
Line Clustering and Contour Extraction in the Context of 2D
Building Plans

Andreas Pointner1, Christoph Praschl1, Oliver Krauss1,
Andreas Schuler1,2, Emmanuel Helm1,2 and Gerald Zwettler1,3

firstname.lastname@fh-hagenberg.at
1Research Group Advanced

Information Systems and
Technology, Research and
Development Department,

University of Applied Sciences
Upper Austria

Softwarepark 11
4232, Hagenberg im

Mühlkreis, Austria

2Department of Medical and
Bioinformatics, School of

Informatics, Communications
and Media, University of
Applied Sciences Upper

Austria
Softwarepark 11

4232, Hagenberg im
Mühlkreis, Austria

3Department of Software
Engineering, School of

Informatics, Communications
and Media, University of
Applied Sciences Upper

Austria
Softwarepark 11

4232, Hagenberg im
Mühlkreis, Austria

ABSTRACT
For the purpose of analyzing a building according to its accessibility or structural resilience, printed 2D floor
plans are not sufficient because of the missing link to semantic information. This paper tackles this issue and
introduces a concept for clustering classified lines of a floor plan and for creating semantically enriched contour
elements based on different image processing, computer vision and machine learning algorithms. Based on a
general line clustering approach, we introduce type specific methods for walls, windows, doors and stairs. The
resulting clusters are in turn used for a contour creation, which uses minimal rotated rectangles. Those rectangles
are transformed to polygons that are refined using post processing steps. The approach is evaluated via positive
testing using a pixel-based comparison of the process’s result. For this, automatically generated as well as real
world building plans are used. The final evaluation shows, that the concept reaches a confidence of >90% for door,
stair and windows and only around 10% for stairs with the run-time linearly scaling with the size of the input.

Keywords
Clustering, Contour Extraction, Building Plan, Image Processing, Machine Learning

1 INTRODUCTION

In architecture, floor plans are a well-established con-
cept to get a basic understanding about a building struc-
ture. This allows to quickly get an overview of size
ratios, rooms and the general layout of a building. De-
spite this, there are a few scenarios where a 2D floor
plan is not sufficient. Consequently, it is necessary to
transform the plan into a 3D representation to be able
to e.g. place furniture in a room or to take a virtual
tour through the entire building using a head-mounted
display. This paper does not address such digital, se-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

mantically rich floor plans, but printed versions, which
no longer include that much meta-information.
We have developed a transformation process that uses
an image as input, extracts all lines contained in it
and classifies those into the types door, wall, win-
dow or stair using a neural network. These classified
lines get clustered as contour elements, that are in turn
used to create a 3D model. The final model is used
for additional analysis e.g escape routes, or the build-
ing’s accessibility. This paper focuses on one part in
this pipeline; the transformation process that consists
of the classified line clustering and the contour cre-
ation. This is targeted by our research question: How
can classified lines be transformed to contour elements
using clustering approaches? The research question
leads to the paper’s contributions:

• Introducing a concept for clustering classified build-
ing plan lines and

• Creating contour elements of the clusters repre-
sented as polygons

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

11 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



The remainder of this work outlines an overview of re-
lated work on automatic transformation of 2D building
plans into 3D models in section 2. In section 3 the back-
ground of this work in terms of the used algorithms is
presented. Section 4 describes our novel approach of
combining different algorithms from the field of image
processing, computer vision and machine learning for
the transformation of a set of classified lines to contour
elements. This transformation process is evaluated in
section 5 based on a case study, that utilizes an auto-
matic building plan generation process for creating test
data. The results of our experiment are presented in sec-
tion 6 and are finally concluded in section 7 with some
final remarks and possible future work.

2 RELATED WORK
Liu et al. [Liu2017] present a concept on how to trans-
form a rasterized floor plan into a vector-graphics repre-
sentation which can further be converted to a popup 3D
building plan. Consequently, they use predefined shape
models, to detect different corner points. In contrast to
their work, we do not have any default plan structure,
and provide a generalized concept, that works on every
building plan within the required visual appearance of
the elements.

Zhiliang et al. [Zeng2019] show a deep-learning based
system to recognize floor plans. They use a multitask
neuronal network with two stages. In the first one, they
predict room-boundary elements like doors, windows
and walls and in the second task they predict the type
of the room. Their work differs from our work w.r.t.
the input data, utilizing classified lines and furthermore
focusing on the clustering of those. In contrast, their
approach combines both steps into one, but on building
plans with simple wall types, where each wall is repre-
sented by a single line, instead of blocks with multiple
filling patterns inside.

