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Abstract 
This thesis is creating a Gantry crane Hardware-In-the-Loop simulator by following through            
the X-In-the-Loop process. It begins with mathematical model derivation and validation and            
PID controller tuning and input-shaper to cancel oscillations, is tested in Simulink in             
Model-In-the-Loop configuration, then in Rexygen in real-time simulation as         
a Software-In-the-Loop and ends as a HIL simulator of the system and another one of              
the controller with communication via Modbus and analog signal for control and sensor            
emulation. It also boasts 3D visualisation as part of the system HIL and web              
human-machine-interface to command the controller.  
 
Keywords: ​HIL Simulation, Model-Based System Engineering, Input-Shaping Filters, XIL         
process, Gantry Crane, 3D Visualisation, Human-Machine Interface, Monarco HAT 

Anotace 
Tato práce se zabývá tvorbou Hardware-In-The-loop simulátoru portálového jeřábu a tím           
i celým X-In-the-Loop procesem. Začíná odvozením matematického modelu jeřábu, jeho         
validací, návrhem PID regulátoru a zapojením vstupně-tarovacího filtru pro utlumení houpání           
nákladu. Tento systém byl otestován v prostředí Simulink jako Model-In-the-Loop a poté v             
Rexygenu v reálném čase v Software-In-the-Loop konfiguraci. Nakonec je model systému a            
regulátoru spuštěn jako HIL na dvou počítačích, které spolu komunikují přes Modbus a             
analogově (pro emulaci řídícího signálu a senzorů). K tomu vykresluje HIL simulující systém             
3D vizualizaci a HIL s regulátorem hostuje webové rozhraní pro ovládání systému. 
 
Klíčová slova: HIL Simulace, MBSE, Vstupně-tvarovací filtry, XIL proces, Portálový Jeřáb,           
3D Vizualizace, Uživatelské rozhraní, Monarco HAT 
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Chapter 1 

Introduction 
There are growing demands for industrial applications of the Internet of Things, predictive             
maintenance and trackability of individual parts (quality monitoring), which results in a            
necessity of greater effectiveness of model-based and knowledge-based system engineering          
methods. Engineering areas like lifecycle management, X-In-the-Loop (XIL) [27] and          
standards like FMI [2] have grown rapidly in recent years, mostly through automation of              
tasks that allows for iterative design control [17] at a faster pace than ever before. This                
progress is reflected in demands for system engineers that need to work in ever-more              
complex environments and therefore also needs for tools [20] that allow for grasping larger              
amounts of data and features easily.  
 
Education systems need to adapt to this always shifting environment. For universities, this             
means that partnerships with companies in their respective industries are vital. For control             
engineering courses though, there are tendencies to avoid teaching control on real physical             
systems [28], as they take a lot of effort to maintain and have several other disadvantages.                
However, there are aspects of controller implementation that rarely appear in purely software             
simulations, which means that abandoning physical control systems and their specific           
challenges makes the control education poorer and the graduate cannot be immediately            
utilised for practical applications as there are obstacles that the student did not encounter.              
This can be solved by applying HIL simulators [18] with industry-grade I/O. This method              
used to be domain of only large companies (for example Dspace), bringing significant costs              
for employing these methods, but as tiny computers like arduino and Raspberry Pi gained              
popularity and became powerful enough to accomodate simulations in real-time, and option            
appeared to apply them for educational purposes on the cheap side. Sure, they are less               
robust, but due to their accessibility, problems can be solved swiftly and downtime brings              
little drawback at school, compared to a large company. This also allows for teaching the               
whole XIL process.  
 
For education and sharing experience in companies, knowledge management methods are           
being employed [6]. They can get new employees up and running and make knowledge              
transfer among employees a smoother process, although at a cost of increased bureaucracy             
load as processes have to be noted constantly.  
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1.1 Motivation and Objectives 
Main motivation for this thesis was getting hands-on experience on the XIL process as a               
whole and to apply skills the author learned during his exchange semesters, mainly working              
with CAD software and creating human-machine interface. The main objective was creating            
a HIL simulator of a gantry crane, which means a model had to be derived and verified and a                   
controller designed for this model, applying the Model-based knowledge [25] in all of             
Model-In-the-Loop and Software-In-the-Loop phases of the XIL process. A part of this thesis             
touches the topic of input shaping [21] in order to cancel oscillations of the crane.  

1.2 Structure of the thesis 
The thesis structure goes as follows: Chapter 2 describes the current situation and solutions              
that are being developed and applied. Chapter 3 depicts a gantry crane model formation and               
controller synthesis. Along with the model, a 3D visualisation was drafted. Chapter 4             
concerns the HIL simulation and its challenges, as well as finishing the 3D visualisation and               
HMI interface.  

  

2 



Chapter 2 

Model-based system engineering 
Model-based system engineering was created as a response to market demands, such as             
requirements for faster and smarter design and production processes [10] with traceable            
component defects. In other words, more functionality in a shorter time at the lowest cost.               
These days, more emphasis is put on software that needs to comply with many standards               
and regulations [20]. For improved response time and clearer specification between           
suppliers and manufacturers standards like FMI (Functional Mock-up Interface) have been           
introduced [2] and gained significant traction over the last few years, with large automotive              
and aerospace companies adopting these standards to improve their competitive value. With            
all of these factors considered, MBSE is a recommended practice by INCOSE (The             
International Council on Systems Engineering) [4], Department of Defense of the United            
States [13] and many other impactful organisations representing the industry.  
 
