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ABSTRACT

We propose an extension of a recent work using convo-
lutional neural networks and drones, such as Learning to
fly by using DroNet [8] that can possibly safely drive a
drone autonomously. The combination of (i) the DroNet
architecture and weights to apply to CNNs to avoid the
crashes; (ii) combining it with DLIB tracker, a corre-
lation implemented tracker based on Danelljan et al.’s
paper [3] work; (iii) the extraction of descriptors using
Speeded Up Robust Features [1]; and (iv) Fast Library
for Approximate Nearest Neighbors [10] for the feature
matching — leads a drone to track any object and avoid
crashes autonomously without any prior information
about the object. The main goal is to create a partnership
between the drone(s) and the participant as the drone
follows the participant and avoids collisions. Our work
extends existing methods to also included a way for a
drone to follow a person even if the person is hidden
for a few frames. Our algorithms also work in low/poor
ambient light satisfactorily. In future, our technique can
be used to provide novel indoor applications for drones.
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1 INTRODUCTION

A drone, in a technological context, is an unmanned
aircraft formally known as unmanned aerial vehicles
(UAVs) or unmanned aircraft systems (UASs). Essen-
tially, a drone is a flying robot. These flying robots
can be controlled or can fly autonomously using neural
networks, for example, working in conjunction with on
board sensors, cameras or GPS [?]. Our focus is to use
machine learning algorithm to control the functionality
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of drones and extend the personal spaces. State-of-the-
art approaches on this topic have already provided mod-
els and algorithm to autonomously fly a drone indoor
or outdoor avoiding crashes. While such approaches
are able to safely fly the drones, they are not using it to
provide any other application than just flying the drone.
By combining flying with object tracking with drones’
navigation we have implemented a new application for
drones in our work, and extended drones usage to fol-
low the participant in the indoor spaces. Our efforts can
allow the participant to extend there environment and
work with drones in a collaborative manner .

2 RELATED WORK

There have been several attempts to use drones effec-
tively in both outdoor and indoor environments [8, 3, 4,
1,10,7,6,11,5,2,9]. DroNet [8] is a convolutional neu-
ral network (CNN), whose purpose is to reliably drive
an autonomous drone through the streets of a city.

2.1 Learning to fly by driving

DroNet [8] is trained with data collected by cars and
bicycles, this system learns from the collected data to
follow basic traffic rules, e.g, do not go off the road, and
to safely avoid other pedestrians or obstacles. Surpris-
ingly, the policy learned by DroNet can be generalized.
For example, we were able to extend the training to fly
a drone in indoor corridors and parking lots. Learning
approaches predicts a steering angle and a probability
of collision from the drone on-board forward-looking
camera. These are later converted into control/flying
commands which enable a UAV to safely navigate while
avoiding obstacles. Since the goal is to reduce the image
processing time, this paper advocate a single convolu-
tional neural network (CNN) with a relatively small
size. The architecture is partially shared by the two
tasks to reduce the networks complexity and process-
ing time, but is then separated into two branches at the
very end: Steering prediction is a regression problem,
which means that it requires the prediction of a quantity,
while collision prediction is addressed as a binary clas-
sification problem. During the training procedure, only
imagery recorded by manned vehicles is used. Steer-
ing angles are learned from images captured from a car,
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while probability of collision is learned from images
captured from a bicycle. DroNet system has been tested
[8] for autonomously navigation on a number of differ-
ent urban trails including straight paths and sharp curves
as described in citedronet. Moreover, to test the gen-
eralization capabilities of the learned policy, they also
performed experiments in indoor environments. They
compare the approach against two baselines: Straight
line policy and Minimize probability of collision policy.
One of the metric is to use the average distance trav-
elled before stopping or colliding. Results indicate that
DroNet is able to drive a UAV for a long time on almost
all the selected testing scenarios. The main strengths of
the policy learned by DroNet are twofold:

e the platform smoothly follows the road lane while
avoiding static obstacles.

e the drone is never driven into a collision, even in
presence of dynamic obstacles, like pedestrians or
bicycles, occasionally occluding its path.