Lewis and Séquin [Lewis1998] describe a system for
automatically converting 2D floor plans into 3D repre-
sentations. The presented Building Model Generator
(BMG) system takes common CAD formats and trans-
forms them into an internal model, which can be used
for adaptions of the plan and analysis. This system is
required since the 3D generation of professional CAD
tools does not fix faults in the plan. For this reason,
the transformation process of BMG also applies correc-
tions to the internal model in terms of geometrical in-
consistencies, e.g. not perfectly matching wall corners
to improve the results of analysis tasks. The derived
model is extruded to a user defined height and elements
as doors and windows are adapted to a default height
and z-position. The approach of Lewis and Séquin dif-
fers to our work in the way that we don’t rely on digital
CAD data but offer a possibility to create a 3D model
from scanned plans.

Stojanovic et al. [Stojanovic2019] are using 3D point
clouds to generated 2D floor plans as well as 3D
meshes. Their approach is similar to our in the way,
that they use clustering techniques to find the relevant
contours, but differs by the fact, that they are only
focusing on wall elements, whereas our approach deals
with windows, doors and stairs as well.

Gerstweiler et al. [Gerstweiler2018] present an ap-
proach to create 3D building plans out of 2D floor plans.
In contrast to our work they rely on models and heuris-
tics to extract the structural elements, whereas our work
uses clustering and contour extraction methods.

Yin et al. [Yin2009] compare different approaches on
how to transform floor plans into 3D models. They
do not only compare fully automated concepts, but
also take a look at semi-automated processes. So et
al. [So1998] present a semi-automated way for re-
constructing 3D virtual buildings from 2D architecture
floor plans. In contrast to our work, they focus on
the general concepts and provide mathematical con-
cepts on how to extract poly-lines from walls. Lu et al.
[Lu2007] focus on the automatic analysis and integra-
tion of architectural drawings. They present concepts
for recognizing typical structural objects and architec-
tural symbols and reconstruct the original 3D model
out of it. In contrast to our concept, they use prede-
fined shapes for extracting wall lines followed by ex-
tracting other elements based on the detected wall lines.
Further studies in this field are done by: Dosch et al.
[Dosch2000], Ah-Soon and Tombre [AhSoon2001] and
Or et al. [Or2008].

3 BACKGROUND
To achieve clustering of linear structures, several algo-
rithmic concepts have been available in the image pro-
cessing, machine learning and computer graphics do-
main since decades that are utilized and re-combined in
this paper.

While the detection of linear structures can be achieved
by edge detection, e.g. applying a Sobel high-pass filter,
followed by line analysis in Hough space [Duda1972],
perfectly applicable to detecting an ID card in images
for scale determination [Pointner2018]. Nevertheless,
thereby the continuous line definition has to be locally
restricted which is then generally hard to achieve in 2D
building construction plans with generally short lines
at small construction elements. To detect or prolongate
smaller line segments, local hysteresis concepts known
from Canny edge detection [Canny1986] or the Bre-
senham line algorithm [Bresenham1965] known from
rasterization in the computer graphics domain is ap-
plicable. Utilizing the Bresenham algorithm, a set of
2D pixels is transformed into a continuous line seg-
ment at linear run-time complexity without need for
time-consuming PCA (principal component analysis)

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

12 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



and SVP (singular value decomposition) [Lee2006]. In
the work of Von Gioi et al. [VonGioi2012] a sophis-
ticated line detector is introduced, analyzing the local
gradients and level-line fields for sub-pixel accuracy de-
tection of continuous lines on a discrete pixel raster.

To chain up smaller line segments in an iterative man-
ner, the orientation, location and extent of the particu-
lar line can be derived by the Minimal Rotated Rect-
angle algorithm [Eberly2015]. Initial bounding areas
are thereby implicitly calculated utilizing the rotating
calipers [Preparata1985] algorithm.

For structural analysis of lines in terms of graph analy-
sis, only the mid course at thickness of 1px is required.
While for input image gradients detected by Sobel fil-
tering this is achievable by Canny line detection Canny
edge detection [Canny1986], for existing binarized line
segments generally showing a width > 1px, a common
thinning approach is applicable, e.g. Zhang-Suen thin-
ning [Zhang1984] constructing the line course from the
derived skeleton then or by utilizing stochastic random-
ized erosion as thinning [Zwettler2010] for speed-up on
large images and volumes.

For assembling pre-processed geometric structures
such as lines the common vector-based classification
algorithm k-Means clustering is applicable, too.
Thereby, the clusters are refined in several iterations,
where the clusters’ centroids are updated and utilized
for re-associating the data tuples. This process is
repeated until the result converges and there is no
re-association of any data tuples anymore or the
maximal number of iterations is reached. Due to the
randomly selected seed points it is not ensured that the
algorithm finds the best solution [Macqueen1967]. To
overcome this known limitation of k-Means clustering,
the k-means++ algorithm [Arthur2006k] is applicable.