Models are simplified digital representations of key system aspects depicted in a            
comprehensible way. Typically, a model is standardised so it is transferable across various             
workgroups. Validation of system features is done by simulation that allows for virtual             
integration even before some components are designed and before physical prototypes are            
built, saving both time and financial resources. It is also possible to automatically generate              
source code for model simulation or visualisation and automate other tasks in the design and               
production phase. Using this method, errors can be avoided or at least discovered at an               
early design phase when it is cheaper to correct them.  
 
The system development life cycle (typically represented by the “V diagram” (Figure 2.1)) is              
an iterative process, meaning most of its parts are repeated several times as needs for               
change arise later in the process. Using older methods would require manually performing             
each individual step with (slightly) different input than during previous iteration — a             
tremendously costly process. The MBSE approach allows for automation of described steps            
as well as transitions between them resulting in man-hours being saved and fewer errors              
occurring. 
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Figure 2.1: ​V-diagram, used to visualise the lifecycle of a product. The left half is 

decomposing the product into elemental parts or tasks and the right half builds up. What is 
not always obvious is that this is an iterative process that typically revisits all design stages 

several times​ [14].  
 
There are many standards regarding system engineering, focusing on various areas like            
product life-cycle management, audits, integration, application, process assessment, etc.         
Most of them are assured by the INCOSE. 
 
To sum up, model-based system engineering is today’s most advanced method employed            
during all phases of the life cycle of products and affects various aspects, including concept,               
development, production and applied operations. Using these methods results in quality and            
productivity improvements and enhanced risk management during the process. 

2.1 Knowledge-based system engineering 
When manufacturing complex systems, there is a pressing need to understand project            
specifications, share and re-use knowledge and experience, and maintain clear          
communication between the designer and the customer. This is where knowledge-based           
system engineering comes in. Its scope covers all life cycle management phases [7, 23] and               
also allows for design optimisation [25]. Computer-aided design (CAD) software is a direct             
product of knowledge-based engineering and it is also an early adopter of the             
object-oriented way of thinking in applied engineering. The design goes hand-in-hand with            
computer-aided engineering (CAE) which helps with analytics of the given system and            
provides manufacturing support.  
 
Since many products are part of some product line or are sub-products for various uses,               
there is a demand for the re-use of schemes, look-up tables, algorithms and other              
knowledge. To satisfy these growing environments, time-saving ​knowledge-driven        
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automation methods have been developed. However, they take longer to adopt and learn.             
With many products having similar qualities, companies also use these methods for product             
distribution and disposal. 
 
For larger companies, investing in knowledge management [8] is necessary as the            
engineers working for them are fluctuating [22] all the time, which means new employees              
need to be taught frequently. Knowledge management distinguishes two main categories of            
knowledge: explicit and tacit. Explicit knowledge is the one that can be taught by reading               
manuals, understanding standards, learning material specifications, etc. Tacit knowledge is          
tied to a person and is harder to transfer. It is based on experience, consists of various                 
heuristics and even rules of thumb that just work. This discipline, just about 30 years old                
[24], is not particularly popular among engineers and is often overlooked by companies as it               
brings additional bureaucracy. However, it can lead to a competitive advantage. 

2.2 Hardware-In-the-Loop Simulation 
When systems require active control, Hardware-In-the-Loop (HIL) simulation is a vital part of             
the model-based system development, especially now, when each device has large amounts            
of smart sensors and controllers. Cars typically have hundreds or even thousands of             
controllers, which makes them very complex systems with high safety requirements,           
meaning every possible fault has to be tested and prepared for before the manufacturing              
process begins. This point is even stronger for the aerospace industry, but even home              
appliances nowadays can connect to the internet and gardening tools have CAN bus I/O for               
diagnostics. HIL is the final phase of the XIL process that will be explained in this                
subchapter. 
  
The XIL process is used both for the controller and the plant design. It is an iterative process                  
that tests and optimizes both the controller and plant for greater efficiency, which is the main                
drive for automation of the process to lower the cost of each iteration. The XIL process                
consists of four main phases (which are largely automated) and the transitions between             
them [15]. 
 
The first phase of the process is called Model-In-the-Loop (MIL). This phase is used to               
design the core controller features and can be used to design the plant as well. The main                 
advantage of this phase is that the controlled system does not have to be created yet,                
allowing for parallel development of the controller and the controlled system. This allows             
both of them to have an influence on each other before any costly prototype is made. The                 
model of a controlled system should include as many dynamics and characteristics as             
possible as the simulated environment is controlled and does not have to run in real-time               
speed or faster.  
 
The next phase is Software-In-the-Loop (SIL) which emulates the controller implementation           
as if it would run on actual hardware. This verifies the controller source code and its                
communication with the plant and sensors. The plant model can only cover the dynamics              
related to the controller to save processing time.  
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The third phase is called Processor-In-the-Loop (PIL). The controller is running on dedicated             
hardware which is later used in the actual product but the plant model is still a simulated one                  
with emulated communication. This setup needs to run in real-time to determine whether the              
processing time is fast enough to satisfy all demanded functions of the controller.  
 
The last phase is Hardware-In-the-Loop (HIL). The finished controller functionality is verified            
with either the prototype of the plant or a simulation of it using the same communication                
means (both analog and digital I/O with A/D and D/A converters) that will later be used. This                 
step for example allows us to simulate handling signal noises and various faults that would               
be destructive for the prototype. The last batch of automated tests runs here and when               
successfully completed, the controller is ready and can be, with good confidence, connected             
to the actual system and mass-produced. 
 
