
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor Thesis

Continuous Integration
System Implementation

Pilsen, 2020 Auchynnikau Ihar

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 21st July 2020

Auchynnikau Ihar

Abstract
The main goal of this work is to design and implement the Continuous
Integration (CI) system in the BootLoader department of ZF Engineering
Plzeň. The transition to continuous integration reduces the complexity of
code integration and makes the development cycle more effective by early
detection and elimination of errors and contradictions.

Bachelors thesis describes the process of development and implementa-
tion of Continuous Integration system, which includes analysis and descrip-
tion of the build and test tool chain used in the Bootloader department,
architectural design, choosing appropriate technologies and their implement-
ation. The thesis also describes possible extension of the CI system.

Abstrakt
Cílem této práce je navrhnout a implementovat systém Continuous Inte-
gration v oddělení BootLoader společnosti ZF Engineering Plzeň. Přechod
na CI snižuje složitost při integrace kódu a umožňuje jej efektivněji vyvíjet
včasným odhalením a odstraněním chyb.

Bakalářská práce popisuje proces vývoje a implementace CI systému,
který zahrnuje analýzu a popis toolchainu používaného v Bootloader od-
dělení. Součástí prace je návrh architektury, výběr vhodných technologií,
implementaci. Práce také popisuje možné rozšíření CI systému.

Contents

1 Introduction 7

2 Principles, concepts and SW tools 8
2.1 Continuous Integration and Continuous Delivery 8
2.2 Tools for CI/CD . 10

2.2.1 Jenkins . 10
2.2.2 Bitbucket . 12
2.2.3 Jira . 12
2.2.4 Groovy . 12
2.2.5 Library lib_groovy.jar 13

3 Analysis and description of the build-and-test tool chain
used in the Bootloader department 14
3.1 Basic information about the bootloader team 14
3.2 Description of the current build-and-test tool chain 15

3.2.1 AURIX microcontrollers 15
3.2.2 Lauterbach Trace32 15
3.2.3 Vector CANape . 15
3.2.4 Vector CDM studio 16
3.2.5 Software signature tool and Gate Keeper 16
3.2.6 ClearCase . 17

3.3 Analysis of the current build-and-test toolchain 18
3.3.1 Build . 18
3.3.2 Testing . 19
3.3.3 Release . 20
3.3.4 Conclusions of the manual approach 20

4 Design CI system 22
4.1 Replacing the manual evaluation 22

4.1.1 Build . 23
4.1.2 Testing . 23
4.1.3 Release . 24

4.2 Evaluating possibility of parallelization 24

5

5 CI system implementation 26
5.1 VDI configuration . 26

5.1.1 Accesses . 26
5.1.2 Programs . 26

5.2 Jenkins installation and configuration 27
5.2.1 Master . 27
5.2.2 Agent . 28

5.3 Project structure . 29
5.4 Pipelines . 30

5.4.1 Build . 30
5.4.2 Testing . 31

5.5 Groovy scripts . 31
5.5.1 initialise.groovy . 31
5.5.2 bootloader.groovy . 32
5.5.3 sendMail.groovy . 32
5.5.4 deleteResultFolder.groovy 34
5.5.5 bootloaderTest.groovy 34
5.5.6 sendMailTest.groovy 34
5.5.7 versionChecker.groovy 34

5.6 Tools . 35
5.6.1 Build log parser . 35
5.6.2 CMT checker . 37
5.6.3 Library lib_groovy.jar 38

6 Possible extensions 39
6.1 Build . 39
6.2 Testing . 39
6.3 Release . 39
6.4 Tools . 40

7 Conclusion 41

Bibliography 43

6

1 Introduction

Nowadays, issues related to continuous integration are very relevant. This
practice of software development allows to consolidate working copies into a
common main development branch several times a day and perform frequent
automatic builds of the project to identify potential defects quickly and
solve integration problems.The transition to continuous integration reduces
the complexity of code integration and makes it more predictable by early
detection and elimination of errors and contradictions.

The main goal of this work is to design and implement the Continuous
Integration (CI) system in the BootLoader department of ZF Engineering
Plzeň. It will allow to reduce the cost by fixing the code defect due to its
early detection, speed up code development by means of building and testing
on the servers and also increase the quality of the code.

Bachelor’s work will be performed on the basis of an analysis of the
accepted Continuous Integration and Continuous Delivery approaches in ZF
Engineering and the literature on this issue.

This work consists of five chapters. The first chapter describes the prin-
ciples, concepts, and tools used in continuous integration and continuous
delivery. The second chapter describes and analyses the build and test tool
chain used in the bootloader team. The third chapter is dedicated to design-
ing a CI system. The fourth chapter describes the creation of a CI system,
as well as tools and scripts, created during the development of this system.
The final chapter discusses future extensions for this system.

7

2 Principles, concepts and
SW tools

This chapter describes the principles, concepts, and tools used in continuous
integration and continuous delivery. Understanding the principles of CI /
CD is necessary for further realization of bachelor’s thesis.

2.1 Continuous Integration and Continuous
Delivery

Continuous integration (Figure 2.1) a practice in which software de-
velopers continuously or frequently integrate their work with that of other
members of the development team [11].

Figure 2.1: Collaboration via continuous integration

Continuous integration is a software development practice in which de-
velopers routinely combine software code changes in a central repository,
after which build, testing, and launch are automatically performed. The
concept of continuous integration is most often applied to the build or integ-
ration stage of the software release process and includes both the automation
component (for example, the continuous integration or build service) and
the development culture component (for example, learning to integrate fre-
quently). The main objective of continuous integration is to quickly find and
fix errors, improve software quality and reduce the time spent on checking
and releasing new software updates [12].

8

To speed up CI, it’s convenient to parallelize tests on some powerful plat-
form.

Business value of CI:

• Accelerate Delivery - achieved by the fact that we immediately find out
about the build error and, accordingly, we can begin to fix it faster.

• Repeatability - the whole process is repeatable, that is, if no changes
have occurred, then the assembly will also be successful (or not suc-
cessful).

• Automation - there is no need to manually run the assembly, on a
person’s computer or build server, there is no need to prepare the
assembly - pump out the sources from source control, etc.

Continuous integration naturally leads to the practice of continuous
delivery: the process of automating the deployment of the software to the
testing, system testing, staging, and production environments (Figure 2.2).
[11]

Figure 2.2: Continuous integration and continuous delivery

Continuous delivery is one of the fundamental principles of the develop-
ment of modern applications as it extends the practice of continuous integra-
tion due to the fact that all code changes after the build stage are deployed
in a test and/or working environment. With proper implementation, de-
velopers will always have a ready-to-deploy built software instance that has
passed the standardized testing procedure.

Continuous delivery allows developers not only to automate testing at
the module level, but also to perform diverse checks of application updates
before deploying them to end users. Such testing may include testing the user
interface, loading, integration, API reliability, etc. All this allows developers

9

to check for updates more thoroughly and identify potential problems in
advance [12].

Basically, for a continuous delivery process you need to perform manually
at least one step: approve the deployment in a production environment and
run it. The continuous delivery pipeline can include additional steps, either
manually or automatically In complex systems with many dependencies[2].