4 APPROACH
We present our clustering approach together with meth-
ods to transform door, wall, window and stair lines.
Additionally, we present the case study, which is used
for the actual evaluation of the transformation process.
We are using a comma separated values (CSV) repre-
sentation as input of our approach. The given data is
defined for every line by five columns including the x-
and y-coordinates of the startpoint, as well as the coor-
dinates of the endpoint. In addition to that, the type of
the line is also specified as door, stair, wall, window or
unknown. The approach results in a set of typed con-
tours that are represented by polygons.

4.1 Transformation Approach
The transformation process starts with general input
steps that are used for a type-based pre-clustering of all
given lines. These general steps consist of reading the

Scan

Line Classification

Line Extraction
Type Based 

Line Grouping

Clustering

Contour Creation

Post-Processing

Type specific
TransformationPreprocessing

Figure 1: The base process with the preprocessing on
the left side and the concept of a type specific process-
ing on the right one.

CSV input, removing all lines typed as unknown and
collecting all type equal lines. After that, (1) the actual
type specific clustering, (2) the conversion into a 2D
contour representation and (3) post-processing steps for
removing overlapping wall and window lines are per-
formed. This process is shown in figure 1. For those
three steps, there are also some default approaches that
are used on the type-pure line collections (created with
algorithm 1), before the type specific steps are exe-
cuted.

Algorithm 1: getInput(): Reads lines from
CSV (csvFile) and clustering the lines by its type
based on a given distance ratio.
Data: csvFile, ratio
Result: typed pure line collections

1 minDistance← sizeOfPlan(lines) * ratio
2 lines← readCsv(csvFile)
3 linesPerType← map(type, lineList)
4 forall line in lines do
5 if line.type 6= Unknown then
6 add(linesPerType[line.type], line)
7 end
8 end

For step (1), the line clustering, the method initially
performs the Bresenham algorithm [Bresenham1965].
The resulting points are used to determine the distance
between two lines of the given collection. If any two
points of different lines are within a given distance
threshold, the lines are grouped into a cluster. This pro-
cess is shown in algorithm 2 and is repeated recursively
until all input lines are associated to a line cluster.

Step (2), the default conversion method between a line
cluster and a contour, is achieved by creating a mini-
mal rotated rectangle of the clusters’ point cloud, that
consists of all start- and endpoints of the grouped lines.
This is shown in algorithm 3.

Finally, the post-processing steps (3), shown in algo-
rithm 4, for realigning overlapping windows or walls
are applied.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

13 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



Algorithm 2: defaultClustering(): Clus-
tering of lines by the distance between the two clos-
est points of two lines using a list of all lines, a list
of already used lines, the current line and the clus-
ter, as well as the building plan size.
Data: allLines, usedLines, currLine, cluster, size
Result: current processed cluster is initialized

1 if contains(usedLines, currLine) then
2 return
3 end
4 add(usedLines, currLine)
5 add(cluster, currLine)
6 threshold← sqrt(size.width * size.height) / 30
7 currPoints← bresenham(currLine)
8 forall line in allLines do
9 if notContained(usedLines, line) then

10 linePoints← bresenham(line)
11 if smallestDistance(currPoints, linePoints)

< threshold then
12 defaultClustering(allLines, usedLines,

line, cluster, size)
13 end
14 end
15 end

Algorithm 3: defaultContourCreation():
Creating contours of elements by using a Minimal
Rotated Rectangle around the lines of the given
clusters.
Data: clusters
Result: creates map of polygonal contour elements

1 contourElements← list()
2 forall cluster in clusters do
3 points← list()
4 forall line in cluster do
5 add(points, line.start)
6 add(points, line.end)
7 end
8 contour← minimalRotatedRectangle(points)
9 contour.type← cluster.type

10 add(contourElements, contour)
11 end

The method starts by checking if a window/wall con-
tour is intersecting with any other window/wall contour.
When the condition applies, the algorithm checks if the
orientation of both contours is similar, too. As all con-
tours are defined by rotated rectangles the orientation
of them is available, too. This second check is used to
avoid information loss by manipulating L- or T-formed
elements as e.g. corner windows. For similarly ori-
entated typed contours, the algorithm adapts both ele-
ments to the same height and aligns those on the virtual
center line defined by the elements’ center points.

