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Abstract—This paper is dedicated to the evaluation of
the computational time performance of the algorithms
that estimate the parameters of the generalized Pareto
distribution, namely Method of Moments, Maximum
likelihood estimator and Quasi-maximum likelihood al-
gorithms. The generalized Pareto distribution is utilized
by the Extreme Seeking Entropy algorithm to detect
novelty in data. The algorithm is evaluating the weight
increments of the simple adaptive filter that are obtained
via incrementally learning algorithm. The computational
time performance is examined in the experiment with
the detection of step-change parameters of the signal
generator. Its output contains also additive Gaussian
noise.
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I. INTRODUCTION

The real-time novelty detection is the area that is
associated not only with fault detection and diagnostics
[1] in industrial processes but also with i.e. detection of
anomalies in data streams as those anomalies may be
associated with network intrusion or fraud attempts [2],
or may be utilized in surveillance security systems [3].
Another wide area of real-time applications is mobile
robotics where the computational power is usually
limited [4], [5]. The key feature for each novelty
detection method that is useful in real-time applications
is outstanding computational time performance.

This paper is devoted to comparison of the com-
putational time performance of three different meth-
ods for the generalized Pareto distribution [6] (GPD)
parameters estimation. Compared methods are a max-
imum likelihood estimator (ML), method of mo-
ments (MOM) and quasi-maximum likelihood esti-
mator (QML). The computational time performance
of those methods is evaluated in the experiment of
signal generator parameters step-change detection via
adaptive novelty detection algorithm Extreme Seeking
Entropy (ESE).

II. ADAPTIVE SYSTEM AND ALGORITHM
SPECIFICATION

As the aim of the article is the real-time performance
of algorithms, that estimate the GPD parameters and
not the novelty detection in a complex processes, the
simple linear finite impulse response filter is used. The
output of the filter y at a discrete time index k is
described by the following equation (1) so that

y(k) = w1(k) · x1(k) + w2(k) · x2(k)+

+ w3(k) · x3(k) (1)

which is equivalent to vector form

y(k) = wT (k) · x(k) (2)

where

wT (k) = [w1(k), w2(k), w3(k)] ∈ R3

is the vector of filters adaptive weights and

xT (k) = [x1(k), x2(k), x3(k)] ∈ R3

is the input vector. The adaptive weights are updated
using the NLMS algorithm [7] with every new sample
obtained. The new value of adaptive weights is given
as

∆w(k) =
κ ·w(k) · e(k)

ε+ x(k) · xT (k)
, (3)

where ε is used to avoid division by zero in case of
zero input vector, κ ∈ R is the learning rate and e ∈ R
is the output error defined as

e(k) = d(k)− y(k), (4)

where d(k) ∈ R is the measured value of the output
and k is the discrete time index. For the experiment
the value of the learning rate κ was set as κ = 0.8

III. EXTREME SEEKING ENTROPY ALGORITHM

The ESE algorithm [8] estimates the novelty in data
via the probability of adaptive weights increments.
Those increments are obtained via incrementally learn-
ing algorithm and the probability is estimated via gen-
eralized Pareto distribution. The parameters of GPD are
obtained using the last ns adaptive weight incrementsISBN 978-80-261-0722-4, c©University of West Bohemia, 2020
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on which is applied the peak-over-threshold (POT)
method so for parameters estimation only n biggest
weight increments are used. The POT method was
chosen according to [9] as 10%, so the parameters
(denoted n) of GPD are estimated from the 10% of
the highest weight increments.

n =
⌈
0.1 · ns

⌉
(5)

The novelty score is calculated according to following
formula (6).

ESE(|∆w(k)|) = − log

nf∏
i=1

(1− fcdfi(|∆wi(k)|))

(6)
where

fcdfi(|∆wi(k)|) =

=

{
0, |∆wi(k)| < ζi

F(γi,µi,σi)(|∆wi(k)|), |∆wi(k)| ≥ ζi.

and F(γi,µi,σi) is cumulative distribution function of
the generalized Pareto distribution with location pa-
rameter µi, scale parameter σi and shape parameter
γi and nf is the number of adaptive weights and ζi
correspond to the minimum of the highest adaptive
weight increments that were obtained after proceeding
the peak-over-threshold method.

