
Drone interactions within the field of Augmented Reality
Damia Fuentes Escote

Department of Computer Sciene

University of Colorado Colorado Springs

Colorado Springs, CO, 80918, USA

dfunetes@uccs.edu

Sudhanshu Kumar Semwal

Department of Computer Sciene

University of Colorado Colorado Springs

Colorado Springs, CO, 80918, USA

ssemwal@uccs.edu

ABSTRACT
Using drones and augmented reality paradigm, new forms of interactive algorithms has been created and proposed.
We start with a first person view interaction where the drone mimics the movement of one person’s head wearing a
HMD so that movements of the head can be mapped to actions by the drones. We then provide two novel AR/VR
applications of drones to create something similar to third person view in 2D and 3D. To get started, our first
idea is to control a drone using head movements. The second application which we implemented is to provide an
implementation where tangible platforms are used by the drone to react to the movements of the character. Finally
our third implementaton if to create and AR world using real outdoor scenery and asking a drone to mimic a third
person view combining the real scenery with a synthetic actor so that based on the synthetic actor movement the
drone changes its behavior correctly in the real-word trying to provide a synchronized view of the real and synthetic
word. There are three novel ideas providing a new form of interactions which will improve with drones functionality
in future. Our implementation shows the feasibility of our idea as discussed in the paper.

Keywords
Augmented and Virtual Realty, New Paradigm using Drones.

1 INTRODUCTION
While present focus for drones is mostly for disasters,
product delivery and public safety [1-6,10-15], we think
there are other major applications that can be useful too.
For example, to provide new camera angles, 3D AR
games, web-contents generation, individual recreational
activities and computationally generated social interac-
tions, instead of drones just taking photos/videos and
racing.

A drone is a relatively new technology that could also be
used for video games as well. This paper proposes a new
paradigm between drones, AR and user interaction. The
drone camera could be used as the camera view of an
AR, 3D or 2D video game. This way, video games could
be based in real life environments that are visible to the
drone, not to the phone or the user. This newer paradigm
provides augmentation of a different kind, bringing the
immediately reality surrounding the drones to our AR
worlds. This idea is novel and we provide a successful
implementation of our idea with video-sequences of our
work. We focused on feasibility of controlling drones,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

and drones being able to play the game and show the user
how the game can be played, these are simple games,
still the feasibility of our proposal is shown specially that
using drones Augmented Reality applications provide
new experiences. In future, we are planning IRB studies
by extending our drone based ideas, including our other
works [7-9], to include drone generated scenes from far
away and project them for interaction on large screens
[7-9].
The environment would be a real park field seen from
the drone camera, as shown in Figure 1. The character,
Figure 2, would be superimposed to the real environment
and it will be controlled by the user. As an example,
imagine being a video game of this type as shown in
Figure 3. The user may be situated anywhere in the
surrounding environment, at his home, or at any place
of the world. Notice that in an interaction of this type
the user moves the character, not the camera view which
is drone’s view. Our work is different that all the drone
interactions and games released up until now where the
user controls the drone. To the best of our knowledge,
no implementation exist where a drone is controlled
automatically while the user controls an AR character,
and that is precisely our goal in this paper.
The main idea of our paper is new form of interactions
emerge where the view point is the drone’s camera and
the user controls an AR character that is graphically
imposed over the video feed. Then, the drone moves
automatically depending on how the user moves the
character.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

1DOI:10.24132/JWSCG.2021.29.1

With this idea in mind, we now could create games
and interactions in the streets, in a park, in our garden
or inside our house. We could create them in 2D or
3D, online or offline, multiplayer or single player. We
could have games where the game’s behavior depends
on how the real world is behaving in that exact moment.
For example, if there is a physical car, even though not
implemented by us, we imagine that the game could
simulate an enemy behind it. If there is a tree, the enemy
could appear from behind a tree. In other words, we
are providing a new way of designing AR 2D/3D games
based on what the interests of the game creator. Only a
proof of concept is provided in this paper. A feasibility
study of this new way of engaging AR-Drone Games is
presented.