Algorithm 4: defaultPostProcessing():
Window/Wall contour post-processing that aligns
two neighboring elements by adjusting their height
and rotation based on two lists of contours, one for
the windows and the other for the walls.
Data: windows, walls
Result: realigned window/wall contours

1 contours← combine(windows, walls)
2 forall contour1 in contours do
3 forall contour2 in contours do
4 if contour1.intersects(contour2) and

areSimilar(orientation(contour1),
orientation(contour2)) then

5 height← average(contour2, contour1)
6 scaleTo(contour2, height)
7 scaleTo(contour1, height)
8 centerline← line(center(contour2),

center(contour1))
9 orientation← orientation(line)

10 rotateTo(contour2, orientation)
11 rotateTo(contour1, orientation)
12 end
13 end
14 end

In addition to the realignment of the contours, there is
also a post-processing step for separating overlapping
window and wall elements, that is shown in algorithm
5. This process checks every window for containment
in a wall. In that case, the shorter sides of the window
are extended until they are intersecting with two sides
of the enclosing wall element. This process is shown
in figure 2. The intersection points are used to split the
wall elements into three parts, where part A is defined
by the original top-left rectangle corner, the top-left in-
tersection point, the bottom-left intersection point and
the bottom-left original rectangle corner. The second
part B is defined by the four intersection points and the
third part C consists of the top-right intersection point,
the top-right rectangle corner, the bottom-right rectan-
gle corner and the bottom-right intersection point. The
two outer parts A and C are used as new wall elements
and the intersection area B is removed from the result.

4.1.1 Door specific approach
Since doors are represented as arcs in building plans, it
is necessary to convert this representation to a rectangu-
lar form. In addition, doors are always surrounded by
walls or windows. With this precondition, the transfor-
mation approach for door lines is based on the default
clustering process and reuses its result to fit doors be-
tween surrounding wall or window clusters.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

14 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



X

X X

XX

Wall

Window

Extended shorter sides

Intersection Points

A CB

WindowWall A Wall C

Figure 2: Process of separating a window’s contour, that is contained in a wall’s contour, by extending the window’s
shorter sides and using the intersections for cutting the wall element into three parts A (light-grey left side), B (dark-
grey middle) and C (light-grey right side), where B is removed from the result.

Algorithm 5: windowWallSeparation():
Separation of overlapping window and wall ele-
ments, by removing the intersection area, based on
two lists of contours, one for the windows and the
other for the walls.
Data: windows, walls
Result: final wall contours

1 finalWalls← list()
2 forall wall in walls do
3 forall window in windows do
4 if isContainedIn(window, wall) then
5 sides← window.shorterSides
6 intersectionPoints← intersection(sides,

wall)
7 while size(intersectionpoints) < 4 do
8 extend(sides)
9 intersectionPoints←

intersection(sides, wall)
10 end
11 toRemove←

polygon(intersectionPoints)
12 wallParts← cut(wall, toRemove)
13 add(finalWalls, wallParts[0])
14 add(finalWalls, wallParts[2])
15 else
16 add(finalWalls, wall);
17 end
18 end
19 end

This is done by finding the two nearest lines from two
different clusters. The lines’ mid points are used as an-
chor points for the recreated door elements, which is
done by fitting in a minimal rotated rectangle between
those points. Since the algorithm may take incorrect
lines for defining the anchor points a check verifies if
the created door is overlapping any other contour. In
such a case, the door is considered invalid and is re-
moved from the result. The door specific approach is
shown in algorithm 6.

Algorithm 6: doorClustering(): Door spe-
cific clustering approach, that uses the two clos-
est non door clusters (walls, windows) to find an-
chor points for the position of the pre-clustered door
clusters using the default approach.
Data: doors, walls, windows
Result: door clusters

1 result← list()
2 wclusters← combine(walls, windows)
3 forall door in doors do
4 nearestClusters←

getTwoNearestClusters(door, wclusters)
5 nearestLine1← getNearestLine(door,

nearestCluster[0])
6 nearestLine2← getNearestLine(door,

nearestCluster[1])
7 doorCluster← minimalRotatedRectan-

gle(nearestLine1.center, nearestLine2.center)

8 notOverlapping← true
9 forall cluster in wclusters do

10 if overlapping(doorCluster, cluster) then
11 notOverlapping← false;
12 end
13 end
14 if notOverlapping then
15 add(result, doorCluster)
16 end
17 end

4.1.2 Stair specific approach

Due to the fact that all lines of a stair are somehow
connected but different stairs are separated by distance,
the characteristics of stairs on building plans are quite
unique. For this reason the default clustering and con-
tour conversion approach are sufficient and it was not
required to implement a stair specific approach.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

15 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



4.1.3 Wall specific approach

The default clustering approach is not working for walls
because nearly all wall lines are connected and it would
result in a few, large clusters. Consequently, the default
clustering algorithm is not applicable. Instead, the wall
clustering (shown in algorithm 7) uses different image
processing approaches. This process starts by creating a
distance map (shown in figure 3 (a)) using all wall lines.
On the resulting distance image a threshold filtering is
applied (shown in figure 3 (b)), with a threshold factor
based on the building plan’s size. The thresholded re-
sult is further manipulated using the Zhang-Suen thin-
ning algorithm [Zhang1984] (shown in figure 4). On
the resulting skeleton image, a line segment detector
is applied. These skeleton lines are then used as seed
points for the clustering process. We create bounding
boxes around the extracted skeleton lines and all con-
tained input lines are added to that cluster. The size of
the created bounding boxes is in turn normalized based
on the size of the building plan. This process is repeated
until all input lines are associated with a cluster. Finally,
all clusters are checked for intersection. In the case that
a cluster is completely contained in another one, these
two clusters are merged.

