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ABSTRACT

Surface reconstruction for particle-based fluid simulation is a computational challenge on par with the simula-
tion itself. In real-time applications, splatting-style rendering approaches based on forward rendering of particle
impostors are prevalent, but they suffer from noticeable artifacts.

In this paper, we present a technique that combines forward rendering simulated features with deep-learning image
manipulation to improve the rendering quality of splatting-style approaches to be perceptually similar to ray tracing
solutions, circumventing the cost, complexity, and limitations of exact fluid surface rendering by replacing it with
the flat cost of a neural network pass. Our solution is based on the idea of training generative deep neural networks
with image pairs consisting of cheap particle impostor renders and ground truth high quality ray-traced images.
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1 INTRODUCTION

Realistic and resource-efficient visualization of fluid
surfaces reconstructed with particle-based simulations
is an ongoing challenge in modern computer graphics.
The thousands of particles required to create plausible
fluid behavior significantly complicate the execution of
algorithms such as recursive ray tracing, which, due to
their complexity, can often only be used to display sim-
ulation results in real-time using accelerating methods.

Representing particles with metaballs is a widely
used and popular method for displaying the results of
particle-based simulations. The metaball construct,
introduced by Blinn [BIli82] and Nishimura [Nis85],
describes an implicit surface formed by interacting
objects. Each metaball has a radial density function
(or radial basis function, RBF) and the metaballs
together represent the isosurface of the density field.
Due to the temporal change in the simulation, it is
necessary to evaluate the isosurface in each frame,
which significantly limits its usability in real-time
applications. Since their inception, several publications

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

DOI:10.24132/CSRN.2021.3101.26 237

have been produced to speed up the visualization of
metaballs.

Grid-based solutions usually give faster results when
the grid resolution is low, but artifacts form on the lig-
uid surface. The disadvantage of solutions based on
on-surface tracer particles is the complexity of main-
taining a uniform coverage and the difficulty of avoid-
ing gaps that form on the fluid surface. The problem to
be solved in ray tracing-based methods is to speed up
the evaluation of the density function required for the
computation of the intersection between a ray and the
surface. All of these methods are useful when a larger
number of metaballs needs to be visualized, but real-
istic shading or global illumination requires additional
resources in a different order of magnitude.

Neural networks trained with input exemplar—expected
output image pairs have achieved significant success
in the field of image manipulation. This paper con-
tributes to the field of neural rendering by proposing
a hybrid rendering solution for particle-based fluid sim-
ulation, combining stochastic rendering and image-to-
image neural networks. This can be used in any context
where fast fluid surface rendering is needed, but certain
lighting effects require the environment to be fixed at
training time.

Metaballs with complex shading are achieved by in-
troducing image enhancement using a neural network,
trained with the method presented in our paper. The
question we investigate is how to generate the input im-
ages and the expected target images needed to train the
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network to obtain a satisfactory result. We also analyze
emerging artifacts to motivate further research.

The paper is organized as follows. Section 2 presents
previous work on metaball rendering (not using neural
networks), and the state of the art on neural rendering
in general. Section 3 describes the proposed method.
The results are summarized in Section 4, and finally, the
conclusion and further research directions are described
in Section 6 and Section 5.

2 PREVIOUS WORK

The first particle-based implicit surface was presented
by J.F. Blinn [Bli82], which involved displaying elec-
tron density maps of molecular structures.

Blinn used a linear combination of Gaussian radial ba-
sis functions (RBFs) and a constant term for construct-
ing the implicit equation of the surface. As Gaussian
RBFs do not have finite support, all objects must be
considered in order to determine the function value
at any point, which is a necessary operation in any
method extracting an isosurface. Therefore, its appli-
cation involves considerable computational effort. Re-
placing the Gaussian density function with a finite-
support function can reduce the computational effort
considerably, since to evaluate the total density func-
tion at a point it is sufficient to consider the contribu-
tion of the metaballs within the finite environment of
this spatial point. For our experiments in this paper,
we used the sixth-degree polynomial RBF proposed by
Wyvill [WMW86].

2.1 Metaball rendering techniques

The previous work on the representation of the surface
of metaballs can be divided into several groups. How-
ever, the aim of all the publications mentioned below is
to accelerate the evaluation of the density function. In
this section, we survey these methods to highlight the
fact that existing methods are either expensive or spe-
cialized with respect to the light transport phenomena
they support.

2.1.1 Grid-based solutions

A widely used method is the marching cubes algo-
rithm presented by Lorensen et al. [LC87]. The algo-
rithm generates a triangular mesh model approximating
an isosurface of volumetric density function. Such a
model can be ray-traced efficiently using conventional
methods. However, the quality of the generated surface
depends on the resolution of the grid used. If a low-
resolution grid is used, the algorithm is able to generate
the surface quickly, but the resolution of the surface is
low. When a high-resolution grid is used, the algorithm
generates a detailed surface, but at increased compu-
tational and memory costs. In particular, the density
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function has to be evaluated at a high number of grid
nodes.