2.2 Learning to fly by crashing

In this paper [4], a drone whose goal is to crash into ob-
jects is built: it samples random trajectories to crash into
random objects. A larger number of crashes are recorded
(11,500 times) to create one of the biggest UAV crash
related data-set. This negative dataset provides scenarios
of different ways that a UAV can crash. It also represents
the policy of how UAV should NOT fly. They use all this
negative data in conjunction with positive data samples
from the same trajectories to learn a simple yet surpris-
ingly powerful policy for UAV navigation. A simple
self-supervised paradigm is quite effective in navigating
the UAV even in extremely cluttered environments with
dynamic obstacles such as humans. Parrot Ar-Drone
2.0 is used. The research is very interesting as no addi-
tional sensors/cameras are attached in the flying space
during the data collection process. A two-step proce-
dure for data collection is implemented. First, sample
naive trajectories lead to collisions with different kind
of objects. Then an annotation procedure for collected
trajectories is described. The trajectories are first seg-
mented automatically using the accelerometer data. This
step restricts each trajectory up to the time of collision.
Finally, trajectories are segmented into positive and neg-
ative data classification. For the Neural network por-
tion, AlexNet architecture uses the ImageNet-pertained
weights as initialization for the network. The network
learns how to do a simple classification which uses an
input image to predict if the drone should move forward
in straight line or not. Based on the right cropped image,
complete image and left cropped image, the network
predicts the probability to move in right, straight and left
direction respectively. If the straight prediction (P(S)) is
greater than alpha, drone moves forward with the yaw
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proportional to the difference between the right predic-
tion (P(R)) and left prediction (P(L)). Intuitively, based
on the confidence predictions of left and right, robot is
turned to left or right while moving forward. Model’s
performance is tested using (i) a Straight-line policy, (ii)
a depth prediction based policy and (iii) a human con-
trolled policy. The method is tested on 6 complex indoor
environments doors, floors, entrance, etc. To evaluate
the performance of different baselines, average distance
and average time of flight without collisions is used as
the metric of evaluation. This metric also terminates
flight runs when drones take small loops (spinning on
spot). On every environment/setting, this method per-
formed better than the depth baseline. The best straight
baseline provides an estimate of how difficult the en-
vironments are. The human controlled baselines have
better results than their method for most environments.
However, for some environments such as hallway and
chairs, presence of cluttered objects makes it difficult for
the participants to navigate through narrow spaces, and
in this case drone method surpasses human level control
in this environment.

2.3 DroNet Architecture

DroNet[8] is a convolutional neural network which is
able to predict the probability of collision and the steer-
ing angle in real time having as the input, each frame
of the drones camera. It was trained using data col-
lected by cars and bicycles driving through different
cities. It can guide a drone through a road following the
traffic signs, avoiding obstacles and without going off
the road. To reduce the image processing time, DroNet
architecture is shared by the two tasks (probability of
collision and steering angle) but then is separated into
two branches at the end. Steering angle is a regression
problem, which means that requires the prediction of a
quantity, and probability of collision is a binary classifi-
cation problem. DroNet uses the ResNet-8 architecture
plus a dropout layer of 0.5 and a reLu non-linearity.
The residual blocks of ResNet were proposed by He
et al. [6]. After the ReLu layer, the two tasks share
more parameters and the architecture splits into two dif-
ferent fully-connected layers. The first output is the
steering angle and the second one is the probability of
collision. The input of this convolutional neural network
is a 200x200 frame in gray-scale.

2.4 Drone control

To control the drone, we use the outputs of DroNet. They
used probability of collision to modulate the forward
velocity and the predicted steering angle to calculate the
yaw angle of the drone. For the forward velocity, the
drone fly at a maximal speed when the probability of
collision is zero and the drone stops when the probability
of collision is close to one. A low-pass filtered version
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of the modulated velocity to drive the drone smoothly is
used.

