settings (SA BPX) on the model problem.

Here, we want to remind what we mean by solving the model problem. The
model problem has been defined before, but we repeat it for the reader’s conve-
nience and a brevity of the text.

Let Ω = (0, 1) × (0, 1) be a computational domain. We consider a model
problem

find u ∈ H1
0 (Ω) : a(u, v) = f(v) ∀v ∈ H1

0 (Ω). (4.1)

Here, a(·, ·) = (∇·,∇·)L2(Ω) and f(·) ∈ (H1
0 (Ω))−1. The problem is discretized by

P1 elements on a uniform triangular mesh obtained from a regular square mesh
when each square is broken by connecting its left lower and right upper vertices
with a straight edge.

The discretization leads to the system of linear algebraic equations

Ax = b,

with n× n symmetric, positive definite matrix A and b ∈ IRn. Set n1 = n.
The hierarchy of the aggregates is defined as {Ali}9L−l−1

i=1 , l = 1, . . . , L − 1
by grouping the mesh vertices into 3 × 3 regular, square groups. The tentative
prolongator is then defined as

(P l
l+1)ij =

{
1 for i ∈ Alj,
0 otherwise , (4.2)

i = 1, . . . , nl, j = 1, . . . , nl+1, nl = 9L−l, l = 1, . . . , L − 1. We assume the system
of injective linear prolongators

I ll+1 : IRnl+1 → IRnl nl+1 < nl, l = 1, . . . , L− 1

is given. The system of prolongators is created by applying one smoothing step
on the tentative prolongator:

I ll+1 = SlP
l
l+1,
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where the prolongator smoothers Sl are defined by

Sl = I − 4

3

1

λ̄l
Al, l = 1, . . . L− 1. (4.3)

We set (U, (·, ·)U , ; ‖ · ‖U) to be the Euclidean space (IRn, 〈·, ·〉, ‖ · ‖) and

a(·, ·) = 〈A·, ·〉. (4.4)

We introduce composite prolongators

I1
l = I1

2I
2
3 . . . I

l−1
l , l = 1, . . . , L.

The coarse-spaces are defined by

Ul = Range(I1
l ), l = 1, . . . , L

and coarse-level matrices by
Al = (I1

l )TAI1
l .

Note that the matrix Al is the operator A l defined by (4.4) and (3.32), represented
with respect to the basis given by the columns of I1

l . The exact projection operators
in the matrix form are

Q l = Ql = I1
l

(
(I1
l )T I1

l

)−1
(I1
l )T , l = 1, . . . , L. (4.5)

We choose the inexact projections to be the operators Ql with the matrix (I1
l )T I1

l

replaced by its diagonal, that is

Q̃l = Q̃l = I1
l D
−1
l (I1

l )T , Dl = diag
(
(I1
l )T I1

l

)
, l = 1, . . . , L. (4.6)

The action of BPX preconditioner (3.17) is given by the following algorithm:

Algorithm 4.3.1
given: x ∈ IRn

1: evaluate the action y = Bx ∈ IRn of preconditioner B = B by

y =
1

σ̄1

x +
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)
I1
l D
−1
l (I1

l )Tx, Dl = diag
(
(I1
l )T I1

l

)
. (4.7)

In (4.7), σ̄l is an upper bound of

σl = λmax (A l) = sup
x∈ Range(I1l )\{0}

‖x‖2
A

‖x‖2
= sup

x∈IRnl\{0}

‖I1
l x‖2

A

‖I1
l x‖2

, l = 1, . . . , L.

(4.8)
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The choice of σ̄l is, for our model example, in Remark 24.
Denote f li to be the i-th column of I1

l . Note that vectors {f li}
nl
i=1 form a natural

basis of Ul = Range(I1
l ). We would like to implement y = Q̃lx in parallel. It

holds that
y = Q̃lx = I1

l D
−1
l (I1

l )Tx,

y = f l1〈f l1,x〉/Dl(1, 1) + f l2〈f l2,x〉/Dl(2, 2) + · · ·+ 〈f lnl
,x〉/Dl(nl, nl).

It can be implemented using the parallel loop

y = 0; for i = 1, . . . , nl do in parallel y← y +

〈
x, f li

〉
‖f li‖2

f li .

The update of y is a critical section.
Algorithm 4.3.1 can be therefore implemented in parallel using the operation

of sparse inner product 〈·, ·〉l2(I) as follows:

Algorithm 4.3.2

1: setup: given composite prolongators I1
l , l = 2, . . . , L, set f li to be the i-th

column of I1
l and evaluate Dl

ii, l = 2, . . . , L, i = 1, . . . , nl as follows:
2: for all l = 2, . . . , L, i = 1, . . . , nl do in parallel

set Dl
ii =

〈
f li , f

l
i

〉
l2(supp(f li ))

3: end for
4: given x ∈ IRn1 , evaluate y = Bx as follows:

set y = σ̄−1
1 x

for all l = 2, . . . , L, i = 1, . . . , nl do in parallel

y← y + ((σ̄−1
l − σ̄

−1
l−1)/Dl

ii)
〈
f li ,x

〉
l2(supp(f li ))

f li

with the update of y being a critical section

end for

4.3.1 Implementation Details

The code is written in Fortran and realized via Intel Fortran 90 and GCC Fortran
90. We also write the test versions of the program in software Matlab before we
rewrite it in Fortran.

At first we set the main constants of the program and assembly the stiffness
matrix and the load vector. Then, there comes a set-up phase, in which we compute
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prolongators, create smoothed prolongators and coarse matrices. The code itself
is separated in Fortran modules. For each level, prologators and coarse matrices
are stored in a multigrid container, which is a Fortran derived type. Matrices are
stored in CSR or CSC format, depending on what is more convenient for us.

We also have to estimate an upper guess of the eigenvalue of A necessary in
the algorithm. To do so, we use the Gershgorin’s theorem: Every eigenvalue of
the matrix A of size N satisfies:

|λ− Aii| ≤
∑
j 6=i

|Aij| i ∈ {1, 2, 3, . . . , N}

In matlab weuse the command lambda=norm(A,’inf’).
To set the stopping criterion, we might consider several types of errors. We

consider the exact solution u, vector b, computed solution uh.
In our code we use the relative residual error defined as√

(b− Auh)T(b− Auh)√
bTb

.

4.3.2 Conjugated Gradients Method

The conjugated gradients method is a solver for linear system Au = f , where A
is a symmetric positive definite matrix. The method was introduces in 1952 by
Hestens and Stiefel [31]. They described the algebraic algorithm and also some
problems arising with the finite arithmetic. Later, it was shown that the conjugated
gradients method can be derived from the Lanczos algorithm or can be viewed as
the optimization of quadratic functional [27].