2 FPV WITH HEAD TRACKING CON-
TROL INTERACTION

We started by controlling drone movements with the
head mounted display (?). The user wears VR goggles
and sees what the drone sees through its’ camera. Also
called First Person View, or FPV. This implementation
included a smartphone inside the VR goggles which
using an own Android app will send orders to the drone
via WiFi. For this idea, we used the DJI Spark drone.
As seen in Figure 7-11 any movement of the users head,
is executed by the drone.

2.1 Mimicking Drone Algorithm Imple-
mentation

In order to have roll, pitch and yaw of the android phone
mimicked, two sensors are needed: accelerometer and
magnetic field. A rotation matrix is created from the
readings of these sensors and is then expressed as three
orientation angles in degrees: roll, pitch and yaw. In
another thread, these variables are retrieved and are sent
to the drone every short period of time together with
the throttle value. We send the change in degrees of the
phone to the drone. In order to do this we first get the
orientation of the drone and after that we sum the change
difference of the phone yaw. Roll and pitch are treated
a little bit differently as they are received in degrees
and then converted to be sent as velocities. We have
them first normalized from -1 to 1, and then finally we
multiply by a pre-set maximum speed, see Algorithm 1.

2.2 VR Goggles feedback
Previous section explained how to control the drone
using head movements. But the user also needs to see
the live video feed of the drone to actually move the
drone to where he wants to go. And he needs to see it
in the VR goggles. Since we are using one live stream
from the drone, the same image is displayed in both eyes.
Therefore, depth of field can not be perceived still that
will be something which is feasible in future as that will

Algorithm 1 Pseudocode for Mimicking drone control
1: roll, pitch, yaw, last pyaw 0.0,0.0,0.0,0.0
2: loop
3: pacce get phone accelerometer reading
4: pmagn get phone magnetometer reading
5: proll, ppitch, pyaw calculate rotation matrix

using pacce and pmagn readings and express it
as three orientation angles: roll, pitch and yaw

6: if yaw is 0.0 then
7: yaw get drone compass orientation (be-

tween -180 Âº and 180)
8: else
9: yaw yaw� (last pyaw� pyaw)
10: end if
11: last pyaw pyaw
12: yaw ((yaw+180)%360)�180
13: nroll, npitch normalize roll and pitch to fall

between -1 and 1
14: sroll, spitch nroll ⇤maximumspeed, npitch⇤

maximumspeed
15: move drone according to yaw, sroll and spitch
16: end loop

require two coordinated drones to keep same distance
from each other equal to the inter-eye distance. See
Algorithm 2.

Algorithm 2 Pseudocode for user feedback
1: screenx get mobile phone screen size height
2: screeny get mobile phone screen size width
3: loop
4: f rame get actual frame from drone
5: f rameeye center fill crop f rame with height

screenx and width screeny/2
6: Update the UI by placing f rameeye both in the

right and the left of the screen
7: end loop

2.3 Results: Mimiking Drones
The experience was a high-fidelity implementation, and
to us, it felt like that we are actually the drone. This inter-
action could be fully utilized as FPV (First-Person-View)
games like shooters. We also have some drawbacks as
follows:

• Noticeable delay. Around 1 second between user turn
and user sees the turn.

• Camera field of view of the DJI Spark is too narrow.

There are following improvements which could provide
better interaction in future:

• Have a wide camera field of view. The one used
in the DJI Spark is too narrow and it was difficult

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

2DOI:10.24132/JWSCG.2021.29.1

to see what the drone has around it. With a wider
field of view the experience would be more real and
attractive.

• Make the drone have two cameras separated 2.3
inches simulating two eyes. Then put the live video
feed of each camera to the right and the left of the
phone screen. This way, the user will be able to
perceive in 3D.

• Having real time information of the drone like the
IMU in order to be able to add AR to the real time
video feed.

3 IMPLEMENTING PLATFORM IN-
TERACTION USING DRONE

In a platform game, the controlled character must jump
and climb between suspended platforms while avoiding
obstacles. In order to make this type of game to adapt
to new AR and drones paradigm we thought that the
platforms could be drawn physically in the real world.
The virtual character would jump between those real
platforms based on the drone’s camera, while drone will
try to have the character always in the center of the
screen. For implementation, we used the DJI Tello and
DJI Tello EDU drones, while simulating the output and
controls from the computer.