Algorithm 1 Extreme Seeking Entropy Algorithm
1: set ns and choose POT method
2: initial estimation of the GPDs parameters γi, µi,
σi for each adaptable parameter

3: for each new d(k) do
4: update adaptive model to get ∆w(k)
5: proceed POT method
6: if |∆wi|(k) > ζi then
7: update parameters of GPDs γi, µi, σi
8: end if
9: compute ESE according to (6)

10: end for

A. Estimation of Generalized Pareto Distribution Pa-
rameters

Assume the three parameters form of GPD so that
probability density function is defined as follows.

f(γ,µ,σ)(w) =


1
σ

(
1 + γ(w−µ)

σ

)− 1
γ−1

for γ 6= 0,

exp
(
− w−µ

σ

)
for γ = 0.

(7)
Note that parameter µ ∈ (−∞,+∞) is a location
parameter, σ ∈ (0,∞) is the scaling parameter,
and γ ∈ (−∞,∞) is a shape parameter. Then the
cumulative distribution function then is given as

F(γ,µ,σ)(w) =


1−

(
1 + γ(w−µ)

σ

)− 1
γ

for γ 6= 0,

1− exp
(
− w−µ

σ

)
for γ = 0.

(8)

A ML estimator of GPD parameters (σ, γ) has to
be found numerically maximizing the log-likelihood
function given as

logL(σ, γ|w1, . . . , wn) = −n log σ+

+
1− γ
γ

∑
n

log(1− γ

σ
(wi − µ)) (9)

with ∀wi ≥ µ (note that in this section the index of
adaptive weight w is associated with number of sample
that is obtained after POT method processing, not with
the number of adaptive weights). The solving problem
(9) is difficult, as the optimization method can converge
to a sub-optimal solution and the explicit expressions
of the ML estimator do not exist. Another issue that
is related to the real-time application is that it is not
possible to guarantee the maximum computational time
dedicated to solving the problem.

A method of moments estimator of parameters (σ, γ)
[10] is feasible if the parameter of the GPD γ < 0.5.
Then the first and second raw moments are defined
and the parameters of the GPD (σ, γ) are computed as
follows

σ̂ =
1

2
w

(
w2

s2
+ 1

)
(10)

γ̂ = −1

2

(
w2

s2
− 1

)
(11)

where w is sample mean and s2 is sample variance.
The quasi-ML method [11] of estimation GPD pa-

rameters (σ, γ) is having following steps, assuming that
(w1, ..., wn) is ordered sequence such that w1 ≤ w2 ≤
· · · ≤ wn.

1) Compute

γ̂ =
1

n− 1

n−1∑
i=1

ln

(
1− wi

max(w1, ..., wn)

)
(12)

Z = 1−
n−1

∑n
i=1 w

2
i

2w2 (13)

2) If γ̂ and Z < 0.2 compute standard MLEs for γ̂
and σ.

3) Otherwise estimate γ̂ according to equation 12
and estimate σ̂ as follows

σ̂ = γ̂ ·max(w1, ..., wn). (14)

The accuracy of mentioned methods is not aim of this
article as it was already evaluated in publications [11],
[12], [13].

IV. EXPERIMENTAL RESULTS

The computational time performance was evaluated
for the problem of the step-change parameters of the
signal generator. Assume that the output of the signal
generator d(k) at the discrete time index k is given as

d(k) = x1(k) + x2(k) + x3(k) + v(k) (15)

for all 1 ≤ k ≤ 200. Note that the v(k) represents the
additive gaussian noise with zero mean and standard
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Figure 1. Output of the adaptive filter during the experiment. The
step-change of the signal generator parameters at the discrete time
index k = 200 is highlighted by grey dashed line.
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Figure 2. ESE value during the experiment. Note that the peak of
ESE corresponds to the step-change of the signal generator.