Krone et al. [KSES12] present a GPU-accelerated ver-
sion of the marching cubes approach. Even though they
work with Gaussian density kernels, they use a cutoff
radius to decrease complexity. Sorting into a 3D auxil-
iary grid is used for proximity searches.

The approach of Iwasaki et al. [[IDYNO6] makes use of
a grid, but it is constructed using a virtual camera, and
rendering metaballs, clustered into layers, into the grid.
The method is strongly oriented towards configurations
where most of the fluid forms a roughly horizontal sur-
face in a container, with very few layers of splashes
above. The isofurface is rendered using a splatting-
like method named surfels. Real-time performance is
achieved.

All grid based approaches are ill-suited for scenarios
where the fluid cannot be assumed to reside within a
finite container.

2.1.2  Screen-space visualization

Wladimir J. van der Laan et al. [vdLGS09] presented a
screen-space metaball visualization method, which re-
lies on rendering the metaballs as solid spheres, and ap-
plying image-space filtering to smooth the surface. The
method provides real-time performance with a config-
urable speed-quality preference, but it is only efficient
if the spheres provide a close approximation of the sur-
face indeed, i.e. if only a few particles affect a sur-
face point. Larger reconstruction kernels encompass-
ing higher number of particles cannot be reproduced,
and thus the fluid retains a somewhat viscous appear-
ance even with the best filtering, especially when the
balls appear large in image space.

Miiller et al. [MGEQ7] also used metaballs for the vi-
sualization of a molecular dynamics simulation. They
propose two ideas. The vicinity texture is a precom-
puted lookup structure for metaball neighbors, which
is suitable for static geometries, but requires high tex-
ture bandwidth still. The walking depth plane approach
finds isosurface depth in pixels using iterative correc-
tion of an initial guess. This, however, requires the
metaballs to be rendered as billboards up to 100 times,
making the approach scale poorly both with respect to
the number of particles and to the target resolution.

Xu et al. [XW16] makes use of hardware multi-
sampling anti-aliasing and alpha-to-coverage to
perform four-layered depth peeling in a single pass.
Using multiple such passes, a polynomial approxima-
tion of the density function using the first few metaballs
can be obtained and solved explicitly. The approach
works fast and provides accurate results when only a
few metaballs contribute to individual surface points.
Despite the ingenuity and performance delivered, the
acceleration still only works for primary rays.
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Van Kooten et al. [KBT07] reconstruct the surface us-
ing on-surface tracer particles uniformly distributed on
the fluid surface. Repulsive forces, velocity constraints,
and particle densities are used to determine the position
of the particles, which are travelling on the surface fol-
lowing its motion. The expensive part of the method is
computing the forces, especially maintaining the data
structure to find near tracer particles. Where maintain-
ing uniform coverage fails, small gaps may appear on
the surface.

Kanamori et al. [KSNOS8] present a method based on
ray tracing. Using depth peeling to obtain boundaries
of effective spheres, polynomials for the density along
ray segments are obtained and solved using the Bezier
clipping root finding method. The method can produce
high quality images, but the root finding is somewhat
expensive.

Szécsi et al. [SI12] present a similar scheme based on
building per-pixel fragment lists. They render particles
as billboards, storing an entry, midpoint, and exit frag-
ment in a per-pixel list. By sorting these fragments, and
finding a cubic density approximation on ray segments
between them, they are able to perform ray-surface in-
tersection in a less expensive fashion. The drawback is
the high overhead of gathering the per-pixel list.

2.1.3 Ray-casting and ray-marching methods

All screen-space methods fail to obtain correct reflec-
tions and refractions efficiently, as they organize their
data structure around processing primary rays. An
environment mapping approximation, neglecting self-
reflections, multiple refractions, and media participa-
tion, is acceptable in some, but not all configurations.

Accurate visualization requires recursive ray tracing,
where the evaluation of the density function at arbitrary
points must be very efficient. Recently, Winchenbach
and Kolb [WK20] proposed a GPU-friendly data struc-
ture that offers exceptional performance. However, the
approach is still far from real-time.

2.2 Deep learning

The problem we investigate in this paper is a neural ren-
dering problem, in the sense that an image should be
produced from an RBF volume representation. As we
use conventional rendering combined with a neural net-
work, ours is not a pure neural rendering approach.