This process has been a major part of this thesis. Starting with a model and a controller                 
simulated in Simulink environment in MIL configuration, advancing through SIL simulation in            
Rexygen on one computer with separate tasks, skipping the PIL phase as it wouldn’t bring               
any value in this use-case and ending as a HIL simulator with two computers connected to                
each other using various types of ports to emulate sending both digital information via              
Modbus and analog signal via standard 0-10 V I/O. Visualisation of this process can be seen                
in Figure 2.2. 
 

6 



 
Figure 2.2: ​Going through various phases of this thesis required use of several environments 

for each phase’s challenges. This “timeline” chart shows which technology was used for 
what reason. All of these are explained later in this thesis. 

2.3 Industry focus  
While MBSE ideas have been proposed in the ‘90s already [1], it wasn’t until 2007 when the                 
MBSE approach started to gain traction as it was endorsed by INCOSE in its MBSE 2020                
Vision initiative [27]. This approach pushed the transition from document-centered          
specifications to model-centered ones. Around 2010, MBSE tools were standardised and           
commonly used in the industry. These days, proven model libraries are being commonly             
reused, saving precious time, and the standards have settled down with no major changes in               
functionality [19]. It was expected that MBSE would be used in other domains than              
engineering (like social, economic and political modeling) but that has not really been the              
case.  
 
MBSE had the greatest impact in industries that manufacture complex products that need to              
cover several domains, and have large amounts of suppliers. Namely, automotive and            
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aerospace industries have applied MBSE the most and also have benefited from it the most.               
One of the results of such development is the FMI standard [11]. It is an open standard                 
developed mainly by Dassault Systémes and Daimler AG that was adopted by major             
companies in the industry and consequently by their suppliers. The standard specifies the             
format for exporting and importing simulation models (across domains and program           
environments) and running those simulations independently in the tool they were created in.             
This standard has two main functional features: model exchange and co-simulation. Model            
exchange describes models with standardised physical and informational variables so that it            
can be simulated using any solver. Co-simulation includes solver in C-functions, meaning            
the model can be simulated in steps with a solver that is not supported by the environment                 
running the simulation. This standard has significantly decreased the amount of work            
needed to simulate the whole plant with parts from various suppliers using the design tools               
they prefer. 

2.4 Leading MBSE Environments 
Although there are many tools for applying MBSE methods, covering individual domains or             
specific use-cases, some universal or more popular ones are worth mentioning here. It is              
common for these environments to be able to share models or functions with one another,               
mainly as a result of industrial demands, not from the will of the corporations that create                
them as they would typically want a closed environment with customers solely relying on              
their products. Open-source software from academic and industrial associations created          
important incentives for interoperability of these environments, as they disrupted the market            
with features that allow for model exchange or co-simulation. Defining and maintaining            
interfaces between given platforms became vital parts of the platforms themselves. 

2.4.1 Matlab 
Matlab is a powerful programming tool used by many engineers and researchers worldwide.             
Its main domain is numerical matrix computing. It contains apps for system identification,             
controller synthesis, signal and image processing among many others. Main extension to            
Matlab is Simulink, a graphic environment for multi-domain simulation and model-based           
design. There are many libraries for Simulink for various domains, most notably SimScape,             
which covers a whole range of physical domains starting with electrical and mechanical             
model simulations ending with fluid and thermal dynamics. Besides simulations and           
calculations, it allows for code generation for various platforms, so algorithms created in             
Matlab can be used on specific hardware. Matlab can also host virtual laboratories and              
provides remote cloud computing servers. Matlab has a free alternative: GNU Octave.            
Naturally, free alternatives do not provide a professional level of support and so, for              
industrial applications, Matlab is prefered amongst companies. 
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2.4.2 Modelica-based programs 
Modelica is a multi-domain language for component modeling. The language itself is            
open-source and is implemented in several programs.  
To name a few:  

- Openmodelica is an open-source simulation environment, commonly used in         
education.  

- Jmodelica.org is an open-source platform for optimization and analysis of dynamic           
systems, which can also work as a virtual lab.  

- Dymola (Dassault Systèmes), Amesim (Siemens), MapleSim (Maplesoft) and several         
others are commercial programs based on Modelica. 

2.4.3 IBM Engineering Lifecycle Management 
This bundle of applications supports product development from idea forming through           
deployment and continuous operation till disposal. The main merit is brought with everything             
being visualised in an easy way for humans to understand, which in the age of internet of                 
things with unforeseen amounts of data and automatically generated specifications is an            
imposing feat. With systems having thousands of sensors and controllers, coordination of            
developing them all has to be provided in a systematic way. This is where task management                
comes in handy, as project managers can monitor the progress [9] of assignments. The tools               
can automatically collect progression data, lightening the workload of engineers that would            
otherwise have to fill in spreadsheets. Design management allows for sharing, reviewing and             
commenting on products in the design phase. Other features include: Requirements and            
quality management and automated reports builder. 

2.4.4 LabView 
LabView was created as a tool to increase productivity of scientists and engineers. Its              
graphical programming techniques are relatively easy to grasp and enable users to measure             
and monitor sensor data and process it using built-in tools for signal processing. Captured              
data can range from single sensors to big data, there are tools to accommodate needs of a                 
multitude of occupations. The tools are also often used for academic demonstrations. 