(a) (b)

Figure 3: (a) The calculated distance map and (b) the
distance map with an applied threshold.

In addition to the adapted clustering process, the wall
specific approach also contains additional contour post-
processing steps. Those steps are used to remove clus-
ters which an area smaller than a given threshold that is
determined by the overall size of the building plan, and
merging cluster that are overlapping with at least 40%.
The first of the two steps uses the area of the rotated
rectangles and checks if it is greater than a threshold,
which is a ratio based on the total building plan size. If
the area is below the specified threshold, the contour is
removed from the result. For the merging step, the size
of the intersection of two overlapping clusters is utilized
to determine whether the clusters are merged or not. If
the intersection concerns > 40% of one the clusters, the
two clusters are merged. This wall post-processing is
shown in algorithm 8.

4.1.4 Window specific approach

The approach for clustering window lines (shown in
algorithm 9) is based on the default implementation
and uses its result as input. The window specific

Algorithm 7: wallClustering(): The wall
specific clustering approach that uses Distance
Map, Zhang-suen thinning and Line Segment De-
tection to cluster wall lines.
Data: walls
Result: all clusters

1 image← drawlines(walls)
2 distanceMap← distanceMap(image)
3 thresholdedMap← threshold(distanceMap)
4 thinned← thinning(thresholdedMap)
5 lines← lineSegmentDetection(thinned)
6 clusters← list()
7 forall line in lines do
8 cluster← list()
9 boundingbox← boundingBox(line)

10 forall wall in walls do
11 if containedIn(wall, boundingbox) then
12 add(cluster, wall)
13 remove(walls, wall)
14 end
15 end
16 if notEmpty(cluster) then
17 add(clusters, cluster)
18 end
19 end

20 forall cluster1 in clusters do
21 forall cluster2 in clusters do
22 if contains(cluster1, cluster2) or

contains(cluster2, cluster1) then
23 cluster1← merge(cluster1, cluster2)
24 remove(clusters, cluster2)
25 end
26 end
27 end

method uses the pre-clustered elements and applies the
k-means clustering algorithm [Macqueen1967] based
on the lines’ orientation to create four line clusters with
lines around 0°, 45°, 90° and 135°. This is done due
to the assumption that windows that are close to each
other have the characteristics that their lines differ in

Figure 4: The line skeleton after applying the Zhang-
Suen thinning algorithm on the threshold distance map
image.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

16 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



Algorithm 8: wallPostProcessing(): Wall
specific contour post-processing, that removes
small walls and merged overlapping walls into a
single bigger wall using the size of the building plan
to calculate the threshold for the merging area.
Data: walls, buildingPlanSize
Result: postprocessed wall contours

1 threshold← getThreshold(buildingPlanSize)
2 forall wall in walls do
3 rotatedRectangle← rotatedRectangle(wall)
4 if area(rotatedRectangle) < threshold then
5 remove(walls, wall)
6 end
7 end
8 forall wall1 in walls do
9 forall wall2 in walls do

10 if intersectionRatio(wall1, wall2) > 0.4
then

11 merged← merge(wall1, wall2);
remove(walls, wall1)

12 remove(walls, wall2)
13 add(walls, merged)
14 end
15 end
16 end

rotation with a certain threshold. Those clusters are
checked on similarity using the average line rotation
per cluster. If at least two clusters are too similar
(difference < 30°), the k-means clustering is repeated
with a smaller number of clusters until all clusters are
unique. Afterwards, outliers are removed from the
clusters. This is done by two different approaches.
One approach removes positional outliers and the other
removes length outliers. The first outlier group is
identified using the average point position of all lines’
start- and endpoints of a cluster as weighted center
and the median distance from the start- and endpoints
to this center. A line is considered an outlier if the
distance of its midpoint to the cluster’s weighted center
is in the upper quantile of all line distances. In addition
to that, lines are removed if their length is at least twice
as long as the average line length in the cluster. The
resulting and filtered clusters are used as input for the
default contour conversion.