Vi = (1= @)Vi1 +a(l = p)Vinax ey

For the steering angle, a [-1, 1] range is mapped to a
desired yaw angle in the range [—7/2,7/2] and low-pass
filtered using:

wi = (1 =Pwp-1 + (Brs/2) @

Depending on the environment the value can be changed
as well. One of the benefits of using DroNet is that it
works perfectly in many indoor and outdoor scenes that
contain line features but it fails in environments such as
forests because of the lack of this features in the data
set.

2.5 DLIB correlation tracker

DLIB tracker is a correlation implemented tracker based
on [3]. Their work is based on MOSSE tracker [2].
The MOSSE tracker works well for objects that are
translated but it does not work properly for objects that
change in scale. DLIB tracker uses a scale pyramid to
accurately estimate the scale of an object after the opti-
mal translation is found. This helps us to track objects
that change in translation but also in scaling through-
out a video stream and furthermore in real-time. The
approach works by learning discriminating correlation
filters based on scale pyramid representation. They learn
separate filters for translation and scale estimation. This
scale estimation approach is generic and it can be incor-
porated into any tracking method with no inherent scale.
Incorporating scale estimation makes the computational
cost become much higher and their goal was to have
an accurate and robust scale estimation approach and at
the same time computationally efficient. Their method
propose a fast scale estimation approach by learning
separate filters for translation and scale. This restricts
the search area to smaller parts of the scale space. In
order to estimate the scale of the target in an image, [3]
uses separate I-dimensional filter. and compares sev-
eral trackers. The list includes ASLA tracker[7], SCM
tracker [?], Struck[11], the LSHT tracker [5]. DLIB
tracker works well for scaling and translation, and 2.5
times faster than Struck, 25 times faster than ASLA and
250 times faster than SCM in median FPS [?].

Obviously, the main advantage of using this correlation
tracker in our research is that it will track our selected
target and it will compute the translation and the scale
of it. This lets our algorithm know either the object is
moving left or right and furthermore we will be able to
know if the tracking object is moving closer or further
from us by just computing the area of the tracking object.
While this algorithm helps us in a very prominent and
efficient way it has a very big disadvantage which could
make our algorithm fail. This disadvantage occurs when
the object we are following, completely disappears from
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the camera field and then it appears again. As this tracker
is based in the correlation between frames, it will not
be able to detect and track the same object again. To
address this problem, we implemented a novel algorithm
using descriptors and key points of the tracked object
so that when the object we are tracking disappears for
a few frames, the algorithm will be able to find it again.
This feature will be explained and discussed later.

2.6 Feature extraction: SURF

Speeded Up Robust Features (SURF) is a feature ex-
traction algorithm presented in [1]. It is a faster version
of SIFT algorithm [9]. While Scale Invariant Feature
Transform (SIFT) uses Lowe approximated Laplacian of
Gaussian with Difference of Gaussian for finding scale-
space, SURF approximates LoG with Box Filter. The
main advantage is that convolution with box filter can
be easily calculated with help of integral images and it
can be done in parallel for different scales. SURF rely
on determinant of Hessian matrix for both scale and lo-
cation. For orientation, SURF uses wavelet responses in
horizontal and vertical direction. Gaussian weights are
also applied to it. The dominant orientation is estimated
by calculating the sum of all responses within a sliding
orientation window of angle 60 degrees. For feature
description, this algorithm uses Wavelet responses in
horizontal and vertical direction. A neighborhood of
size 20sX20s is taken around the key-point where s is
the size. It is divided into 4x4 sub-regions. For each
sub-region, horizontal and vertical wavelet responses
are taken and a vector is formed. This when represented
as a vector gives SURF feature descriptor with total 64
dimensions. Lower the dimension, higher is the speed of
computation and matching, which provide better distinc-
tiveness of features. Another important improvement is
the use of sign of Laplacian (trace of Hessian Matrix)
for underlying interest point. It adds no computation
cost since it is already computed during detection. The
sign of the Laplacian distinguishes bright blobs on dark
backgrounds from the reverse situation. In the match-
ing stage, we only compare features if they have the
same type of contrast. This minimal information allows
for faster matching, without reducing the descriptor’s
performance. SURF adds a lot of features to improve
the speed in every step. Analysis shows it is 3 times
faster than SIFT while performance is comparable to
SIFT. SUREF is good at handling images with blurring
and rotation, but not good at handling viewpoint change
and illumination change.