First, we consider non-preconditioned conjugated gradients method, described
by Algorithm 4.3.3. Now, we would like to solve a system BAu = Bf , where B the
preconditioner. The preconditioner B is is constructed so that it’s action is easy
to implement and the algorithm allows for the fast convergence of the conjugated
gradients method. The method of preconditioned conjugated gradients is described
by algorithm 4.3.4.
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Algorithm 4.3.3 CG
given: A, f ,uk ∈ Rn

set: rk = f − Auk,p0 = r0

1: repeat
2:

αk =
〈rk, rk〉
pk, Apk

(4.9)

3: uk+1 = uk + αkp
l

4: rk+1 = rk − αkpl
5:

δk =
〈rk+1, rk+1〉

rk, rk
(4.10)

6: pk+1 = rk+1 + δkp
k

7: until convergence

Algorithm 4.3.4 PCG
given: B,A, f ,uk ∈ Rn

set: rk = f − Auk, z0 = r0,p0 = Bz0

1: repeat
2:

αk =
〈zk, rk〉
pk, Apk

(4.11)

3: uk+1 = uk + αkp
l

4: rk+1 = rk − αkpl
5: zk+1 = Brk1

6:

δk =
〈zk+1, rk+1〉

zk, rk
(4.12)

7: pk+1 = rk+1 + δkp
k

8: until convergence
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4.4 Numerical Experiments

The model problem has been implemented considering two variants - the model
problem with conjugated gradients method (CG) and SA BPX preconditioned CG
method (PCG). The SA BPX variant is implemented in the smoothed aggregation
settings following Alg. 4.3.1. The set-up of the model problem is defined in Section
3.5 and reminded in Section 4.3.

At first, we present results obtained by an implementation of the serial version
of the algorithm. We are interested in convergence of the algorithm compared to
non-preconditioned conjugated gradients method and their computational times.
In Tables 4.1 − 4.2 there are computational times and number of iterations for
the model model problem. The stopping criterion is given by the relative residual
error achieving a tolerance ε. The number L determines number of levels and, in
the case of the model problem, it determines degrees of freedom (DOF). In Table
4.1 we also show elapsed time for the set-up phase of the algorithm.

We can see that the preconditioned conjugated gradients method gives a nearly
optimal convergence.

Set-up phase Solve phase
L DOF Smooth prolongator CG PCG
4 729 0 0 0
5 6561 0.047 0.062 0.046
6 59049 1.357 0.265 0.405
7 531441 2.527 17.09771 4.671
8 4782969 19.750 157.85 56.301

Table 4.1: Computational times elapsed for smoothing the prolongator, CG and
PCG solver, ε = 10−5

L DOF CG PCG
4 729 39 22
5 6561 119 29
6 59049 362 32
7 531441 1102 35
8 4782969 >1500 37

Table 4.2: Number of iterations for CG and PCG solver, ε = 10−5
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Figure 4.1: Computational times elapsed for smoothing the prolongator, CG and
PCG solver, ε = 10−5

4.4.1 Parallelization of Algorithm 4.3.1

In the parallel version of the program, we will are interested in possibilities of
parallelization of Alg. 4.3.1. In this part we consider three ways.

Case 1

One way of how to parallelize Alg. 4.3.1 is a natural parallelization of

1

σ̄1

x +
L∑
l=2

(
1

σ̄l
− 1

σ̄l−1

)
I1
l D
−1
l (I1

l )T .

The algorithm is an additive method and every addend of the sum can be computed
separately. The resulting computational times are given in Table 4.3. Table 4.4
shows a speed-up for L = 7 using one to seven threads. Computational times for
1-7 threads are in Fig 4.2.

Number of levels
L 4 5 6 7 8

0.129 0.149 0.499 3.585 54.362

Table 4.3: Computational times for parallel PCG solver, 7 threads ε = 10−5
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L Threads Computational times
7 1 4.8821
7 2 4.01
7 3 2.889
7 4 2.699
7 5 2.559
7 6 2.671
7 7 2.685

Table 4.4: Computational times for parallel PCG solver, 1-7 threads, 7 levels,
ε = 10−5
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Figure 4.2: Computational times elapsed for parallel PCG solver, 1-7 threads, 7
levels

Case 2

Second way is a parallelization of y = Q̃lx. In this case we implement a parallel
matrix-vector multiplication in

I1
l D
−1
l (I1

l )T .

The resulting computational times are given in Table 4.5. Table 4.6 shows a speed-
up for L = 7 using one to seven threads. Computational times for 1-7 threads are
in Fig 4.3. The results are similar to the previous case.
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Number of levels
L 4 5 6 7 8

0.116 0.160 0.494 3.150 52.467

Table 4.5: Computational times for parallel PCG solver, 7 threads ε = 10−5

L Threads Computational times
7 1 4.699
7 2 3.805
7 3 3.642
7 4 2.992
7 5 2.899
7 6 2.545
7 7 2.581

Table 4.6: Computational times for parallel PCG solver, 1-7 threads, 7 levels,
ε = 10−5
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Figure 4.3: Computational times elapsed for parallel PCG solver, 1-12 threads, 7
levels

Case 3

Third way of parallelization is based on splitting of the prolongator into into
columns (f and make the whole cycle in parallel over l = 2, . . . , L and i = 1, . . . , nl.
For all l = 2, . . . , L, i = 1, . . . , nl
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in parallel

y← y + ((σ̄−1
l − σ̄

−1
l−1)/Dl

ii)
〈
f li ,x

〉
l2(supp(f li ))

f li

with the update of y being a critical section
The resulting computational times are given in Table 4.7. Table 4.8 shows a

speed-up for L = 7 using one to twelve threads. Computational times for 1-12
threads are in Fig 4.4. If we look closer at the results in Table 4.8, we see that
the solving time using more than 5 threads is about 2,3 faster then if we use one
thread, but the computational times are higher than in the previous two cases. One
problem could be the fact, that the use of a critical section slows the algorithm
significantly. Other problem might be that every we weren’t implemented the
algorithm such that the set-up phase and critical section is not compensated by
speed-up given by parallel implementation..

Number of levels
L 4 5 6 7 8

0.123 0.208 0.836 7.173 203.8667

Table 4.7: Computational times for parallel PCG solver, 12 threads ε = 10−5

L Threads Computiational times
7 1 16.233
7 2 10.891
7 3 8.531
7 4 7.687
7 5 7.191
7 6 6.462
7 7 7.161
7 8 6.789
7 9 6.908
7 10 6.775
7 11 7.071
7 12 7.135

Table 4.8: Computational times for parallel PCG solver, 1-12 threads, 7 levels,
ε = 10−5
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Figure 4.4: Computational times elapsed for parallel PCG solver, 1-12 threads, 7
levels

4.4.2 Other Numerical Experiments

Choice of λ̄ in the smoother

The smoother of the prolongator contains an upper bound λ̄. The choice of λ̄ in
the smoother of the prolongator affects the Range of the prolongator and thus a
convergence of the algorithm. Results in Table 4.9 shows, that we were able to
find a value of λ̄, for such the convergence of preconditioned conjugated gradients
is better than in Table 4.2, where the upper bound is given simply by Gerschgorin
Theorem.