2.2 Tools for CI/CD
This sub-chapter will describe and analyze the tools that will be used in the
process of continuous integration and continuous delivery. In this chapter
there will be no comparison and selection of tools for the created project,
since the tools, that are the standard for the tooling and bootloader teams
will be used. Tooling team is engaged in continuous integration in ZF En-
gineering Plzeň.

2.2.1 Jenkins
Jenkins is an open source automation tool. Plugins to enable continuous
integration are part of Jenkins. Jenkins is mainly used to implement con-
tinuous build and testing of projects, this makes it easier for developers to
integrate changes into the project. This approach also makes it easier for
users to get a new build. Jenkins enables continuous software delivery for
integration with a wide range of testing and deployment technologies. This
product is written in Java.

With Jenkins it’s possible to speed up software development through
automation. Using Jenkins it is possible to combine all kinds of software de-
velopment life cycle processes, including build, documentation development,
testing, packaging, deployment, static analysis, and much more.

Continuous integration in Jenkins is achieved through plugins. There
are plugins for integrating specific tools. For example, Git Client, Python,
HTML Publisher, Dashboard View, etc. If the required plugin does not
exist, the programmer can create it by himself, which is supported by the
Jenkins community. There are many tutorials and videos for creating plu-
gins for Jenkins [8].

Features:

• Jenkins is a stand-alone Java application that can run on Windows,
Mac OS X, and other unix like operating systems.

10

• Hundreds of plugins can be found in the Update Center, so Jenkins
integrates with almost any tool related to continuous integration and
continuous delivery.

• The possibilities of Jenkins can be almost unlimited expanded thanks
to the plug-in connection system.

• Various modes are available. They are Freestyle project, Pipeline, Ex-
ternal Job, Multi-configuration project, Folder, GitHub Organization,
Extensive Pipeline.

• The next feature is Jenkins Pipeline. According to the official Jenkins
web page, Jenkins Pipeline is a set of plugins that supports the imple-
mentation and integration of continuous delivery pipelines in Jenkins.
A continuous delivery pipeline is an automated expression of the soft-
ware transfer process from version control to users and customers.

• Jenkins allows to run builds with various conditions.

• Jenkins can work with Libvirt, Kubernetes, Docker, etc.

• Using the REST API, developer can control the amount of data re-
ceived, update config.xml, delete jobs, receive all builds, receive/up-
date job description, perform builds, enable/disable tasks [7].

Advantages:

• It is an open source tool with community support.

• It has over 1000 plugins to facilitate the work. If the plugin does not
exist, then it can be easily created.

• It is free.

• Jenkins is built on Java and therefore works on all major platforms.

Disadvantages:

• Jenkins is a dedicated server (or several servers) which is required. It
entails additional costs for the server itself, etc.

• It takes time to set up Jenkins.

• Installing a large number of plugins can lead to maintenance prob-
lems and sometimes Jenkins does not even restart successfully after
updating the plugin.

• There are many limitations on the Jenkins API.

11

2.2.2 Bitbucket
Bitbucket is a web service for hosting projects and their joint development,
based on the Mercurial and Git version control system. Bitbucket has an
improved code preview system, which requires less time for a complete ex-
change of information (time to reverse the direction of data transfer), as well
as for a request to include a code.

Bitbucket integrates with Jira and creates a system for bug tracking.
It allows users not to leave the current tool in order to receive a report

on the status of the ticket or to correct an error. Bitbucket has built-in chats
in which users can exchange messages and leave comments [3].

The ZF is currently transitioning from ClearCase to Git, so new projects
like CI are using Git. Older projects use ClearCase, but they are gradually
moving to Git.

2.2.3 Jira
Agile development methods are used in the tooling and bootloader teams.
Such methods are a series of approaches to software development focused on
the use of interactive development and dynamic formation of requirements
to ensure their implementation as a result of constant interaction within
self-organizing working groups consisting of specialists in various fields.

Jira Software is an agile project management tool that supports any agile
methodology such as Scrum, Kanban and so on.

Scrum is one of the agile methodologies in which a product is created
as a series of iterations of a fixed duration. The structure of this platform
consists of four components. They are sprint planning meetings, stand-ups
(daily Scrum meetings), sprints, and retrospectives [9].

This methodology will be used In the developing of the CI system. All
tasks are necessary to create a continuous integration system and they will
be recorded in the Jira. Sprint planning and evaluation of the past sprint
will be held every two weeks. Comments will be written to all tasks as they
are completed.

2.2.4 Groovy
Groovy is an object-oriented programming language developed for the Java
platform as an alternative one to the Java language with the capabilities of
Python, Ruby and Smalltalk.

Groovy uses Java-like syntax with dynamic compilation of bytecode in
the JVM and works directly with other Java codes and libraries. The lan-

12

guage can be used in any Java projects or as a scripting language [6].

Groovy features (distinguishing it from Java):

• Is a scripting language.

• Has a static and dynamic typing.

• Contains built-in syntax for lists, associative arrays, arrays and regular
expressions.

• Short circuiting mechanism exists in Groovy.

• Contains overload operations.

The main advantage of this language is its deep integration with Jenkins.

2.2.5 Library lib_groovy.jar
This library was developed by the tooling team and it is a set of scripts to
facilitate the development of CI projects.

This library makes it easy to work with ClearCase, configuration files,
emails, executable files, logs, and so on. ClearCase will be described below.

The library is written in Groovy, supplied as a jar file and is periodically
updated. When developing a CI system, functions and modules will be
added to this library.

13

3 Analysis and description of
the build-and-test tool
chain used in the
Bootloader department

Since the CI system for such team as a bootloader will be created for the
first time, it was necessary to gain knowledge about how the development
cycle in this team occurs, what structure the software has, what it is used
for, analyze the team wishes of the automation and their expectations from
creating the CI system.

For this, before the start of development, several meetings were held with
the bootloader team. At the meetings, wishes were heard for a system of
continuous integration, options were proposed for how it would look. In
addition to the meetings, an introduction was made to the structure of the
team, to development approaches in this team, to the developed software,
to the programs that are used by this team.

This chapter will describe and analyze the tool chain used in the boot-
loader team to develop software.

3.1 Basic information about the bootloader
team

The bootloader team develops and tests a boot software for the AURIX
microcontrollers. This software allows customers to upload and run their
applications on microcontrollers received from ZF Engineering Plzeň. There
are some programming languages, for instance, C, C++, Python,which are
used for software development in the team.

Bootloader team use hardware from companies Vector and Lauterbach.Such
programs as Lauterbach Trace32, Vector CANape, Vector CDM Studio are
used For build-and-test in the Bootloader team. Programs,developed in the
tooling team are used to sign software. ClearCase is used for the storage of
versions .

14

3.2 Description of the current build-and-test
tool chain

Further, the described tools are used by developers from the bootloader team
and will be presented on the VDI or VOBs. The basics of working with these
tools are key prerequisite for the correct implementation of the CI system.

