
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Reinforcement Learning for
Optimizing Agent

Strategies

Plzeň 2020 Seják Michal

1. Study the field of reinforcement learning
with focus on the application of neural net-
works and optimalization of game strategies.

2. Create a suitable custom environment for
optimizing the agent’s strategy.

3. Implement the mechanism of reinforcement
learning using the Tensorflow framework.

4. Design a metric for evaluating the agent’s
performance and critically asess the achieved
results.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 7th May 2020

Seják Michal

Acknowledgement

I would hereby like to express gratitude towards my supervisor Ing. Mi-
loslav Konopík, Ph.D. for his guidance and valuable suggestions regard-
ing my work. Computational resources were supplied by the project "e-
Infrastruktura CZ" (e-INFRA LM2018140) provided within the program
Projects of Large Research, Development and Innovations Infrastructures.

Abstract
Reinforcement learning agents are one of the best methods of general prob-
lem solving. The algorithm AlphaGo Zero (AZ) in particular achieved state-
of-the-art results in solving multiple board games. However, it is suited only
for solving adversary deterministic environments and finds few real-life ap-
plications, as finding complete information about real-life processes is next
to impossible. In our work, we analyze how exactly does AZ function and
how it can be adjusted for solving non-adversary stochastic environments,
while introducing a redundancy checking technique to prune the state tree
more effectively. Finally, we design a custom environment and examine
how the simple DQN algorithm compares to the adjusted AZ both with
and without redundancy checking, showing that the version utilizing the
redundancy checking heuristic remarkably outperforms both the DQN and
the unamplified AZ.

Abstrakt
Agenti zpětnovazebného učení v současnosti patří mezi nejlepší způsoby, jak
řešit obecné úlohy. Konkrétně algoritmus AlphaGo Zero (AZ) se v hraní
mnoha deskových her drží v současnosti na nejvyšších příčkách. Nicméně,
hodí se pouze na práci s deterministickými adverzálními prostředími a jako
takový nenachází ve skutečném světě mnohá uplatnění, jelikož obdržení veš-
keré informace o běžných procesech je takřka nemožné. V této práci analyzu-
jeme způsob, jakým AZ dosahuje svých výsledků a jak lze tento algoritmus
upravit tak, aby řešil obecné stochastické neadverzální problémy, přičemž za-
vádíme techniku kontroly redundance, pomocí níž lze efektivněji prořezávat
stavový strom. Na závěr navrhneme vlastní prostředí a otestujeme, jakých
výsledků dosahuje obyčený algoritmus DQN ve srovnání s upraveným AZ
bez a s kontrolou redundance, kde ukážeme, že verze AZ využívající kont-
rolu redundance dosahuje mnohem kvalitnějších výsledků, než ostatní dva
algoritmy.

Contents

1 Introduction 10

2 Reinforcement learning primitives 11
2.1 Environment . 11

2.1.1 Definitions . 11
2.1.2 Properties . 12
2.1.3 Reward . 13
2.1.4 Bounding states and the discount factor 14

2.2 Agent . 15
2.2.1 Policy function . 16

3 Neural Networks 17
3.1 Tensors . 17

3.1.1 Examples . 19
3.1.2 Usage . 19

3.2 Tensor operations . 20
3.2.1 Broadcasting . 20
3.2.2 Indexing . 20
3.2.3 Slicing . 21
3.2.4 Matrix-like multiplication 22
3.2.5 Convolution . 22
3.2.6 Batch Normalization 22
3.2.7 Bias . 23
3.2.8 Activation function 23
3.2.9 Dropout . 24

3.3 Function approximation . 24
3.3.1 Cost function . 24
3.3.2 Optimization . 25

3.4 Regularization . 26

4 Existing agents 28
4.1 Deep Q-learning network (DQN) 28

4.1.1 Q-value . 28
4.1.2 The Q-learning algorithm 29
4.1.3 Amplification by neural networks 30

4.2 Expecti-max Monte Carlo Tree Search (MCTS) 31

7

4.2.1 Selection . 32
4.2.2 Expansion + Rollout 33
4.2.3 Update . 33
4.2.4 Finalization . 34

4.3 AlphaGo Zero (AZ) . 34
4.3.1 Introduced MCTS adjustments 35
4.3.2 The AZ algorithm . 36

5 Implementation analysis 39

6 Custom environment design 40
6.1 Basics . 40

6.1.1 Map . 40
6.1.2 Entities . 40
6.1.3 State transitions . 40

6.2 The Infected . 41
6.2.1 Appearance and position 41
6.2.2 Movement . 42
6.2.3 Aggression . 44

6.3 The buildings . 49
6.3.1 Appearance and position 49
6.3.2 Types . 49

6.4 Simulator . 51
6.5 Actions . 52
6.6 Control actions . 53
6.7 State output . 54
6.8 Data structures . 55
6.9 Communication . 57

6.9.1 Protocol . 57
6.10 Main loop, parameter discussion 59

7 Agents 61
7.1 DQN, AZ (EXPI) . 61
7.2 Redundancy augmentation 61

7.2.1 Motivation . 62
7.2.2 Realization . 62

8 Experiments 65
8.1 Network model . 65
8.2 Agent parameters . 65

8.2.1 DQN . 65

8

8.2.2 EXPI/RE . 66
8.3 Training procedure . 66

9 Conclusion 68

10 Common abbreviations 69

Bibliography 70

9

1 Introduction

The field of artificial intelligence (AI) is a scientific branch building on found-
ations of mathematics, biology, linguistics and ultimately, computer science.
Using AI, humans have created machines capable of image recognition [38],
understanding human language in both textual [11, 12] and audial form [35],
or swapping a human face in a video for another [21], with human observers
unable to recognize the forgery. AI systems classified as narrow AI are ap-
plied to all of the above tasks; their key feature being the inability to adapt,
to solve problems other than those they has been specifically designed for.

Reinforcement learning (RL) itself is merely a tiny fraction of the vast
domain that is AI, making use of mathematical abstractions called agents
and environments to create decision-making algorithms which can then be
used as a general solution to any problem which fits the algorithm’s respect-
ive set of constraints. These constraints are - thanks to the abstract nature
of the environment - always very loose, allowing for one such algorithm to
solve a broad range of real-world problems. RL algorithms can be applied to
everything that includes decision-making, the most relevant being different
branches of logistics, robotics and data processing. Although humans are
not known to have created general AI yet, what we will explore in this work
is a step towards such a construct.

The goal of our work is to explore the potential of RL by designing
an agent capable of solving our custom stochastic strategy game environ-
ment. This agent will be provided only with the game’s rules, without any
pre-training or prior game knowledge. The reason we specifically focus on
stochastic environments is their inherent complexity, which limits the range
of possible agents applicable for the task.

10

2 Reinforcement learning
primitives

At the core of reinforcement learning lies the environment-agent feedback
loop. Its individual components cannot be truly separated, for one largely
influences the other, nonetheless, for the purpose of this work, they shall be
analyzed separately.

2.1 Environment
In the context of RL, an environment is a dynamic system model, called a
Markov Decision Process, or MDP, and has these two essential properties:

• at any instant t, it is found in a state st

• its state can be influenced by outside actions at, inducing an inner
transition st → st+1

RL designers use it as an abstraction layer over any sort of compatible
time-evolving process. Any conceivable entity that fulfills the rules above
can be modeled as an RL environment. The purpose of RL, however, is to
automatically design a strategy, that is, to construct an oracle which ob-
serves the environment’s state and outputs an action which should be taken
next. This target strategy is, in some sense, optimal: trading stocks in order
to maximize profit, toggling traffic lights in order to minimze the total wait-
ing time for all drivers, etc. To abstract this notion of optimality, the reward
comes into play. One of the essential characteristics of an environment is
that after transitioning to st+1 as a result of an action at, it produces an
observable reward value rt ∈ R. Then, we say that a strategy is optimal
when the sum of individual rewards observed at all transitions is at least
as big as when following any other strategy. [10]

2.1.1 Definitions
These properties give rise to a more formal mathematical definition, in which
the environment is a tuple (S,A, T ,R), where:

• S is a set of all possible states s,

11

• A is a set of all recognizable actions a,

• T : T (st, at)→ S, st ∈ S, at ∈ At, At ⊂ A, and

• R : R(st, at)→ R, st ∈ S, at ∈ At, At ⊂ A,

with T defining transitions between states with respect to incoming ac-
tions and R defining rewards for taking actions at states. Generally speak-
ing, neither T nor R must be deterministic and can, instead of returning
constant values with respect to constant parameters, map to random vari-
ables with their respective supports (as explained by [4]). By studying the
domain of T , one can infer two additional elements regarding the environ-
ment, these are however merely descriptive, not defining, therefore not part
of the aforementioned tuple. Elements in concern are:

• α : α(s)→ P(A), such that ∀a ∈ α(s) : (s, a) ∈ D(T), and

• Z ⊂ S, s ∈ Z ∧ ∀a ∈ A : (s, a) /∈ D(T),
with P being a powerset function (set of all subsets of its argument),
and D being the domain of a function,

making α the valid action function, specifying which actions can be taken
at a state and Z the set of all terminal states. The starting state does not
have to be constant, however, it always exists. A series of transitions from
any starting state to any terminal state is considered an episode (see [10]),
or a roll-out.

2.1.2 Properties
The most important feature of an environment is inferred from the shape of
T , particularly, whether its output is a deterministic or a random variable,
which is what we use to separate deterministic and stochastic environments.
When an agent cannot rely upon the fact that taking an action at a state
results in one predictable state, the algorithms used to solve these environ-
ments grow in complexity.

States can either be fully or partially observable. The former indicates
the ability of outside observers to gather all information about St there is,
in the latter case, observers can only gain some of the information. A game
of chess, for example, is fully observable, whereas a game of poker is only
partially observable (no player can see other players’ cards).

We recognize static environments, where states transition between each
other strictly as a consequence of outside actions. Dynamic environments, on

12

the other hand, can change their state internally, without outside influence.
It is very typical for static environments to represent turn-based games (a
state changes only when a piece is moved by a player - the actor), as opposed
to problems of traffic light control (cars move even if no lights are being
switched) or real-time resource distribution.

The last but not least noteworthy characteristic of environments is the
distinction between action space types, namely, whether A is discrete or
continuous. One might use the former for modeling various board game
problems, and the latter for optimizing stock exchange behavior. (Note the
fact that computers cannot represent continuous variables, therefore con-
tinuous action spaces will only approximate the reality. The main difference
is in the size of the resulting action space, which has a great impact on
choosing an appropriate learning algorithm.) [37]

2.1.3 Reward
Before we move onto defining an agent, the notion of reward should be
discussed. The reward somewhat resembles the fitness function in genetic
algorithms and hence shares all the common pitfalls one might find them-
selves in when modeling an environment. Of course, the first question is,
what does the author consider to be an optimal solution to a decision prob-
lem. In the simplest cases, the desired strategy is such that the survival
time in the environment is maximized, resp. a goal is achieved in the least
possible time: usually, one would then define the reward function to always
return ∆t, resp. −∆t, the time it takes to transition between respective
states, regardless of arguments, for the sum of these rewards is equal to time
taken, resp. negative time taken. When learning to play Pong, the reward
will be given only at states where the actor scores a goal. However, there are
cases where a more complex reward function is required, for example when
discrete high-reward events are scattered across the episode and the agent
must reach these events as soon as possible consuming his resources, and the
reward function must be adjusted accordingly. If it is defined incorrectly,
learning algorithms will most likely lead to reward hacking (see [18]), where
the learned strategy exploits sources of secondary reward (usually in cycles)
instead of solving the original problem.

Another problem, perhaps a more important one, occurs when the reward
function is non-zero for very few state-action pairs throughout the episodes;
in the most extreme case, it is non-zero only when the resulting state is ter-
minal, videlicet, one might decide to reward the agent by some ε > 0 when
it succeeds at a particular task which consequently terminates the environ-

13

ment, and by −ε if it fails to do so (see [8, 34] for details). An environment
such as this is said to be producing a sparse reward. This approach is very
convenient for the designer. If one got creative, they might try to reward the
agent if it succeeds to compose a news article, or a symphony, or if it defeats
its opponent in a game such as go or chess. We will take robot navigation as
our example: let there be a robot that applies torque to its joint motors (=
actions) that needs to reach a goal, such as an allied military base, through
a hazardous terrain. It must reach its goal, therefore it is only rewarded
if it does, if it gets ’destroyed’ along the way, it receives no or negative re-
ward. As [8] implies however, basic RL algorithms, which depend largely on
random exploration, will be receiving these zero rewards exclusively, unless
they just so happen to arrive at a perfect solution, which is highly improb-
able. Authors of [34] hint at a partial solution to this problem, which is to
manually add custom reward signals (called reward shaping), which are re-
wards received during such states that the designer themself believes they
should be part of an optimal solution. Such approach does indeed shorten
the necessary exploration times for said algorithms, but not without a cost;
it is clearly flawed. Not only does it invite the aforementioned reward hack-
ing, but it also places a cap on the optimality of the final solution. Let’s
say the designer shapes the reward like this: if the robot encounters a (suf-
ficiently small) stream of water and uses such action as to jump over it, it
gets rewarded for bypassing the obstacle. If there indeed is a better policy
for the robot and the designer doesn’t foresee it, the robot will be forced
to jump over water streams for the entirety of its training, because it is
advantageous for it in terms of reward maximization. However, if instead,
entering the stream and letting itself be carried by it potentially towards the
destination results in reaching it more often, the robot loses the potential to
exploit this option, which results in it performing sub-optimally.