deviation σnoise = 0.1. At the discrete time index k =
201 the output of the signal generator changes to

d(k) = 0.7·x1(k)+1.2·x1(k)+1.1·x1(k)+v(k) (16)

for 201 ≤ k ≤ 400. The value for each input of the
signal generator is drawn from the standard normal
distribution N (0, 1) so the ith input xi(k) ∼ N (0, 1)
for 1 ≤ k ≤ 400. Note, that the change of the signal
generator parameters does not change the mean of the
output d(k). The output of the system generator is
depicted in the following figure 1. The value of ESE
is in the figure 2. The values of the GPD parameters
(µ, σ, γ) during the experiment that were estimated by
the ML are in the figures 3, 4 and 5.

All the experiments were performed on PC using In-
tel(R) Core(TM) i5-7400 4 cores CPU running at 3001
MHz and 32 GB RAM. The running operating system
was Windows 10 Pro 64 bit version 10.0.18362 and
code was written in Python 3.6.1 using Numpy 1.17.0
and Scipy 1.4.1 libraries. The average computational
time t of the estimation of all three GPDs parameters
(the number of GPDs corresponds to the number of
adaptive system parameters) and corresponding stan-
dard deviations σt are in the following table IV.
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Figure 3. The values of the GPD location parameter µ for all three
adaptive weights (w1, w2, w3) during the experiment. The dashed
line at the discrete time index k highlights the step-change of the
signal generator parameters.
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Figure 4. The values of the GPD shape parameter γ for all three
adaptive weights (w1, w2, w3) during the experiment. The dashed
line at the discrete time index k highlights the step-change of the
signal generator parameters.
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Figure 5. The values of the GPD scaling parameter σ for all three
adaptive weights (w1, w2, w3) during the experiment. The dashed
line at the discrete time index k highlights the step-change of the
signal generator parameters.
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TABLE I
TABLE OF AVERAGE COMPUTATIONAL TIMES AND

CORRESPONDING STANDARD DEVIATIONS FOR SELECTED
METHODS

Method t [ms] σt [ms]

w1

ML 26.198 3.396
QML 0.354 0.478
MOM 0.076 0.264

w2

ML 26.718 2.302
QML 0.337 0.471
MOM 0.064 0.244

w3

ML 24.982 1.964
QML 0.395 0.489
MOM 0.060 0.238

V. CONCLUSIONS

The average computational time and its standard de-
viations of three different methods (ML, QML, MOM)
for estimating the GPD parameters were evaluated in
this article. Estimation of those parameters is crucial
for successful adaptive novelty detection via the Ex-
treme Seeking Entropy algorithm. The evaluation was
done for step-change of signal generator parameters.
The output of the signal generator contains additive
Gaussian noise with zero mean.

The fastest method from evaluated methods is
MOM. The drawback of this method is that the us-
age in real-time applications is limited by the strict
restriction on values of the GPD parameters. If the
parameters do not meet the restriction, the estimation is
inaccurate and the results of the ESE algorithm may be
misleading. In general, it is hard to guarantee, that the
monitored process is going to satisfy those restrictions.

The least computational efficient method it the ML,
which takes on the order four hundred times more
computational time than MOM in the tested scenario.
On the other side, it provides estimation for a wider
range of GPD parameters values. The higher value
of computational time is natural for ML method as
the optimization of the max-likelihood function is an
iterative process where the number of iterations can not
be guaranteed. However, the apriori information about
the value parameters may speed-up the convergence.

The QML method seems like a good compromise
between MOM and ML as it is fast enough and in
the first step tests the need for using the ML method.
If there is no need of using the ML method, the
parameters of GPD are computed directly without
the need of using the optimization method. It takes
only about five times more computational time than
MOM on average and provides the estimation for wider
ranges of the GPD parameters. Note that even if the
ML estimation has to be done, the computational time
between the QML using ML and QML with direct
computation of the parameters is not significant.

Based on the performed experiments it seems, that
the usage of the ESE algorithm seems promising in
real-time application if the computational power is
sufficient, and if the data from the monitored process
are available at a suitable rate.
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