3.2.1 AURIX microcontrollers
Microcontrollers are an integral part of any modern machine. For example,
10-year-old BMW 7 has from 60 to 65 microcontrollers. Microcontrollers
control ECU functions such as braking, steering, power for windows and
seats, headlights and taillights as well as safety check to monitor other active
microcontrollers. These data show the importance and necessity of develop-
ing microcontrollers and software for them.

AURIX (Automotive Realtime Integrated NeXt Generation Architec-
ture) is the 32-bit Infineon family of microcontrollers designed for the auto-
motive industry. AURIX was designed to meet the highest safety standards.
Its multi-core architecture is based on the use of up to three independent
32-bit TriCore processors [1].

Minimum knowledge of microcontrollers’ origin and purpose allows us
to understand the essence of this project. These microcontrollers with the
software developed by the bootloader team are used in a large number of
cars of well-known brands.

3.2.2 Lauterbach Trace32
The Trace32 debugger makes it possible to test embedded hardware and soft-
ware by using the on-chip debug interface. A single on-chip debug interface
can be used to debug all cores of a multi-core chip such as AURIX microcon-
troller. Debugging an Infineon TriCore device requires a Lauterbach Debug
Cable together with a Lauterbach Debug Module.

This program is applied in conjunction with with CANape for testing
software on a physical unit.

3.2.3 Vector CANape
CANape is a software tool from Vector Informatik. This developing soft-
ware is widely used by OEMs (original equipment manufacturer) and ECU

15

(electronic control unit) suppliers of automotive industries. The main aim
of the usage is to calibrate algorithms in ECUs at runtime.

The parameters of a control algorithm can only be determined in a lim-
ited extent by using a laboratory model. The algorithms of the functions
are a permanent fixture in the ECU program. Parameter values such as
characteristic maps and curves can only be determined and optimized by
measurements at the test bench and in driving trials. Solving these challen-
ging ECU development tasks is possible with a CANape [4].

The bootloader team uses the CANape while testing the software, send-
ing commands to the microcontroller with preinstalled developed software
and analyzing the output data. Also, bootloader team uses the CANape for
loading the software to the memory of the microcontrollers.

A CANape license is required to use CANape. The number of licenses is
limited, which will affect the design of the CI system.

3.2.4 Vector CDM studio
Vector CDM studio is an efficient tool for editing parameters and setting
files. It is used to display, compare and edit parameters created in ECU
calibration. Filters are used to reduce the number of parameters shown on
the screen in the process of solving complex tasks. In addition to calibrating
parameter values, it can take values from different files and merge them to
create new version levels [10]. Vector CDM studio is installed with Vector
CANape, as these programs are the part of the same package.

This program allows the Bootloader team to change parameters in an
already built project without rebuilding it again. That in turn allows to
build the project once, and later on when testing or providing ready software
to the customer it allows to customize it quickly . This approach reduces
the time between the customer’s request to provide the software with the
new parameters and to provide this software directly . It also helps to avoid
errors that may occur at the stage of build of the project under certain
circumstances.

3.2.5 Software signature tool and Gate Keeper
The entire ZF group uses SW tools developed by ZF Engineering Plzeň to
sign the software. This tools let to count cyclic redundancy check (CRC) and
to sign software developed in ZF. This in turn guarantees the authenticity
of this software. The programmer can configure the rights to the end user
of the software by combining software signature tool and CDM studio.

16

Gate Keeper is used to connect and maintain a connection with a key
server. In the case of using the Software signature tool the user must be
connected to the key server with the help of Gate Keeper. This server allows
you to generate new keys, certificates, and also allows you to determine
variety of rights the user has.

3.2.6 ClearCase
ClearCase is a version control system developed by IBM’s Rational Soft-
ware division.

ClearCase is a tool for managing the process of creating a software
product. Management is carried out by controlling versions of all files in-
cluded in the project, providing administrators, developers and managers
with full information about the current status of the project. Simply put,
the program creates a special database (VOB) in which it stores all the
accompanying information about all files with their versions that were put
under control. The accompanying information also indicates the person and
the time of changes which were made to a specific version of the project file
or directory. The entire history of changes is displayed in graphical form, in
the form of a version tree [5].

Views are used to work with files in ClearCase. View is the workspace
in which changes are made to files. In Windows Explorer the view looks like
any other folder. Configspec is used for creating a view.

The configspec is a text file that contains rules for selecting versions of
elements whish should appear in a view. ClearCase was one of the first
SCM (Source Code Management) products that included not only version
control capabilities, but also workspace management with the usage of an
management using an invariant approach with the help of which developers
can elaborate high-quality software products in short terms and support
existing products without getting complexity in their versions. The main
difference from other version control systems is not only the fact that Clear-
Case has a more global approach to solving the task of version control, but
also that this program use special utility "oMake" to assemble the project
into an executable file.

This tool is used at all stages of development since it allows all developers
to have access to the latest version of the software and make changes to it.
Also, the use of this tool saves the developer from losing the already written
code in the event of a software error or hardware breakdown. It allows you
to go back to the previous version, for example, if a critical error is detected
in the current one.

17

3.3 Analysis of the current build-and-test tool-
chain

Currently, the first (1G) and second (2G) AURIX microcontrollers of two
generations are used. These two generations are different in structure, what
leads to differences in the software developed for them. A VOB has been
created for each AURIX generation. These VOBs contain all versions of
the boot software from bootloader team. These two VOBs are identical
in structure. The software for the first and second generation has the same
structure, despite being different. These factors allow a person working with
the first generation to switch to work with the second one quickly and vice
versa. These factors will also create one CI system for two generations. The
differences will only be in the configuration files.

Software development in the Bootloader team consists of three main
steps: build, testing and release. Deliverables are created from source codes.
Deliverables are executable files, configs, SQL scripts, etc. Build is work
products received from source codes. It is created both manually on demand
and by automated assembly systems on a schedule.

A release is a build that a development team provides to a consumer.
Both, a team of testers and users can be in the role of a consumer of the
release. An internal release is what is given to the consumer within the com-
pany or team accordingly. An external release is accordingly given out. Each
subsequent step includes some parts of the previous one and is impossible
if any problems were found in the previous step. Build is carried out every
time when something is changed and merged. Testing is done after each
build. The release is carried out once in a certain period.

Build, testing and release are currently performed manually. It brings
the disadvantages and advantages, which will be described below.

3.3.1 Build
Build is the first step in the build and testing chain. This step allows to
create a new version of the software, the reliability and quality of which will
be tested in the next step.

In build case, the programmer needs to carry out the following steps:

1. Create a view using the latest version of configspec. This view contains
the files necessary for the build as well as the build results.

2. Run batch file that will build the project. This batch file contains calls
to other batch files and make commands.

18

3. Run batch file three more times with the different parameters for gen-
erating statistics, lint logs and do make check.

4. Copy all the necessary generated files to local computer.

5. Start with the second step for the next variant. Under the option we
can see the build project for another customer. Builds for different
customers differ from each other only in their parameters.

The programmer must have ClearCase installed on his local computer to
build the project successfuly.