Pure text-to-image efforts are reviewed Frolov et
al. [FHR"21], and today they are capable of synthesiz-
ing images sampled from a space spanned by training
photo databases, but not from abstract geometrical
scene descriptions.

Tewari et al. [TFTT20] summarize and classify the
state-of-the-art neural rendering approaches that com-
bine classical computer graphics pipelines and neural
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networks. Notably absent for the results are solutions
that would render deterministic specular effects like re-
flections or refractions.

Thomas and Forbes [TF17] managed to achieve fast
global illumination with deep neural networks, featur-
ing diffuse interreflections with detailed occlusion, but
without reflective or refractive materials.

Feygina et al. [FIM18] introduced CycleWGAN net-
works for enhancing global illumination rendering in
post-processing for computer games, showing that the
deep learning approach can be viable in real time.

Constantin and Bigand [CCB20] handle scenes with re-
flections and refractions, but they only use the neural
network to detect noise and thus direct sampling in a
path tracing algorithm.

Bui et al. [BLMDI18] present a convolutional neural
network-based approach for rendering high-resolution
images from a point cloud.

Horvath [Hor19] uses a conditional GAN to generate
metaball images from a simplified set of input training
data. For the input, four-channel (rgb, depth) images
of circles are rendered, where every circle represents a
metaball. For output, it generates images of metaballs
consisting of a color buffer, a depth buffer, and a normal
buffer. No shadows, reflections, or refractions are pro-
duced. Our approach in this paper is going to be similar,
but our objective is rendering images with perceptively
acceptable reflections and reflections.

As we assume a volume representation based on RBFs,
it is of interest to mention RBFNNs, or Radial Basis
Function Neural Networks [BL88], and the more recent
deep-RBF neural networks [ZHS18]. These contain a
layer that outputs positions and weights for RBFs that
reconstruct the function whose samples were used as
training data. It has been used successfully in the func-
tion approximation and classification domains, but they
have not been applied to rendering so far. In our work,
the RBF representation of the fluid is considered an in-
put, not an output—it is created by conventional physi-
cal simulation, not by a neural network. The output, in
our case, is a rendered image. Therefore, our solution
may be used in conjunction with deep-RBF networks
producing 3D density representations.

Overall, high quality metaball rendering methods ca-
pable of rendering reflections, refractions, and media
participation, are not real-time for a reasonable num-
ber of particles. Fast methods rely on some kind of
screen space accumulation, and offer poor substitutes
for reflection and refraction rendering. Note that our
work is based on none of the above techniques. In-
stead, we aim to stylize an inexpensive render of par-
ticles into one featuring reflections and refractions us-
ing trained image-to-image transfer with a deep neural
network. In part, this is similar to the van der Laan
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approach [vdLGS09] of image space filtering, but us-
ing learned kernels instead of constructed ones. As
above methods using depth listing or depth peeling, we
also strive to gather information about multiple layers
of metaballs, but we exploit the idea of stochastic ren-
dering. In this, our solution is also different from Hor-
vath’s work [Hor19], and we also extend the approach
to rendering reflections and refractions.

Our solution is based on Pix2Pix [IZZE17] and Cycle-
GAN [ZPIE17]. Pix2Pix uses conditional adversarial
networks for image-to-image translation. Training is
done with input and expected output picture pairs. Cy-
cleGAN does not require the images to be paired. The
resulting generator network can be used for images that
are similar to the input training data, producing an out-
put that is similar to the set specified as expected.

3 OUR PROPOSAL IN DETAIL

Our goal is to accelerate particle-based fluid visualiza-
tion in applications where perceptual correctness is im-
portant. First, we render metaballs using an inexpensive
stochastic forward rendering solution. Then, we use
neural network processing to either reconstruct a sur-
face in image space, or render a scene with the recon-
structed fluid surface featuring reflections and refrac-
tions. The neural networks are image-to-image GAN
realizations (those of the Pix2Pix and CycleGAN net-
work in particular) trained on image pairs produced by
our stochastic renderer and our reference ray tracer.

3.1 Reference ray-casting and ray-tracing

In order to train the neural networks, we need expected
output images for given sets of metaball particles. We
created two types of such reference images: false-
colored surface reconstructions encoding the surface
normals (Figure 1, left), and recursively ray-traced fluid
surface rendering with a surrounding environment (Fig-
ure 1, right). In both cases, we used ray-marching to
find surface points intersected by primary or secondary
rays. For primary rays, we used a screen-space A-buffer
for accelerating the evaluation of the density field given
by the metaball particles, but we used brute force for
secondary rays. The rendering time of the reference
images is still negligible compared to the time require-
ments of training the neural networks. In the ray-traced
reference images, radiance along rays not hitting any
surface was taken from an environment texture. Thus,
the environment itself was encoded in the neural net-
work, meaning that for different environments, differ-
ent networks have to be trained — even if an existing
network of another environment provides a good start-
ing point for the training. This way, every pixel in the
reference image contains the contribution of all pos-
sible combinations of reflections and refractions along
the light paths.
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Figure 1: Reconstructed surface target reference and
ray traced target reference.