2.4.5 CAD 
Computer aided design software is primarily used in mechanical engineering and           
architecture applications. The tools have features for optimisation of material used and            
manufacturing processes, but typically cannot satisfy all needs and phases of MBSE            
development. The software is able to perform finite elements simulations, for example for             
stress tests, deformation analysis or heat spreading through materials. Notable programs           
are: Autodesk Inventor, Solidworks and Catia, all of them offer basically the same basic              
functionality and differentiate mainly in business models. 
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2.5 Education perspective 
Cooperation with industry has always been important for universities teaching STEM field            
courses. It is the only way to ensure that the substance of the courses stays relevant for the                  
employer's needs. Because of that, digital twins of industrial systems appear during lectures             
to emulate rife struggles of engineers, as the digital twins are basically HIL simulators,              
running in real time creates challenges comparable to those in real industries [18]. These              
process models run either locally or on a distant server and are commonly accessed by               
LabView HMI. The models usually rely either on Matlab (with option to use cloud server               
computing) or easy Java sim (locally).  
 
Another important trend is emphasis on edge computing. With the internet of things being on               
the rise in industry, engineers realised that having vast raw data does not bring any               
advantage and instead, smart sensors are processing the data at a plant and sending the               
results, which allows higher levels of automation pyramid to focus just on operation (for              
example, predictive maintenance). In other words, logical operations are spread over several            
levels, each working on designated tasks, instead of computing everything at one spot. 
 
One aspect that is being adopted by universities during the last decade is gamification of               
assignments. When the design of the task manages to motivate the student, not only the               
assignment can yield better results, but also the student retains more of the knowledge              
learned.  
 
Naturally, universities aren’t driven by profit and therefore cost concerns for working            
solutions are greater, while quality concerns are lower. If a HIL simulator doesn’t work at               
a large company with hundreds of suppliers and thousands of employees, profit is lost. If a               
HIL simulator acts up at school, one lecture might be ruined but solving the issue can work                 
as a learning example, therefore industrial-grade robustness is not necessary. As processing            
power is getting cheaper over time, platforms like Arduino and Raspberry Pi became popular              
worldwide, enabling teaching methods that simply were not feasible before. The main use of              
Raspberry Pi is a real-time HIL simulator with industrial-like I/O, but in other fields or               
specialisations this platform serves for other purposes. 
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2.6 Technologies used in the context of this thesis 
This chapter explains every software environment and hardware used in order to accomplish             
the practical tasks of this thesis. A visualisation (Figure 2.3) that categorises these techs can               
be found at the end of this chapter. 

2.6.1 Matlab+Simulink 
Matlab has already been described earlier in this chapter (2.4.1). Thanks to a vast amount of                
built-in functions, it has been the single most important program used for this thesis. For               
purposes of this thesis, it has been used for example to calculate state-space matrices of               
derived models for the PID controller tuning and to compare the results of various              
simulations. 
 
Simulink was in this thesis mainly used to simulate various forms of crane models in MIL                
simulations. 

2.6.2 Rexygen studio 
Rexygen Studio is a development environment for automation projects. It is similar to             
Simulink from the user's perspective but processes run purely in real-time on RexCore on              
target devices with features that allow process monitoring and diagnostics. The studio            
contains a library of blocks, most of which focus on the control of processes and industrial                
communication. In this thesis, the SIL part, including the transition to the HIL phase, has               
been done exclusively using Rexygen.  

2.6.3 Rexygen HMI 
Rexygen HMI Designer is a graphics editor based on InkScape used to create visualisation              
and UI for controlled processes. The visualisation with control elements created in this thesis              
was made using this tool. 

2.6.4 Three.js 
Three.js is an Open-Source JavaScript library used for 3D rendering in a web browser in an                
easy and lightweight way. The 3D part of the visualisation in this thesis is using this library.  

2.6.5 PIDlab 
PID Control Laboratory is a java applet tool for the rapid design of PID controllers [12]. Its                 
authors claim that it is possible to design a controller in under a minute, complying with                
various demands for robustness, speed and other relevant expectations. The PID regulators            
used to control crane models in this thesis were tuned using this tool, as the resulting                
parameters can be used directly in Rexygen PIDx models. 
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2.6.6 Solidworks 
Solidworks is a CAD program developed by Dassault Systèmes that was used in this thesis               
to make 3D model assemblies that were used in the 3D visualisation. 

2.6.7 Raspberry Pi 
Raspberry Pi is a tiny ARM-based computer developed for computer science education            
purposes. The platform is open, running a variety of OS (Linux, Android, Windows 10              
ARM64 and several others) and has been used in many applications with tens of millions of                
units sold worldwide. This platform has been used for the HIL simulations in this thesis.  

2.6.8 Monarco HAT 
Monarco HAT is a Raspberry Pi extension that allows the small consumer-grade computer to              
work with industrial hardware. In Rexygen there are applets to set-up Modbus Master/Slave             
communication and blocks that handle signal routing, but libraries for implementation using            
C and other programming languages are available. In the case of this thesis, the RS485 and                
both analog and digital I/O were handled using this HW.  
 

 
Figure 2.3: ​Use of technologies described above 
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Chapter 3 

Gantry Crane Models 

3.1 Simplified crane model 

3.1.1 Creation of a basic model and its regulation 
To get acquainted with the Rexygen Studio environment, a simple model that would behave              
similarly to a crane in 2 dimensions was created. The movement of the crane was imitated                
by a second-order continuous system. The horizontal position of the crane was considered             
as the output of this system, which served as input for the second-order oscillating model               
with complex poles that approximated the swinging of the load. Its output was the horizontal               
position of the load. For the crane model, a PID controller was designed in PIDlab. Once the                 
crane control was working properly, an input-shaping filter was added between the setpoint             
variable and the PID controller. This filter was set with the parameters of the oscillating               
system (damping ratio and natural frequency) and managed to negate any oscillation after             
changes of the crane’s position. Naturally, this system was not behaving like a crane but it                
served its purpose of getting familiar with PID tuning [16] and input-shaping within the              
Rexygen system.  
 