The constant participation of the programmer is necessary according
to this approach to the build of the project. The project is built directly
on the programmer’s computer, which can take all the resources of this
machine. That in turn does not let the programmer to do anything else
during the project build. The build speed depends on the characteristics of
the computer.

3.3.2 Testing
At this step, the software is checked for errors. For example, checking for
the user’s presence of access rights to parts of the software that he should
not have, or vice versa, the absence of any rights. Regression tests are used.

In case of testing, the programmer must complete the first two steps from
the build as well as:

1. Launch signature tools for signing the generated versions of the pro-
gram.

2. Reserve a license for CANape.

3. Run the batch file, which will create different test copies of the software
using CDM studio.

4. Run Trace32 and CANape.

5. Use CANape, upload the test version of the software on the AURIX
unit.

6. Use CANape run test scripts. Track script execution in Trace32 and
control the results in CANape.

7. Follow all the previous steps for the next variant.

19

A programmer must have the following programs installed on his local
computer. they are ClearCase, Vector CANape, Vector CDM studio.

During testing as well as during the build, the constant participation of
the programmer is necessary. Also, the programmer must run all the scripts
for testing manually and also control their results manually. It can lead to
additional errors.

3.3.3 Release
The release must contain the project build, test results and documentation.
The release must also be registered in ClearQuest. IBM Rational ClearQuest
is a centralized database that records information about detected defects and
required changes.

The release is the final and last frequent step in the development of soft-
ware, but it is also the most time-consuming and responsible part. Software
is provided to the customer after release. The programmer must follow all
instructions strictly and monitor all steps at the release stage. A mistake at
this stage can bring reputational and financial losses to the company.

A release is possible only if there were no errors detected during the build
and testing.

3.3.4 Conclusions of the manual approach
Manual approach allows the programmer to create the project as well as
generate the minimum number of logs and build statistics.

Advantages of manual approach:

1. The programmer always monitors all stages of the build and testing
the project.

2. The programmer responds to the founded error immediately .

Disadvantages of manual approach:

1. The programmer must constantly be near the computer and monitor
the progress of the build and testing. It takes a large amount of working
time. When the programmer does not need to monitor the progress of
the build he nevertheless cannot work on his computer as the build uses
all the resources of this machine. Limiting the resource consumption
of the build will stretch the time required for the build.

20

2. Lack of logs and statistics complicates the detection of errors or may
prevent from identifying an error.

3. The programmer who makes the release becomes responsible for the
entire project.

This approach takes a lot of time that programmers could spend on the
development and reduces the quality of progress. All the advantages of a
manual approach are leveled out by the correct approach to creating a con-
tinuous integration system. By the way, a correctly designed CI system will
allow to reduce programmer’s responsibility for the performance of the soft-
ware.

21

4 Design CI system

The created CI system must meet the following requirements:

• Implement a tool for replacing the manual evaluation in the toolchain
by an automated evaluation Wherever it is possible,.

• Evaluate the possibility of parallelization of the builds over multiple
Jenkins agents. If the parallelization speed-up the builds, you should
implement it.

• Groovy or Java can be used for the implementation of CI . The tools
can be standalone command-line executables or a library.

Design is an essential part of any small or large project. For the imple-
mentation of a continuous integration system designing is as important step
as developing this system. Errors, which were made at the design stage, can
fatally affect the submission of the entire system.

This chapter will describe crucial steps required to implement a CI sys-
tem. An analysis will be made over the possibility of parallelizing parts of
the build.

4.1 Replacing the manual evaluation
Jenkins Master must be installed, configured and run on the pre-prepared
VDI (Virtual desktop infrastructure) to replace the manual launch of the
build and testing. Jenkins Master will launch jobs on other Jenkinses
named Agents. Agents will installed on other VDIs. All necessary programs
described earlier must be installed and configured On VDIs with Jenkins
Agents.

A job (Check Job) will be created in Jenkins that will run every five
minutes and monitor the appearance of new versions of the software. Con-
figspec is a trigger that indicates the emergence of a new version of the
software. Check Job which is using groovy script will check for a new ver-
sion of configspec. It is possible to perform job triggering from ClearCase,
but it requires a plugin and it is not reliable. When a new version of config-
spec is detected, another job (Build/Test Job) will be launched. It in turn
will build or test the project. It depends on the parameters of the job. The
division into two jobs is dictated by the fact that the Build/Test Job can be
launched not only by the trigger, but also by the schedule or manually.

22

Jobs at startup will clone from git configuration files, libraries and code
files to perform the required tasks. Job in Jenkins will have a small declar-
ative pipeline that will describe how to clone another pipeline from git. This
pipeline will run groovy scripts which in turn will do the main part of the
work.

This structure was created because it is necessary to have as little code
as possible in Jenkins. That will allow, if necessary, switch from Jenkins
to any server in the shortest possible time or in case of any problems with
the current Jenkins master will allow to create a new master in the shortest
possible time and not lose information from the old one.

4.1.1 Build
A set of groovy scripts and libraries for the Build Job will allow to:

• Create view, mount VOBs, prepare work environment.

• Build the project.

• Generate build log.

• Programmatically analyze the build results and logs, generate statist-
ics.

• Copy generated files to the share.

• Send an email about a successful or unsuccessful build. Mail will con-
tain results of build, statistics and links to result files and folders.

• Remove view and unmount VOBs.

• Delete old results if it is necessary.

Build automation will be the first part implemented. All solutions un-
dertaken at this stage will be subsequently used at the testing and release
stage. Since the CI for the bootloader team will be the first CI of this type,
there may occur some situations when it is necessary to remodel some parts
due to some problems at the implementation stage.

4.1.2 Testing
Testing will consist of two parts. the first is testing on the simulation of a
microcontroller and the second is based on a real physical unit. First, the

23

software will be tested on a simulation. If the tests pass successfully, it will
be tested on a real unit.

Testing will consist of two parts because of several reasons. Firstly, the
use of simulation will save the resource of the microcontroller, since the
memory of the microcontroller has the final possible overwrites. This num-
ber is estimated in thousands. Secondly, the number of microcontrollers is
limited and they are necessary for developers in their work. Testing will oc-
cupy them thereby slowing down the development. The need to use testing
on a physical unit exists due to the fact that the simulation may also contain
errors. What is more, not all parts of the microcontroller can be made the
part of the simulation.

The simulation will be provided by the bootloader team and does not
require any additional modifications. The simulation will run on VDI. Sim-
ulation program will be located on the bootloader VOB.

A computer with pre-installed programs and an attached microcontroller
will be provided for testing on a physical unit.

Test Job has the same steps as Build Job but some of the groovy scripts
and libraries will be different.

Jobs created for testing on a real unit and on a simulation will have the
same code. The differences will be in the configuration files. This solution
will simplify and accelerate the development of CI system.

4.1.3 Release
Although the release is a mandatory part of software development, it will not
be implemented as the part of the bachelor’s work but it will be implemented
later. Before this step is implemented in the development of the CI system,
all parts of the build and testing should be fully carried out.