3.1 Drone detecting the platforms
Our algorithm detects the tangible (drawn) physical plat-
forms using the live camera video sequence of a drone.
Platforms are drawn in black in a big white paper as
seen in Figure 13-18, we have used black tape to indi-
cate platforms.

We implemented a simple algorithm to detect the plat-
forms in real-time so that we can determine if the char-
acter is in a platform or not at every frame. For every
frame, we check if the foot of the character is over black
or white pixels. If the foot is falling on black pixels this
means that the character is over a platform. Also, if it
is falling over white pixels this means that it is not on a
platform. Pixels in black and white have a value from 0
to 255. 0 is the complete black while 255 is the complete
white. In order to differentiate if a pixel is over blacks
or whites we used a T HRESHOLD of 50. Meaning that
any pixel with a value lower than 50 will be considered
black. And therefore that pixel will be understood as
a platform. The pseudocode for this can be found in
Algorithm 3.

3.2 Moving the character on Platforms
Once we know if the character is on a platform, we
want the character to start moving and jumping. For
that, we use inputs from the user indicating move left or
move right and jump key-strokes. Move left and right

Algorithm 3 Pseudocode for detecting if character is in
a platform
1: x0 get horizontal center position of the character
2: x1 get horizontal left position of the character
3: x2 get horizontal right position of the character
4: y get vertical bottom position of the character
5: if (x0,y), (x1,y), (x2,y) fall inside the frame and

the pixel color in black and white is lower than
THRESHOLD then

6: return True
7: else
8: return False
9: end if

will be always directly applied to the character. The
jump input will only by applied if the character is on top
of a platform. Finally, a gravity effect will be applied
when the character is not on top of a platform. Also, the
character stops to fall once it hits a platform. At that
moment, its vertical velocity will be set up to 0. The
pseudocode for this can be found in Algorithm 4.

Algorithm 4 Pseudocode for moving the character
1: movey 0
2: loop
3: f rame get actual frame from drone
4: if user is pressing right then
5: movex ST EPS
6: else if user is pressing left then
7: movex �ST EPS
8: else
9: movex 0
10: end if
11: isinplat f orm check if character is in platform
12: if user pressed jump and isinplat f orm then
13: movey �ST EPS ⇥

JUMPACCELERAT ION
14: else if movey greater or equal than 0 and

isinplat f orm then
15: movey 0
16: else
17: movey movey+gravity
18: end if
19: move character movex vertically and movey hori-

zontally
20: end loop

3.3 Applying AR to a simple character
Right now the character is just on the screen, and its
movement is 100% relative to the computer screen.
When the drone moves, the camera and the background
will also move; the character will stay at the same place
relatively to the screen. The expected behavior would
be that the character should be pinned relatively to the

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

3DOI:10.24132/JWSCG.2021.29.1

game map. And the game map is the live video feed of
the drone’s camera. We have simulated this behavior as
follows:

1. Track key-points and descriptors of every frame us-
ing an ORB detector (explained below).

2. Find the same key-points from the past and actual
frame using a BF matching algorithm (explained be-
low).

3. For each match get their movement in the x and y
directions from the past frame to the actual one.

4. Order the matches in order of relevance so that very
match has a distance that tells objectively how accu-
rate it is.

5. Find outlier matches and remove them (how to find
outliers is explained below).

6. Calculate the weighted average x and y movement
of the resulting matches. The weights give more
importance to the first matches and less to the last
ones.

7. Move the character the same amount in x and y as
the average calculated in the step before.

With this strategy, the character stays in the same game
map place no matter how the drone moves. The pseu-
docode for this can be found in "Algorithm 5".