This early attempt is captured in the figures 3.1, 3.2, 3.3 and 3.4. A switch was used for the                   
PID setpoint control with an option to avoid using the shaping filter.  
 

 
Figure 3.1: ​Simple model control scheme with input-shaping filter 
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Figure 3.2: ​Step response with input-shaping filter (purple) 

 
Figure 3.3: ​Step response without input-shaping filter 

 
Figure 3.4: ​Comparison of simulation results with the same timeframe to show how effective 

input-shaping can be 
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3.1.2 2D Visualisation  
This served as a practice example of making a visualisation for Rexygen process in              
Rexygen HMI designer. The first visualisation is quite simple (Figure 3.5): just two rectangles              
which pose as a cart and pendulum, a button that switches the input shaping filter on and off                  
and a text box that sets the setpoint for the crane position. Those four features have been                 
connected to their corresponding blocks in the process and in the executing file and an HMI                
block has been added. This block generates visualisation from a source folder when the              
simulation is started. The visualisation can be accessed in an internet browser.  
 

 
Figure 3.5: ​Simple visualisation with setpoint text-box and a switch button for the 

input-shaping filter 

3.2 Differential Equation-based Crane Model 

3.2.1 Introduction 
As the last model’s behaviour was in some cases obviously different to the one of a crane,                 
a need arose for a more appropriate model. A pendulum on a cart is a suitable model and                 
therefore was used further for the purposes of this thesis.  

3.2.2 Non-linear system 
A non-linear model of a pendulum on a cart has been derived as a simplified model of the                  
crane. This model consists of two second-order differential equations. In comparison with            
many pendulum-on-a-cart models that can be found in most of control theory tutorials (like              
[5]), this one also takes the rotational resistance of the pendulum joint into consideration:  
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,M ) os(θ) · in(θ)( + m · x′′ + b · x′ − br · θ′ + m · l · θ′′ · c − m · l θ′2 · s = F  
,J  ) in(θ) − os(θ)( + m · l 2 · θ′′ + m · g · l · s = m · l · x′′ · c  

 
Where ​M is the mass of the cart, m is the mass of the pendulum’s load, ​b represents the                   
friction of the cart, ​b​r represents the friction of the pendulum joint, ​F is the force applied to                  
the cart, ​J is the moment of inertia of the pendulum, ​x is the lateral position of the cart (where                    
x' and ​x'' are its time derivatives) and 𝛳 is the angle between the pendulum and the vertical                  
axis (and 𝛳’ and 𝛳’’ are its time derivatives). 
 
From these equations, a form that expresses the highest derivation order of variables was              
derived.  

x′′ = (M+m)
F−b·x−m·l·θ ·cos(θ)+m·l·θ ·sin(θ)′ ′′ ′2  

θ′′ = l
−x ·cos(θ)−g·sin(θ)−b ·θ′′ r ′  

 
This model has been simulated both in Simulink and Rexygen. In Simulink, each equation is               
written in a ​Fcn ​block whose output leads to a set of two integrator blocks in a row. The                   
output of each block, along with the Force signal, is multiplexed into a signal that serves as                 
an input signal for the Fcn blocks (Figure 3.6). In Rexygen, a similar approach has been                
utilised: Rexlang blocks have been used for the equations which were written in C-like code.               
Since there is no multiplexor block available in Rexygen, outputs of the Rexlang blocks and               
of the integrators lead back to the Rexlang blocks individually (Figure 3.7). 
 

 
Figure 3.6: ​Non-linear model in Simulink 
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Figure 3.7: ​Non-linear model  in Rexygen 
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3.2.3 State-space model 
From the non-linear model, a state-space model has been derived. The linearisation point             
was selected to be the steady-state point, meaning the pendulum is hanging straight down              
and is still and the crane is still as well. The crane’s lateral position has no effect on the                   
stability of the system and was therefore chosen to be zero.  
 
The state-space model has been defined by the following matrices: 
 

 
 

          
 
Both in Simulink and Rexygen, these matrices have been pasted in the state-space blocks in               
basic libraries. This model has one input – the force – and four outputs – the position and the                   
speed of the crane, and the angle and angular speed of the pendulum.  

3.2.4 State-space model of a double integrator 
Since the process simulated in Rexygen slightly lagged behind its Simulink counterpart,            
attempts were made to identify the source of this discrepancy. One of the suspected reasons               
was that the set of two subsequent integrators caused inconsistency as the second             
derivatives would take more than one computational period to go through both integrators.             
Therefore, a state-space block was created with the functionality of a set of two integrator               
blocks (Figure 3.8). The comparison of this solution with the other models both in Rexygen               
and Simulink environments can be seen in section 3.2.5.  
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Figure 3.8: ​State-space model of double integrator used to optimize real-time simulation 

3.2.5 Comparison of created models  
All of the above mentioned models have been compared and the results can be found in this                 
section. There is an example figure of each comparison focusing on one of the output               
variables. These variables are: crane position, crane speed, pendulum position, pendulum           
angular velocity. 
 
First, the Simulink models are compared (Figure 3.9). The difference (Figure 3.11) between             
the models in this well-controlled environment with initial conditions close to the linearization             
point is negligible.  
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Figure 3.9: ​Plot of model variables from Simulink. These models behave very similarly with 

only negligible differences between them. 