4.2 Evaluating possibility of parallelization
Because when test and build different components the same files are used.
Since parallelization was not supposed when developing in the bootloader
team, there is no protection in the build code against simultaneous access
to files of several variants. To avoid these errors the following solution was
proposed. Namely, builds will be parallel but a separate view will be created
for each parallel build. This solution ensures that one build will not affect
the results of another one (Figure 4.1).

Although each component consists of variants that can also be built in
parallel, the variants will be built in series. The reason for this is that the

24

Figure 4.1: Build steps

project is fully built only with the first variant. Next variants will use already
created binary files in which only the parameters are changed. The creation
of a huge number of views (one view is for each variant) will not lead to
significant acceleration, if possible, to start the required number of parallel
processes at the same time but will lead to a significant increase in the
loading on resources and an increase in the total build time. In the absence
of the required number of parallel processes the build time will increase,
the total build time will also increase due to switching processors between
processes.

Parallelization will be implemented by using pipeline and only with the
build. Testing will be carried out step by step because at the moment the
software created for testing does not allow parallelization.

25

5 CI system implementation

To establish the continuous integration system it was necessary to configure
the obtained VDI, create the jobs in Jenkins, generate pipelines, write groovy
scripts and set up additional tools for processing the results. This chapter
will define all of the above.

5.1 VDI configuration
Since the standard set of programs was preinstalled on the obtained VDI,
which did not include programs specific for the bootloader, it has been ne-
cessary to install them. Moreover, all Jenkins JOBs on VDI run under the
pooluser account. Pooluser account is an account that has many different
access rights but is not a real user. So that the pooluser can log in to VDI,
it should be configured in a certain way.

5.1.1 Accesses
It was necessary For the pooluser to configure an access to the VOBs which
contained merged projects and some programs necessary for work. This part
of the work was done by the IT department.

It was also necessary to enable RDP access for the pooluser to VDI
because Jenkins will be installed under the pooluser account. For this reason
the pooluser was added to Remote Desktop Users and Direct Access Users
groups.

5.1.2 Programs
The following programs have been installed. they are Vector CANape, Vec-
tor CDM studio. Installing these programs was not a trivial task as two
versions of CANape had to be installed. This happened because testing
requires version 16 of CANape but for editing binary files it was necessary
to use CDM studio from CANape version 13. CANape versions are higher
than 13. it doesn’t provide api for access to CDM studio. ClearCase has
been preinstalled. Lauterbach, Trace32, Gate Keeper, Signature tool do not
require installation and are located on the bootloader VOBs. However, while
developing a continuous integration system the Gate Keeper and Signature
tool programs were updated to the latest versions.

26

5.2 Jenkins installation and configuration
Two VDIs and two instances of Jenkins were used for this project. The first
instance is the master which contains jobs and launches them. The second
instance is an agent. Only one agent was created, since at this stage the
amount of its resources was sufficient. If necessary it is possible to increase
the number of agents. Agent is managed by a master. The agent is located
on the VDI where the build will run.

Using Master together with agents allow builds on these agents, thereby
reducing the load on the master server, perform builds on various software/-
operating systems, and simultaneously run different steps of the same build
on different Jenkins agents. For example, running parallel builds. Job ex-
ecution logs from agents are visible on the master. The master also stores
the build history.

After installing Jenkins, it was necessary to configure its auto start in
the case of rebooting VDI. A reboot may occur, for example, if a software
updates on VDI.

5.2.1 Master
A pre-installed Jenkins master was obtained for this project. It was ne-
cessary to configure security credentials in pre-installed Jenkins master to
connect to the git, to configure the path to the agent as well as to create job
for building, testing and release.

The following steps were done to give Jenkins an access to the git repos-
itory in which the project was located:

• A personal access token has been added to the Bitbucket (Figure 5.1),
which allows Jenkins to pull and clone project from the repository.
Personal access token is a substitute for login and password.

• An item containing this token in encrypted form was added to the
Jenkins credentials.

Further, the user can use the ID of this token to clone the git repository
by using Jenkins. If necessary, the token can be configured in such a way
that Jenkins will be able to do the commit.

Then in Jenkins pipeline type jobs were created allowing to build and test
the project. Four jobs were created. Two were made for different generations
of build and two for different generations of testing. Each job is run according
to the schedule via cron. A scheduled launch is used to make sure that the

27

Figure 5.1: Personal token

project will operate in full working order at the beginning of the next week.
For example, the H 20 * * 5 rule says that the job is launched every Friday
after 8 o’clock in the evening. Symbol H says that the job should not be
launched exactly at the time indicated below but approximately at this
time. This property allows Jenkins to decide whether he has the resources
to complete the build now or it should wait a while. 20 is the time. 5 is
the day of the week. Also each job can be run by another job which in turn
checks for a new version of the software. Two additional jobs were created
for this reason. the Job which checks the new version of the software, runs
every five minutes. During the run this job blocks the Build job. In turn
the Build job also blocks the Check job during its run. A trigger which says
that a build or test job should be run is the modification of the version of
the configspec file in ClearCase. Configspec file must have a label. Label
is a user-defined name attached to a version. Labeling is the last step in
merging project changes.

5.2.2 Agent
Standard installation package of the Tooling team was used for the installa-
tion of Jenkins agent. This installation package includes all necessary plugins
and is deployed on a properly configured VDI in minutes.

The agent must be started with the path parameters to start and connect

28

to the master. Path parameters contain a link to the agent node in the
master and a secret, which contains the secret for connecting to the master
and identifying itself as a node.

Secret and link are generated on the master (Figure 5.2).

Figure 5.2: Connect agent to Jenkins

To do this it is necessary to go to the master’s web interface and choose
Jenkins / Nodes / New Node, then enter the name, number of executors,
the remote root directory and select launch method "Launch agent via Java
Web Start". The path to the node and the secret will be generated with the
help of Jenkins.

5.3 Project structure
Since the project consists of many scripts and configuration files, all files were
grouped into directories. The main folder of the project contains scripts and
the following directories:

• pipelines contain pipelines

• config contains configuration file for each component

• configSpec contains Configspecs for access to bootloader VOBs. These
Configspecs contain rules for getting access to the latest version of the
Configspec which is necessary for the build.

• project_lib contains tools that are not part of scripts and can be used
separately.

• rules contain rules and files for the BuildLogParser

29

• tmpl contains HTML template for email and CMTChecker output file.

• variants_cfg contain configuration files for the CMTChecker

5.4 Pipelines
Each step whether it is a build, testing or release consists of some steps.Each
step is represented by one or more scripts. Pipelines describe the sequence
of execution of these scripts.

The build pipeline contains five consecutive stages. The first stage is
’Git clone’. This stage copies all the necessary files from git to agent.The
’Git clone’ step was separated into a stage because it uses only Jenkins’
capabilities for cloning and does not use groovy scripts. The second stage is
’Initialise’. This stage runs the initialization script which is described below.
The ’Initialise’ step was separated into a stage because it is common to all
parallel steps in the subsequent stage. The next stage is ’Builds’. This stage
contains four parallel stages that build different components. The fourth
stage is ’Send Mail’. This stage contains a script to analyze the results and
send the email. ’Send Mail’ is common to all parallel steps in the previous
stage. The last stage is ’Delete’. This stage step was separated into a stage
because it runs a script that removes old builds and is not a part of build.