3.3.1 ORB detector
We used the FAST (Features from Accelerated Segment
Test) [1] detection test for a corner detection method,
which is used to extract feature points and to track and
map objects in many computer vision tasks. BRIEF
(Binary Robust Independent Elementary Features) use
binary strings as an efficient feature point descriptor. It
is very fast both to build and to match. ORB (Oriented
FAST and Rotated BRIEF) [1] is a fusion of FAST key-
point detector and BRIEF descriptor with many modifi-
cations which enhances the performance.

3.3.2 Brute Force (BF) matcher and Outliers
BF matcher finds the closest descriptor in the second set
by trying all possible combinations. An outlier is a data
point that significantly differs from the other data points.

3.4 Moving the drone
In our algorithm, as the character moves through all the
platforms, the drone follows the character so that the
character is always at the center of the screen. Natu-
rally the camera of the drone will not include all the
game map, instead, just a part of it. Results of the drone
hovering over the map with platforms and keeping the

Algorithm 5 Pseudocode for applying AR to the char-
acter
1: Initialize newkeypoints as newdescriptors as None
2: loop
3: f rame get actual frame from drone
4: previouskeypoints newkeypoints
5: previousdescriptors newdescriptors
6: newkeypoints, newdescriptors run ORB de-

tector on f rame
7: if previousdescriptors is not None then
8: matches run BF matcher with

newdescriptors and previousdescriptors
9: matches sort matches in the order of their

distance
10: Initialize movementsx and movementsy as

emtpy lists
11: for match in first 20 matches do
12: listmovx.insert(using match,

previouskeypoints and newkeypoints
calculate the vertical movement of that
match)

13: listmovy.insert(using match,
previouskeypoints and newkeypoints
calculate the horizontal movement of that
match)

14: end for
15: Remove outliers of listmovx and listmovy
16: Move character the weighted average of

movementsx vertically and movementsy hori-
zontally.

17: end if
18: end loop

character at the center is provided as successful imple-
mentation of our algorithm. In order to achieve this, we
check where the character is at every frame and depend-
ing on that the drone is moved up, down, left or/and
right. For instance, if the character is in the left side,
the drone is moved to the left. If the character is in the
right-up corner, the drone is moved up and right. The
drone is moved until the character falls in the center of
the screen again. The pseudocode for this can be found
in Algorithm 5-6.

3.5 Discussion
With this approach, we have proved that this new
paradigm is possible and feasible. See the video-
sequences submitted with this paper. The user is able
to control an AR character through the real time video
feed of the drone. And the drone is moving through the
real world in order to maintain the AR character in the
center of the video feed all the time. We can see this
in 13-16. The accuracy of the method is high. When
the AR character goes too much towards the borders,
the drone automatically moves in order to maintain it

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

4DOI:10.24132/JWSCG.2021.29.1

Algorithm 6 Pseudocode for moving the drone
1: loop
2: le f trightvelocity 0
3: updownvelocity 0
4: characterx get character horizontal center po-

sition
5: charactery get character vertical center posi-

tion
6: hhss half of the horizontal screen size
7: hvss half of the vertical screen size
8: if characterx is less than hhss �

CENT EROFFSET then
9: le f trightvelocity �DRONEV ELOCITY
10: else if characterx is bigger than hhss +

CENT EROFFSET then
11: le f trightvelocity DRONEV ELOCITY
12: end if
13: if charactery is less than hvss �

CENT EROFFSET then
14: updownvelocity DRONEV ELOCITY
15: else if charactery is bigger than hvss +

CENT EROFFSET then
16: updownvelocity �DRONEV ELOCITY
17: end if
18: move drone according to le f trightvelocity and

updownvelocity
19: end loop

inside the screen. We can see this in 17-18. Hardly ever
the character goes off the screen, even intentionally. So,
our algorithm has been successful in that sense. For this
algorithm we set up the velocities so that the drone is
faster than the character. Even so, if that is the case and
the character moves really fast and gets out of the screen,
the drone will keep trying to move till the character falls
inside the center of the screen. But while the character
is outside the screen, it will not be able to stop on a
platform because the platform to stop will be inside the
field of view of the camera.