 
Figure 3.10:​ Detail of the simulation result plotted in​ Figure 3.9 
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Figure 3.11: ​The graph describes time dependent difference between the models. Its 

amplitude grows initially due to numerical differences until damping suppresses both of them 
as seen on the right half of the plot. 

 
The same has been done for the Rexygen models (Figure 3.12). Here the difference              
between the non-linear and state-space models is more noticeable (Figure 3.14), especially            
in the later stage of the simulation. 
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Figure 3.12:​ Plot of simulations made in Rexygen. Unlike in Simulink, differences between 

models are noticeable and grow with time. 

Figure 3.13: ​Detail of simulation results from ​Figure 3.12 
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Figure 3.14:​ Difference between State-space and Non-linear models in Rexygen 

 
At this point, it makes sense to compare equivalent models from Rexygen and Simulink.              
Firstly, the non-linear (Figure 3.15) and then the state-space ones (Figure 3.17). The             
Rexygen models are lagging behind the Simulink models in both cases. The difference             
between the non-linear models gets greater over time both in lag and amplitudes while for               
state-space models the amplitude difference is consistently negligible. 
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Figure 3.15: ​Comparison of Simulink and Rexygen simulation results for non-linear model 

simulations 

 
Figure 3.16: ​Detail of plot from ​Figure 3.15 
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Figure 3.17: ​Comparison of Simulink and Rexygen simulation results for State-space model 

simulations 
 

 
Figure 3.18: ​Detail of​ Figure 3.17 ​plot at early and later stages of simulation, showing 

increasing phase difference over time 
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Lastly, differences between Simulink models have been evaluated with various initial           
conditions (Figure 3.19). As expected, the further the initial conditions were from the             
linearization point, the greater the absolute difference was between the non-linear and            
State-space models, but relative difference is indistinguishable among various initial          
conditions (Figure 3.20).  
 

 
Figure 3.19: ​Differences between non-linear and state-space models with various initial 

conditions 
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Figure 3.20:​ Relative differences with various initial conditions 

 

 
Figure 3.21: ​Detail of ​Figure 3.20 
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3.3 Control 

3.3.1 PID controller design 
A PID regulator was designed using Matlab PID Tuner app. Attempts were made to create               
a​​ controller in PIDlab but were abandoned after several unsuccessful attempts to design a             
stable one (PIDlab was unable to draw stabilising regions for large model parameters). The              
regulator’s output controls the force applied to the cart. The output of the model is the cart’s                 
position only. The controller was tested in Simulink (Figure 3.22) to prove its ability to control                
the system and later used in Rexygen to control the pendulum model. 
 

 
Figure 3.22: ​Control scheme for built-in PID tuning 

3.3.2 Applying an input-shaping filter 
To cancel swinging (Figure 3.23) of the load at the end of the crane movement, an input                 
shaping filter was needed to be added to the control scheme. In this case, a ​Zero vibration                 
input shaper block in Rexygen has been used [26]. There are two system-related             
parameters that needed to be set to work properly: the natural frequency of the system and                
the relative damping coefficient. When the filter is active, upon change of the user-selected              
set-point, it does not change the set-point for the PID regulator immediately but it does so in                 
several steps (Figure 3.24). It is probably worth noting that the setpoint weighting factor for               
the derivative part has been set to 0 to lower the initial controller response. 
 

 
Figure 3.23: ​System output without input-shaping filter 
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Figure 3.24: ​System output with input-shaping filter 

3.4 Software-in-the-loop 
The pendulum model and the controller were put in separate files to emulate a real control                
system where the controller is physically separated from the controlled system (Figure 3.25).  
 

 
Figure 3.25: ​Real-time simulation with the controller separated from the model, 

communicating via information signal 
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3.5 3D Visualisation 

3.5.1 Introduction 
An important part of any HIL-based simulation is visualisation. Since this model is not based               
on a specific crane, any gantry crane model is usable. A model [3] for a 3D printed gantry                  
crane has been chosen (Figure 3.26). Out of ten parts from the model, only 4 were used in                  
the visualisation: the vertical support frame (Figure 3.27), the bridge girder, the trolley and              
wheels. Some of those models were customised to better fit the visualisation needs (instead              
of the original purpose to be a toy) and a simple cuboid was created to serve as a container.                   
After these individual models were adjusted, they were put together to form an assembly              
(Figure 3.28). Based on the assembly, a rail model was made to fit the wheels and their                 
spacing and added to the assembly as well. All of these steps have been taken using the                 
Solidworks CAD environment. Adding minor changes (the rail model has been changed and             
a rope model has been added), the model was converted into a Rexygen HMI visualisation.               
This 3D visualisation uses Three.js rendering framework and has been tested by changing             
input constants (Figure 3.29) to make sure that everything works correctly. This visualisation             
operates in two modes: the first one has a fixed viewpoint in space; the other has                
a viewpoint fixed to the crane, so when the cran moves the viewpoint follows. The view               
(Figure 3.30) can be rotated, panned and zoomed.  
 