Each Job contains a small pipeline that lets clone a project from git and
run it on Agent.

Template for Job’s pipeline:
node (’ master ’) {

checkout ([$ c l a s s : ’GitSCM’ ,
branches : [[name : " v e r s i on "]] ,
userRemoteCongigs : [[

c r e d e n t i a l s I d : " c r e d e n t i a l s id " ,
u r l : " path to g i t f o l d e r "

]]
])
load " path to p i p e l i n e in checkout p r o j e c t "

}

5.4.1 Build
The pipeline that will be launched on the Agent consists of four parts. They
involve initialization, build, processing results and sending emails, deleting

30

directories.
The first step is initialization. At the initialization stage a directory is

created on the share. Build results, logs and statistics files will be copied to
the share. Also configspec is created.

The next step is build. At this stage the project is build. The part
of statistics is created, files are copied to the share. The build consists of
four components that can be processed in parallel. Each component has its
own view. Since part of the files that use the components are the same.
If several views are not created, then errors may occur. it is possible that
several components try to change something in the same file at the same
time.

In the third step an analysis of the build results is performed and an
email with the build results is sent to the developers.

The last step is to delete the results of old builds from the share.

5.4.2 Testing
The pipeline for testing has almost the same structure but instead of the
build, it has such stage as testing and does not have parallelization. During
testing, parallelization is not used for several reasons. Firstly, testing does
not take as much time as the build takes. Secondly, the simulation requires
software licenses which are in limited quantities. Variants are built at the
testing stage.Tests are generated and run. Test results are analyzed, logs
are copied to the shares and the email is sent.

5.5 Groovy scripts
All the scripts described below in addition to their described actions also
send an email to their developer in exception in these scripts.

5.5.1 initialise.groovy
This script creates a directory for storing the results of a build or testing,
creates a configspec with timestamps as well as a file with links to the Tasking
licenses servers.

The name of the created directory is in the format dd-MM-YYYY.HH-
mm-ss. For example, 22-04-2020.11-21-15.

Time stamps are made in the configspec for the possibility to repeat
the project build without changing the file versions. Timestamps are added
only to links containing the word LATEST. This word means that the latest

31

versions of files that are located at the link of the previous LATEST should
be taken from the view. Timestamps allow to use the latest version of files
up to this time inclusive.

5.5.2 bootloader.groovy
This is the main script that forms a view with the names created by the
template based on the configuration file and the parameters thtough which
the script is run. Use the configspec in the previous step to create a view.
Then this script mounts the VOBs. VOBs are different for different genera-
tions of AURIX. The next step is building variants. All variants which are
based on configuration files are built sequentially. The results of the builds
are copied to the share. A directory with logs is being prepared. At the
stage of sending an email this directory will be turned into a zip archive.
A CMT checker HTML file for each variant is created and copies the res-
ults to the share. CMT checker HTML file contains information about code
complexity measurement tools (CMT) execution. This script creates a file
build_result.xml file that contains information about the results of CMT
Checker and make checking for each variant.

The bootloader.groovy script contains the following additional functions:

def openBatches() - create file object for each batch file.

def copyFiles() - copy files from the view to the share and create CMT
checker HTML file.

void addToBuildResultXML() - creates result xml or appends to
result xml. This file contains the results of the CMT checker and make
checking.

5.5.3 sendMail.groovy
This script processes the results of the build and sends an email with statist-
ics and links (Figure 5.3). It also creates an archive with the most important
logs. This archive is one for all components.

The script analyzes the build results of each variant sequentially. The
analysis is as follows. The script receives information from the configuration
file. This information reflects files which should be present in the folder with
the results. The script looks at these files and building upon their existence

32

Figure 5.3: Email example

or non-existence and their content decides what status the build of this
variant has. Possible statuses are ok, warning, file. OK status means that
this build is successful. Warning claims of some minor errors that do not
affect the overall performance of the project but they need to be addressed
and corrected. The failure is a critical error that needs immediate correction.
A project with this error is not working. The email title indicates the status
of the worst-case scenario after sending an email with the results of the build.

The lint log is parsed during the analysis of the logs. Lint or a linter is
a small program that checks source code to flag stylistic and programming
errors, bugs and suspicious constructs. It also analyzes the results of CMT
Checker and makes check from the file build_result.xml.

The sendMail.groovy script contains the following additional functions:

String createMailBody() is the main function that creates email body.

def zipDir() creates *.zip archive that contains main log files.

String getbuildBodyHeader() creates header before table with in-
formation about status of the build. It can be a SUCCESS if there are no
errors found. it can be WARNING if not critical errors are found and it can
be FAILED if there are some critical errors. Errors mean the absence of any
file, errors in the logs or complete build failure.

void checkFiles() this function checks for the existence files in the out-
put directory. The list of files is specified in the configuration file.

String createResultTable() creates build result table.

String getNewResultTableRow() creates header of the result table.

33

boolean checkBuildLog() checks the build log by using the build log
parser.

5.5.4 deleteResultFolder.groovy
This script is executed after the build and sending the email. The script
checks the number of directories on the share. If the number of directories
is greater than a number from configuration file, it deletes the oldest.

5.5.5 bootloaderTest.groovy
This script is the main one in the testing pipeline. The general structure
of this script is similar to bootloader.groovy. The only difference is that
batch files run only once without additional parameters, for example, lint
and CMT.

5.5.6 sendMailTest.groovy
The general structure of this script is similar to sendMail.groovy. Only the
analysis of logs differs. It happens because the test results are a build log
and one log file is for each test. These log files contain test results. At the
moment the script only checks for the presence of log files and analyzes the
build log file using Build log parser.

5.5.7 versionChecker.groovy
This script is very important for the implementation of the continuous in-
tegration system as it checks for a new version of the software that needs
to be built and tested. If this version is available, it signals to the job that
started it and that the build needs to be launched. This allows to automate
builds.

First of all, versionChecker.groovy script starts the view and mounts the
drives. Then it checks for a new version of the configspec. If there is a new
version of the configspec, the script checks the presence of a label on it. The
availability of the label indicates that the programmer merged the project
and the last action assigned the label to this configspec. Next, the script
copies the new version of the configspec to the share and signals this action
to Jenkins. Next, Jenkins will process the script signal and run the build, if
possible.

34

5.6 Tools
Tools were created in the process of developing the system of continuous
integration. These tools can and will be used in other projects. Such tools
are: a script for comparing CMT results and a program for parsing logs.

5.6.1 Build log parser
Build log parser was developed as a part of the lib_groovy.jar library.

Build log parser works with the build log. This log contains information
about the build run, namely, warnings, errors, some statistics, info messages.
The size of this log does not exceed 5 megabytes. This fact facilitates the
development, since it is not required to monitor the possible lack of RAM.