3 OUR ALGORITHM FOR A DRONE
TO FOLLOW A PERSON

The most useful feature that we have taken profit from
DroNet is the probability of collision because the steer-
ing angle must cause some bad prediction. This is caused
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Algorithm 1 DroNet usage pseudo code

WHILE TRUE{
frame = drone_camera/()

DroNet (frame)
- THRESHOLD PROB  {

probability of collision =
WHILE probability of collision
STOP Drone movement
frame = drone.camera()

probability of collision = DroNet(frame)

}
DRIVE Drone

Figure 1: DroNet Usage pseudo code

because DroNet is trained to follow roads and not ob-
jects, by that we mean that the steering angle will follow
the road direction and will not follow the object if the
object tries to get off-road. Knowing that we have used
the probability of collision as basis of our implementa-
tion, we are proposing that if the probability of collision
is higher than a threshold, the drone should stop imme-
diately. If this probability of collision is lower, then the
velocity of the drone will not be calculated based on that
probability but based on the velocity of the object we
are following. This is a very different feature than the
one used in DroNet but since our objectives are very
different, our proposal is the best way to add their work
into our project.

While the probability of collision is higher than the
THRES HOLDpROB, the drone will be stopped at the
same position as shown in Figure 1. This is because our
goal is to follow anything, for in our example a person.
If we are behind this person, following him, we will not
have any collision if he has no collision either but we
could have a collision if something crosses between the
drone and the person. In this case the drone will stop
and once this object has crossed, the drone will restart
following the person again.

3.1 Using DLIB tracker in our research

The DLIB tracker is a correlation algorithm. So this
algorithm does not know what is exactly following does
not have memory. This means that if for example, the
light goes off and on, the tracker will not know what
to follow and it will get lost. This tracker returns a
number which tells the confidence the tracker has for
following the object correctly. If the object is partially
occluded then this probability will decrease. Knowing
this number, we can tell when we are tracking our object
or when it is lost. Therefore, our algorithm for the
tracker is very similar to the Algorithm in Figure 1. If
the confidence of the tracker is lower than a threshold,
then we will mark our tracking object as lost and we
will start trying to find it again. If the confidence of the
tracker is high enough, then we will move the drone as
the object is moving as shown in Figure 2.
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Algorithm 2 DLIB tracker usage pseudo code

WHILE TRUE {
frame = drone_camera ()

confidence = DLIB(frame)

IF confidence < THRESHOLD TRACK {
Tracking_object = Lost
DRONE try to RE-FIND object

1

ELSE{
Tracking_object = Found
DRONE MOVES FOLLOWING Tracking object

Figure 2: DLIB tracker usage pseudo code

As we are going to follow every object from the same
approximate distance, we know exactly which is the dis-
tance that separates the drone and the tracking object.
We can also, easily know, before losing the object what
was the direction it was moving (right or left). By know-
ing that, we could re-find our object again if our tracker
would know what was the object we were following. As
our tracker does not know it, we use descriptors and key
points to be able to re find the lost object.