L DOF CG PCG
4 729 39 20
5 6561 119 26
6 59049 362 28
7 531441 1102 31
8 4782969 >1500 34

Table 4.9: Number of iterations for CG and PCG solver, ε = 10−5

Anisotropic problem

Now, we would like to study a behavior of our algorithm for the anisotropic prob-
lem.
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We consider the operator

ε
δ2

δx2
1

+
δ2

δx2
2

,

which describes anisotropic process if ε 6= 1. We discretize it by the finite difference
method and obtain matrix stencil

1

h2

 −1
−ε 2 + 2ε −ε

−1

 .
We then solve such a problem with conjugated gradients and preconditioned

conjugated gradients method again. Table 4.10 shows number of iterations for CG
and Table 4.10 for preconditioned CG for different values of ε and ε = 10−10. The
results for a preconditioned version of the algorithm are much better then for the
unpreconditioned method, but we are loosing almost uniform convergence. In such
case, the PCG method is not robust.

ε
L 1 0.9 0.1 0.01
3 13 21 25 25
4 56 74 97 140
5 168 217 284 463
6 507 652 850 1409

Table 4.10: Number of iterations for CG solver, ε = 10−10

ε
L 1 0.9 0.15 0.01
3 15 21 25 26
4 36 40 75 124
5 48 51 123 296
6 52 54 160 432

Table 4.11: Number of iterations for PCG solver, ε = 10−10

In comparison, see result in Tables 4.12 and 4.13 with numbers of iterations
for smoothed aggregation method (used as a stand-alone solver) and CG precon-
ditioned by smoothed aggregation. In both cases we see that algorithm manages
the anisotropy well.
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ε
L 1 0.5 0.1 0.01
2 7 7 7 7
3 16 16 16 18
4 20 21 27 29
5 28 28 32 38
6 35 36 37 49

Table 4.12: Number of iterations for SA solver, ε = 10−10

ε
L 1 0.5 0.1 0.01
2 4 4 3 3
3 9 9 10 10
4 12 12 14 15
5 14 14 16 18
6 16 17 18 21

Table 4.13: Number of iterations for SA PCG solver, ε = 10−10

Improvements of the Algorithm:
Here, we present results of MDS algorithm [65]. MDS is an improved variant
of BPX algorithm involving diagonal scaling. In matrix formulation, the MDS
preconditioner is given as

Bl =
L∑
l=1

I1
l K
−1
l I l1,

whereK−1
l is diag(Al) and I1

1 is an identity mapping. IfK−1
l is replaced by identity

matrices, algorithm becomes BPX algorithm.
In Table 4.14 we see the result for MDS in settings of model problem defined

in Section 3.5, so that the coarsening is done by factor 3 in each direction. Table
4.15 shows results for MDS with prolongators given by the smoothed aggregation.
In this case, aggregates are created with respect to anisotropies. We can see that
results in Table 4.15 are much improved in comparison to Tables 4.14 and 4.11,
but they are still outperformed by successive version of the algorithm.
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ε
L 1 0.5 0.1 0.01
3 15 16 20 30
4 26 27 38 65
5 38 38 57 126
6 46 47 80 185

Table 4.14: Number of iterations for PCG solver, regular coarsening, ε = 10−10

ε
L 1 0.5 0.1 0.01
3 8 9 11 15
4 20 20 29 50
5 34 34 54 76
6 54 57 81 92

Table 4.15: Number of iterations for PCG solver, SA coarsening, ε = 10−10

Comparison with other solvers

Here, we compare the model problem preconditioner with other solvers and precon-
ditioners, namely BPX in the smoothed agregations (SA BPX), unpreconditioned
conjugated gradient method (CG), smoothed aggregation as a solver (SA), geo-
metric multigrid as a solver (GM) and BPX. On the one hand, every multigrid
algorithm has it’s strong and weak side which will not show up while testing on
such a simple example, but on the other hand, we wanted to compare the SA BPX
algorithm in the context of other well known algorithms. We therefore omit the
parallel aspects of additive multigrid.

Throughout time, there were done many numerical experiments comparing
geometrical and algebraic multigrid and also successive and parallel multigrid al-
gorithms, see [40] and [28]. In general, we can say that if we have a possibility
to use geometric multigrid, the geometric multigrid is a preferred choice over the
algebraic multigrid, since in SA, the set up phase could be a costly process. It
was also shown (theoretically and numerically) that the parallel algorithms are
outperformed by successive algorithms.

Our test example is again problem 1.1 on the unit square. The initial mesh is
regular square mesh when each square is divided by an edge connecting bottom
left corner with upper right corner. This time, unlike in the model problem, the
coarsening is done so that we create a system of nested meshes and coarse basis
functions can be geometrically interpreted by a finer level basis functions.
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Results are shown in Table 4.16. We see that both additive algorithms are
outperformed by multiplicative algorithms which is expected. In this example
the SA BPX is BPX preconditioner settings of generalized smoothed aggregation
method. The aggregates are now not perfectly regular and convergence is worse.
We also have to keep in mind that smoothed aggregation method has a costly
set-up phase, so we would prefer to use smoothed aggregation as a multiplicative
solver.

ε
L SA BPX PCG CG SA BPX PCG GM
3 8 9 9 11 10
4 18 30 10 20 13
5 49 65 15 36 14
6 74 131 16 66 15
7 136 264 19 121 15

Table 4.16: Number of iterations for various solvers, ε = 10−10

Precision dependence

Results in Tables 4.17 and 4.18 show a behavior of the algorithm for L = 5 depend-
ing on which precision we use. We set the Fortran real kind precision to single,
double or quad to see that while the convergence of unpreconditioned conjugated
gradient method depends significantly on used precision, the preconditioned algo-
rithm is more stable.

L single double quad
3 23 13 13
4 90 56 56
5 241 168 168
6 1201 507 506
7 >1500 >1500 >1500

Table 4.17: Number of iterations for CG solver, ε = 10−10

We can see that the ratio between number of iterations of single and dou-
ble precision algorithm is 1.7949 in average for CG, while for the preconditioned
algorithm we get a ratio 1.1344.
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L single double quad
3 20 15 14
4 43 36 34
5 56 52 51
6 60 58 58
7 63 61 60

Table 4.18: Number of iterations for PCG solver, ε = 10−10

In our implementation, we use double precision. We think that it would not
be convenient to use quad, since it doesn’t bring any improvement to the pre-
conditioned algorithm and makes whole implementation slower and more memory
demanding.
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Chapter 5

Applications

In this chapter we will focus on solving problems coming from the real applica-
tions. Our aim is to study behavior of multigrid solvers for problems coming from
modeling of neutron transport.