Build log parser reads the buildLog file line by line or sector by sector and
creates HTML page with the link to each significant message. For example,
error, warning, info and so on. Types of messages are defined by the user in
the configuration file or default values can be used. Messages can be defined
as lines or as sectors. Significant regular expression for messages must be
defined in the XML file.

Configuration xml file should be used for declaring regex rules. this file
contains the list of rules, delimiters and types. Rules are used in queue form.

The First rule from the file is checked first, the second is verified secondly
and so on.

there are four types of items for the part depicting characteristics. they
are name, color, priority and errorFlag. Name is a message name. Color is a
link color in the created HTML file. Priority is a link order in the reference
part. ErrorFlag accepts values true if the message of the user - specified type
was found. on the other hand, ErrorFlag will accept values false. ErrorFlag
is used to indicate critical errors.

This parser can be used not only for parsing buildLog but for parsing
other text documents.

This tool contains the following classes:

• BuildLogParser.groovy is the main class that controls the rest. It con-
tains two methods. Boolean run(String pathToRules, String pathTo-
BuildLog, String outputFile) method starts this tool and contains
default actions defined in the application’s settings. Boolean pro-
cess(String pathToRules, String pathToBuildLog, String outputFile)
method starts parsing and decides which class will be used, namely,
SectorParser.groovy or LineParser.groovy.

35

Figure 5.4: Example of XML configuration file

• RuleConfigReader.groovy reads rule configuration file and creates Rule-
Types object.It contains one method RuleTypes readFromXml(String
configFileText).

• RuleTypes.groovy is a factory that creates rule type objects. It in-
cludes three methods. Void addType(String name, String color, int
priority, boolean errorFlag = false) method adds new type to ArrayL-
ist if this type does not exist. RuleType getRuleTypeByName(String
name) returns rule type by type name. ArrayList<RuleType> getSor-
tedTypes() sorts types by priority and returns.

• RuleType.groovy creates rule type objects. Contains getters, setters
and compareTo methods.

• RulesParser.groovy reads delimiters, sector and line rules from config-
uration file. it involves two methods and getters. Void parse(String
path, RuleTypes types) method reads rule files and creates rules and
delimiter Queues. Rule createRule(String name, String regex, Rule-
Types types) method creates the rule.

36

• BLParser.groovy is an abstract class for parsing log files by lines or by
sectors.

• SectorParser.groovy parses log by sector and lines together.

• LineParser.groovy parses log by lines.

• Delimiter.groovy is a class for creating object with one delimiter from
rule files.

• Lines.groovy is an object which is created on the basis of this class. It
will contain all lines from buildLog in two structures including Queue
with all lines and Map with founded items.

• Line.groovy is a class for one line from the log.

• Rule.groovy is a class for creating object with one rule from *.rule files.

• Sectors.groovy is an object which is created under this class. It will
contain all sectors from buildLog in two structures including Queue
with all sectors and Map with founded items.

• Sector.groovy is a class for one sector from the log.

Using this tool allows to navigate in the build log easily and get the most
significant information about the build very quickly.

5.6.2 CMT checker
This tool is designed to compare two excel tables that contain CMT statistics
for each function in each project code file and create html results page. CMTs
are code complexity measurement tools. This tools help to write the code
with a good complexity. The Code with a good complexity contains less
errors. What is more, it is easier and faster to test, to understand and to
maintain. One of the excel tables is generated during the build, the other
one is located on the VOB. It was generated earlier and it is a reference for
comparison. Tables contain information about the build functions.

The CMT parser is a tool that was designed to replace an existing one
because the existing tool required a Microsoft Office license. The previous
version of this tool was launched manually by the programmer and was a
macro in excel. The new version of the tool is a groovy class. Replacing
this tool avoids using of Microsoft Office license and the installation of the
Microsoft office instruments on VDI. It in turn saves money for the company.

This tool contains the following methods:

37

• def parse(String path) is the function which reads the excel file and
returns it as a map.

• void checkFile(String path) checks if there is any file and it is not the
directory.

• String compareNewAndOld(def cmtMapNew, def cmtMapOld, def con-
figMap, String pathToTmpl) compares two maps created from excel
files and identifies new modules. It checks each module and compares
it with the default value from the configuration file.

• String countMetrixes(def cmtMapNew, def configMap, String pathToT-
mpl) checks each module from Excel and compares it with the default
value from the configuration file.

• String allMapToHtmlTable(def map, String pathToTmpl) creates html
table from the map.

5.6.3 Library lib_groovy.jar
Several changes have been made to this library. First, Build log parser
was added as a separate extension. Secondly, the function for working with
ClearCase labels was added. This function allows you to get all the labels
belonging to the file specified as a parameter. If there are no labels, the
function returns an empty array. This function is used to verify the existence
of a new version of the software.

38

6 Possible extensions

Only the main part of the CI system is implemented at the moment. The
CI system will expand over time. It depends on the needs of the bootloader
team. CI will also be adapted for other teams, the structure of which is
similar to the bootloader team.

Some future extensions are already known. They are also in the process of
development or described as assignments. These extensions will be described
in the current chapter.

6.1 Build
One extension is currently scheduled for builds. This extension is related
to branches in ClearCase. Continuous integration works only on the main
branch of the development at the moment. Programmers merge their own
branches into this branch. The new extension will allow the programmer
from the bootloader team to launch a build on his own branch before merging
the branches together. Which will lead to earlier error detection.

6.2 Testing
Two extensions are currently planned for testing. The first extension is going
to run testing on a physical unit.There are prepared scripts At the moment.
These scripts are used in testing on simulation of a microcontroller. This
extension is necessary because the simulation cannot cover all parts of this
microcontroller and may also contain errors. The second extension is the
addition and automation of unit tests. Mutex will also be added to regulate
the number of licenses used.

6.3 Release
At the moment, the CI system does not cover the release. To add this step
to the CI system and expand it to a CD system will be required to:

• Exploring the complete release creation cycle.

• Obtaining additional rights for the pooluser, for access to the VOBs
and to various systems necessary for creating a release.

39

• Mastering work with new programs by means of their API. For ex-
ample, ClearQuest.

• Studying the structure of the documentation that should be generated
for each release.

• Many more smaller subtasks are possible.

6.4 Tools
To expand the CI system, it will also be necessary to improve existing tools
and create new ones.

Build log parser

At the moment, Build log parser is designed to process logs less than 5
megabytes in size. In the case of a log larger than 5 megabytes, problems
with displaying in the browser are possible. Since the log is displayed in one
file and the number of tags used increases. This may cause the browser to
freeze. Also, when parsing, the entire document structure is held in memory
in the form of objects. Which can lead to errors when out of memory. To
avoid these problems, the Build log parser will be finalized as follows. First,
the log will be processed in parts, the sizes of the parts will be determined
later. This will avoid a lack of memory when processing logs and will allow
you to process documents of any size. The HTML generated by the parser
will also consist of subpages, which will reduce the load on the browser.

Calibration tool

The next extension will be the calibration tool. This tool will be used to
replace parameters in an already built project. This will allow us to refuse
to install CANape 13 version and leave only 16 version. This should also
reduce the number of CANape licenses used. Which in turn carries financial
benefits for the company.