3.2 Novel Algorithm: use of descriptors

We extract features, called descriptors, of the object we
are tracking. We use this descriptor to re-find the object
we were tracking. The basic idea is that we create a
buffer of size N where we store these descriptors while
we are tracking the object and the confidence of the
tracker is high. Once the object has been lost, we use
this buffer to check descriptor by descriptor if someone
matches with what the drone is capturing. The main
point of using a buffer, instead of a single variable is that
we want to store several descriptors of the object we are
following in case this object changes its form during the
following process (due to moving faster or for example
sitting down etc). Imagine we are following a person
from the back, but then this person turns 180 degrees
and he is facing the drone, then we want the descriptors
of the person facing the drone and not his back. To be
able to do that, our buffer has a fixed size N and every
position has a different descriptor value. This value is
overwritten once the buffer is full. The only position we
do not overwrite is the first position of the buffer where
we store the descriptors of the Region of Interest (ROI)
of the first frame we used to track because the first ROI
will have for sure the descriptors of the object we want
to follow without any kind of occlusion. As the drone is
sending up to 30 frames per second (fps) and the object
we are pursuing will rarely move or change its form that
fast we just store 2 descriptors per second. Using this
technique, our algorithm becomes more efficient and we
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Algorithm 3 Saving descriptors usage pseudo code

Buffer size = N
frame = drone_camera()
Once ROI selected from Frame —> Save descriptors at position |
Start tracking {
Frame = Drone_camera
confidence = DLIB(Frame)
POS =1
IF confidence > THRESHOLD.TRACK {
Save descriptors of ROl at position POS of the buffer
IF POS == N { POS = 1}
ELSE { POS = POS + 1}

Figure 3: Saving Descriptors Pseudo Code

Algorithm 4 Using descriptors to re-find objects usage pseudo code

frame = drone_camera()

Actual_descriptor descriptor (Frame)

Found = False
FOR descriptor in BUFFER {
If actual descriptor matches descriptor {
Found = True

BREAK

}
IF Found == True {

Homography = H(actual_descriptor , descriptor)

Object.in_frame = Homography(frame)

Start tracking DLIB(Object_in_frame)

Figure 4: Using Descriptors to re-find the object Pseudo-
code

need less space to store the buffer. The algorithm of
storing descriptors is shown in Figure 3.

Saving these descriptors in a good and efficient way is
really important to be able to re-find our object once
it has been lost. Once the object is lost, our algorithm
tries to re-find the object by using the descriptors stored
in the buffer position by position and starting at posi-
tion 0 which is where the initial descriptors were stored.
If the object is found, then we start tracking again the
object using the DLIB tracker. This is a major improve-
ment proposed towards resiliency of our work, we added
descriptors to to re-find the object as shown in Figure 4

4 HANDLING TOUGH SCNEARIOS

The most common tough cases our system could face
are:

e No light
e Occlusions
e Very sharp turns

DOI:10.24132/CSRN.2021.3101.14

Algorithm 5 General edge cases usage pseudo code

Distance_from_object = D (meters)

Last_direction Right/Left

WHILE DRONE MOVES D (meters) straight {
IF object found {

Start tracking again
BREAK

}
DRONE TURNS Last direction
IF object found {
Start tracking again
BREAK
}
ELSE {
Keep rotating until object found or 360 degrees
IF object found {
Start tracking again
BREAK
}
ELSE {
LAND Drone
STOP

Figure 5: General Edge case usage Pseudo-code

These are handled by implementing (a) Re-finding algo-
rithm and (b) and an algorithm to handle poor lighting
conditions.

4.1 Re-finding the object of interest

As we cannot distinguish each of these cases while we
are flying, we have implemented a general algorithm to
be able to re-find the object. As we previously know
the distance between the object and the drone and also
the last direction that our object moved, the RE-FIND
object algorithm is shown in Figure 5:

Using this algorithm, the drone will be expected to first
move straight D meters and then turn either left or right
based on that last direction the object moved to find it
again. If the object has not been found, then the drone
will make a 360 degrees rotation movement to try to find
the object again, see Figure 5 for pseudo code. If the
object has not been found, then the drone will land and
the program will be stopped.