In the following sections we will briefly describe two main mathematical models
of neutron transport. We would like to stress that we describe only the theory
which is necessary to our calculations, so that the text is readable for a reader
not involved in physics. The reader can find more in [26], [32], [58], [57], and
[14]. In our calculations, we will use the mathematical model of neutron transport
described by a steady state multi group diffusion process. The model problem
and following discretization comes from the department of Physics in Škoda JS
(Nuclear Machinery).

5.1 Neutron flux calculations by transport equa-
tion

In the following text we describe the main quantities and variables which are used
in the mathematical modeling. The mathematical model of neutron transport is
derived from the balance of neutron in the volume V .
Let us consider a neutron moving in the direction of a unit vector Ω. Its velocity
vector is given by

v = vΩ.
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Figure 5.1: Neutron phase plane

The current state of the neutron is described by its

t time,
r, r = (x, y, z) spatial position,

Ω, Ω ∈ R3 streaming direction of neutrons,
E kinetic energy of neutrons,

(5.1)

as it is pictured in Fig. 5.1.

One of the most important quantities is the angular neutron density. The an-
gular neutron density is denoted by

N(r,Ω, t)

and defined as the probable (or expected) number of neutrons at the position r
with direction Ω and energy E at time t, per unit volume per unit solid angle per
unit energy.

The angular neutron flux

φ(r, E,Ω, t) = v(E)N(r, E,Ω, t)

is a rate at which the neutrons are passing through a surface of V regardless of its
orientation.

The angular neutron current

j(r, E,Ω, t) = v(E)ΩN(r, E,Ω, t)

is a vector quantity which corresponds to a directional flow of neutrons. It’s
physical interpretation is that

j(r, E,Ω, t)dAdEdΩ

is expected number of neutrons passing through an area dA per unit time with
energy E in dE, direction Ω in dΩ at time t.
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Types of reactions

To assemble the balance of neutrons in the zone, we need to describe which reac-
tions between neutron and nucleus can occur.

There are many types of reactions, but we will consider main four types that
are enough to describe basic processes in the reactor. The reaction in which the
neutrons are born is the fission. The neutrons born by fission are neutrons of high
energy. Such neutrons cannot cause fission reaction due to high energy and the
way to lower it is by scattering. If neutrons are absorbed instead of scattered, they
are lost and cannot cause fission any more.

Remark 28 Excited state is denoted as *.

We consider four main interactions:

elastic scattering inelastic scattering

Direction of movement is changed,
speed is lowered. Collision of two per-
fect balls, the energy of neutrons is
conserved.

Direction of movement is changed,
speed is lowered. The energy is not
conserved and escapes.

n+XA → (XA+1)∗ → n+XA n+XA → (XA+1)∗ → n+ (XA)∗

absorption fission

The neutron is absorbed, nucleus at-
tains excited state and then deexcite
and emits a particle

Neutron is absorbed in the nucleus and
causes its split and emittion of neu-
trons.

n+XA → (XA+1)∗ → XA+1 + γ n+XA → (XA+1)∗ → XA2 +XA3 +3n

If an energy of the neutron is low enough, it is more probable that it will cause a
fission reaction. Neutrons are placed in an environment in which we ensure suffi-
cient scattering. Such a material is called a moderator.
In a reactor, we cannot say that a particular reaction will happen for sure, we can
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say that it will happen with a certain probability. A probability that a certain
reaction happens is described by the cross section. The macroscopic cross section
Σ is the probability that a specific interaction occurs when the neutron travels
a unit distance through the volume of the homogeneous material. The units are
given in cm−1.

Neutron balance

Now, let V ⊂ R3 be a balance domain in the reactor core. The total change
of amount of neutrons between times t1 and t2 in the balance range dEdΩ in a
volume V is given by∫

V

(N(r, E,Ω, t2)−N(r, E,Ω, t1)) dr× dEdΩ.

The balance principle in the domain can be described in general as:

Angular neutron flux density =− neutrons lost via scattering and absorption
− neutrons lost via leakage
+ neutrons gained via scattering
+ neutrons born in fission
+ delayed neutron source
+ other neutrons.

(5.2)

Then the general form of neutron transport equation is given by(
1

v(E)

∂

∂t
+ Ω∇+ Σs(r, E, t) + Σa(r, E, t)

)
φ(r, E,Ω, t) =∫ 4π

0

∫ ∞
0

Σs(r, E
′ → E,Ω′ → Ω, t)φ(r, E ′,Ω′, t)dE ′dΩ′+∫ 4π

0

∫ ∞
0

χ(r, E ′ → E,Ω′ → Ω, t)ν(E ′)Σf (r, E
′,Ω′, t)φ(r, E ′,Ω′, t)dE ′dΩ′+

sex(r, E,Ω, t).

(5.3)

The steady state formulation is used to model neutrons for which the neutron flux
doesn’t change anymore. The time derivation vanishes and the variables are not

100



dependent on time anymore:

(Ω∇+ Σs(r, E) + Σa(r, E))φ(r, E,Ω) =∫ 4π

0

∫ ∞
0

Σs(r, E
′ → E,Ω′ → Ω, t)φ(r, E ′,Ω′)dE ′dΩ′+∫ 4π

0

∫ ∞
0

χ(r, E ′ → E,Ω′ → Ω)ν(E ′)Σf (r, E
′,Ω′)φ(r, E ′,Ω′)dE ′dΩ′+

sex(r, E,Ω).

(5.4)

Steps from transport to diffusion

To derive a diffusion equation, we assume:
Isotropic material - to get rid of the angular dependency, we assume that the
neutrons are emitted from fission are distributed evenly, as well as we assume
scattering is isotropic.
Continuity of flux and current - we assume both flux and current at the boundary
of the materials are continuous.

φ(r, E)|∂V− = φ(r, E)|∂V+, j(r, E)|∂V− = j(r, E)|∂V+.

In the diffusion approximation, the transport equation quantities do not depend
on the angular variable any more. We define the flux by integrating angular flux
over the whole solid angle:

φ(r, E) =

∫ 4π

0

φ(r, E,Ω)dΩ.

and similarly the current:

j(r, E) =

∫ 4π

0

j(r, E,Ω)dΩ =

∫ 4π

0

Ωφ(r, E,Ω)dΩ.

Using this we get diffusion equation

∇ · j(r, E) + (Σs(r, E) + Σa(r, E))φ(r, E) =∫ ∞
0

Σs(r, E
′ → E)φ(r, E ′,Ω′)dE ′+∫ ∞

0

χ(r, E ′ → E)ν(E ′)Σf (r, E
′)φ(r, E ′)dE ′.