2.1.4 Bounding states and the discount factor
The choice of starting states has a great impact on the required complexity
of the optimal strategy. A deterministic, static environment with a fixed
starting state allows a solution as a learned sequence of actions; not ob-
serving the states at all after the learning process completes. This can be
advantageous, for a greater range of learning algorithms can be applied, and
the solution can be found faster, however, if the starting state should ever
change, the strategy loses its worth. If the starting state is not determ-
ined, a more general strategy must be found in order to solve the problem,
limiting the available learning algorithms, and potentially drastically slow-

14

ing the optimization speed, but resulting in a more robust solution. Some
environments have a determined starting state, such as the game of chess;
usually however, when an environment designer is given the choice, they
should always look to randomize the starting state.

The purpose of terminal states is simply to define a range of time in-
stances for which to maximize the reward. Without a terminal state to
which the states eventually converge, the episodes become infinitely large
and determining the optimality of any strategy applied to the environment
becomes rather unclear, for in order to compare any two policies, one must
sum all the received rewards of any policy in order to evaluate it. And unless
shown otherwise, such sums can be infinite and therefore non-comparable.
An argument by [24] has been made that if an episode is infinite, one might
introduce a discount factor γ ∈ [0, 1) to the environment. A general way to
compute the cumulative reward therefore becomes

Q =
∞∑
i=0

γiri = r0 + γr1 + γ2r2 + ... (2.1)

which bounds its value to real numbers even for infinitely long episodes.
Since this work focuses only on finite episodes however, for all of our exper-
iments, we set γ = 1. [24] also mentions that there are states which do not
fit our definition of terminality at section 2.1, but entering it means that the
total future undiscounted reward will be zero. This occurs when a state, or a
group of states, is absorbing and unrewarded. For all intends and purposes,
such states can be deemed terminal as well.

2.2 Agent
The product of RL is a learned, or trained, agent. Its core purpose is to
produce a policy function

π : π(s)→ α(s), s ∈ S, (2.2)

where S and α(s) is the set of all possible states and the valid action func-
tion of the corresponding environment, respectively. Improving the policy
function in order to maximize the corresponding environment’s cumulative
reward sum is considered training the agent. A trained agent solves the
respective RL problem.

A realized agent, as a software product, therefore consists of the following
major components:

a) an implementation of the policy function itself, whose contract is π,
and

15

b) an algorithm used to train the agent.

2.2.1 Policy function
As was stated, a policy function is any mapping from the state space S
to a member of the action space A. The mapping itself must clearly be
parametric, for this is required by the agent’s trainability characteristic,
and tends to be very complex for non-trivial problems. For example: the
most trivial applicable RL algorithm, the Q-learning [1, 14, 31] (which is
explained in Chapter 4), represents this function as an argmax operation on
a state/action table, with states as rows, actions as columns, and values as
Q-values. These Q-values are equal to the expected cumulative reward the
agent is going to receive if it takes an action (column) at a particular state
(row). After the Q-learning algorithm creates such a table, when an episode
is being rolled out and the agent is asked to find the optimal action at state
st, the agent looks up the state’s row and returns the index at which the
largest Q-value lies. Such a function is virtually defined as an enumeration
of input-output pairs, which is the most complex mapping representation
possible. Using Q-learning on even a very simple environment whose state
would be fully determined by a single real number would result in a Q-
table that is potentially infinitely large. The aim of this work is to research
applications of neural networks as policy function representations, which is
a solution much lighter on memory resources [14].

However, before we start describing the existing agent algoritms that use
neural networks, we must first understand what a neural network is, what it
does and how it achieves this, which is thoroughly explained in the following
chapter.

16

3 Neural Networks

Neural networks (NNs) - in our work’s scope - are parametric non-linear
function approximators. Commonly denoted as

fn(x; θ) = y, (3.1)

where θ represents the NN parameters, these mathematical constructs are
capable of modeling general functions f(x) = y, where x and y are tensors
of potentially different ranks and shapes, as shown in [19, 23]. As the most
influential AI frameworks, TensorFlow and PyTorch, both use tensors when
working with neural networks, we find explaining NNs from the tensor per-
spective convenient, as no information is lost in contrast to the explanatory
approach of [23], where the individual neurons as building blocks are used.

3.1 Tensors
A tensor is, from a computer-engineering point of view, a multi-dimensional
array of elements a ∈ X, whereX is a set; usually of natural or real numbers.
Its dimension, or more commonly rank, is a non-negative whole number. It
represents the number of indices a tensor query must contain in order to
return a single entry, a, as shown below.

A tensor of rank 0 is simply a. Tensor of rank n is an array of tensors of
rank n − 1 of length ln−1, where l ∈ N. An array L =

(
ln−1 ln−2 ... l0

)
is called the shape of a tensor. The individual dimensions are usually called
axes [26]. The reader should note that sizes of the last axes of the tensor
reside at the first positions of its shape array (L0 = ln−1, L1 = ln−2, etc.)

Thanks to its multidimensional-array-like nature, we recognize its indi-
vidual parts, called subtensors. A subtensor of a tensor is any tensor con-
tained within it that has smaller rank and is equal in shape with the original
at their corresponding (remaining) dimensions. A vector’s subtensors (shape
(n)) are its scalar values (shape ()), a matrix’ subtensors (shape (m,n)) can
be the individual scalars (shape ()), its rows (shape (n)), or its columns
(shape (m)), and so on. Subtensors of tensor of rank 3 are visualized at
Figure 3.1.

17

Figure 3.1: Rank 1 and 2 subtensors of rank 3 tensors. [39]

18

3.1.1 Examples
• A scalar a is a rank 0 tensor of empty shape.

• A vector
(
a b c

)
is a rank 1 tensor of shape (3). A single index from

[0, 2] is required to fetch a single value.

• A matrix
(
a b c

d e f

)
is a rank 2 tensor of shape (2, 3). Two indices

from [0, 1] and [0, 2] respectively are required to fetch a single value,
or a single index from [0, 1] is required to fetch a row of this matrix,
which is its subtensor of rank 1 and shape (3). (see Figure 3.2)

One should note that a vector of size n and matrices of sizes (1, n) and
(n, 1) are all distinct mathematical objects, despite their apparent similarity.

Figure 3.2: Visual representation of differently ranked tensors. [26]

3.1.2 Usage
We define tensors individually, instead of using the well-defined terms of
vector and matrix, for even though that neural networks can operate on
tensors of ranks 1 and 2, in practice, they are used for mapping from, to,
and between tensors of higher ranks, as can be seen both in [13, 17, 27] and
our work.

The reason neural networks are designed to work with tensors is their
ability to accurately represent any well structured numerically describable
object. Among many others, both the environment states, which can be

19

images or their series (sensory inputs) or various custom embeddings (board
games), and actions (which are usually scalars), are representable by them
which is the reason why using neural networks in RL algorithms is so popular
[6, 20, 32].

3.2 Tensor operations
The neural network itself is a sequence of tensor operations applied to the
input, resulting in an output tensor. The most common operations include,
but are not limited to, multiplication by a weight tensor, convolution oper-
ation using a kernel tensor, element-wise increment by a bias tensor and an
element-wise transformation, or so-called activation, by a non-linear activa-
tion function (further reading at [23, 30]). All of these will now be examined.

3.2.1 Broadcasting
Before we delve deeper into the realm of tensor operations, the common
practice of broadcasting should be explained. For any operation whose ar-
gument is expected to be smaller in rank than the tensor that was actually
supplied, if the supplied tensor contains subtensors of shape required by the
operation, the operation is applied independently to all of them. A simple
example of broadcasting can be observed when scaling a vector by a scalar.
Multiplying a scalar by a scalar is trivial. Since the vector is however of
larger rank, the operation is applied to all of its scalar subtensors. Figure
3.3 shows another example of broadcasting, where we subtract a tensor of
shape (2) from a tensor of shape (3, 2). Notice how the operation is applied
to all subtensors of the minuend. If the subtrahend was instead of shape (3),
the operation would be broadcast to the matrix’ columns. Understanding of
this process will be relied upon in the following sections.

3.2.2 Indexing
Let I be an ordered tuple of integers of size k, called an index tuple or tuple
of indices. We say that an index tuple is valid with respect to a tensor
T with shape array L if and only if ∀j ∈ [0, k − 1] : Ij ∈ [0, Lj − 1].
One can then use such a tuple to query the tensor, which we denote as TI ,
receiving a corresponding tensor of shape n− k in return. Since each tensor
of rank greater than zero is an array, the corresponding tensor is obtained
by popping integers from the index tuple until emptied and using them to
query the original tensor. By definition, a tensor of rank n contains tensors

20

Figure 3.3: Broadcasting visualized on small tensors. (kmario23, StackOver-
flow, 2018)
.

of rank n− 1, hence querying by a single integer and letting T = Ti, i ∈ N
reduces the current tensor rank by 1. After the index tuple is depleted, the
remaining tensor is returned.

3.2.3 Slicing
Let the sum of index tuples I1 + I2 be equal to their element-wise sum. For
any index tuples L and U , where U is element-wise not less than L and has
the same size k, let L:U denote a slice of indices between L and U , that is, a
sorted sequence of all index tuples S such that ∀i ∈ [0, k−1] : S ∈ L:U ⇐⇒
Li ≤ Si ≤ Ui. All members of such a slice have length k. If these members
are valid index tuples with respect to some tensor T , one can index a tensor
by an entire slice, which is conveniently called slicing the tensor. Slicing a
tensor results in a tensor of the same rank, but smaller shape (unless the
slice encompasses the entire original tensor), and since we think of it as a
sorted sequence, we can let O be the original, L:U be the slice, (L:U)i a
single tuple in the slice, T be the result and let

T(L:U)i−L = O(L:U)i
∀i ∈ [0, |L:U | − 1], (3.2)

rigorously defining the slicing operation. Should k be smaller than the rank
of the original tensor, the operation is subject to broadcasting.

21

3.2.4 Matrix-like multiplication
A tensor multiplication is an operation on tensors A,B of rank at least 2
such that their shape at the last two axes is (k,m) and (m, l), respectively.
The product on the last two axes is a second rank tensor P of shape (k, l),
such that

∀i, j, i ∈ [0, k − 1], j ∈ [0, l − 1] : Pij =
m−1∑
w=0

Aiw ·Bwj, (3.3)

resembling the standard matrix multiplication, with the only difference being
the potential option to broadcast the operation along possible excess axes
of A.

3.2.5 Convolution
The convolution operation is, in layman’s terms, a sliding dot product. Let
A be a tensor of rank n and shape L. Let B be a tensor of rank m ≤ n and
shape K such that ∀i ∈ [0,m] : Ki ≤ Li. Then, the result of a convolution of
A with kernel B is a tensor P of rank n and shape S, where ∀i ∈ [0, n− 1] :

Si =

Li, i < n−m
Li −Ki, otherwise,

(3.4)

the result of their convolution being

PT = AT :(T+K) ·B ∀ T ∈ 0:(L−K), (3.5)

where 0 is a zero index tuple and · a dot product operation (= sum of
element-wise products between the operands). If m is indeed smaller than
n, the operation is broadcast, which is why Si = Li for these axes.

The case of 2D convolution (kernel rank = 2), illustrated by Figure 3.4,
is the most common and the only convolution version used in our work.

3.2.6 Batch Normalization
This operation has been introduced by [15]. When the input of this opera-
tion represents an array of tensor values, the batch normalization operation
normalizes these values so that their mean is close to 0 and variance close
to 1. If B = x1, x2, ..., xn is the input tensor, the operation calculates the
array’s mean and variance:

µB = 1
n

n∑
i=1

xi, (3.6)

22

Figure 3.4: A convolution example visualized on rank 2 tensors. [29]

σ2
B = 1

n

n∑
i=1

(xi − µB)2, (3.7)

and introduces parameters γ and β to output

f(xi) = γ
xi − µB√
σ2
B + ε

+ β. (3.8)

This operation is broadcast to the entire tensor B, applying the transform-
ation to each member xi, producing a tensor P of the same rank and shape
as the original.

3.2.7 Bias
The bias operation is called the way it is to emphasize its influence on the
network’s output independently of the input, thus biasing it. The result of
this operation is an element-wise sum of the inputs. It is - again - broadcast
over the remaining axes of A if possible.

3.2.8 Activation function
Activation functions are unary non-parametric transformations. Its core
purpose is to introduce non-linearity to the neural network model, in order
to enable the option to approximate general functions. It can be shown
that consecutive affine operations such as those described above introduce
no non-linearity and therefore the network as a whole cannot approximate
non-linear functions.

23

An activation of a tensor A is simply f(A) = B, with B being of identical
rank and shape as A, for f expects a single element, so the operation is
broadcast and applied element-wise.