 
Figure 3.26: ​3D printed crane model that the visualisation is based on 
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Figure 3.27:​ Single part view in Solidworks 

 

 
Figure 3.28: ​Parts assembly in Solidworks 
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Figure 3.29: ​Control variables for the visualisation 

 

 
Figure 3.30:​ Basic 3D visualisation in the internet browser 

3.5.2 Connection to the model  
To make the visualisation move according to the changes in the process values, it was 
necessary to set up a proper configuration. This consisted of two parts: separating those 
variables into a separate task in Rexygen Studio; then connecting the visualisation to the 
separate task in Rexygen HMI Designer (Figure 3.31). 
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Figure 3.31: ​HMI elements connected to process variables 

3.5.3 Adding control elements 
Additional elements had to be included in the visualisation, both input and output ones. The 
inputs consist of a setpoint textbox (which works with numbers only, obviously) and a button 
to turn on and off the input shaping filter. The output display shows the values of the crane 
position and the pendulum angle variables, with 4 decimals (Figure 3.32). Figure 3.33 shows 
the canvas in Rexygen HMI designer.  

 
Figure 3.32: ​Visualisation with first HMI elements interacting with process variables  
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Figure 3.33: ​Creation of HMI canvas 

3.6 Second crane axis 
The last step related to this model was adding the movement of the cart on the crane. This                  
was done by reusing the same pendulum-on-a-cart model with different parameters (namely            
a smaller weight and a smaller damping factor of the cart). The original model and this model                 
are not connected, hence the axes are independent and the resulting effect is not exactly               
realistic. Nevertheless, for such small angles that this model employs, the difference is             
negligible and not noticeable in the 3D visualisation (Figure 3.34). 
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Figure 3.34: ​Trolley movement visualisation 

3.7 Potential improvements 
Naturally, this model is a simplification of a crane, meaning several real-world dynamics are              
omitted. There are three features that a proper model should have but aren’t necessary for               
the oscillation cancellation using an input-shaping filter which was one of the main aims of               
this thesis.  
 
The first feature would be considering the load as a spherical pendulum. Since the load is                
typically swinging in a range of mere degrees, using two independent axes is not much of an                 
issue though. The second feature would be considering rope flexibility. The simplest way to              
do that would be a double-pendulum model. Such models' behaviour would be closer to that               
of a load swinging on a rope. However, going beyond that would drastically increase the               
complexity of the model while increasing accuracy negligibly. The last feature that is missing              
and would increase the simulation quality would be an electromotor simulation, both for the              
crane and the trolley movement and also for the rope winding.  
 
It is clear that corners have been cut in the model design part of this thesis. However, the                  
platform (Raspberry Pi 3) can barely run the model with a 3D visualisation as it is.  
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Chapter 4 

HIL simulation 
Once the model was verified, the next step was to run the separate tasks each on their own                  
computer. A pair of Raspberry Pis running Rexygen core has been used for this part of the                 
thesis. This phase had its own set of problems and challenges, the notable ones are               
mentioned in this chapter.  

4.1 Platform description 
As stated in the thesis instructions, the HIL simulator needs to be Rexygen-based. Being              
generally available, Raspberry Pi with Monarco HAT extension have been used. The device             
is capable of running the model at a 1 ms period with the 3D visualisation at a stable 20                   
frames per second. The Monarco HAT extension adds a digital and an analog             
voltage-controlled I/O and an RS-485 port. All mentioned parts of the extension have been              
utilised.  

4.2 Exploring various information transfer options 
It was necessary to make the two devices communicate with each other. The controller              
needs to send commands to the motors and receive position data. Furthermore, other             
variables of the system need to be set by the control system which needs to be remotely                 
accessible. Several types of communication have been used for various purposes and are             
described in this subchapter.  

4.2.1 Network 
It is necessary to get the source code to the simulator and run it. This has been done via the                    
TCP/IP protocol handled by Rexygen. Another use of this type of communication is             
accessing the control system remotely once the HIL simulation is running. The user can              
access the system from a web browser, see current values and their trends, the 3D               
visualisation and set the setpoints, the weight of the load, required length of the rope and                
change the parameters of the input shaping filter.  

4.2.2 Analog and digital I/O 
To control the motors and receive emulated position sensor signals, the analog I/O of the               
Monarco platform has been used. These inputs and outputs work with variable voltage in the               
range of 0-10 V. Besides that, digital signals (capable of sending boolean zeros and ones)               
have been used to indicate the direction of the motor control signal and to reset the model.  
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4.2.3 RS-485 (Modbus) 
Since the Monarco HAT extension does not offer enough analog channels for all variables,              
an alternative had to be found. The RS-485 feature of the Monarco with Modbus drivers               
included in Rexygen seemed like a feasible solution. The setup was unexpectedly easy,             
though the complexity of the model (including the 3D visualisation) required changes in the              
Monarco configuration.  

4.3 Changes to the model  
The model described above was working in controlled conditions. To make it match the              
demands coming along with the HIL simulations, adjustments had to be made to every              
aspect of the model and several features were added. This subchapter explains all the              
changes made in order to satisfy the needs of the HIL simulation. 

4.3.1 Standalone system 
Transition to the HIL simulation brought several requirements for model changes that could             
be classified into 4 categories: model dynamics, communication, optimization and          
visualisation. 
 
In terms of model dynamics, the main change was the usage of differential-equations based              
models instead of a state-space one. Hardstops have also been introduced so that the crane               
and trolley will not go too far in any direction and a small bounce has been added when the                   
crane bumps into the end of tracks. The length of rope is now being changed by a first-order                  
model simulating a motor to introduce a continuous length change.  
 
Communication with the control unit has been altered significantly, as the variables going via              
RS-485 interface were interpolated into 12-bit numbers and the control and sensor signals             
have been adjusted to fit the available voltage of the analog interface.  
 
Since the computational power of the selected platform is limited and needs to             
accommodate both the system model and the visualisation, slight changes have been made             
to make the load lighter. For example, the differential equations of the cart-and-pendulum             
model that each originally had their own separate block have been integrated into one block.  
 