The delay is pretty immediate although there is some, but
it is almost exactly the same delay as the delay between
sending commands to the drone and see the results in
the real time video feed. Which is around 0.5s. Our is
interactive as we can see the drone reacting to the scene
and moving accordingly, thus the implementation shows
feasibility of our proposed AR paradigm. In our opinion,
set-up time for this novel interaction is time consuming.
Set-up time include: having to charge the drone, set up
the drone, connecting to it’s wifi and taking off. There
are other parts like creating the map with papers and
black tape, and the actual playing that were comfortable
and fun. Playing the game felt like something novel and
creative. We draw the platforms. We knew that we could
change them, we could add/remove/change platforms

while we were playing which provides customizability
to our taste as to where we will have platforms. In some
sense, we could design a new level of the game at our
pleasure by simply moving the platform-tapes and have
slightly different interaction very quickly. This is a novel
AR paradigm for Games in our opinion.

This implementation is just the beginning of a very broad
topic in VR-Drones and Augmented Computer Games
area. There are so many different directions for research
to further develop. One drawback of our implementation
was that when the character goes out of the screen and
lands on a platform, it wont stop at it because the game
would not know that there is a platform there. A more
sophisticated platform recognition algorithm would be
needed instead of the one we use to show the feasibility.

4 THIRD PERSON VIEW INTERAC-
TION USING DRONES AND AR

The third novel idea which we implemented tries to sim-
ulate a 3D third person view interaction. Third-person
is a perspective view where the player can see the body
of the controlled character. In this novel interaction, the
users sees a 3D character on top of the real ground and
controls it. Then, the drone moves according to how the
character is moved. For implementing this idea, we used
the DJI Tello and DJI Tello EDU drones and the output
and controls are from the computer.

The input for this type of interaction is how the user
moves the character (forward, backward, right, left, turn-
ing right or left, or any combination) and the output is
how the drone should move in terms of yaw, pitch and
roll velocities, i.e. how the selection of moving buttons
change the drone view which in turn will change the
camera views which the user sees and interactively ef-
fect the choices by the user. This is shown in our third
demo submitted with this paper for review.

As seen in Figure 19 if the user moves the character
forward, the drone moves forward, and the same for
moving backwards. As seen in Figure 20 if the user
moves the character to the left, the drone moves to the
left, and the same for moving to the right. But the things
get a little bit more tricky when rotating the character,
because the drone has to now rotate about that character
correctly. In that case, as seen in Figure 21 if the user
rotates the character to the left, the drone has to orbit
around the character. The drone has to rotate slight to
the left (negative yaw) and at the same time move fast to
the right (positive roll). So, both yaw and roll are applied
at the same time. The workflow of this algorithm can be
seen in Algorithm 7.

The implementation is an open-loop which means that
no feedback is created. The character is pinned to the
screen. Key-points and descriptors are not used. The
reason why this idea has been implemented this way is

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

5DOI:10.24132/JWSCG.2021.29.1

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

6DOI:10.24132/JWSCG.2021.29.1

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

7DOI:10.24132/JWSCG.2021.29.1

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

8DOI:10.24132/JWSCG.2021.29.1

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

9DOI:10.24132/JWSCG.2021.29.1

5 CONCLUSION
In this paper, we have explored the drone interactive
applications within the field of Augmented Reality. Fur-
thermore, new forms of interactive algorithms has been
created and proposed, mainly focused in first and third
view interactions. We have been successful in imple-
menting three different basic introductory types of in-
teractions. Our contributions is in the area of novel
interactions paradigm for future drone applications in
AR world/games. The first type of interaction was the
drone VR FPV with head tracking control, which demon-
strated how easy is to make the user feel as if they were
the drone. The second one was the platforms interac-
tion, which demonstrated that AR games where the user
controls the AR character are possible, feasible, curious
and fun. Finally, the third idea which we implemented
was the third person view interaction, where we argue
that this interaction can be used for many AR games in
future. We are planning future IRB studies and detailed
evaluation of our work in future research. Detailed eval-
uations strategies are being planned with several drones
collaborating together to bring video-scenes to far-away
audiences, and allowing interaction. Finally, we believe
that much more would be done in this new and exciting
novel area of AR with drones as the drones improve in
future.