3.2.9 Dropout
Dropout behaves similarly to the activation function. A constant α ∈ [0, 1]
is supplied when introducing this transformation to the network, which is
the probability that a scalar value in the tensor will be set to zero after this
operation is applied. This operation is used as a regularization technique
(see below), which helps the network find more general mappings between
inputs and outputs. [9, 33]

3.3 Function approximation
The elements of this sequence of transformations are called the network’s
layers, for each of these layers accepts an input and returns an output inde-
pendently of the other layers. The output of the current layer is the input of
the next one. Most of the operations described above have two inputs: those
are the parametric operations. The second input is stored in memory of the
neural network model and it is that which defines to what outputs does the
network map its inputs. For example, a weight tensor might be used to
multiply with the input, a filter tensor is used in convolution as an array of
kernels, each producing their own separate output, which are stacked in the
end to produce the final convolution layer output, etc.

3.3.1 Cost function
Now, the primary usage of a neural network is making it approximate a
function X → Y , where the user possesses multiple (x, y) tuples and is keen
on finding a mathematical relation between the sets X and Y such that
can be sufficiently represented by the neural network’s parametric trans-
formations. An idea of a cost function quickly came into mind, for when
provided with the input/output pairs, the problem is to find θ such that
∀x ∈ D(f) : dist(fn(x, θ), f(x)) = 0, i.e., we are looking to minimize the
difference between fn(x, θ) and f(x). There are many ways one might define
the distance between two functions, which are all abstracted by the cost
function. A common cost function for approximating real values is the mean
squared error (MSE), where d(y0, y1) = (y0−y1)2. MSE, being our example,
has a desirable property for RL applications, for if one lets the network train

24

on separate tuples (x, y+ e) and (x, y− e) with e being any error tensor, the
network’s mapping will eventually converge to (x, y); an important feature,
as we will see in the following chapters. The exact choice of the cost function
is therefore task-dependent and it is up to the data scientist to use such that
it has the appropriate properties.

3.3.2 Optimization
For a given set of (x, y) tuples, the cost C becomes a function of the neural
network’s parameters, θ. The problem is thereby transformed to a problem
of finding a global/local minimum of the cost function, which can be solved
using partial derivatives, if the cost function is properly differentiable. Un-
fortunately, for the amount of parameters the neural network usually has
(ranges from 102 to 106), it is impossible to arrive at an analytical solution
directly [22]. In order to solve this problem, one must apply a technique
called gradient descent (GD). It is an iterative numerical method of finding
a local minimum of a function. The main idea behind gradient descent is
that if there is a solution θi yielding Ci, then by shifting the solution in
the direction of in absolute value largest negative gradient at θi, resulting in
θi+1 and Ci+1, one can expect that Ci > Ci+1 and therefore the cost should
thereby converge to a local minimum [23].

θi+1 = θi + η · −∇(θi), η ∈ R+ (3.9)

Equation 3.9 uses a parameter η common to all numerical methods, called
the learning rate, with smaller values leading to slower but more stable con-
vergence and higher values speeding the training up but risking divergent
behavior. η scales the gradient descent step size linearly, so that it is cal-
culated directly from the current gradient. Lowering η alone, however, does
not guarantee convergence. After the gradient is calculated, only the direc-
tion in which the steepest slope is and its actual steepness is known, but the
information about how large the slope is and how big of a step one should
therefore make is simply not there. The GD can only guarantee conver-
gence for an infinitesimal step size, which is impractical. Humans have, of
course, developed a notable amount of gradient-descent-based parameterized
algorithms that improve convergence speed and quality of local optima [28].
The most recent and popular method, adaptive momentum, allows for faster
descent into better solutions, and can be considered good enough to ensure
convergence to some local minimum, thus solving the problem of tuning the
parameters and creating a trained neural network fn(x; θ∗), for which the

25

difference between it and f(x) is as small as possible with respect to the
network’s inner design [23].

In order to execute this procedure however, one must have an algorithm
to compute the gradient itself:

∂C

∂w1
(θi),

∂C

∂w2
(θi), ... ,

∂C

∂wn
(θi), (3.10)

where wj is a single parameter of the NN. This is done by an algorithm
called backpropagation, thoroughly explained in [16, 23]. The key takeaway
is the following: as long as the individual layer operations and activation
functions are differentiable, the gradient of the cost function with respect
to any parameter in the network is efficiently computable using dynamic
programming.

If the amount of (x, y) tuples is too large to fit into memory, gradient
descent is approximated by stochastic gradient descent (SGD), where the
initial data is randomly split into small enough groups of equal size and the
gradient descent is then applied to each of them sequentially.

3.4 Regularization
Overfitting is a major problem in function approximation. It occurs when
the model approximates the data tuples (x, y) too closely, without gener-
alization, as seen in Figure 3.5. Approximation models that overfit are of
no use, because they fail to produce correct outputs for inputs they have
not been explicitly trained on [3]. Deep networks with many parameters
are capable of fitting such sets of data tuples perfectly, so even if they are
completely random and therefore no mathematical relation between them
exists, gradient descent will lead to overfitting, as proven by [40].

Humans therefore engineered methods that prohibit the network from
abusing its large amount of parameters effectively to overfit the data, such
as introducing parameter norms to the total cost, or using special layers like
the dropout [33], or batch normalization [15].

26

Figure 3.5: Visualization of an overfitted model. The data tuples (x, y) are
shown as dots on the plot. The straight line is a good approximation: it
somewhat captures the linear trend of the data. The curved line, despite
there being zero distance between it and the data points, interpolating or
extrapolating the data using the line will most likely contain very inaccurate
results with respect to the original data source. By Ghiles - Own work, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47471056

27

4 Existing agents

Section 3.4 marking the end of our neural network theory, we are now able
to perceive the network from a higher level; combined with the algorithms
associated with it, we think of it as a separate program capable of approxim-
ating any mapping between tensors. With that being said, we are now ready
to proceed onto describing the existing agents that use neural networks and
have been deployed to solve multitude of problems.

4.1 Deep Q-learning network (DQN)
When presented with an environment with a small, finite state space and
discrete action space, then even though its transition and reward functions
may be stochastic, such an environment is solvable using the simple Q-
learning algorithm. The classic Q-learning requires only a way to hash the
environment’s states so as to create a hashmap from each state to an n-
tuple of Q-values, and over time, this table will converge to a tool capable
of representing the optimal policy.

4.1.1 Q-value
The entirety of Q-learning is based upon the idea of a Q-function, which is
defined as

Q(st, at) = E(R(st, at)) + E(
term∑
i=t+1

(R(si, a∗i))), (4.1)

where st is an arbitrary state at time t, at is an arbitrary valid action at this
state, term is the terminal time, R is the reward function, and the aster-
isk superscript signifies the associate’s optimality. Essentially, this function
returns the expected cumulative reward for taking an action at at state st,
should the consecutive actions be taken in an optimal manner. This expec-
ted cumulative reward is called the Q-value. Should an agent possess such
a function, it could follow optimal policy very simply:

st ∈ S : a∗t = argmax
a′∈α(st)

{a′|Q(st, a′)} (4.2)

Combining equations 4.1 and 4.2, we arrive at

Q(st, at) = E(R(st, at)) + max
a′∈α(st+1)

Q(st+1, a
′), (4.3)

which guides the Q-learning update step.

28

4.1.2 The Q-learning algorithm
The goal of the Q-learning algorithm is to produce a sufficiently good ap-
proximation of the Q-function associated with a given environment, and it
does so as follows:

Algorithm 4.1 q_learning
1: input: R, T , initial state
2: i← 0
3: Qi ← empty hashmap
4: insert initial state into Qi with a zeroed-out Q-value tuple
5: repeat
6: t← 0
7: st ← initial state
8: repeat
9: at ← chosen action at st according to Qi
10: rt+1 ← R(st, at)
11: st+1 ← T (st, at)
12: if st+1 /∈ Qi then
13: insert st+1 into Qi with a zeroed-out Q-value tuple
14: end if
15: Qi+1 ← update(Qi, st, at, rt+1, st+1)
16: i← i+ 1
17: t← t+ 1
18: until st+1 is terminal
19: until convergence
20: return Qi

Lines 5-20 of Algorithm 4.1 represents a single episode rollout. Line 15
utilizes equation 4.3 to gradually converge the initially empty hashmap to
an optimal Q-value table. In the background, the update step is actually a
slight extension of 4.3:

Qi+1(st, at) = (1− β)Qi(st, at) + β(rt+1 + max
a′∈α(st+1)

Qi(st+1, a
′)), (4.4)

introducing a hyperparameter β ∈ (0, 1) called the learning rate; this is
very common for all numerical methods, including SGD in neural networks.
Without a learning rate, Q-values could never converge to expected cumulat-
ive rewards, for they would instead oscillate between the last seen cumulative
rewards as the update would be reapplied in future episodes.

Line 9 does not always generate actions currently regarded as optimal,
but instead follows what is called an epsilon-greedy policy. This policy lets

29

ε = f(i), where f is another hyperparameter: a decreasing function, such as
f(i) = 1− ci, c ∈ R+, and chooses a random valid action if ε > x ∼ U(0, 1),
otherwise the optimal valid action according to Qi. This lets the Q-learning
agent explore the environment in the early episodes, and exploit its know-
ledge in the later episodes. Finding good balance between these two ap-
proaches of knowledge gaining is crucial: with early exploration transition-
ing into late exploitation, the agent gains thorough information about every
stage of the episode.

Convergence may be tested using standard norms of update changes,
claiming the algorithm is complete as soon as N consecutive updates change
the Q representation by a sufficiently small normalized amount, or by con-
tinuous testing, where the agent is evaluated after each N training episodes,
claiming the algorithm is complete as soon as the agent achieves a high
enough reward to surpass some constant R in M consecutive evaluation
episodes. An evaluation episode does not follow the epsilon-greedy policy;
line 9 always produces actions optimal according to Qi.

4.1.3 Amplification by neural networks
As useful as Q-learning might sound, its inability to work with large state
spaces is its major disadvantage. With a vast amount of possible states,
one cannot hope for being able to manipulate all of them in any conceivably
large amount of time, nor have them stored in memory on a machine. This is
where the approximative abilities of neural networks come into play, as they
can learn to map between states, actions and Q-values using significantly less
memory than when using a table, and most importantly, return Q-values for
any state/action pair, even those previously unseen.

This idea gave rise to Deep Q-learning, or DQN. In DQN, the hashmap
is replaced by a neural network, whose input is an arbitrary state tensor
and whose output is a rank 1 tensor, with a real number value for each
action in the environment’s action space. The network’s parameters are
initially randomized, so that previously unseen states can produce non-zero
Q-values for any action, in comparison with the hashmap, where all Q-
values of unseen states were equal to zero. If we were to fully replace the
Q-function representation with no changes, terminal states would not be
recognized. Therefore, in DQN,

Q(st, at) =

0 if st is terminal
Qθ(st, at) otherwise.

(4.5)

The symbol θ represents the fact that Q is determined by the network’s

30

parameters. Since the network only receives one parameter as the input,
Qθ(s, a) is to be understood as returning the Q-value corresponding to action
a in the output tensor.

The DQN utilizes a distinct target and candidate network, where both are
initialized randomly, candidate is being trained using values from target, and
target’s parameters are set to equal the candidate’s only every N episodes.
This helps break the influence of the current network parameters on incoming
data samples, as that introduces a feedback loop to the system which can
easily lead to divergence [20]. Additionally, the training data required for
line 9 (the update step), st, at, rt+1, st+1, are stored in a circular buffer
(semi-ordered array-like structure with constant time add and limited size,
automatically removing the oldest inserted item as soon as maximum size is
achieved), and randomly sampled during the update step for training. This
technique is called experience replay, and it allows us to move the update
step out of the episode loop and insert it between lines 20/21, updating
after each episode is finished. Using experience replay introduces multiple
adjustments to the learning algorithm, such as randomizing the input data
and thus disrupting correlations between data samples in one batch, which
in turn reduces the variance between consequent data batches, or providing
the same datum for multiple training steps, which improves data efficiency
[20].

This model will serve as our baseline, since there are arguably no sim-
pler neural network agents than DQN. Although [20] shows their success
in deploying DQN to solve many Atari games, surpassing human experts,
there are games like Montezuma’s Revenge, where DQN struggled to achieve
any meaningful reward. That being said, as we plan our environment to be
even more complex than Montezuma’s Revenge, we do not expect DQN to
outperform other agents.

4.2 Expecti-max Monte Carlo Tree Search
(MCTS)

The Monte-Carlo Tree Search by itself is a method of guessing the optimal
action a∗t to take at any state st in the environment, or more precisely,
estimating the probability of any valid action at st being optimal. It pro-
gressively generates an approximation of the state tree, which is a tree with
environment states and actions as nodes connected by edges representing
the corresponding relations between them. The expecti-max version in par-
ticular, which was devised by [36] and which we will describe here is used

31

to solve stochastic environments, where one state-action pair can result in
multiple different states based on some underlying probability distribution
of T and R.

State-reward pair nodes are called decision nodes with each having a
child node for each action that can be taken at that particular state. The
nodes corresponding to actions are called chance nodes, with each having a
child node for each state-reward pair that is generated by taking that action
at the state of the parent decision node. It is possible to receive identical
states and different rewards, since both T and R are stochastic, hence the
need for decision nodes to correspond to each individual state-reward pair.
Clearly, the naming introduced by [36] is convenient, as the agent can make
decisions at decision nodes, and has a certain chance of ending up at different
states, and obtaining different rewards, when performing any action.