4.2 Case Study
In order to evaluate the floor plan transformation, a case
study is designed. In this case study we use a CSV
representation of a real world 2D floor plan, which is
shown in figure 6(c), as well as 100 generated, i.e. syn-
thesized, building plans described in section 4.3, that
consists of classified lines, which are then transformed
into contour elements. The real world floor plan was

Algorithm 9: windowClustering(): Window
specific clustering with line outlier removal
Data: windows
Result: window clusters

1 forall window in windows do
2 k← 4
3 do
4 clusters← kMeans(window.line, k)
5 k← k - 1
6 while clustersAreSimilar(clusters)
7 remove(windows, window)
8 addAll(windows, clusters)
9 end

10 forall cluster in windows do
11 weightedCenter←

averagePointPosition(cluster.lines)
12 averageLength← averageLength(cluster.lines)
13 medianDistance←

medianDistance(weightedCenter,
cluster.lines)

14 upperQuantil← medianDistance * 1.5
15 forall line in cluster.lines do
16 if distance(center(line), weightedCenter) >

medianDistance then
17 remove(cluster.lines, line);
18 end
19 if length(line) >= averageLength * 2 then
20 remove(cluster.lines, line);
21 end
22 end
23 end

scanned and provided with a resolution of 1358× 988
pixels. Since the input image is classified before it is
used in our clustering approach, it is also pre-processed
and a threshold is applied to remove levels of gray and
noise.

4.3 Random Building Plan Generator
The random building plan generator allows us to gener-
ate lines that form a plausible building plan. Within the
developed image to 3D building plan pipeline, this ap-
proach was initially used to train the classification mod-
ule to overcome the limitation of having to train and
test with the same data source. In addition to that we
use the synthesized building plans to test our clustering
approach. The architecture of the random building plan
generator is split into two parts. At first, we implement
a simple random room generator and secondly the room
borders are used to place textured windows, walls and
doors on them. Additionally, stairs are placed inside
these boundaries.

The generation process starts by placing random rect-
angles inside an image. These rectangles are extended

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

17 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



in width and height as long as they are not touching
any other rectangles. Once they hit another rectangle
on a specific side, the growing on this side stops and
the process is continued with the non-touching sides.
The method is applied until the growing of all rectan-
gles has finished. This process can lead to small holes
where multiple rooms connect. Nevertheless, this is not
an issue as such holes also occur in regular plans for
chimneys or air shafts.

After the rooms are created, we start using the lines of
the rectangles for further processing. In a first step we
determine possible window and wall spots. We eval-
uate for every line if it is an inside or outside line by
checking if it overlaps with a line of any other room.
In this case, the overlapping area of one of the lines is
removed and both lines are marked as inside lines. The
region of the line is then contained in two rectangles
and is marked as possible place for a door. On outside
lines the entire line is marked as possible position for a
window. In the next step the determined positions are
used to place randomized doors and windows, as well
as one entrance door that is generated at a window po-
sition. After that, we have a set of lines for doors and
window. All remaining lines are marked as wall lines.
For generating the stairs, we randomly add rectangles
inside room areas.

In the final step of the building plan generator we apply
a texture to all these lines and add a spacing wherever
necessary, so that there are no overlapping areas. In
the end this results in an automatically generated build-
ing plan as shown in figure 5 (a). In this image black
lines represent walls, red line are stairs, green lines are
windows and blue lines are doors. The final result may
contain some unrealistic rooms, that have an odd aspect
ratio. Nevertheless, this is sufficient for the purpose
of evaluating the clustering process of classified lines.
These building plans are then exported as CSV-file con-
taining all the lines and their corresponding type. In
addition to the CSV output, we also generate the corre-
sponding contour elements show in figure 5 (b) that are
used as a ground truth for the evaluation.

(a) (b)
Figure 5: (a) Sample of an auto generated building plan
using Random Building Plan Generator and (b) the cor-
responding filled contour image, used as ground truth
result.

5 EVALUATION
The presented approach is expected to be feasible for
clustering single lines. In order to evaluate the cor-
rectness of these clusters, they are represented as filled
polygons and are compared to our predefined ground
truth. Such a comparison is shown in figure 6. Where
(a) shows the ground truth that was manually created
using an image manipulation program and is compared
to (b) the automatically generated result. The evalu-
ation is performed pixel-wise. This means, that we
compare the color of each pixel from the automated ap-
proach with the ground-truth’s counterpart.

(a) (b)

(c)

Figure 6: (a) The manually created ground truth, (b)
the transformation result of the real world show in (c).
Black segments represent walls, red segments are stairs,
blue segments are doors and green segments represent
windows.

The described transformation is executed on the clas-
sified floor plan shown in figure 6(c) and results in the
clustered plan shown in figure 6(b). Together with the
manually transformed plan as ground truth (shown in
figure 6(a)), the transformation is evaluated. In addition
to this real world model, we use the random building
plan generator to additionally create 100 equally sized
building plans together with their corresponding ground
truth contour representation.