(5.5)

The neutron current will be further approximated such that the neutron flows in
the direction of least density by Fick’s Law:

j(r, E) = −D(r, E)∇φ(r, E).
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The coefficient D is the diffusion coefficient.
We then get

−∇ ·D(r, E)∇φ(r, E) + (Σs(r, E) + σa(r, E))φ(r, E) =∫ ∞
0

Σs(r, E
′ → E)φ(r, E ′,Ω′)dE ′+∫ ∞

0

χ(r, E ′ → E)ν(E ′)Σf (r, E
′)φ(r, E ′)dE ′.

(5.6)

5.2 Multigroup Diffusion Approximation

The energy of neutrons in the zone is in a relatively wide range. In practice, we
consider several (G) energy groups that correspond to important neutron energy
groups (slow, medium, fast, very fast neutrons, etc.):

0 = Eg < Eg−1 < · · · < E1 < E0.

In the calculations based on the diffusion model, four or only two groups (fast and
slow neutrons) will be considered.
The multigroup approximation of the variables is given by integrating them at
intervals of energy groups, for example the group flux φg is defined as

φg(r) =

∫ Eg−1

Eg

φ(r, E)dE.

We then get the multigroup diffusion approximation

−Dg∇gφg + (Σg
a +

∑
k 6=q

Σg→k
s )φg = χg

∑
k

νΣk
fφ

k +
∑
k 6=q

Σk→g
s φk. (5.7)

Nuclear chain reaction

It is possible to achieve a state, in which the chain reaction is self- sustained with-
out an external source. We could measure length of life of the neutron from its
birth by fission to an end by absorption. This process can be considered as a
stochastic process with neutron generations and a certain length of life. The frac-
tion of number of neutrons in two consecutive generations defines a multiplication
factor characterizing the chain reaction:

keff = multiplication factor =
number of neutrons in one generation

number of neutrons in preceding generation
.
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There exists another definition of keff that could be given as

keff =
rate of neutron production in reactor

rate of neutron loss (absorbtion + capture) in reactor
.

In practice, we distinguish three states of keff :

keff > 0 - Number of neutrons grows, chain reactions as well. The reactor is
in the supercritical state.

keff = 1 - The reactor is in the critical state, the power of reactor is sustained.
Number of neutrons can be maintained in the absence of the source.

keff < 0 - Number of neutrons decreases, the reactor is in the subcritical state.

The problem of criticality can be approached by introducing the variable param-
eter (eigenvalue) k to the system 5.7 in such way that the neutrons per fission are
divided by a constant factor k. The modeled reactor could be critical by varying
the number of neutrons emitted in fission.

By it’s definition, as the the ratio of neutrons in the next generation to those in
the current generation, k is the effective neutron multiplication factor per neutron
generation keff .

For any multiplying system, there exists a unique positive k eigenvalue cor-
responding to an real and non-negative eigenfunction φk(r), see more theory in
[37]. The dominant eigenvalue of the eigenvalue problem satisfies the physical
interpretation of the effective multiplicative factor keff .

The diffusion equation will then have the form

−Dg∇gφg + (Σg
a +

∑
k 6=q

Σg→k
s )φg =

χg

keff

∑
k

νΣk
fφ

k +
∑
k 6=q

Σk→g
s φk. (5.8)

5.2.1 Neutron flux calculations

The problem 5.8 leads to an eigenvalue problem. In general, the are two commonly
used ways to compute neutron flux and keff : by a system of inner and outer
iterations and by some fast sparse solver.

Matrix formulation

In the matrix-vector formulation, the problem 5.8 can be written as

Lφ =
1

keff
Mφ, (5.9)
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where [
L11 0
L21 L22

]
.

[
φ1

φ2

]
=

1

keff

[
M11 M22

0 0

]
.

[
φ1

φ2

]
,

L =

[
−D1∇2 + Σ1

a + Σ1→2
s 0

Σ1→2
s −D2∇2 + Σ2

a

]
,

M =

[
νΣ1

f νΣ2
f

]
and

χ = [1, 0].

By simple manipulations, we get

keffLφ = Mφ,

L−1Mφ = keffφ,

which leads to solving an eigenvalue problem for the matrix L−1M. If we decided
to solve this eigenvalue problem by the power method, we would get an iterative
scheme

φn+1 = L−1Mφn, n = 1, . . . (5.10)

φn+1 ← φn+1

‖φn+1‖
(5.11)

and

keff
n+1 =

〈φn+1, φn〉
〈φn, φn〉

keff
n.

In our case it means two step process, in which we first compute the sources Mφ
and then we solve a system of equations for fluxes with sources on the right hand
side. This process will be described in detail in the next part.

Neutron Flux by Iterations

The inner and outer iterations lead to searching for the keff by the power method:

1. Outer iterations - in each step we search for the next update of keff by power
method

2. Inner iterations - in each step we search for the neutron fluxes
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For the two groups, the inner cycle consists of solving

−D1∇2φ1 + (Σ1
a + Σ1→2

s )φ1 = S1,

−D2∇2φ2 + Σ2
aφ

2 = S2 + Σ1→2
s φ1

and for four groups, the inner cycle consists of solving

−D1∇2φ1 + (Σ1
a + Σ1→2

s + Σ1→3
s + Σ1→4

s )φ1 = S1,

−D2∇2φ2 + (Σ2
a + Σ2→3

s + Σ2→4
s )φ2 = S2 + Σ1→2

s φ1,

−D3∇2φ3 + (Σ3
a + Σ3→4

s )φ3 = S3 + Σ1→3
s φ1 + Σ2→3

s φ2 + Σ4→3
s φ4,

−D4∇2φ4 + Σ4
aφ

4 = S4 + Σ1→4
s φ1 + Σ2→4

s φ2 + Σ3→4
s φ3.

(5.12)

The source Sg is updated by values of φg in each step as

Sg =
χg

keff

∑
k

νΣk
fφ

k.

The more compact formula for inner iterations is given as

−Dg∇gφg + (Σg
a +

∑
k>q

Σg→k
s )φg =

χg

keff

∑
k

νΣk
fφ

k +
∑
k<q

Σk→g
s φk.

In the case the value of Σ4→3
s is nonzero, the third equation of 5.12 contains

the unknown φ4. We have two options here, we can iterate the value by so called
thermal iteration or we simply use the value of φ4 from the previous iteration.

After finishing the cycle of inner iterations, we update keff by some approxi-
mation of

k
(i)
eff =

∫
νΣ1

f (φ
1)(i) + νΣ2

f (φ
2)(i)dV,

or

k
(i)
eff =

∫
ψ(i)dV∫
ψ(i−1)dV

k
(i−1)
eff , ψ =

∑
k

νΣk
fφ

k.

5.2.2 Finite Volume Discretization

The neutron flux distribution is, in our case, obtained by finite-volume discretiza-
tion as in [34] .

The first step is to divide the computing domain into elements. The hexagon
zone respects the geometry of the reactor core of VVER-440. The mesh consists
of hexagons that represents fuel files/cassettes whose width is denoted by Hk.
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Hexagonal cassettes are further subdivided into hexagonal elements i of volume Si
representing individual fuel rods with spacing h and length of the side a, see Fig.
(5.2).