This partial tree is built by exploring the environment, adding new nodes
to the graph for each explored state. Each node is assigned a value and a
visit counter, according to which - after the MCTS completes by running out
of time - the best action to take from the root is selected. The manner which
the tree is built in and the values are assigned in will now be demonstrated.

After initializing the tree root, which is a decision node corresponding
to st, the entirety of the MCTS algorithm can be broken down into three
distinct procedures: selection, expansion + rollout, and update. These pro-
cedures are repeated in order N times, and the final tree produced by them
is deemed a good enough approximation of the full state tree.

4.2.1 Selection
Gradually expanding the tree breadth-first or depth-first are both possible,
but defective approaches. Trying to expand a tree with a big branching
factor breadth-first will result in a shallow tree with insufficient think-ahead,
resulting in poorly optimized decisions in highly strategic scenarios where
past behavior has a huge impact on future states; on the contrary, depth-
first search eliminates this problem, but unnecessarily expanding branches,
which are already known to be lacking reward, results in time wasting and
proneness to missing out potentially advantageous branches completely. The
selection subprocedure of MCTS identifies chance node leaves of the current
tree, whose expansion will most likely result in a solid final approximation,
based on upper confidence bounds applied to trees, or simply UCT.

The UCT is a mapping from MCT chance nodes to real numbers, which
signify the beneficialness of expanding these nodes. Selection then simply
descends the tree from root to leaves, while choosing between different path

32

options by maximizing UCT. UCT does not exist for decision nodes, for the
results of actions are determined by the transition function of the environ-
ment and cannot be chosen by the agent.

We calculate UCT for each child c of decision node d as follows:

UCT (c) = V (c)−minc′∈C V (c′)
maxc′∈C V (c′)−minc′∈C V (c′) + E

√
T (d)

T (c) + 1 , (4.6)

where C is the set of d’s child nodes, V is the value function, T is the visit
counter function, and E is a constant hyperparameter, which controls the
ratio of exploration/exploitation.

Since by visiting any chance node, d must be visited previously, so the
last term is gradually increasing for each unexplored action, maximizing
UCT for scarcely explored chance nodes. However if that’s the case, then
as T (d) approaches infinity, T (c) will too, and so

√
T (d)

T (c)+1 will approach zero.
Gradually removing the term from the equation completely, selection at
d gives way to the relative value instead, exploiting the knowledge about
expected cumulative rewards. Both the relative value and

√
T (d)

T (c)+1 are numbers
between 0 and 1, which lets us compare them with ease and even weigh their
importance, as expressed by including the parameter E.

After a chance node is selected, its corresponding action is executed; if
the resulting state-reward pair exists among this chance node’s children, se-
lection continues from the related decision node, otherwise expansion begins.

4.2.2 Expansion + Rollout
With a new state, reward, or both being discovered, a new decision node is
created and linked to the previously expanded leaf. For each valid action in
this newly explored state, a chance node is created and linked to it, creating
new leaves, and finally, the decision node is assigned an expected cumulative
reward estimate. This is achieved by rolling the episode out from this state,
taking random valid actions, and observing incoming rewards. The final
reward one achieves using this random policy is assigned to the newly created
node and represented by V in the Selection section.

4.2.3 Update
Now that a new decision node is added to the tree, its ancestral nodes are
updated from leaf to root: their values are adjusted so as to keep representing
the expected cumulative reward estimate with respect to the newly created

33

decision node:
V = 1

T + 1(r + TV), (4.7)

where V is the value estimate, T the visit count, and r the value estimate
of its updated or newly created child. Their visit counters are incremented
afterwards.

4.2.4 Finalization
After the loop is complete, we claim that the probability of any valid action
a being optimal at st is proportional to the visit count of its corresponding
chance node, so we take the visit counts of the root’s children, and divide
them by their sum to get a probability distribution, which is returned by
the MCTS algorithm. Although MCTS can be used as a standalone agent,
it is neural-network-less and as such out of our work’s scope, but it has been
included as it is a crucial part of the next algorithm.

4.3 AlphaGo Zero (AZ)
DQN falls under a category of agents who utilize value iteration, where the
agent tries to estimate the actual value function Q and extracts the optimal
policy from this function, while policy iteration agents represent the policy
directly and try to improve it to the point of convergence and optimality.
These agents’ neural networks accept an arbitrary state as an input, similarly
to DQN, but instead of outputting the expected cumulative reward received
by taking an action a, they output the probability of action a being part of
the optimal policy. Neural networks can also branch and output multiple
tensors. AlphaGo Zero, [32], is one such example: apart from the policy
function, the model outputs a single real number, representing the input’s
expected Q-value, which is used during its own training procedure.

The authors of AZ utilize a mini-max Monte Carlo Tree Search tech-
nique to gradually improve the network’s policy, while using the network
to guide the MCTS. As such, AZ achieves state-of-the-art results in games
of go, shogi, and chess, despite the sparse reward problem (the agent is
rewarded only for winning a game).

However, unlike go, shogi, or chess, which are all adversary (= featuring
two or more opponents instead of a single actor) and deterministic board
games, where the agents strive to defeat their opponents, we plan to cre-
ate a single-agent stochastic system based around survival optimization,
and the reward will be based upon the amount of simulation seconds after

34

reaching a terminal state. As such, AZ will be unfit for solving it, for it will
not fulfill AZ’s contract. Fortunately, the cause of this limitation is merely
using the mini-max version of MCTS in contrast to the expecti-max version
described above. The mini-max MCTS does work in a very similar manner,
except it has no need for chance nodes, as there is no such thing as chance
in deterministic environments.

4.3.1 Introduced MCTS adjustments
As the removal of chance nodes alone introduces no non-trivial changes to
the standalone MCTS itself (when the currently selected node is a chance
node, its action is immediately executed and the algoritm proceeds to the
next decision node), in this section, we will focus exclusively on the tweaks
AZ introduces to MCTS in the Selection and Rollout procedures.

Rollout

While the standalone MCTS utilizes a random policy to receive an estimate
about the value of an expanded state node, since AZ uses a neural network
which predicts state values, we can skip the rollout step and instead assign
the network’s predicted value of the new state to the new node. This ap-
proach does not only save time, but also yields better results as the network
improves.

Moreover, as the network also outputs the likelihood of each action lead-
ing from the new state being optimal, AZ utilizes this information to bias the
selection step towards such nodes, as it is a waste of time to explore subop-
timal nodes. When the new state node is created, apart from the predicted
value, it also receives a prior probability distribution P from the network,
which corresponds to the policy probabilities of each individual action one
can take from this state.

UCT

This was the idea behind claiming that AZ uses its neural network to guide
the MCTS. When the adjusted MCTS selects nodes for expansion, it too
does so based on a UCT function, but a new term is added to the equation,
the prior probability.

UCT (c) = V (c)−minc′∈C V (c′)
maxc′∈C V (c′)−minc′∈C V (c′) + P (c) · E

√
T (d)

T (c) + 1 , (4.8)

35

Finalization

As the MCTS returns the policy probabilities at st proportional visit counts,
[32] uses this strategy only for t ∈ [0, 30); for larger t, the authors let the
returned probability distribution have probability 1 for the most likely op-
timal action and 0 for other actions, but research conducted by [25] shows
that this may have negative impact on performance, so we have decided not
to utilize this approach.

4.3.2 The AZ algorithm
As we now obtain means to get a rough estimate of the optimal policy, we
can now describe the full AlphaGo Zero training algorithm in Algorithm 4.2.

Lines 7-26 show a single training episode. This is where special save
and restore operations come into play; after the current state changes in the
environment simulator, it is repeatedly restored before the selection phase
to properly enable tracing the state tree from the current state. Further
discussion regarding these operations is found in Section 6.6.

Line 9 initializes the Monte Carlo tree, whose root - after expansion -
receives a bias for its prime probabilities drawn from a Dirichlet distribution
at line 11. This is encouraged by [32], as it helps exploration, all the while
being a noise, which the network can learn to filter.

Lines 12-19 show the MCTS algorithm, employing the procedures de-
scribed in the previous section. Afterwards, pt is generated, a∗t identified and
executed, producing st+1 and rt+1. The original state is stored in a tuple
along with the estimated optimal policy probability and the true received
reward. After the episode is finished, lines 27-29 use the immediate reward
values to assign cumulative reward values to each state, as the stored tuples
are used for training. The training itself is executed only after N successive
episodes.

After each episode, if the newly generated state, st+1, exists in the current
MCT, the corresponding decision node is set to be the new root and the
Dirichlet noise is added to its prior probabilities. Since the network never
changes in-between episode steps, the new partial MCT would be generated
in roughly the same way (not exactly if T and R are stochastic, but the
data is valid nonetheless), so it is preserved and time is saved as the next
MCTS procedure will only need to generate M − T (new_root) nodes.

As the network is being trained, its value head (= output of the expected
state cumulative reward) is trained on true values sampled from the envir-
onment, which lets it converge very quickly, compared to the policy head (=

36

Algorithm 4.2 alphago_zero_algorithm
1: input: R, T , initial state
2: initialize Pθ,Vθ - single neural network with two outputs
3: training_data ← empty arraylist
4: repeat
5: t← 0
6: st ← initial state
7: repeat
8: save(st)
9: root← (st, 0)
10: expand(root)
11: P (root)← (1− ε) · P (root) + ε ·Dir(γ)
12: for i = 0 to M do
13: restore(st)
14: leaf ← select(root)
15: expand(leaf)
16: for all node ∈ path(leaf, root) do
17: update(node)
18: end for
19: end for
20: pt ∝ T (c) ∀c ∈ children(root)
21: a∗t ← argmaxa′∈α(st){a′|pt(a′)}
22: st+1 ← T (st, a∗t)
23: rt+1 ← R(st, a∗t)
24: training_data ← training_data + (st, pt, rt+1)
25: t← t+ 1
26: until st+1 is terminal
27: for all (si, pi, ri+1) ∈ training_data do
28: (si, pi, ri+1)← (s, p,∑t−i

j=0(rj+1))
29: end for
30: if N -th episode then
31: train Pθ on (s, p)
32: train Vθ on (s, v)
33: training_data ← empty arraylist
34: end if
35: until convergence

output of the likelihood that each action is part of the optimal policy), which
is trained on MCTS-generated data, since the probabilities as MCTS outputs

37

are heavily biased by the network, unlike the value. Looking back at equa-
tion 4.8, without the influence of relative value - the first term - the chance
nodes would be selected more-or-less according to the prior probabilities,
and so the MCTS’ output would differ insignificantly from the network’s
original predicted policy at st. But as the network learns to evaluate each
state, it consequently gains the ability to improve its policy.

38

5 Implementation analysis

The two following chapters will focus on the implemented systems we used
for all of our experiments. As was suggested in the introduction, we have
created a standalone environment and custom agents, which we compare in
terms of performance.

The environment being composed in order to remotely resemble the com-
puter game They Are Billions1, we have conveniently named it They Are
Trillions (or TAT, for short), in honor of the inspiration. The simulation
takes place on a two-dimensional surface, where the agent constructs dif-
ferent types of buildings in order to protect its main building, which is the
target of an ever-increasing horde of infected. The goal of the agent is to
find such policy that maximizes survival time of the main building, which
classifies the environment as a tower defense [5]. We designed it to be both
stochastic and partially observable, setting the bar high enough to be unsolv-
able by simpler agents, and implemented it in C for maximum performance.

As all of our agents will need neural networks to function, we have decided
to implement the agents in Python, partially using TensorFlow and Keras,
which are AI frameworks.

Our implementation will use TCP sockets as a means of transporting
TAT-relevant information to agent processes. It is reliable, fast over short
distances, but allowing for distributed computing as well, and frees agents
from the necessity of being implemented in the same language. As per our
assignment, the agents are to be implemented using TensorFlow, which is
primarily used in Python. Although TF API exists for multiple different
languages outside of Python, including C, the API is limited and trying to
use it would be an unnecessary hindrance. UDP datagrams, although fast,
are unreliable, and using pipes provides no significant advantages over TCP
sockets while losing the possibility of distributed computing.

Since the environment is used for querying states, it makes sense to
think of it as a stateful server, which would make the agents the clients.
As such, we intend to run the TAT process from the agent processes. The
final product of our work will therefore consist of two separate programs;
the Python agents (the exact type selectable by an input argument), and
the TAT server.

1http://www.numantiangames.com/theyarebillions/

39

6 Custom environment design

In this chapter, we will describe all principles and interactions in TAT,
while introducing a considerable amount of tunable constants, which can
be changed directly in our code to adjust TAT’s behavior at will. Their de-
fault values are included in our text and their impact on TAT will be briefly
discussed at the end of this chapter.

6.1 Basics

6.1.1 Map
The map in TAT is a 2D grid consisting of 13x13 squares, or fields. This
particular size has been chosen in order to keep the map shape a square,
allow for true central coordinates (odd size) while limiting the total amount
of possible states. We call the length of field’s side a unit. Each field has
discrete integer coordinates.