4.2 No light: Novel Algorithm

When there is no light at all, our tracking algorithm
confidence value is NaN (Not a Number). Therefore,
our implementation is to set the probability of collision
to 1 when the tracking algorithm value is NaN. Using
this approach, our drone will stop when the light is off
and then re-start the tracking when the light is on as
shown in Figure 6.
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Algorithm 6 No light pseudo code

WHILE TRUE{
Frame = Drone_camera
confidence = DLIB(Frame)
IF confidence == NaN {
STOP drone
SET probability of collision =1
i

ELSE |
Start tracking again

}

Figure 6: No light Pseudo code

5 OVERALL WORKING OF OUR AL-
GORITHM

To control the drone, we have to combine all the algo-
rithms we have explained before into one single algo-
rithm. The most relevant parameter we have to check
is the probability of collision. If it is higher than the
threshold, then we will stop the drone movement until
this probability has decreased. No matter what is hap-
pening, we do not want our drone to crash. The second
parameter we have to take into consideration is the DLIB
tracker confidence. If this confidence is higher than the
threshold, then we will follow the object while we save
the correspondent descriptors. If it is lower than the
threshold, then we will stop saving descriptors and we
will start to find the object again. If it is found, then we
will start the tracking movements again, if it is not after
completing the edge-cases movements, we will land the
drone and stop the program.

Some parameters can change when we follow different
objects. It is not the same to follow a human than a bike
or even a car. These parameters are initialized by the user.
These parameters are the following: Distance between
the drone and the object; Height of the drone; Velocity
of the drone. Complete drone algorithm implemented
by us is shown in Figure 7 as a Pseudo code.

6 IMPLEMENTATION AND RESULTS

We have programmed everything using Python and Py-
Charm as the IDE. The libraries we have used for this
project are the following: AR Parrot 2.0, DJI Tello
python API, OpenCV, DLIB: main tracker API, and
Tensorflow.The most useful feature that we have taken
profit from DroNet is the probability of collision because
the steering angle must cause some bad prediction. This
is caused because DroNet is trained to follow roads and
not objects, by that we mean that the steering angle will
follow the road direction and will not follow the object
if the object tries to get off-road. Knowing that we have
used the probability of collision as main feature of our
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project. we are proposing that if the probability of col-
lision is higher than a threshold, the drone should stop
immediately. If this probability of collision is lower,
then the velocity of the drone will not be calculated
based on that probability but based on the velocity of the
object we are following. This is a very different feature
than the one used in DroNet but since our objectives are
very different, our proposal is the best way to add their
work into our project. While the probability of collision
is higher than the THRES HOLDpROB, the drone will
be stopped at the same position. This is because our goal
is to follow anything, for example a person. If we are
behind this person, following him, we will not have any
collision if he has no collision either but we could have
a collision if something crosses between the drone and
the person. In this case the drone will stop and once this
object has crossed, the drone will restart following the
person again. This DLIB tracker returns a number which
tells the confidence the tracker has for following the ob-
ject correctly. If the object is partially occluded then this
probability will decrease. Knowing this number, we can
tell when we are tracking our object or when it is lost.
Therefore, our algorithm for the tracker is very similar
to the Algorithm 1. If the confidence of the tracker is
lower than a threshold, then we will mark our tracking
object as lost and we will start trying to find it again. If
the confidence of the tracker is high enough, then we
will move the drone as the object is moving. As we are
going to follow every object from the same approximate
distance, we know exactly which is the distance that
separates the drone and the tracking object. We can
also, easily know, before losing the object what was the
direction it was moving (right or left). By knowing that,
we could re-find our object again if our tracker would
know what was the object we were following. As our
tracker does not know it, we use descriptors and key
points to be able to re find the lost object. We extract
features, called descriptors, of the object we are tracking
using the algorithms we have developed. We use this
descriptor to re-find the object we were tracking. The
basic idea is that we create a buffer of size N where we
store these descriptors while we are tracking the object
and the confidence of the tracker is high. Once the object
has been lost, we use this buffer to check descriptor by
descriptor if someone matches with what the drone is
capturing.