Since we will focus on the benchmark problem in 2D, we will derive the formu-
lation in 2D, but the approach would be the same in 3D.

Figure 5.2: Corner of a cassette

On each element, we consider homogeneous material composition that is com-
puted from a real heterogeneous distribution.

The second step is to get an approximation by the finite volume method [41]
for the diffusion equation.

We remind that the diffusion equations is given as

∇ · j(r, E) + (Σs(r, E) + Σa(r, E))φ(r, E) =∫ ∞
0

Σs(r, E
′ → E)φ(r, E ′,Ω′)dE ′+∫ ∞

0

χ(r, E ′ → E)ν(E ′)Σf (r, E
′)φ(r, E ′)dE ′.

(5.13)

We then integrate equation 5.13 on each element i and use the divergence
theorem:

−
6∑
j

∮
Si,j

(jg · −→n ) dSi,j +

∫∫
Si

Σg
rφ

gdSi =

∫∫
Si

[
χg
∑
k

νΣk
fφ

k +
∑
k 6=q

Σk→g
s φk

]
dSi,

where −→n is an outward-pointing unit normal of Si,j and the compact notation
Si,j, j = 1, . . . , 6, denotes the boundary lines between element i and it’s six adja-
cent neighbors denoted as j. The situation is described in the Fig 5.3.
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Figure 5.3: The element i and six adjacent elements

The question now remains, how to approximate the circle integral along the
boundary Si,j, j = 1, . . . , 6,

−
6∑
j

∮
Si,j

(jg · −→n ) dSi,j.

First, we assume that the mean value of φg on each element i is represented
by a central value φgi . The element will also be represented by one set of material
constants Di,Σa,i,Σf,i,Σs,i and χi at the center of the element i.

Now, let us consider two adjacent elements i and j. In the middle of the line
Si,j, we insert a point s and approximate the circle integral over Si,j by a value
Is · a: ∮

Si,j

(jg · −→n )dSi,j ≈ Is · a.

The value Is will be further approximated by the two adjacent values of flux φi
and φj.

The neutron current will be approximated such that the neutron flows in the
direction of least density by Fick’s Law:

j(r, E) = −D(r, E)∇φ(r, E) (5.14)

and the gradient of flux will be approximated by finite differences. Together, we
get

I+
s = Dg

j

φgj − φ
g
s+

h/2
, (5.15)

I−s = Dg
i

φgs− − φ
g
i

h/2
, (5.16)
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where superscripts + and − have a meaning of the right-hand or left-hand limit.

Now, we have to make some assumptions about continuity of fluxes and cur-
rents. We expect

j−s = j+
s (5.17)

and
φ−s = φ+

s , (5.18)

thus, neutron fluxes and currents are continuous in s, see 5.4.

Figure 5.4: Neutron fluxes and currents on the boundary of the two elements

Assumption 5.17 together with 5.15 and 5.16 gives

Dg
j

φgj − φ
g
s+

h/2
= Dg

i

φgs− − φ
g
i

h/2
.

We use the assumption 5.18 and we obtain

φgs− =
Dg
i φ

g
i +Dg

jφ
g
j

Dg
i +Dg

j

. (5.19)

We insert 5.19 to 5.16 and the approximation of the leakage term is

Is =
h

2
Dg
iD

g
j

φgi − φ
g
j

Dg
i +Dg

j

a.

More generally, we could assume that the diffusion coefficient in s are approximated
by value D̄g

ij, where D̄
g
ij is the effective diffusion coefficient on the interface of two

cells i and j. Effective diffusion coefficient is then

D̄g
ij = h

Dg
iD

g
j

Dg
i
h
2

+Dg
j
h
2

(5.20)
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(referred to as harmonic) or geometric:

D̄g
ij =

√
Dg
iD

g
j . (5.21)

The leakage term is

−
∮
Si,j

([Dg∇φg]−→n )dSi,j =
∑
j

D̄ij

φgi − φ
g
j

h
a.

The last thing is to approximate the absorption and source term∫∫
Si

Σg
rφ

gdSi =
∑
i

φgiSi

Finally, in two dimensions we get∑
j

aD̄g
ij

φgi − φ
g
j

h
+ Si(Σ

g
a,i + Σg

r,i)φ
g
i = SiZi. (5.22)

The source Zi includes scattering into a given group, neutrons generated by fission
or an external source.

Boundary condition

The system of equations must be equipped with the boundary condition. Our
aim is to simulate behavior of the neutron flux at the edge of he zone ∂V . The
boundary condition in general is a mixed boundary condition which is implemented
in the form of γ-matrix. It holds that j = γφ, where j contains neutron currents
on the boundary and φ is a vector of fluxes on the boundary.

An example of boundary conditions:

• vacuum - Φ|∂V = 0 - ideal absorption material in which neutrons are not
reflected back to the core

• mirror reflector - neutrons reflects back in the sense of mirror reflection

• albedo - j+ = αj− - albedo is a generalization of the mirror reflection -
partition α of neutrons is reflected back to he core (j+ a j− are inner and
outer current across the boundary).

In our calculations, we take into account the radial reflector. It is done such
that cassettes of the reactor core are surrounded by one row of fictional cassettes,
where the geometry of a reflector is modeled. The boundary condition is then
applied to the fictional reflector cassettes.
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The Feedback Iterations

Solving the system of linear equations from the discretization of the diffusion
equation gives us the distribution of the neutron flux Φ and keff . The input to
the system of equations is the set of physical constants for each element of the
discretization. The input constants are generally dependent on output quantities,
so we have to recalculate the constants. The output quantities include critical
boric acid concentration, critical power, critical temperature and more.

A convergence of the feedback iterations is dependent on the convergence of the
outer iterations. In general we can say that the convergence of the outer iterations
should be in a certain harmony with the feedback iterations so that the overall
system converges fast.

5.3 Numerical experiments
In this section we present results of numerical experiments for the benchmark prob-
lem Full-Core-440 proposed in [35]. Full-Core-440 is a 2D calculation benchmark
based on the VVER-440 core including explicit radial reflector, see Fig. 5.5.

Figure 5.5: Proposal of the benchmark Full-Core-440 (scheme taken from [35])

In the previous section, the pin by pin discretization of the diffusion problem
by the finite volume method (FVM) resulted to a generalized eigenvalue problem.
Maximal eigenvalue and corresponding eigenvector to this problem are related to
a multiplicative coefficient keff and neutron flux φ. An implementation of this
problem is done in several steps. We initialize the geometry of the problem, assign
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all the material constants to particular pins, then the matrices are assembled and
finally the eigenvalue problem is solved. A distribution of the neutron flux is used
for determination of the power distribution.