6.1.2 Entities
Two kinds of entities reside on the map, the buildings and the infected. The
infected roam freely, while the buildings are immovable and locked to the
field they have been built on. Each field can contain one building.

Combat

Both types will be thorougly described later, however, their key common
feature is posession of a certain amount of health ∈ R+. The buildings
interact with the infected via the process of combat, where one can attack the
other and vice versa, inflicting damage and reducing health. If an entity’s
health depletes to zero, it is destroyed/killed. Killing an infected has no
exceptional influence on the simulation, however, destroying a building by
infected results in all the building’s imaginary non-infected occupants to
become new infected, spawning at the center of the building’s field.

6.1.3 State transitions
The simulation contains a timer, t, which measures the amount of seconds
since the initial state. It is technically real-time, however, since the action

40

space includes a ’do nothing’ action, or an idle action, it can be viewed as
turn-based. For a human, the environment behaves like a dynamic one: after
each tick, if you do not specify an action, since the idle action is always valid,
it is automatically taken for you; in contrast, the artificial agent is queried
about which action to take after every tick of the simulation, pausing it in
the process. By definition, this makes the environment static, since there is
always some action between two different states, however, the agent has the
option to not influence the environment’s state by taking the idle action, so
the environment’s state changes purely by its internal transition procedures.
A theoretical alternative would have been to let the agent choose an action
based on a state st while updating to a state st+n until the agent returns an
action and then updating to st+n+1 = T (st+n, at), but we have ultimately
decided against it, with the reasoning being the following: since the returned
action would have been based on an outdated state and thus outdated set
of valid actions; this would force the simulator to use the idle action as a
sink for all the possible invalid outputs the agent would inevitably produce.
This n would be a random variable dependent on the machine’s conditions,
particularly its computational power; if we were to train such an agent,
deploying it on different machines would yield different policies, rendering
the approach unusable. Even if the technology would eventually progress so
far that for any conceivable agent n would be always zero, one could always
find a smaller ∆t > 0 tick time for which some agent implemented using the
technology will be unable to map current states to appropriate actions in
time.

6.2 The Infected

6.2.1 Appearance and position
The Infected are the antagonistic force in TAT and their influence will ul-
timately lead to terminal states. From the perspective of the environment,
each infected is an infinitesimally small point on the map, its position being
decimal (e.g. [1.0, 1.0], [5.67, 12.83], [0.5, 0.7], etc.), represented by IEEE 32-
bit floating point numbers, which makes them continuous, just like in the
original game. Since the size of the map is 13x13, both its coordinates must
always be in range [0, 13). If such a coincidence occurs, multiple infected
can occupy the same exact coordinates.

At the initial state, no infected exist on the map, and their number is
increased through the process of spawning. To spawn is synonymous to
’create’ at some location [X, Y], spawn being the contextually more appro-

41

priate word. The infected can be spawned through two possible means,
either through a horde spawner, which is a special field on the map at [6, 0],
spawning t infected every 5 seconds, or by successfully destroying a build-
ing. Both the spawner’s coordinates and its spawn rate are adjustable. The
reason behind choosing these default values was to give the agents enough
time to setup defences and prepare for the invasion, which allows for far
greater complexity of resulting strategies.

6.2.2 Movement
Basics

Likely the most obvious difference between the infected and the buildings is
the former’s ability to move around the map. If an infected is moving, it
always has a concrete floating point heading [X, Y], to which it approaches
at velocity 1 unit per second, which is constant for all moving infected. Not
unlike as with the spawner rate, this exact value became the infected velocity
mainly because it balances episode time.

Non-moving infected have velocity 0.

Movement bias

Every infected also has its own movement bias distribution B, which is a
discrete distribution over the set {0, 2π

p
, 4π
p
, ..., 2(p−1)π

p
}, where p = 2k, k ∈ N.

The purpose of this distribution is to bias the random movement of the in-
fected (described below) towards the main building’s field. The parameter p
specifies the amount of distinct angles in B. Infected spawned by the horde
spawner always have their movement biased towards the main building, since
they are part of the original attacking horde, as opposed to infected spawned
from destroyed buildings, for which B is uniform (no bias), since these infec-
ted are former inhabitants and as such are excluded from the original horde.
The exact shape of B is determined by Algorithm 6.1.

The final shape of B, if wrapped around a point and represented in polar
coordinates, resembles the shape of a discrete ellipse, as shown in Figure
6.1. The point [0, 0] in these polar coordinates is one of the ellipse’s focal
points. The parameter p determines its ruggedness and e its eccentricity.
Its maximal radius, which would normally be a, is non-parametric, since
as B(i) is a probability distribution, it is required for ∑p

i=0 B(i) to equal 1.
Realizing this, one could calculate a at line 2 immediately from e and p, but
such calculation can be easily avoided: instead, we ensure that B(i) has the
properties of a probability distribution function by line 16. Setting a to any

42

Algorithm 6.1 MB_focus
1: input: target angle αf ∈ [0, 2π), eccentricity e ∈ [0, 1), precision p = 2k

for k ∈ N
2: a← 1
3: focus_index← bpαf

2π c
4: opposite_index← (focus_index+ p

2) mod p
5: for θ = 0, i = focus_index to opposite_index do
6: B(i)← a(1−e2)

1−e cos(θ)
7: θ ← θ + π/p2
8: i← (i+ 1) mod p {first half clockwise}
9: end for
10: for θ = 0, i = focus_index to opposite_index do
11: B(i)← a(1−e2)

1−e cos(θ)
12: θ ← θ + π/p2
13: i← (i− 1) mod p {second half counter-clockwise}
14: end for
15: ∀i ∈ Z ∩ [0, p) : B′(i)← B(i)∑p

j=0 B(j)

16: return B′

positive number has no influence on the results (although numbers close to
0 can introduce rounding errors).

αf is simply the angle between [1, 0], the reference vector, and [XMB −
Xinfected, YMB − Yinfected]. For p, we use 256 for ease of computation, since
using unsigned 8-bit integers removes the need for modulation by 256, while
allowing the infected to move in a great range of distinct angles. e has been
empirically set to 0.8, so that the infected largely prefer to move towards the
main building as a horde, but preserve some notion of individuality, as they
are completely unorganized. Although unlikely, Figure 6.1 shows that it is
still quite probable for an infected to deviate from the best possible angle,
while moving away from the main building happens very scarcely.

Heading selection, random_roam

By default, the infected are randomly roaming. The random roam procedure
begins immediately after spawning and is described by Algorithm 6.2:

This means that the infected always choose a random heading, approach
it at velocity 1 unit per second, and wait for a second until choosing another
heading again, imitating the intended shamble-like movement of the infected.
By setting p to 256, we allow the infected to move in 256 different angles
with respect to the vector [1, 0], which we claim to be a negligible constraint

43

Figure 6.1: B(i) when visualized in radial coordinates. The longest line
points towards the main building. This distribution has e set to 0.8, just
like in the current TAT version, however p has been reduced to 16 in order
to emphasize the ruggedness.

on their movement.

6.2.3 Aggression
Vision range

From now on, we will commonly use L2(p0, p1) as the Euclidean distance
between inputs p0 and p1. Unless specified otherwise, a field has integer
coordinates (by definition).

Each infected has what is called a vision range. LetM be the map, a set
of all fields, and F be the field the infected is currently standing on (it has co-
ordinates [bxc, byc] if we let [x, y] be the infected’s true coordinates). Then,
the vision range is a set of fields Rinfected = {f ∈M : L2(F, f) ≤

√
29}, giv-

ing it a shape of a rasterized circle, as seen in Figure 6.2. The vision range’s
radius,

√
(29), has been set to this value in order for the rasterized circle to

contain no sudden discrete spikes (as shown in Figure 6.2, we can see that it
is quite smooth), and for optimalization reasons, the implementation does
not allow its easy customization (as this vision range is used for initializing
the map’s underlying structures, the points are enumerated manually).

Charging the buildings

The infected will immediately charge and attack any building built on a
field within their vision range, with disregard for its type or any other status.
Figure 6.3 shows how if we let A be the position of the infected and B be the

44

Algorithm 6.2 random_roam
1: input: position of infected x, y, movement bias of infected B
2: repeat
3: r ∼ U(2, 3) {a uniform distribution}
4: α ∼ B
5: ∆x← r cos(α)
6: ∆y ← r sin(α)
7: for all coord in x, y do
8: if coord + ∆coord /∈ [0, 13) {if coordinate is out of map bounds}

then
9: ∆coord← −∆coord
10: end if
11: end for
12: infected heading ← [x+ ∆x, y + ∆y]
13: walk to the heading destination
14: wait 1s
15: until disturbed

Figure 6.2: The unclipped vision range of infected standing at the center
field. Standing too close to the map borders clips the range.

45

Figure 6.3: Shows the heading of a charging infected (C). The square’s
inscribed circle radius is not to scale.

charged building’s field center, charging a building simply sets the infected’s
heading to a point on the intersection of line AB and a square centered at
B, parallel to the coordinate axes, and with inscribed circle radius = 0.55.
This movement is uninterrupted by pauses and can be performed under any
real angle, unlike when randomly roaming.

Target selection

The building content of an infected’s vision range can change as a result of
either creation/destruction of buildings inside its current vision range, or by
changing the vision range directly by the infected moving to a different field.
Each is handled in their own way, as defined by Algorithm 6.3.

Lines 4, 6, 11 and 18 are of particular interest to us, as they determine
the infected’s target in non-trivial situations. Lines 11 and 18 select the
target building according to L2 distance between its field’s center and the
infected, however, step 6 can select any newly seen building, regardless of
true distance to the infected. Moreover, at step 4, we claim that no closer
building than B exists. The motivation behind such different approaches is
computational optimization.

The original aim is for the infected to always charge the closest building,
which is what lines 11 and 18 achieve. The edge case occurs when the vision
range content changes as a consequence of the infected moving around and
changing its field in contrary to a building being created or removed directly
inside its vision range. This is visualized by Figure 6.4.

Notice the small variance between distances from fields in the zone of
immediate entry to the central field. The average difference between relat-

46

Algorithm 6.3 handle_vision_range_content_change
1: input: Rinfected at previous field Rprev, Rinfected at current field R, cur-

rently charged building B, current field F
2: if F of infected changes then
3: if B exists then
4: do nothing
5: else
6: charge the building at first/any field ∈ R \Rprev

7: end if
8: else if a building b is created on a field within R then
9: if B exists then
10: if center of b’s field is closer to the infected compared to B with

respect to L2 then
11: charge b
12: end if
13: else
14: charge b
15: end if
16: else if B is destroyed then
17: if R contains other buildings then
18: charge the building of the field within R whose center is the closest

to the infected with respect to L2

19: else
20: proceed with random roaming
21: end if
22: else
23: do nothing
24: end if

ive closeness of any newly seen buildings and the truly closest newly seen
building to the central field is indeed so small that the trade-off for increased
performance has been deemed insignificant: instead of comparing potentially
all 11 buildings in case of perpendicular central field change, or 15 buildings
in case of diagonal central field change, Algorithm 6.3, line 6 claims that any
such building is the closest and therefore saves time at negligible accuracy
cost.

Since the infected begins charging the building directly after noticing it,
no building in any of the following immediate entry zones can be closer to
the original target, which is exploited by line 4.

47

(a) Perpendicular change of F . (b) Diagonal change of F .

Figure 6.4: If a vision range moves and fields with new buildings appear
in it as a consequence, the dark gray area shows all such possible fields for
horizontal, vertical or diagonal movement. We call sets of such fields the
zone of intermediate entry.

Combat

When an infected finally reaches its heading at the end of the charge, it
starts attacking the building in an attempt to destroy it. Each infected re-
duces their target building’s health by 20 per second. After the building is
destroyed, the infected finds a new target (Algorithm 6.3, line 18), or con-
tinues roaming randomly (line 20). This is true for all infected participating
in destruction of the same building or those who are still charging it.

An important consequence of building destruction is the spawning of
additional infected. After a building is destroyed, s ∼ G(cb) infected are
spawned at the center of the destroyed building’s field, where G is the geo-
metric distribution and cb is their expected amount. cb is constant among
the same type of building, but varying across different building types, as
shown by Table 6.1.

All infected have health = 100, which is modifiable, much like their
damage per second, both being intertwined with the values in Table 6.1.
These values are comparatively small, which makes the infected very weak
individually, but dangerous in large amount, as was intended.

48

6.3 The buildings

6.3.1 Appearance and position
The other fundamental entity in TAT are buildings, which provide resources
and protection for the agent’s colony. The agent must construct buildings
so as to delay the inevitable destruction of its main building at field [6, 11]
- by the ever-increasing amounts of attacking infected - as long as possible.
The location is purposely designed to be far away from the horde spawner
so as to give the agents enough time to prepare their defence.

There are 5 different types of buildings (4 available for construction),
all having distinct properties. Each field on the map contains at most one
building.