The main point of using a buffer, instead of a single
variable is that we want to store several descriptors of
the object we are following in case this object changes
its form during the following process (due to moving
faster or for example sitting down etc). Imagine we are
following a person from the back, but then this person
turns 180 degrees and he is facing the drone, then we
want the descriptors of the person facing the drone and
not his back. To be able to do that, our buffer has a fixed
size N and every position has a different descriptor value.
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Algorithm 7 Drone control pseudo code

Distance_from_object = D {meters)

Last_direction = Right/Left

WHILE True{
Frame = Drone_camera
Probability of collision = DroNet{Frame)
IF Probability of collision > THRESHOLD PROB{
STOP DRONE MOWEMENT

}
ELSE{
Confidence = DLIB{Frame )
IF confidence == NaN {
STOP drone
SET probability of collision =1

ELIF Confidence < THRESHOLDTRACK {
Tracking_object = Lost
WHILE Tracking_object = Lost {

WHILE DROME MOVIS D (meters) straight {
find_descriptors ()
IF object found {

Tracking-object = Found
BREAK

DPRONE TUENS Last_direction

find _descriptors()

IF object found {
Tracking-object = Found

BREAK
1
EISE {
Keep rotating until object found or 360 degrees
find_descriptors()
IF object found {
Tracking_object = Found
BREAK
}
ELSE {
LAND TRONE
STOP
}
1
1
}
ELSE{
Tracking-object = Found
DRONE MOVES FOLLOWING Tracking_object
Last_direction = Right/Left
save_descriptors()
}
}
}
Figure 7: Drone Control Pseudo-code
DOI:10.24132/CSRN.2021.3101.14 131
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This value is overwritten once the buffer is full. The only
position we do not overwrite is the first position of the
buffer where we store the descriptors of the Region of
Interest (ROI) of the first frame we used to track because
the first ROI will have for sure the descriptors of the
object we want to follow without any kind of occlusion.
As the drone is sending up to 30 frames per second
(fps) and the object we are pursuing will rarely move or
change its form that fast we just store 2 descriptors per
second. Using this technique, our algorithm becomes
more efficient and we need less space to store the buffer.
Saving these descriptors in a good and efficient way is
really important to be able to re-find our object once it
has been lost. Once the object is lost, our algorithm tries
to re-find the object by using the descriptors stored in
the buffer position by position and starting at position O
which is where the initial descriptors were stored. If the
object is found, then we start tracking again the object
using the DLIB tracker.

7 DRONE CONTROL

The DJI Tello is a newer and smaller drone but it is also
cheap and robust. As it is newer, the implementation of
the python API is more efficient and more reliable. The
most important specifications for the DJI Tello drones
are: Weight: 0.2 lbs; Dimensions: 3.86 x 1.61 x 3.64
inches; Max flight time: 13 minutes; Battery: 1100
mAh LiPo; Camera: SMP camera 720p, 30 fps video
output. The drone has three axes to control: Pitch (Y
axis), Yaw (Z axis) and Roll (X axis). If the aircraft
rotates around the Pitch axis it will move in the X axis
direction. If the Pitch angle is positive, the direction
will be backwards, or in the negative X axis. The same
will be applied when rotating the Roll axis, which will
move the aircraft in the Y axis direction. If the pitch
value is positive, the drone will move forward and if it
is negative the drone will move backwards as we can
see in the following image. If the yaw value is positive,
the drone will rotate in clockwise direction on itself
and if the yaw is negative, the drone will rotate counter
clockwise on itself. If the roll value is positive, the
drone will move right and if it is negative the drone will
move left as we can see in the following image. There
is another drone variable which has to be controlled,
the throttle. This controls the aircraft’s average thrust
from its propulsion system. When the aircraft is level,
adjusting the throttle will move the aircraft up or down as
all the thrust is in the vertical direction. However, when
the aircraft is not level (has non-zero pitch or roll), the
thrust will have a horizontal component, and therefore
the aircraft will move some horizontally. A larger pitch
or roll angle will result in more horizontal thrust and
therefore faster horizontal movement. To control this
axes of the drone autonomously, what we want is to have
always our tracking object in the middle of the frame.
If the object we are tracking is in the green zone of the
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Figure 8: Simple walk result 3 (left) and 4 (right)