Using the ground truth plans and the results of the trans-
formation process the differences are calculated, which
is shown for the real world example in figure 7 with fig-
ure 6(a) and (b) as input. Table 1 shows the confusion
matrix for the various types between the ground truths
and our process results for all transformations. It shows,
that the transformation works for most types with an
accuracy of > 90%. Nevertheless, the transformation
fails on doors and cannot transform them. As the ta-
ble shows, some door lines result in background pixels.
The reason for that is, that if the specific transformation
step cannot extract the door with a high confidence no
door at the desired position is generated, as described
in section 4.1.1.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

18 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



Figure 7: Difference image of the manually trans-
formed plan shown in figure 6 (a) and the automatically
transformed plan shown in figure 6 (b). Black pixels
representing differences between the compared images
and white pixels are equal in the images

Automatic Transformation
Wall Stair Window Door Background

G
ro

un
d

Tr
ut

h Wall 92.22% 0.00% 0.63% 0.09% 7.06%
Stair 0.04% 98.50% 0.00% 0.00% 1.46%
Window 0.25% 0.00% 99.75% 0.00% 0.00%
Door 0.79% 0.00% 0.00% 7.90% 91.31%
Background 1.43% 0.00% 0.10% 0.04% 98.43%

Table 1: Confusion matrix for the evaluation of the
transformation with normalized values for each type.

6 RESULTS
6.1 Accuracy
The accuracy of the single classes can be seen in the
normalized confusion matrix in table 1. Beside the
background, which has a very high accuracy due to the
total amount of background pixels, the stairs and win-
dows perform even better. Those are followed by walls,
which do have a slightly worse accuracy. With only
an accuracy of 7.9% doors are the least correctly trans-
formed category. As described in section 5, this hap-
pens due to the fact that the transformation does not cre-
ate a door if the confidence is too low. Overall we can
state that the transformation accuracy is with > 90% for
walls, stair and windows sufficient, only for door with
around 8% it is not sophisticated for the tested example.

6.2 Performance
In contrast to the accuracy evaluation that is done on
equally sized plans, the performance evaluation uses
different sized building plans. For this purpose plans
with diverse numbers of lines as well as variant widths
and heights are generated using the random building
plan generator.

Results of the performance measurements are shown in
table 2. The experiments are executed with 10 warmup
tests followed by additional 10 measured tests, each.
The results in the table are averaged values. The results
show that the performance scales with the size of the
plan in a nearly linear manner. This means, that if the
plan size is doubled, the run-time is around twice the
time. This is also proven by the strong Pearson correla-
tion between area and run-time of around .996, as well
as in the run-time chart which can be seen in figure 8.

Plansize (in pixel)
Rooms Lines width height area run-time [ms]

5 686 603 603 363609 725
6 852 603 603 363609 740
7 1011 603 603 363609 1019
8 1248 803 803 644809 1315
9 1375 803 803 644809 1393

10 1741 1029 1003 1032087 2522
12 2428 1303 1303 1697809 3847
14 2581 1529 1503 2298087 4459
16 3600 1703 1703 2900209 7809
18 2960 2003 2003 4012009 10519
20 3776 2503 2503 6265009 15743

Table 2: Performance of the transformation in ms com-
pared to the number of lines, number of rooms and size
of the building plan.

It is also affected by the number of lines in the plan. If
the number of lines is increased but the size is kept con-
stant, the run-time also increases. This does not have a
big impact on the run-time, which can be seen in the
slightly lower correlation of around .896.

0

4000

8000

12000

16000

0e+00 2e+06 4e+06 6e+06
Floor Plan Area (pixel * pixel)

R
un

tim
e 

(m
s)

Performance Measurement Results

Figure 8: The run-time of the transformation grows lin-
ear with the area size of the plan.

7 CONCLUSION
In section 4.1 we answered our research question:
How can classified lines be transformed to contour
elements using clustering approaches?, and presented
an approach on how to automatically cluster lines
in the context of a 2D building plan. This concept
uses algorithms from the field of computer vision and
machine learning.

We evaluated that concept in section 5 using a case
study consisting of a single real world floor plan and
100 synthetic building plans.

For this case study, the accuracy was evaluated in sec-
tion 6.1, which showed an accuracy of > 90% for win-
dow, walls and stairs and around 8% for doors. In ad-
dition to that, a performance test was done in section
6.2. The test showed that the average run-time scales
linearly with the area of the building plan.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

19 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2



In the future we want to extend the evaluation with a
higher amount of real data as well as a higher variety of
building plans. Moreover, we aim to improve the trans-
formation accuracy for door elements. This can e.g. be
achieved by changing the classification to have sepa-
rated classes for normal and overlapping doors, which
would then give the possibility to address these two
tasks differently in the transformation. In addition to
that we want to do an evaluation on scaled building
plans. As we have seen a near linear scale in run-time
compared to the size of the plan this should lead to a
increase in performance.

8 REFERENCES
[AhSoon2001] Ah-Soon C. and Tombre K. Architec-

tural symbol recognition using a network of con-
straints, in Pattern Recognition Letters Vol. 22,
pp. 231-248, 2001.