Construction of a building takes infinitesimal time and costs gold. Gold
g ∈ R+

0 is a special variable in TAT, acquired over time and spent purely on
building creation. The agent uses a built-in field selector called the target
location for this purpose. At s0, the target location is [6, 6] and g = 30.
Through an action, the agent can either perpendicularly move the target
location, build one of the buildings directly at the target location, or remove
a building at the target location (which has no influence on and is not
influenced by the current amount of gold). Individual building costs are
shown in Table 6.1. The initial target location is set to the map’s center
in order to spare the agent a few actions should it decide to start building
at any point on the map, and gold is set to 30 in correspondence to the
building costs. Non-zero initial gold further increases the amount of available
strategies.

6.3.2 Types
Main building

Works as a government center and a power plant for the colony. It is unique,
unbuildable, irremovable and all states in which it is not existing are ter-
minal.

Not unlike the infected’s vision range, the main building has what is
known as a powering range. The definition is the exact same: a set of fields
on the map which are as close or closer to the main building’s field than r
units; the radius stays the same,

√
29. All buildings built on fields withing

this area are considered powered. Some building types require electrical
power in order to function properly, and the main building is its only source.
The powering range’s radius is adjustable and set to this specific value for

49

the exact same visual motivation as in with the infected’s vision range.
The main building also generates gold at a continuous rate of 3 per

second, which is tunable.

House

A fragile building, generates gold continuously at a rate 2 per second, also
tunable. Gold generation stacks additively with both other houses and the
main building. We went for these exact values particularly in order to motiv-
ate high risk/reward behavior in the agents. With houses generating nearly
as much gold as the main building, we theorize that the agent should prefer
to build them a lot, which forces it to properly defend the increasing area of
low-health buildings.

Turret

A defensive building and the only one that is capable of inflicting damage
upon the infected. It has its own attack range, similar to the other ranges,
but with radius =

√
10 units. This particular value posesses the same visual

property as
√

(29), but is smaller to prohibit turrets from killing the infected
from an unsatisfactorily safe distance. A turret’s attack algorithm is much
simpler that that of infected: it focuses on a single infected inside its range
until said infected dies or leaves the range, and always attacks if there are
any infected in range, the exact target being chosen ’randomly’ (first in the
set).

Turrets need power in order to attack. An unpowered turret simply idles
and starts attacking immediately after power is supplied, and a powered
turret stop attacking after power is lost.

Tesla tower

Spreads electrical power across the map. The Tesla towers (teslas for short)
have the same powering range as the main building, however, they do not
generate electricity themselves; they work instead as a ’repeater’, extending
the range of power distribution. Practically speaking, if a tesla stands on a
powered field, it powers all fields within its powering range; if it stands on
an unpowered field, it doesn’t do anything and stands idle, waiting to get
powered up.

Let the set {tesla, main building} be called nodes. Since the ranges
of all nodes are the same, it follows that A,B ∈ nodes : field(A) ∈
range(B) ⇐⇒ field(B) ∈ range(A), making A and B a connected pair

50

of nodes. Consequently, A,B,C ∈ nodes : conn(A,B) ∧ conn(B,C) =⇒
conn(A,C) by definition, and clearly field(A) ∈ range(A) for any A ∈
nodes. This gives rise to an equivalence relation R between all nodes ex-
isting on the map at any point, and if we let V be the set of such nodes
and E = {(A,B) : conn(A,B)}, we create an undirected powering graph
Gp = (V,E) with multiple possible connected components, which correspond
to the equivalence groups of R.

Whenever a tesla is added to or removed from the map, the graph is
reestablished and the connected components recomputed. After that, the
component containing the main building, C, is claimed to be powered, which
in turn powers on all fields f ∈ ⋃N∈nodes(C) range(N).

Wall

A wall is a cheap defensive building with a solid amount of health and a
small amount of expected spawned infected at destruction. That being said,
its only purpose is to provide a target for the infected while other buildings
do their respective jobs.

Type Cost Health DPS1 cb

Main building - 500 - -
House 10 100 - 4
Turret 40 500 50 4

Tesla tower 50 100 - 0.5
Wall 20 500 - 1.5

Table 6.1: Building stats

6.4 Simulator
A TAT episode either unrolls linearly (infected movement, combat damage),
or processes an event which interrupts its linear behavior, such as an infected
being spawned, a building being created, infected entering turret ranges and
getting attacked, arriving at headings, etc. By identifying and properly
handling each linearity breaking (LB) event, all of which are given by sections
6.2, 6.3, we arrive at a procedure which allows us to increment the state timer
t by any positive ∆t (Algorithm 6.4).

1Damage per second

51

Algorithm 6.4 integrate
1: input: ∆t > 0
2: t′ ← t+ ∆t
3: while LB event will occur between t and t′ do
4: tev ← time at which the soonest LB event occurs
5: simulate_until(tev)
6: handle(ev)
7: end while
8: simulate_until(t′)

Algorithm 6.5 simulate_until
1: input: final time t′
2: for all moving infected do
3: infected_pos← infected_pos+ (t′ − t) · infected_velocity
4: end for
5: for all ongoing combats do
6: target_hp← target_hp− (t′ − t) · attacker_dps
7: end for
8: h← amount of houses present
9: g ← g + (3 + 2h)(t′ − t) {g = amount of gold}
10: t← t′

We have opted for such method of state incrementation particularly be-
cause transforming the state st (time t) to state st+r (time t+r) by Algorithm
6.4 produces constant, predictable results for any choice of ∆t. The state
increments are integrated together and provide stable outcomes. The abil-
ity to adjust ∆t is utilized during training, evaluation, human testing and
visualization.

6.5 Actions
All possible actions have now been mentioned at least once in previous sec-
tions, but let us recapitulate them and specify conditions under which they
are valid.

We have omitted the fact that the main building must exist in order for
any action to be valid in Table 6.2, since it is true for all actions and thus
impractical to include in the table.

52

id Short description Valid
0 Idle (pass, do nothing) Always
1 Subtract 1 from the target loca-

tion’s first coordinate c1

c1 > 0

2 Add 1 to the target location’s
first coordinate c1

c1 < 12

3 Subtract 1 from the target loca-
tion’s second coordinate c2

c2 > 0

4 Add 1 to the target location’s
second coordinate c2

c2 < 12

5 Build a house at the target loca-
tion

g ≥ 10, no buildings, infected or
spawners occupy target location

6 Build a turret at the target loc-
ation

g ≥ 40, no buildings, infected or
spawners occupy target location

7 Build a tesla at the target loca-
tion

g ≥ 50, no buildings, infected or
spawners occupy target location

8 Build a wall at the target loca-
tion

g ≥ 20, no buildings, infected or
spawners occupy target location

9 Remove building at the target
location

such building exists, is not of
type ’main building’ and is not
charged by or in combat with any
infected

Table 6.2: TAT actions with validity conditions

6.6 Control actions
Section 6.5 enumerates all the possible actions an agent can take in TAT,
however, in order to enable execution of various training procedures over the
environment, three more distinct control actions are provided for the agent
systems to administer the environment’s state.

The first is the ability to reset the environment, which automatically
sets the current environment state to the initial state, allowing the agent to
apply reinforcement, search the state space and train itself after the episode
ends up in a terminal state.

The second and third being options to save and restore the state, which
is essential for certain agent types’ training procedures, including those dis-
cussed in our work. Manual saving and restoring of states is attainable
on the agent’s side: store the action history that led to st (= sequence of
actions applied after reset, resulting in st) to save the state, and reset the

53

environment before applying actions in the stored action history in the order
they were taken to restore the state. This is a perfectly valid (albeit still
sub-optimal) approach in deterministic environments, however in stochastic
environments, such as TAT, a certain probability P (s0

history−−−−→ st) ∈ [0, 1]
exists, invalidating the idea of following a set action history to end up at a
desired state. Moreover, since

P (s0
history−−−−→ st) =

t∏
i=0

P (si
ai−→ si+1), (6.1)

the probability becomes exponentially small as t approaches infinity, so if
one decided to repeatedly follow a stored action history until st is finally
obtained, resetting in case of failure, the expected complexity of such an ap-
proach would lie inO(E|T (s, a)|t). This would still be a valid method of state
restoration for environments with short episodes, fast reset and act and slow
or impossible save and restore, but since TAT episodes are comparatively
long and its state transitions are more complex than its representation, it is
very recommendable for the actual TAT realization to provide save/restore
control actions itself.

This breaks the original assertion that one agent should solve multiple
diffenent problems, because in order for any state/restore-dependent agent
to solve multiple problems, all of the representing environments must im-
plement the functionality. However, as there is currently no trivial way of
transforming a real world problem into an environment implementation, the
RL designer will be forced to create the environment himself and thus can in-
clude the save/restore functionality while being able to reuse the depending
agents.

A fourth control action, terminate, is included for convenience, and sig-
nals the environment that no more actions will be input by the agent system,
allowing for clean termination.

6.7 State output
TAT provides rough map information to the outside observer. The state
encoding informs agents about the conditions of each individual field, the
current target location and the amount of gold available. If a building occu-
pies a field, the agent is given information about its type and the amount of
sixteenths of its maximum health: if it was 500, then 16 for health in [500,
468.75), 15 for health in [468.75, 437.5), etc.; if the infected occupy a field,
only their number at this particular field clipped to 127 is given out to the

54

agent. The target location and gold is always disclosed precisely. The reas-
oning behind the specific building health and infected count outputs is the
ability to fit the full field description into a single byte during the encoding
phase, which is discussed in Section 6.9.

6.8 Data structures
As we have claimed in the Analysis chapter, the TAT environment has been
implemented in C with our primary focus being computational performance.
With no regard for ordering preservation, we utilized the trademark ability
of hashsets and hashmaps to adjust their size according to needs with their
original size having no influence on manipulation time. Sets have been cre-
ated for each distinct type of entity, grouping them in terms of interaction
with each other (such as buildings, infected, moving infected, ongoing com-
bats, etc.), and Algorithm 6.4 used for state transitions. For querying the
first occurring LB event, we deployed a priority heap, which is being filled
with identified LB events over the course of simulations.

The priority heap sorts LB events according to time of occurrence and
allows us to update this time should the need arise; an example being the
following: say t = 10 and an infected A finishes charging building Z, arriving
when Z’s health is 400, and as a consequence, a building_destroyed event E
at 10+400/20 = 30s is added to the heap. If an infected B charges the same
building, arrives and starts attacking at t = 12, Z’s health will already be
at 360, and so E’s time is advanced to 12 + 360/(20 + 20) = 21s. B might
become a target of an attacking turret, and if it dies at t = 18, Z’s health
will be 120, and E’s time will be delayed to 18 + 120/20 = 24s. The priority
heap has been designed with this necessity in mind (see Table 6.3), so that
it is capable of shifting the events around based on their changing priority
(time of occurrence).

Saving and restoring of states is achieved by directly cloning the under-
lying data structures. Such approach is efficient and only requires correct
pointer rewriting. An alternative would have been to use the application
checkpoint utility called CRIU, which dumps the entire process’ state to
disk, but among other communication related difficulties this method would
introduce, CRIU would backup the state of the pseudorandom number gen-
erator (PRNG) Xoroshiro +128 [7] we use, which would in turn determinize
resulting states given an action history on restoration. The PRNG’s seed
would have to be manually reset to a random number after each restoration,
but that would require another PRNG in the first place. The seed would

55

Name Contract T(n) of implementation
Hashset Unordered set of unique

items represented by a
hashcode function, requires
add(item),
remove(item)
and foreach(action)

add ∈ O(1)
remove ∈ O(1)
foreach ∈ O(n)

Hashmap A general mapping
between sets of items
X, Y . Requires
add(x, y),
remove(x),
get(x)
and foreach_pair(action)

add ∈ O(1)
remove ∈ O(1)
get ∈ O(1)
foreach ∈ O(n)

Priority heap A self-ordering data struc-
ture sorting elements by
key(item) function.
Requires
insert(item),
peek_first,
pop_first
and update(item)

insert ∈ O(log(n))
peek_first ∈ O(1)
pop_first ∈ O(log(n))
update ∈ O(log(n))

Arraylist An ordered set of items,
where removal is unneces-
sary. Requires
add(item)
and foreach(action)

add ∈ O(1)
foreach ∈ O(n)

Table 6.3: The most important data structures used in TAT implementation.
T(n) is amortized.

have to be generated and supplied from outside the TAT process, which we
consider inapt.

56

6.9 Communication

6.9.1 Protocol
All incoming and outgoing information must therefore be serialized into
a byte stream in a reconstructible manner. For this purpose, we have de-
veloped a custom communication protocol, which we describe in this section.

TAT first output

As soon as the agent’s socket is connected, TAT sends out essential in-
formation that stays constant throughout all episodes: a 23 byte message
containing the following in order: map edge size (1 byte, theoretically
up to 256 (as the coordinates are represented using 8-bit integers), but is
13 during all of our simulations and testing), total amount of possible
actions (1 byte, theoretically up to 32, as the actions are transmitted using
5 bits [see TAT input], but the current version includes only the 10 actions
from Section 6.5), the amount of building types (1 byte, theoretically
up to 8, as the building types are transmitted using 3 bits [see TAT regular
output], the current version includes 5), and the amount of maximum
health for each building type (4 bytes, IEEE float 32-bit, in order ’main
building, house, turret, tesla, wall’).