It is usually difficult to make significant changes in a large production code. We im-
plemented the FVM code in a way that it is flexible and the numerical experiments
can be done easily and then desired changes can be implemented in a production
code. Our solution will be compared with a solution of the program Moby-Dick
(ŠKODA JS. a.s.) and of MCNM code based on the Monte-Carlo method.

We consider two ways of solving the eigenvalue problem. The first leads to a
outer-inner scheme 5.10, where maximal eigenvalue is searched by outer iterations
(by the power method) and in each iteration of the power method, the systems of
equations are solved for group neutron fluxes. Second way is to solve an enlarged
system 5.9 of equations by a method suitable for solving generalized eigenvalue
problem. Here, we use Jacobi-Davidson method, see [43].

Remark 29 In our numerical experiments we concentrate on solving the algebraic
systems of equations within the inner iterations. Outer iterations are usually
accelerated (mostly by Chebyshev technique) and before the actual solver phase,
the initial guess of keff is computed.

Remark 30 The resulting graphs of solutions were generated by the visualization
software Map-View.

5.3.1 Computation of keff by the Power Method

In this section, we present results of computations by the power method. In prac-
tice, we are not interested in the flux distribution, but in the power distribution.
The power distribution is for each pin i defined as

Ki
r =

G∑
g=1

φgiΣ
g
f,i. (5.23)

The power distribution is then normalized to the whole core average.
Solution computed by the FVM is compared in Fig 5.6 with MCNM and in

Fig. 5.7 and 5.8 with Moby-Dick. The FVM results are in a good agreement with
the Moby-Dick code.
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Figure 5.6: Difference between computed solution and MCNP solution

Figure 5.7: Difference between computed solution coefficient and Moby-Dick solu-
tion with two rows of reflector cassettes
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Figure 5.8: Difference between computed solution and Moby-Dick solution with
two rows of reflector cassettes (here, color scheme is re-scaled by maximal and
minimal error)

The FVM was derived for the harmonic effective diffusion coefficient D̄ on the
boundary, but we can use also the geometric coefficient. The difference between
solution computed with harmonic and geometric D̄ on the boundary is depicted
in Fig. 5.8. The difference is small and the result is expected, since harmonic
and geometric average of two coefficient give almost the same results if the two
coefficients do not differ much. This holds for the most of the elements in the core,
but the diffusion coefficients differ in the neighborhood of boundary of the zone,
boundary of the cassettes or gadolinium rods (their material constants significantly
differ from neighboring elements).

The inner iterations imply solving g systems of symmetric positive definite
systems, where g in number of energy groups. In the case of the multigrid precon-
ditioning, the fine level variables are given by the pin-by-pin discretization. The
coasrening for first two levels is shown in Fig. 5.10. The coarsening pattern is
applied to the whole computational domain so that we obtain prolongators for
geometric multigrid or regular aggregates.

The convergence result are shown in Table 5.1, the convergence tolerance is set
to 10−8. The results show that the SA method is could be used as a effective solver
for our problem and even more effective preconditioner for conjugated gradient
method.
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Figure 5.9: Comparison of results computed with harmonical and geometrical
effective diffusion coefficient

Figure 5.10: Coarsening for the pin-by-pin discretization. The small dots corre-
spond to the fine variables and the bold dots to the coarse variables or centers of
the aggregates. The blue area corresponds to one aggregate.
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Solver It, g = 1 It, g = 2
SA PCG 12 9

CG 175 66
SA 20 16

Table 5.1: Number of iterations for inner loop, g is the energetic group

5.3.2 Computation of keff by Jacobi-Davidson Method

The Jacobi-Davidson method ([43]) is a subspace iteration method for problems

Aφ = λφ (5.24)

and can also be extended to solve generalized eigenvalue problems.
In the Jacobi-Davidson method the given eigenvalue problem is projected on

the search space. The original eigenvalue problem is approximated by a solution
to the projected eigenvalue problem. In each iteration step the search subspace
is expanded by a correction vector v which is computed by approximately solving
the correction equation. The method is based on solving

(I − φφT )(A− λI)(I − φφT )v = −r, (5.25)

where φ is an eigenvector, λ approximated eigenvalue and r is the residual vector
of the eigenvalue problem

r = (A− λI)φ. (5.26)

For the solution of 5.25, the Krylov subspace methods such as GMRES or BiCG are
frequently used. Preconditioning techniques are then applicable for these methods.

The Jacobi-Davidson QZ method (JDQZ) [23] is a Jacobi-Davidson method
for the generalized eigenvalue problem

Aφ = λBφ. (5.27)

The JDQZ algorithm is used for computing a few eigenvalues with the asso-
ciated eigenvectors of a matrix pencil A − λB. JDQZ can be interpreted as a
subspace iteration variant of the QZ algorithm. We use the implementation [1]
written by G. Sleijpen.

The results are given in Tables 5.2 - 5.5, where It is the number of JDQZ
iterations and MV is the number of matrix multiplications. Except unprecondi-
tioned method we used AMG and diagonal (Jacobi) preconditioning). We see that
Jacobi-Davidson method is a efficient solver for our discretization and the AMG
preconditioned showed as a efficient preconditioner as well.
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In Tables 5.4 and 5.5 we enhanced the JDQZ by initial guess. Here, the initial
guess is given by one iteration of power method. The results are much improved
for all variants. This is a advantage of this method, since in practice, we usually
do not compute jus one state of the reactor core, but a series of consecutive states.
Hence, we can use the last distribution of neutron flux as a initial guess for JDQZ.

The convergence tolerance is set to 10−8.

Preconditioner It MV
AMG 27 125
Jacobi 64 385

- 79 472

Table 5.2: Convergence of JDQZ with GMRES

Preconditioner It MV
AMG 4 530
Jacobi 4 810

- 39 7845

Table 5.3: Convergence of JDQZ with BICGstab

Preconditioner It MV
AMG 17 98
Jacobi 62 377

- 67 407

Table 5.4: Convergence of JDQZ with GMRES with initial guess

Preconditioner It MV
AMG 3 231
Jacobi 3 610

- 4 1011

Table 5.5: Convergence of JDQZ with BICGstab with initial guess

5.3.3 Conclusions of Chapter 5

In this section we were focused on the finite volume discretization of the neutron
diffusion equation.
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The pin-by-pin discretization leads to solving generalized problem which we
solved by Jacobi-Davidson and by outer-inner computational scheme. The Inner-
outer scheme uses power method in outer loop and inner iterative solver. Inner
loop consist of solving symmetric and positive definite problems which is suitable
for using conjugated-gradients method.

We implemented the module based on the finite volume method as a tool for
making the development of the large macrocode easier and as a tool for numerical
experiments.

From a view of multigrid preconditioners, the numerical experiments showed
that multigrid preconditioner is effective and easy to apply. The known geometry
allows for convenient creation of prolongators in the set-up phase.