Several new variables have been introduced to the model, meaning they needed to be              
added to the visualisation. 
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4.3.2 Standalone controller 
No structural changes have been made to the PID controller, but features handling the              
variables and accessibility by a remote workstation were added. The controller has been             
re-tuned for a new range of variables and a dead-zone was introduced to limit the impact the                 
signal noise has on control. Nyquist diagram and responses for various parameters are             
shown in Figures 4.1 and 4.2. 
 
The PID controller now receives position data via analog inputs and sends the commands              
over analog outputs, with direction indication via digital output. Other variables are            
transferred using Modbus protocol.  

 
Variables like designated rope length, load weight and input-shaping filter parameters can be             
adjusted with the option of setting recommended parameters for a given rope length.  

 
All of these new features were fitted in the HMI, along with a trend graph of several system                  
variables (Figure 4.3, 4.4). 
 

 
Figure 4.1: ​Nyquist diagram of closed-loop system with samples of parameters from an 
acceptable range. In all cases, the system is stable according to the Nyquist criterion.  
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Figure 4.2: ​Step response of a system with various parameters, further proving robustness 

of the controller 
 

 
Figure 4.3:​ Creation of web page HMI canvas 
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Figure 4.4:​ Near-final version of the workstation visualisation 

4.4 HIL simulations 
With all problems solved and goals achieved, the HIL simulator is working and is the main                
result of this thesis. Hardware-wise, the simulator consists of two Raspberry Pi computers             
with Monarco HAT extensions, connected to each other via analogue wires and a RS-485              
cable. The computer simulating the crane has a display connected to it, rendering the              
non-interactive visualisation in real-time. This computer communicates only with the other           
computer which simulates the control system. The visualisation of the control system is             
accessible from any modern internet browser and is interactive. The user can adjust             
setpoints and some parameters for the controller, as well as some variables for the system.               
All of this is done remotely online without a direct cable connection to the system or the                 
controller. Such simulators could be used in control theory courses.  

4.5 Similarities to commercial HW  
The final HIL simulation of this thesis resembles its industrial counterpart in several ways.              
The defining feature is its setup: a controlled system simulation (which would potentially             
work if replaced by a real system) communicates with the control unit via Modbus protocol               
and analogue signals controlling the motors and simulating the position sensors. The control             
unit can be accessed by any device (workstation) with a web browser, allowing the user to                
view the trends of variables and to set the setpoints and other variables of both the system                 
and the controller. The control unit runs Rexygen software, which is compatible with some              
industrial PLCs.  
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4.6 Potential use 
This simulation has two potential use cases. The more probable one would be using it as                
a practice simulation during one of the control theory courses at the University of West              
Bohemia. The students could control the crane using various controller synthesis methods,            
identify the system or make their own visualisation. The other use case could be a showcase                
of 3D visualisation capabilities of the Rexygen system and Monarco HAT display accessory.  
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Conclusion 
The main focus and outcome of this thesis was a HIL gantry crane simulator as a result of                  
the XIL process. Connecting the phases brought its own set of issues that were solved which                
was the main challenge of the thesis. As the automatic control education was not at all about                 
connecting the individual courses in a meaningful way, there was an incentive to work on               
this kind of thesis. Another contribution was creating a 3D visualisation and running it on the                
system part of the HIL simulator and creating a workstation HMI for the controller hardware               
that is accessible via the internet from a web browser.  
 
The first and second chapters of the thesis described various aspects of system engineering.              
Namely, model-based and knowledge-based system engineering (with a mention of          
knowledge management methods), then the XIL process with a brief explanation of each             
phase (MIL, SIL, PIL, HIL) and the current state of these phases in both industry and                
education. Then, the technologies used in this thesis were described, including the process             
of going through the XIL phases to create the final HIL simulator (Figure 5.1). 
 
The third chapter focused on models derived for the gantry crane, their verification using              
simulations and controller synthesis. The process of creating a visualisation (both 2D and             
3D) with an HMI interface was also displayed there. 
 
The fourth chapter was all about making the model and the controller work in a HIL simulator                 
setup. Three types of communication methods have been utilised, again, each with their own              
challenges like baud rate limitations of Modbus or accuracy of the analog I/O of the Monarco                
HAT. Features have been added for both the controlled system and the controller to make               
the simulation feel more industrial-grade like. 
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Figure 5.1:​ Photo of running HIL simulator. Unit with the screen turned off runs the controller 

part. 
 
It is fair to say that no single part of this thesis went deep into detail. The model was simple                    
(but sufficient), controller synthesis did not use any advanced method (which, if this             
simulation will be used in control theory classes, leaves an opportunity for the students to               
employ any method taught there) and the 3D model parts were re-used from a public library                
(though creating an assembly required understanding of a CAD software). As stated before,             
repeating content of individual courses with an overload of details that do not really              
contribute to practical skills was avoided to create something that was not specifically a part               
of the studies.  
 
A possible follow-up work could create a physical component model based on SimScape             
and/or Modelia, export it as an FMI model and create a Rexygen-based HIL simulator [17]               
for such system.  
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Attachments 
PDF Version of this thesis, models, figures and source codes and other attachments can be 
found on following link: 
 
https://drive.google.com/drive/folders/1Z5ysCfBw_rXFMCiLMfNO_V-NaRf_v_zC?usp=sharing 
 

 
If you have any questions or the link is not working anymore for some reason, feel free to 
contact me at: milanvosahlo@mail.com 
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