TAT input

As the agent only needs to specify action or control action id, it needs a
single byte to do so. The 3 most significant bits represent the control
action id, 1 for reset, 2 for save, 3 for restore and 4 for terminate. If they
are zero, the 5 least significant bits are interpreted as the desired action
id, and the respective action is taken.

TAT regular output

For each incoming action, the TAT environment must send out four vari-
ables: the encoded state, the reward for taking this action, which following
actions are valid, and whether the current state is terminal.

The first 13 bytes of each message are fixed. These contain the reward
value (4 bytes, IEEE float 32-bit), the gold value (4 bytes, IEEE float
32-bit), the target location (2 bytes, 1 byte for each integer coordinate),
the valid actions (2 bytes, where the i-th most significant bit reflects the
validity of the (i − 6)-th action; 1 if valid and 0 if invalid, Table 6.4), and
the flags (1 byte, the least significant being 1 if the state is terminal).

57

VA bits 0 0 0 0 0 0
Significance 0 1 2 3 4 5 6 7 8 9 A B C D E F

Action - - - - - - 0 1 2 3 4 15 6 7 8 9

Table 6.4: Valid action encoding.

The remaining bytes of each message are used to communicate the rest
of the encoded state, which is the positional information about field states.
The state of a single field is encoded in 8 bits the following way: the most
significant bit is 1 if the field contains a building, and 0 otherwise. If
the field does indeed not contain a building, the next 7 bits represent the
amount of infected at this field, [0 - 126] for the respective amount or 127
for 127 or more infected. If however the field does contain a building, the
next 3 bits encode its type, [0 - 4] for main building, house, turret, tesla
and wall respectively, leaving 5, 6, and 7 unused, and the last 4 bits encode
the amount of sixteenths of maximum health the building currently has,
reduced by 1: [0 - 15], 15 for health in (15

16 ,
16
16], 14 for health in (14

16 ,
15
16], etc.

A zero health building is never encoded, since it would be destroyed. The
agent knows the maximum health values of each building type prior to this
communication, so it can calculate the approximate real amount of health
each building has.

Fields however carry positional information, which has to be commu-
nicated as well, as the map itself is a matrix (rank 2 tensor). Two different
methods of matrix encoding exist: the sparse encoding and the dense encod-
ing; the former explicitly communicating the coordinates of each encoding-
worthy field before the actual field’s encoding, ignoring empty fields, and
the latter making use of perfect ordering of elements in a matrix, encoding
each field in order and thus implicitly communicating each field’s coordin-
ates, but having to encode empty fields, which carry no useful information.
Since both field coordinates are in the range [0, 255], a sparsely encoded field
takes up 3 bytes of space while densely encoded fields only take up 1 byte.
Therefore, it is optimal to encode the map sparsely if and only if the amount
of non-empty fields is less or equal to b132

3 c, so while building the infected
field encodings, we calculate their amount and add the amount of buildings;
only then deciding whether to send each individual map state in a sparse or
dense manner. If the dense encoding is currently optimal, the remaining 132

= 169 bytes of the message contain field encodings, where the field at [x, y]
is encoded by the (x+ 13y)-th byte, and if the sparse encoding is currently
optimal, the second least significant bit in flags is set to 1 (indicating sparse
encoding), the next 2 bytes represent the required sparse encoding length,

58

and each following triplet of bytes contains the field’s encoding, its x and
its y coordinate respectively. Using sparse encoding, infected are included
before buildings in the message, but this has no impact on the result. Their
order is undetermined, as they are enumerated by their hashsets/maps.

The final length of each message is then either 182 bytes, or 15 + 3n
bytes, specified inside the message in the latter case.

6.10 Main loop, parameter discussion
Concluding the entire chapter, we arrive at the top layer of our TAT sys-
tem, which provides an interface for the agents to operate and navigate the
environment.

Algorithm 6.6 main_loop
Require: free port
1: input: ∆t
2: listen(port)
3: client ← accept()
4: message ← get_first_output()
5: send(client, message)
6: while not terminate do
7: repeat
8: input ← get_input(client)
9: until input exists
10: parse_input(input)
11: integrate(∆t)
12: message ← get_regular_output()
13: send(client, message)
14: end while

All of the default values of adjustable constants have now been explained,
which leads us to describing what kind of alteration would changing them
introduce.

Tampering with the map size, initial target location and gold would
work as a difficulty setting, as it directly influences the state complexity and
episode length. Changing the infected movement constants would probably
not be desirable, as they could hardly be thought of as a shambling horde
anymore. Vision, targeting and powering range adjustments should not be
easy to roll out either, since their current shape specifically minimizes the
influence of paradoxes raising from rasterizing a circle, such as the infected

59

suddenly changing their direction by large angles as a result of a building
appearing in an outlier field in their vision range. Using the Bresenham
midpoint circle algorithm we have implemented minimizes this problem and
as such, when adjusting map size, these ranges can be tuned correspondingly.
Finally, we strongly encourage experimenting with building costs, health,
dps and cb values, as that will directly influence which building types should
be built as a part of the optimal policy. As the utility-cost ratio of each
building is context dependent (some building types work well when clustered,
some are dependent on each other for powering/protection, etc.,) finding the
right balance is a non-trivial task and as such, we leave it as a part of future
work.

60

7 Agents

As the environment is now defined and implementation decisions associated
with it explained, we are now ready to delve straight into describing the
individual agents we have attempted to solve TAT with.

7.1 DQN, AZ (EXPI)
As we have claimed in Chapter 4, we will use DQN as our baseline agent,
introducing no significant adjustments to the algorithm described in [20].

The second tested agent will be the AZ with an expecti-max MCTS
instead of the original mini-max version. Although the introduced change
is negligible, it would be incorrect to call this agent "AlphaGo Zero", so
although it is still heavily inspired and based upon [32], we have decided to
dub it "Expecti-max Policy Iteration" (or EXPI for short).

7.2 Redundancy augmentation
In Algorithm 4.2, apart from ε and γ, which merely amplify exploration,
we recognize two other hyperparameters, M , the amount of MCTS decision
nodes the tree approximation will have before returning probability estim-
ates, and N , the amount of episodes for which training data is generated
before updating network parameters. We can see that by increasing them,
we gain some training improvement for the cost of extending the total train-
ing time.

The larger N is, the smoother and more accurate the training, since
more data is provided to the network, but as collecting the data takes N
episodes, the network will be updated less times in the same training time.
One must find the right balance between these in order to achieve maximum
performance.

However, we find M to be even more impactful than N , as changing
it directly influences the accuracy of pt and a∗t produced by the MCTS
algorithm. It is crucial to generate these as accurately as possible, because
reinforcing the network with imprecise policies is undesirable. If M is too
small, the policy improvement becomes negligible, if too large, the episodes
get drawn out and rolling one out takes too much time. In this section, we
will focus on a technique we call redundancy checking, which adjusts UCT

61

in order to get the most out of the M decision nodes available.

7.2.1 Motivation
In many different simulations, including most of those aforementioned, traffic
light control, robot navigation, with board games and TAT alike, an arbit-
rary state st does not determine the action history required to get from s0

to st. As with chess for example, 1. e4 e5 2. d4 d5 leads to the same game
state as 1. d4 d5 2. e4 e5; in TAT, moving the target location up and then
right results in the exact same state distribution as moving it right first
and then upwards, and even though these states or state distributions are
equivalent, their action histories are not, and therefore, during MCTS, they
will each be represented by their own set of decision nodes. As the MCTS
is incapable of recognizing the similarity of their parent chance nodes, they
will both contest the importance of being expanded during the UCT step of
selection, and as the resources are distributed to them equally, the resulting
approximation of the chance node subtrees will be less detailed than if only
one of these chance nodes were focused for expansion.

7.2.2 Realization
For deterministic environments, where chance nodes always have exactly
one child decision node, one can immediately recognize a duplicate state
after generation (by storing all decision nodes in a hashset), and assigning
some arbitrary negative value to that decision node, like −1000. As the
value propagates upwards, the parent chance node will most likely never
be picked in the UCT step again, which is a desirable result. However, in
stochastic environments, since the agent does not possess knowledge about
T and R, it can never know whether two chance nodes result in the same
state distribution for certain. This forces us to devise a custom metric,
which determines how equivalent any two chance nodes are and whether
any of them is worth expanding.

We claim that if two state distributions are equivalent, they must have
an identical domain (For clarity, a chance node distribution domain can
yield that ’executing chance node Z can result in states A, B or C ’, as it
is a set, in contrast to a chance node distribution, which yields information
of type ’executing chance node Z can result in state A with probability 0.1,
state B with probability 0.85, and state C with probability 0.05 ’, as it is a
function/mapping).

The essential structure amplifying the original MCT is a new hashmap,

62

which maps chance node state distributions domains to a) the first such
explored distribution domains (called prime), and b) all other such ex-
plored distribution domains. When any chance node is expanded and a
decision node is added to its children, its underlying state distribution do-
main changes and so does the domain hashmap: if the old domain was prime,
a new prime is appointed choosing randomly from the corresponding non-
prime nodes, if the new domain doesn’t exist in the hashmap, it becomes a
new prime, otherwise it is added to the corresponding non-prime set, etc.
The hashmap always keeps track of what state distribution domains exist in
the MCT, and always has a clearly appointed prime chance node for each
domain equivalence class.

With all chance nodes separated into equivalence classes with a repres-
enting prime node, we arrive at a new UCT formula:

UCT (c) = Vr(c) + P (c) · (E

√
T (d)

T (c) + 1 −R(c)), (7.1)

Vr(c) being the relative value from equations 4.6 and 4.8, we added the term
R called redundancy to the chance node’s exploration value, where if p =
corresponding prime distribution, q = chance node distribution,

sim =
∑
i(piqi)

||p|| · ||q||
(7.2)

confidence = min
k∈{pi}∪{qi}

k (7.3)

R(c) =

0 if c is prime
sim+ ((sim > 0.9)− sim) · confidence

1+|confidence| otherwise,
(7.4)

assuming the reader is familiar with the notion that, unless specified other-
wise, boolean expressions like a > b are equal to 1 if true and 0 otherwise.
Through this expression, we claim that the distributions are equal if their
cosine similarity is higher than 0.9 and different if it’s lower, being more
confident in the claim if we have more data supporting the similarity. For
example, if the state frequencies of two chance nodes are [1, 2] and [10, 22],
then although very similar, we are less confident that the distributions are
equal compared to frequencies like [40, 80] and [100, 221], which are less
similar. The higher the confidence, the strongly is the final result shifted
towards 0 (non-redundant) if the similarity is below or equal to 0.9, and
towards 1 (redundant) if the similarity is above 0.9.

63

The redundancy of chance nodes is propagated to their parents as well.
When the redundancy of any node changes, then its parent’s redundancy
becomes mincR(c) for each child chance node c if the parent is a
decision node, since decision nodes are only as redundant as the least
redundant chance node, and ∑

d(R(d) · T (d))/∑d(T (d)) for each child
decision node d if the parent is a chance node, since selecting a child
of a chance node is random and so its redundancy is the expected redundancy
of its children. Keep in mind that the redundancy of a decision node can be
changed only by this propagation process.

If a redundant node is selected even despite the heavy bias against this
(by having high relative value and being scarcely explored), the redundancy
checking is not applied for any of its children, in case a new distribution
domain would be explored, which would result in an unreachable prime,
locking out entire branches of the state tree.

The redundancy checking being the only addition to EXPI, we name
this agent "Expecti-max Policy Iteration with Redundancy", or EXPIRE.
By ignoring redundant action histories and further optimizing the state tree
approximation, we expect this agent to outperform the previous ones.

64

8 Experiments

8.1 Network model
For all our experiments, we use a 20-layer residual network, or ResNet, built
according to [2]. It is a direct extension of a convolutional network - those are
great for multidimensional data processing - which utilizes skip connections,
allowing for automatic depth selection.

The input to this network is always a rank 4 tensor of shape [?, 13, 13, 8],
the first dimension being the batch dimension, allowing us to input any
number of states to the network and receive their corresponding outputs in
one forward propagation thanks to broadcasting. Axes 1 and 2 represent the
X and Y dimensions on the map respectively, while the third axis represents
field states at [X, Y]. If there is a building at [X, Y], then [X, Y, type] is set
to b n16 ·max_hpc, where type = 0, 1, 2, 3, or 4 for building types main, house,
turret, tesla, or wall respectively; n being the amount of sixteenths of health
received from the environment. If there are infected at [X, Y], their amount
clipped to 127 is shown at [X, Y, 5]. For target location, [tX, tY, 6] is set to
1, and ∀x, y : [x, y, 7] = bgoldc.

For DQN, the network outputs a rank 2 tensor of Q-values with shape
[?, |A|], and for EXPI/RE, it outputs a rank 2 tensor of policy probabilities
with shape [?, |A|] and a rank 1 tensor of current state values with shape [?].

For value outputs, we minimize MSE, and for probability outputs, we
minimize categorical cross-entropy, which is equal to −∑x∈T p(x) · log q(x).
We use this loss function instead of MSE, because it is applicable for meas-
uring distances between probability distributions. When both losses are
present in a model at the same time, they have the same weight, and we
apply the adaptive momentum SGD technique for their reduction, with para-
meters learning_rate = 0.001, β1 = 0.9, β2 = 0.999, and batches of size
32.