[Arthur2006k] Arthur D. and Vassilvitskii S. k-
means++: The advantages of careful seeding,
2006.

[Bresenham1965] Bresenham J. Algorithm for com-
puter control of a digital plotter, in IBM Systems
Journal Vol 4, pp. 25-30, 1965.

[Canny1986] Canny J. A Computational Approach to
Edge Detection, in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679-698, 1986.

[Dosch2000] Dosch P, Tombre K., Ah-Soon C. and
Masini G. A complete system for the analysis of
architectural drawings, in Int. Journal on Docu-
ment Analysis and Recognition Vol. 3, pp. 102-
116, 2000.

[Duda1972] Duda R.O. and Hart P.E. se of the Hough
Transformation to Detect Lines and Curves in
Pictures, in Comm. ACM. 15: 11âC“15, 1972.

[Eberly2015] Eberly D. Minimum-area rectangle con-
taining a set of points, 2015.

[Gerstweiler2018] Gerstweiler G., Furlan L., Timo-
feev M. and Kaufmann H. Extraction of Structural
and Semantic Data from 2D Floor Plans for Inter-
active and Immersive VR Real Estate Exploration,
in MDPI AG Vol. 6, 2018.

[Lee2006] Yun-Seok L., Han-Suh K. and Chang-Sung
J. A straight line detection using principal compo-
nent analysis, in Pattern Recognition Letters vol
27(14), 2006.

[Lewis1998] Lewis R. and SÃ©quin C. Generation of
3D building models from 2D architectural plans,
in Computer-Aided Design Vol. 30, pp. 765 - 779,
1998.

[Liu2017] Chen L. and Jiajun W. and Pushmeet K. and
Yasutaka F.. Raster-to-Vector: Revisiting Floor-
plan Transformation, in Conf. proc. of IEEE Inter-

national Conference on Computer Vision (ICCV)
2017.

[Lu2007] Lu T, Yang H. Yang R. Cai S. Automatic
analysis and integration of architectural drawings,
in Proc. of Int. Journal of Document Analysis and
Recognition (IJDAR) Vol. 9, pp. 31 - 47, 2007.

[Macqueen1967] MaqQueen J. Some methods for
classification and analysis of multivariate obser-
vations, in Proc. of the fifth Berkeley symposium
on mathematical statistics and probability Vol. 1.,
pp. 281-297, 1967.

[Or2008] Or S, Kin-Hong Y. and Ming M. Abstract
Highly Automatic Approach to Architectural
Floorplan Image Understanding & Model Gen-
eration, 2008.

[Pointner2018] Pointner A., Krauss O., Freilinger G.,
Strieder D. and Zwettler G. A. Model-based im-
age processing approaches for automated person
identification and authentication in online bank-
ing, in Proc. of the EMSS2018, 2018.

[Preparata1985] Preparata F. and Shamos M. Compu-
tational geometry: an introduction, 1985.

[So1998] So C. Baciu G. and Sun H. Reconstruction of
3D virtual buildings from 2D architectural floor
plans, in Proc. of the ACM symposium on Virtual
reality software and technology, 1998.

[Stojanovic2019] Stojanovic V., Trapp M., Richter R.
and Döllner J. Generation of Approximate 2D
and 3D Floor Plans from 3D Point Clouds, in
Proceedings of VISIGRAPP, 2019.

[VonGioi2012] Von Gioi R., Jakubowic J., Morel J.
and Gregory R. LSD: a Line Segment Detector,
in Image Processing On Line Vol. 2, pp. 35-55,
2012.

[Yin2009] Yin X., Wonka P. and Razdan A. Generating
3D Building Models from Architectural Draw-
ings: A Survey, in IEEE Computer Graphics and
Applications Vol. 29, pp. 20 - 30, 2010.

[Zeng2019] Zeng Z., Li X., Yu Y. and Fu C. Deep
Floor Plan Recognition Using a Multi-Task Net-
work With Room-Boundary-Guided Attention,
in Proc. of. Int. Conference on Computer Vision
(ICCV), 2019.

[Zhang1984] Zhang T. and Suen C. A fast parallel
algorithm for thinning digital patterns, in Com-
munications of the ACM Vol. 27, pp. 236-239,
1984.

[Zwettler2010] Zwettler G.A., Backfrieder W., Swo-
boda R. and Pfeifer F. Fast Medial Axis Extraction
on Tubular Large 3D Data by Randomized Ero-
sion, in Springer Lecture Notes CCIS, Springer
Vieweg, pp. 97-108, 2010.

ISSN 2464-4617 (print) 
SSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3101 WSCG 2021 Proceedings

20 ISBN 978-80-86943-34-3DOI:10.24132/CSRN.2021.3101.2