This tool will replace parameters based on configuration files. Names
of parameters, starting addresses, size, new data will be indicated in the
configuration files. After replacing the parameters, the script should re-
calculate the checksum.

40

7 Conclusion

Continuous integration in the modern world has become a necessary part of
software development. This practice makes it easier and faster to develop,
as well as improve the quality of the code.

At the beginning of the bachelor’s work, the principles of CI/CD and
the programs necessary for their implementation were described. Next, the
toolchain that the bootloader team uses was described and analyzed. A
comparison was made of the approach to software development without and
with a continuous integration system. Then a continuous integration system
was implemented for build and testing. During the creation of the continuous
integration system, a release was not implemented.

The release will be the last step in the implementation of CI/CD system.
An automatic release will allow to close the chain build-testing-release and
say that for this project all the conditions of Continuous Delivery are met.
This step will be created in the future. Also, the ability to programmers
to build on their own branch will be added. Testing on a physical machine
will be added. For this type of testing, all the necessary scripts are imple-
mented from the tooling team side, but the implementation from the team
bootloader side is in progress.

During the implementation of the CI system the CMT parser and Build
log parser tools were developed to process the build results. Build log parser
is already in use in another project.

An important part of the bachelor’s work was the communication with
the bootloader team and with colleagues who have already created con-
tinuous integration systems. So it was necessary to study the development
approaches in the bootloader team and learn from the experience of the
tooling team.

The given project allowed me to improve my programming knowledge,
communication abilities and also allowed me to master the creation of CI
systems.

41

Glossary

API - Application Programming Interface

CAN - Controller Area Network

CD - Continuous Delivery

CI – Continuous Integration

ECU - Electronic Control Unit

JVM - Java Virtual Machine

OEM - Original Equipment Manufacturer

RDP - Remote Desktop Protocol

SCM - Source Code Management

VDI - Virtual Desktop Infrastructure

VOB - Versioned Object Base

42

Bibliography

[1] 32-bit TriCoreTM AURIXTM– TC2xx [online]. Infineon Technologies AG,
2020. [cit. 2019/30/06]. Available from:
https://www.infineon.com/cms/en/product/microcontroller/
32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/.

[2] Anastasov, M. Continuous integration, continuous delivery, continuous
deployment [on-
line]. 2020. [cit. 2020/12/07]. Available from: https://sudonull.com/post/
64771-Continuous-integration-continuous-delivery-continuous-deployment-just-a-nesting-doll-Company-Blog-Pu.

[3] Bitbucket [online]. 2020. [cit. 2020/12/07]. Available from:
https://bitbucket.org/product/.

[4] CANape product information [online]. Vector Informatik GmbH, 2019.
[cit. 2019/12/09]. CANape product information. Available from:
https://assets.vector.com/cms/content/products/canape/Docs/
CANap/_ProductInformation/_EN.pdf.

[5] ClearCase [online]. 2020. [cit. 2020/12/07]. Available from: https:
//www.ibm.com/support/knowledgecenter/en/SSSH27_8.0.0/com.ibm.
rational.clearcase.help.ic.doc/helpindex_clearcase.html.

[6] Groovy [online]. 2020. [cit. 2020/12/07]. Available from:
https://groovy-lang.org/.

[7] Jenkins [online]. 2020. [cit. 2020/12/07]. Available from:
https://www.jenkins.io/.

[8] What is Jenkins? [online]. Amazon Web Services, 2020. [cit. 2019/30/06].
Available from: https://www.edureka.co/blog/what-is-jenkins/.

[9] Jira [online]. 2020. [cit. 2020/12/07]. Available from:
https://www.atlassian.com/software/jira/agile.

[10] Managing Parameter Sets Easily and Traceably with vCDMstudio [online].
Vector Informatik GmbH, 2020. [cit. 2019/30/06]. Available from:
https://www.vector.com/int/en/products/products-a-z/software/
vcdmstudio/.

[11] Sharma, S. DevOps For Dummies. John Wiley Sons, Inc., 2014. ISBN
978-1-118-73378-3.

43

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/
https://sudonull.com/post/64771-Continuous-integration-continuous-delivery-continuous-deployment-just-a-nesting-doll-Company-Blog-Pu
https://sudonull.com/post/64771-Continuous-integration-continuous-delivery-continuous-deployment-just-a-nesting-doll-Company-Blog-Pu
https://bitbucket.org/product/
https://assets.vector.com/cms/content/products/canape/Docs/CANap/_ProductInformation/_EN.pdf
https://assets.vector.com/cms/content/products/canape/Docs/CANap/_ProductInformation/_EN.pdf
https://www.ibm.com/support/knowledgecenter/en/SSSH27_8.0.0/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.html
https://www.ibm.com/support/knowledgecenter/en/SSSH27_8.0.0/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.html
https://www.ibm.com/support/knowledgecenter/en/SSSH27_8.0.0/com.ibm.rational.clearcase.help.ic.doc/helpindex_clearcase.html
https://groovy-lang.org/
https://www.jenkins.io/
https://www.edureka.co/blog/what-is-jenkins/
https://www.atlassian.com/software/jira/agile
https://www.vector.com/int/en/products/products-a-z/software/vcdmstudio/
https://www.vector.com/int/en/products/products-a-z/software/vcdmstudio/

[12] What is Continuous Integration [online]. Amazon Web Services, 2020.
[cit. 2019/30/06]. Available from:
https://aws.amazon.com/devops/continuous-integration/?nc1=h_ls.

44

https://aws.amazon.com/devops/continuous-integration/?nc1=h_ls

CD content

The work is accompanied by a CD with the following structure:

• directory: scripts/ - this directory contains source codes and configur-
ation files.

• directory: thesis/ - this directory contains the text of bachelor thesis.

45

	Introduction
	Principles, concepts and SW tools
	Continuous Integration and Continuous Delivery
	Tools for CI/CD
	Jenkins
	Bitbucket
	Jira
	Groovy
	Library lib_groovy.jar

	Analysis and description of the build-and-test tool chain used in the Bootloader department
	Basic information about the bootloader team
	Description of the current build-and-test tool chain
	AURIX microcontrollers
	Lauterbach Trace32
	Vector CANape
	Vector CDM studio
	Software signature tool and Gate Keeper
	ClearCase

	Analysis of the current build-and-test toolchain
	Build
	Testing
	Release
	Conclusions of the manual approach

	Design CI system
	Replacing the manual evaluation
	Build
	Testing
	Release

	Evaluating possibility of parallelization

	CI system implementation
	VDI configuration
	Accesses
	Programs

	Jenkins installation and configuration
	Master
	Agent

	Project structure
	Pipelines
	Build
	Testing

	Groovy scripts
	initialise.groovy
	bootloader.groovy
	sendMail.groovy
	deleteResultFolder.groovy
	bootloaderTest.groovy
	sendMailTest.groovy
	versionChecker.groovy

	Tools
	Build log parser
	CMT checker
	Library lib_groovy.jar

	Possible extensions
	Build
	Testing
	Release
	Tools

	Conclusion
	Bibliography