8.2 Agent parameters

8.2.1 DQN
During the DQN training procedure, we set the experience replay circular
buffer size to 5000 and ε : f(episode) = 2−0.0005 ·episode with 10 epochs of

65

training for each candidate training step and the target network parameters
being set to the candidate’s each 100 episodes.

8.2.2 EXPI/RE
For our EXPI/RE experiments, we let ε = 0.25 and γ = 0.03 like in the
original AZ implementation at [32], while setting N = 50 and M = 500. We
found these values to balance the training stability and time well.

8.3 Training procedure

Figure 8.1: DQN - TAT process interaction diagram

Figure 8.2: EXPI/RE - TAT process interaction diagram

The agent system, written in Python, creates a subprocess of TAT and
interacts with it as shown in Figures 8.1, 8.2.

66

Considering the evaluation metric for agents, we claim that the best
agent is one that achieves the highest evaluation reward after a set amount
of training time. Following this approach, we let each agent train for ∼ 96
hours total (as each agent improves only each N seconds, the real training
time is always smaller, since the training loop is terminated mid-way). After
finishing the training period, evaluating the agents as they are updated and
logging their results, the agents’ performance is visualized by Figure 8.3. The
Y values show the average reward received by the respective agents during
50 evaluation episodes, where the policy used is defined by Qθ(s, .) and Pθ(s)
for DQN and EXPI/RE respectively. Unlike during the experiments in [32],
where AZ was evaluated using the same policy used for training (MCTS
guided by Pθ and Vθ), our goal was to create agents whose policies would
be represented purely by neural networks.

Figure 8.3: Agent performance

Agent Average time per episode Average time per update Final reward
DQN 37s 1h 1min 35s 27
EXPI 8min 53s 7h 24min 10s 30

EXPIRE 8min 58s 7h 28min 29s 37

Table 8.1: Average training times and final rewards of each agent

67

9 Conclusion

After the training was completed, we’ve noticed that the standard DQN
struggled to improve the random policy by any significant value. Regression
analysis shows that the DQN agent actually does improve linearly, roughly
by 4 reward points per 3000 hours of training, which is much too slow to
be given any further notice. As this result was backed by [20], we see that
as clever an agent the DQN might be, it fails to solve the more intricate
environments, such as TAT.

The EXPI agent, which is itself a variant of AlphaGo Zero designed to
solve non-adversary stochastic environments, did find an improvement over
DQN, but has been stuck on a local minimum since hour 30. The likely cause
is the choice of a too smallM compared to [32], who used 1600 instead of our
500. This limitation caused a lack of think-ahead for EXPI, which resulted
in its inability to find a better policy.

However, the effects of this MCTS limitation have been significantly neg-
ated by EXPIRE, which used the redundancy checking technique we have
introduced to optimize its state tree search algorithm, surpassing EXPI’s fi-
nal evaluation reward advantage over DQN three times, with its final reward
falling slightly short of 37. Since EXPIRE is de-facto an extension of AZ,
our results hint at the fact that the original mini-max AZ too might benefit
from a similar redundancy checking procedure, which would be much easier
to implement (see Section 7.2.2).

Our work can be followed up on by parallelizing the MCTS procedure
in EXPI/RE agents, which is non-trivial considering the complexity of our
redundancy checking implementation, or by extending these agents to handle
infinite episodes with state loops and a discount factor, detecting loops using
similar technique to the redundancy check, and calculating the expected loop
value. Apart from balancing the entity parameters in TAT, repeating the
training procedure several times to test the consistency of our results would
be very useful, which is something we have unfortunately been forced to omit
as a single pass of the training procedure takes 12 days, but it is something
we will look into in the future.

68

10 Common abbreviations

Abbreviation Meaning
AI artificial intelligence
RL reinforcement learning
NN neural network
SGD stochastic gradient descent
TAT They Are Trillions
LB linearity-breaking
PRNG pseudo-random number generator
DQN Deep Q-learning
AZ AlphaGo Zero
UCT Upper Confidence bound applied to Trees
MCTS Monte Carlo Tree Search
EXPI Expecti-max Policy Iteration
EXPIRE Expecti-max Policy Iteration with REdundancy

69

Bibliography

[1] ADL. An introduction to q-learning: reinforcement learning, 2019. URL
https://www.freecodecamp.org/news/
an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/.
Q learning 3.

[2] admin. Introduction to resnet in tensorflow 2, -. URL
https://adventuresinmachinelearning.com/
introduction-resnet-tensorflow-2/. ResNet in TF/Keras.

[3] Anas Al-Masri. What are overfitting and underfitting in machine learning?,
2019. URL https://towardsdatascience.com/
what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690.
Overfitting explained.

[4] Mohammad Ashraf. Reinforcement learning demystified: Markov
decision processes (part 1), 2018. URL https://towardsdatascience.com/
reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690.
MDP basics.

[5] Phillipa Avery, Julian Togelius, Elvis Alistar, and Robert Leeuwen.
Computational intelligence and tower defence games. pages 1084 – 1091, 07
2011. doi: 10.1109/CEC.2011.5949738.

[6] Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional
Perspective on Reinforcement Learning. arXiv e-prints, art.
arXiv:1707.06887, July 2017.

[7] David Blackman and Sebastiano Vigna. Scrambled Linear Pseudorandom
Number Generators. arXiv e-prints, art. arXiv:1805.01407, May 2018.

[8] Branko Blagojevic. Reinforcement learning with sparse rewards, 2018. URL
https://medium.com/ml-everything/
reinforcement-learning-with-sparse-rewards-8f15b71d18b. Sparse
reward.

[9] Amar Budhiraja. Dropout in (deep) machine learning, 2016. URL
https://medium.com/@amarbudhiraja/
https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5.
Dropout explained.

[10] Aneek Das. The very basics of reinforcement learning, 2017. URL
https://becominghuman.ai/

70

https://www.freecodecamp.org/news/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/
https://www.freecodecamp.org/news/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/
https://adventuresinmachinelearning.com/introduction-resnet-tensorflow-2/
https://adventuresinmachinelearning.com/introduction-resnet-tensorflow-2/
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://medium.com/ml-everything/reinforcement-learning-with-sparse-rewards-8f15b71d18b
https://medium.com/ml-everything/reinforcement-learning-with-sparse-rewards-8f15b71d18b
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

the-very-basics-of-reinforcement-learning-154f28a79071. RL
basics.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv e-prints, art. arXiv:1810.04805, October 2018.

[12] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang,
Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified Language Model
Pre-training for Natural Language Understanding and Generation. arXiv
e-prints, art. arXiv:1905.03197, May 2019.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[14] Ray Heberer. Why going from implementing q-learning to deep q-learning
can be difficult, 2019. URL https://towardsdatascience.com/
why-going-from-implementing-q-learning-to-deep-q-learning-can-be-difficult-36e7ea1648af.
Q learning.

[15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv
e-prints, art. arXiv:1502.03167, February 2015.

[16] Pierre Jaumier. Backpropagation in a convolutional layer, 2019. URL
https://towardsdatascience.com/
backpropagation-in-a-convolutional-layer-24c8d64d8509. Conv.
backprop.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[18] Conor Lazarou. Reward hacking in evolutionary algorithms, 2019. URL
https://towardsdatascience.com/
reward-hacking-in-evolutionary-algorithms-c5bbbf42994b. Reward
hacking.

[19] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang.
The expressive power of neural networks: A view from the width. NIPS
2017, pages 6231–6239, 2017. URL http://papers.nips.cc/paper/
7203-the-expressive-power-of-neural-networks-a-view-from-the-width.
pdf.

71

https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071
https://towardsdatascience.com/why-going-from-implementing-q-learning-to-deep-q-learning-can-be-difficult-36e7ea1648af
https://towardsdatascience.com/why-going-from-implementing-q-learning-to-deep-q-learning-can-be-difficult-36e7ea1648af
https://towardsdatascience.com/backpropagation-in-a-convolutional-layer-24c8d64d8509
https://towardsdatascience.com/backpropagation-in-a-convolutional-layer-24c8d64d8509
https://towardsdatascience.com/reward-hacking-in-evolutionary-algorithms-c5bbbf42994b
https://towardsdatascience.com/reward-hacking-in-evolutionary-algorithms-c5bbbf42994b
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning. arXiv e-prints, art. arXiv:1312.5602,
December 2013.

[21] Thanh Thi Nguyen, Cuong M. Nguyen, Dung Tien Nguyen, Duc Thanh
Nguyen, and Saeid Nahavandi. Deep Learning for Deepfakes Creation and
Detection. arXiv e-prints, art. arXiv:1909.11573, September 2019.

[22] Michael Nielsen. Neural networks and deep learning, 2019. URL
http://neuralnetworksanddeeplearning.com/chap1.html. Cost
function.

[23] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press; eBook(NeuralNetworksAndDeepLearning.com), San Francisco, CA,
USA, 2015. ISBN N/A.

[24] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time
Limits in Reinforcement Learning. arXiv e-prints, art. arXiv:1712.00378,
December 2017.

[25] Aditya Prasad. Lessons from alphazero (part 3): Parameter tweaking, 2018.
URL https://medium.com/oracledevs/
lessons-from-alphazero-part-3-parameter-tweaking-4dceb78ed1e5.
AZ temperature.

[26] Schartz Rehan. The shape of tensor, 2019. URL
https://mc.ai/the-shape-of-tensor/. Tensor shapes.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
91–99. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.
pdf.

[28] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2016. URL https://ruder.io/optimizing-gradient-descent/.
Gradient descent variants.

[29] Ihab S. Mohamed. Detection and Tracking of Pallets using a Laser
Rangefinder and Machine Learning Techniques. PhD thesis, Université
Côte d’Azur, 09 2017.

72

http://neuralnetworksanddeeplearning.com/chap1.html
https://medium.com/oracledevs/lessons-from-alphazero-part-3-parameter-tweaking-4dceb78ed1e5
https://medium.com/oracledevs/lessons-from-alphazero-part-3-parameter-tweaking-4dceb78ed1e5
https://mc.ai/the-shape-of-tensor/
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://ruder.io/optimizing-gradient-descent/

[30] Irhum Shafkat. Intuitively understanding con-
volutions for deep learning, 2018. URL https://towardsdatascience.com/
intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1.
Convolution explained.

[31] Chathurangi Shyalika. A beginners guide to q-learning, 2019. URL
https://towardsdatascience.com/
a-beginners-guide-to-q-learning-c3e2a30a653c. Q learning 2.

[32] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. arXiv e-prints, art. arXiv:1712.01815,
December 2017.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,
2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[34] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher.
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing
Shaped Rewards. arXiv e-prints, art. arXiv:1911.01417, November 2019.

[35] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. arXiv
e-prints, art. arXiv:1609.03499, September 2016.

[36] Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David
Silver. A Monte Carlo AIXI Approximation. arXiv e-prints, art.
arXiv:0909.0801, September 2009.

[37] John Tunnicliffe Wesley Bourne, Robin Gallimard. Environments, 2006.
URL https://www.doc.ic.ac.uk/project/examples/2005/163/
g0516302/environments/environments.html. Environment properties.

[38] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep
image: Scaling up image recognition. arXiv preprint arXiv:1501.02876, 7
(8), 2015.

[39] Renchun You, Yuan Yao, and Jia Shi. Tensor-based ultrasonic signal
processing for defect detection in fiber reinforced polymer (frp) structures.
2017 6th International Symposium on Advanced Control of Industrial
Processes (AdCONIP), pages 312–317, 2017.

73

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c
http://jmlr.org/papers/v15/srivastava14a.html
https://www.doc.ic.ac.uk/project/examples/2005/163/g0516302/environments/environments.html
https://www.doc.ic.ac.uk/project/examples/2005/163/g0516302/environments/environments.html

[40] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
arXiv e-prints, art. arXiv:1611.03530, November 2016.

74

	Introduction
	Reinforcement learning primitives
	Environment
	Definitions
	Properties
	Reward
	Bounding states and the discount factor

	Agent
	Policy function

	Neural Networks
	Tensors
	Examples
	Usage

	Tensor operations
	Broadcasting
	Indexing
	Slicing
	Matrix-like multiplication
	Convolution
	Batch Normalization
	Bias
	Activation function
	Dropout

	Function approximation
	Cost function
	Optimization

	Regularization

	Existing agents
	Deep Q-learning network (DQN)
	Q-value
	The Q-learning algorithm
	Amplification by neural networks

	Expecti-max Monte Carlo Tree Search (MCTS)
	Selection
	Expansion + Rollout
	Update
	Finalization

	AlphaGo Zero (AZ)
	Introduced MCTS adjustments
	The AZ algorithm

	Implementation analysis
	Custom environment design
	Basics
	Map
	Entities
	State transitions

	The Infected
	Appearance and position
	Movement
	Aggression

	The buildings
	Appearance and position
	Types

	Simulator
	Actions
	Control actions
	State output
	Data structures
	Communication
	Protocol

	Main loop, parameter discussion

	Agents
	DQN, AZ (EXPI)
	Redundancy augmentation
	Motivation
	Realization

	Experiments
	Network model
	Agent parameters
	DQN
	EXPI/RE

	Training procedure

	Conclusion
	Common abbreviations
	Bibliography