The results will serve for future development of the module. We would be care-
ful with pick one eigensolver as the best based on the number of iterations needed
for reaching certain tolerance. In practical calcultions, the eigenvalue problem is
embedded by the feedback iterations. The convergence of the feedback iterations
are in general dependent on the so the choice of the suitable eigensolver must be
chised so that the whole system converges fast.

We would also like to mention that here, the assumptions 5.17 and 5.18 lead to
a discretization scheme without using the so called discontinuity factors, [44]. In
the case that we assume that 5.18 holds using the discontinuity factors on the edge
between cells, we can incorporate the discontinuity factors into the discretization
scheme.
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Conclusions

In this thesis we study parallel multilevel preconditioners, their implementation
and application.

The text consists of three main parts. The first part (Chapters 1 and 2) covers
a theory of the multigrid methods. Our intention was that the introduction would
serve as a review of geometric and algebraic multigrid and would be a comprehen-
sive introduction to a reader, who has not studied multigrid methods before. In
the end of this theoretical part, we present a new multigrid approach on the model
problem. Second part of the thesis (Chapter 3) contains implementation details
and numerical experiments and the third part (Chapter 4) contains application of
multigrid solvers and preconditioners on the neutron diffusion problem.

The first chapter starts with a description of basic one-level iterative methods
and reasons of their slow convergence. Insufficient convergence rates serve as a
motivation for constructing a robust method that would operate on more then
just one level. Simple iterative methods are followed by mechanisms of geometric
multigrid, derivations of the two-grid method and main convergence theorems. We
also remind that multigrid algorithms can be viewed in terms of a multiplicative or
an additive methods - while a standard V − cycle is the multiplicative algorithm,
the BPX algorithm is the additive method. Chapter 1 is finished with a paragraph
summarizing of the previous text.

The second chapter continues on with the review of multigrid methods. In this
chapter, we are interested in the algebraic multigrid. AMG uses similar principles
as the geometric multigrid (prolongators, smoothing, coarse space correction), but
the construction of AMG elements is done in an algebraic way. The classical AMG
approach is considered to be the one of Ruge-Stüben, but since we are interested
only in the smoothed aggregation method (SA), we talk about the classical ap-
proach briefly. After an introduction, we describe the difference between two-level
smoothed aggregation and geometric two-level method, main steps of construction
of the smoothed prolongator and main convergence proof.

The review of SA method is followed by a section containing our new theory
published in [25]. The theory is connecting SA method with BPX preconditioner.
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The BPX preconditioner has been always studied in the context of standard vari-
ational multigrid. We propose a proof of nearly uniform convergence of the BPX
preconditioner with smoothed aggregation, under the assumption that the mesh
is regular. We use similar theoretical means as in [53], but here, the equivalence
of discrete and continuous L2-norms for the hierarchy of coarse-spaces span{ϕli}i,
had to be proved.

Chapter 3 focuses on the implementation and numerical experiments. We cre-
ated a Fortran 90 code parallelized with OpenMP suitable for solving elliptic prob-
lems by various multilevel solvers. We managed to implement the preconditioner
in parallel, numerically prove a validity of the previous theory, i.e. to show a nearly
uniform convergence and to compare new algorithm with existing popular solvers.

In the introduction of Chapter 3, we briefly describe essentials needed for a
Fortran implementation of the preconditioner, sparse matrix storage formats and
an introduction to OpenMP parallel programming. The smoothed aggregation
method is usually implemented in a set-up phase and a solver phase. The set-up
phase of the smoothed aggregation consists of several steps including an aggre-
gation of unknowns, construction of the tentative prolongator and smoothing the
prolongator. For each step, there exist techniques and theories that offer an effi-
cient parallel implementation, but in our thesis we focus only on the parallelization
of the solver phase.

The implementation of an action of the SA BPX preconditioner follows Algo-
rithm 4.3.1 and avoids direct computation of the Gram matrix. We considered
three cases of parallelization of Alg. 4.3.1. In the first case, we parallelized the
algorithm naturally, as the action can be applied separately on each level. In the
second case, we parallelized just the matrix vector multiplications which create an
essential part of the action. The third case considered parallelization via all the
levels and the columns of the prolongators. In the first two cases, we were able to
speed up the solver time twice. In the third case, we also get a similar speed up,
but the overall solver time is higher. It seems that in this case OpenMP interface
needs more communication time and have to deal more with the critical section.

The next set of numerical experiments involved convergence of the SA BPX
preconditioner for the conjugated gradient method (CG). We compare results for
the SA BPX preconditioner with the CG without preconditioning on the model
problem and show that numerical experiments are in an agreement with the the-
ory. We also studied the convergence for an anisotropic problem. For this problem,
the preconditioner doesn’t converge nearly uniformly any more. The results were
compared with classical smoothed aggregation method used as a stand alone solver
and as a preconditioner. The smoothed aggregation method achieve uniform con-
vergence results even for anisotropic problem, since aggregates naturally follows a
pattern of semicoarsening. Motivated by that, as an improvement we used general-
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ized aggregation instead of the regular coarsening and we also used MDS algorithm
which is a variant of BPX algorithm. The results much improved, but they were
still outperformed by the multiplicative smoothed aggregation algorithm.

We then compared the SA BPX algorithm with other solvers and precondi-
tioners including the geometric BPX algorithm. Convergence results of both addi-
tive algorithms were outperformed by the multiplicative variants of multigrid. In
general, we could say that since smoothed aggregation method has a costly set-up
phase, we prefer smoothed aggregation as a multiplicative algorithm over the BPX
variant, even if we consider that the algorithm is naturally parallel. Although the
convergence results of SA BPX do not compete with the SA method, we think
that it was useful to study BPX algorithm in the context of smoothed aggregation
method, since, to our knowledge, it hasn’t been studied before and the numerical
results are new and interesting.

The last set of numerical experiment involved behavior of the preconditioner
in the context of used precision kind. The results showed that preconditioned
CG was a bit less dependent on used kind. All the numerical experiments were
therefore implemented in double precision.

Chapter 4 contains application of the multigrid preconditioners on the neutron
diffusion problem. The chapter is introduced by a brief description of the neutron
diffusion problem and the finite volume discretization of the problem. Our main
achievement of Chapter 4 is development of a module based on the finite volume
method (FVM). The FVM code uses similar numerical scheme as it is in the
program Moby-Dick belonging to ŠKODA JS. a.s. Moby-Dick is a large production
code and it is time consuming to change the code significantly in order to do
various numerical experiments. The purpose of the FVM code was to create a
flexible code such it could be conveniently used for research purposes and numerical
experiments. Promising results of the numerical experiments can be used for future
improvements of Moby-Dick.

The numerical experiments in this thesis were tested on the benchmark problem
Full-Core-440 and the result can be compared with solution of Moby-Dick and of
MCNM based on the Monte-Carlo method. Numerical experiments in this section
involved different ways of searching the critical number. We compare the solutions
and make recommendations for future development.
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