frame, we will not move the drone. If the object is in any
blue zone, we will set the throttle of the drone to either
go up or down. We always set the roll angle to 0 as we
do not want the drone to move right or left but in case
the object is in any white space, we will set the yaw in
order to rotate the drone to the correct direction. To be
able to set the drone’s pitch to move the drone forward
or backward, what we do is to calculate the area of the
tracking object at the beginning of the tracking and if this
area increases, we move the drone backwards because
it means that the object is approaching the drone, if
this area decreases, we move the drone forward because
the tracking object is moving further. The yaw, pitch
and throttle velocities are changed depending on the
environment and the distance between the drone and the
object has to be defined by the user in order to be able
to run the re-finding algorithm when the object is lost.

8 RESULTS: TEST CASES FOR ALGO-
RITHMS DEVELOPED

The test cases we are going to test are going to follow
three different things/objects: a human, a bike and a
car. Each of the test cases are going to have different
situations which its difficulty will have a range between
easy, medium, hard and extreme as explained in the
following table. Also, we show several frames which
were recorded by the drones. Test cases can be divided
based on situation and difficulty: (i) Human walking
with no interference is easy; (ii) Human walking with a
probability of collision is harder; (iii) Human walking
with interference is of medium complexity; (iv) Human
walking when person disappears and then appears is of
extreme difficulty; (v) Human walking with sharp turns
is harder; (vi) Low light is of medium complexity, and
(vii) Light on and off is harder. We have implemented
all these cases with success as the following images and
results show below. Two video sequences submitted
with this paper also show that these algorithms have
been successfully implemented.

8.1 Human walking: no interference

This is the most basic test case. We want our drone
to follow a human while he is walking and there are
no interference in the tracking. By that, we mean that
there are no objects crossing between the drone and the
human.

8.2 Human walking: with interference

This test case is the same as the last test case but with
objects/persons crossing between the drone and the hu-
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Figure 9: Walking with interference 5 (left) and 6 (right)

s

Figure 10: Probability of collision 3 (left) and right (7).

Figure 11: Disappear and appear 4 (left) and right (7)

Figure 12: Sharp turns 5 (left) and 6 (right)

man. Having this interference will force our algorithm
to re find the human if the obstacles occlude him.

8.3 Human walking: probability of colli-
sion
We want to test if our drone stops moving when the prob-

ability of collision is really high and if it starts tracking
again when this probability of collision becomes lower.

8.4 Human walking: disappear/appear

When the tracking object disappear and appears again
we ant to make sure we recognize it as the object we
were following before. We wan to test how we apply the
descriptors algorithm against this situation.

8.5 Human walking: sharp turns

Sharp turns are really difficult to overcome. The sharper
the turn is the more challenging is to follow the tracking
object.

8.6 Low light

We also want to test our algorithm again adverse con-
ditions and one of them is the low ambient light. The
tracker will need to track the human with low light and
this could cause some problems.

Turning the light off could cause a lot of problems calcu-
lating the probability of collision, tracking the object and
saving descriptors. We want to test our system against
these difficulties.

9 CONCLUSION

In this paper we implemented a new way to track and
follow objects in real time with no previous information
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Figure 13: Low light recognized the edges of a mobile
phone.

ap

Figure 14: Light on/off 3

about that object before. This mean that the user selects
the object to track in real time. As the real time feature
and the lack of delay between what the user is seeing
and what the drone is doing were some of our priority
goals, we used a multi-threading approach in order to
implement our algorithm. We found a new application
to apply DroNet and the probability of collision. We
have also introduced a new technique on how to use
features descriptors. Storing descriptors in a buffer and
then using this information in case that the object is lost
is a new and eflicient way to re-find lost objects which
worked for us successfully as can be seen by two video
sequences we have submitted with this paper. There
has been a huge trade off between the tacker and the
probability of collision. As our primary requirement was
not to crash the drone, no matter what, the probability of
collision predominates the control of the drone and this
decision could lead to sometimes loosing the tracking
object in some cases. In future, we would like to extend
our ideas to providing interactive spaces where drone-
interactions can lead to novel aapplications.
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