REFERENCES
1. E. Rublee, V. Rabaud, K. Konolige and G. Bradski,

"ORB: An efficient alternative to SIFT or SURF,"
2011 International Conference on Computer Vision,
2011, pp. 2564-2571.

2. Calonder M., Lepetit V., Strecha C., Fua P. (2010)
BRIEF: Binary Robust Independent Elementary
Features. In: Daniilidis K., Maragos P., Paragios
N. (eds) Computer Vision ? ECCV 2010. ECCV
2010. Lecture Notes in Computer Science, vol
6314. Springer, Berlin, Heidelberg.

3. Viswanathan, N., Kelty-Stephen, D.G. Compar-
ing speech and nonspeech context effects across
timescales in coarticulatory contexts. Atten Percept
Psychophys 80, 316-324 (2018).

4. Yunchao Wei, Wei Xia, Min Lin, Junshi Huang, Bing-
bing Ni, Jian Dong, Yao Zhao and Shuicheng Yan,
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, HCP: A Flexible CNN Frame-
work for Multi-Label Image Classification, 2016

5. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, Microsoft Research, Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal
Networks, 2016.

6. Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu,
The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), High Performance
Visual Tracking With Siamese Region Proposal
Network, 2018.

7. Guilleum Budia Tirado, Sudhanshu Kumar Semwal,
Automatic Parking Spot Detection System for Mo-
bile Phnes using Drones and Deep Learning, Com-
puter Science CSRN Notes, pp. 1-13, WSCG 2021
Proceedings, Plzen, CZ.

8. Guilleum Budia Tirado, Sudhanshu Kumar Semwal,
Automatic Parking Spot Detection System with
Image-Based machine learning, drones, and mobile
platforms, MS thesis, UCCS, CO, USA. Advisor:
SK Semwal, pp. 1-104, 2020.

9. Eric Marin Velazquez, Sudhanshu Kumar Semwal,
Using Autonomous Drone Interactions towards
Mobile Personal Spaced for Indoor Environments,
Computer Science CSRN Notes, pp. 1-10, WSCG
2021 Proceedings, Plzen, CZ.

10. Punarjay Chakravarty, Klaas Kelchtermans, Tom
Roussel, Stijn Wellens, Tinne Tuytelaars and Luc
Van Eycken,IEEE International Conference on
Robotics and Automation (ICRA), CNN-based Sin-
gle Image Obstacle Avoidance on a Quadrotor, ,
pp.6369-6374, 2017.

11. Widodo Budiharto , Alexander A S Gunawan , Jarot
S. Suroso , Andry Chowanda , Aurello Patrik and
Gaudi Utama, International Conference on Com-
puter and Communication Systems, Fast Object
Detection for Quadcopter Drone using Deep Learn-
ing, pp. 192-195, 2018.

12. Z. Kaleem and M. H. Rehmani, "Amateur Drone
Monitoring: State-of-the-Art Architectures, Key
Enabling Technologies, and Future Research Direc-
tions," in IEEE Wireless Communications, vol. 25,
no. 2, pp. 150-159, April 2018.

13. L. V. Santana, A. S. Brandão, M. Sarcinelli-Filho and
R. Carelli, "A trajectory tracking and 3D position-
ing controller for the AR.Drone quadrotor," 2014
International Conference on Unmanned Aircraft
Systems (ICUAS), 2014, pp. 756-767.

14. J. D. Renwick, L. J. Klein and H. F. Hamann, "Drone-
based reconstruction for 3D geospatial data process-
ing," 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT), 2016, pp. 729-734.

15. Kang, H., Li, H., Zhang, J., Lu, X., Benes, B.
(2018). FlyCam: Multitouch Gesture Controlled
Drone Gimbal Photography. IEEE Robotics and
Automation Letters, 3(4), 3717-3724.

ISSN 1213-6972 (print)
ISSN 1213-6964 (online)

Journal of WSCG
http://www.wscg.eu Vol.29, No-1-2, 2021

10DOI:10.24132/JWSCG.2021.29.1