3.2 Stochastic rendering

We need a method for the fast rendering of the fluid
particles that does not lose information about the par-
ticles occluded by other metaballs. This is particularly
important for those particles that contribute to the pri-
mary surface, but surfaces further back may also be
important, especially if refractions are also to be re-
constructed. Horvath [Hor19] renders particles as cir-
cles, which accomplishes these goals, but offers a start-
ing point for the neural network that is far from the
expected output. We propose to use stochastic ren-
dering, where we randomly discard fragments of bill-
boards representing metaballs, false-colored using the
camera-space sphere normals, and linear depth values.
As shown in Figure 2, the stochastic renders are per-
ceptually already quite close to the ray-cast reference,
but with noise that has to be filtered. Part of the pur-
pose of the neural network is to perform this filtering in
a learned way to produce a smooth surface.

Figure 2: Images created using stochastic rendering.
Images like these are inputs to both the training pro-
cess, and to the image enhancement network used in
real-time rendering.

3.3 Training datasets

To train the neural network, we render training sets con-
sisting of image pairs. The input image is created using
stochastic rendering, and the rarget image is rendered
using either ray-casting or recursive ray tracing. In-
put images encode normals in camera space in their red
and green channels, while camera-space linear depth is
stored in the blue channel. To achieve stochastic ren-
dering, we need to discard random fragments. For this
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purpose, we used Cerisano’s version [Cer15] of the gold
random GPU-friendly fast random number generator.
While this very simple code does not have high-quality
PRNG properties, it is visually convincing, and serves
our purpose of revealing occluded billboards.

In order to ensure realistic metaball configurations, we
implemented SPH fluid simulation. In addition to phys-
ical forces, the simulation is controlled by animated tri-
angle mesh models. In each simulation time step, parti-
cles are rendered with both the stochastic and the refer-
ence method to output images. The distance of the cam-
era from the simulation space and the position of the
camera changes randomly in each frame. Since cam-
era depth is encoded in the blue channel, the farther the
camera is from the metaball, the less blue there is in
the color. Figure 3 shows an example image pair of
the stochastically render input and the ray traced target
output.

:1*4«)55,,‘%

Figure 3: Image pair from the training set.

3.4 Training

We used a Tensorflow implementation of
Pix2Pix [IZZE17] and a PyTorch implementation
of CycleGAN [ZPIE17] to train the generator network
with input and target image pairs. We do not give
results separately for the two networks, as results were
visually very similar, with CycleGAN performing
faster. On the network obtained as the result, we
ran the consecutive sequence of images saved from
the application. The animation includes rotation and
zooming around the simulation space.

3.5 Real-time rendering

The trained neural network can be used in a real-time
application to render fluid surfaces. The input of the
network is the stochastically rendered particle billboard
cloud, and the output is presented by texturing it on a
screen-filling quad.

If we use the surface reconstruction network, shading
has to be performed in every pixel of the reconstructed
surface. First, we decode the normal vector from the
texture, then transforming it back to the world. Figure 4
shows the network output image and its shaded version
using local illumination and environment mapping for
approximated reflections and refractions.
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Figure 4: Surface reconstructed by the network and its
shading with local illumination and environment map-

ping.

If we use the network trained with recursively ray-
traced images, then further shading is not necessary.

4 RESULTS

We used a Tensorflow port of the Pix2Pix algorithm
to train a deep neural network. We performed three
trainings. First, we trained the network with 2078
image pairs, both of the pair in 512 x 512 resolution,
showing incomplete and complete metaballs. The
second one trained with input set contains metaballs
shaded with surface reconstruction network and
metaballs with ray-casting. The third trained with
incomplete metaballs and metaballs with ray-casting.
They performed around 30-50 epochs encompassing
72000-120000 training steps, taking approximately
8 — 15 hours using an Nvidia Geforce RTX 2080 Super
GPU. The same results could be achieved using the
PyTorch implementation of CycleGAN in just 5 hours.

For testing we generated two test sets. One of them
contains images of our fluid in consecutive simulation
steps with changing camera setting. The other one con-
tains zoom-in zoom-out pictures. Figure 5 and Figure 6
show the result of the first neural network. Therefore
the environment not encoded in the neural network,
but additional render pass is needed to shade the sur-
face. Figure 7 shows the result of the second neural
network. The environment is encoded and the network
focus more on that part rather then the actual surface.
The Figure 7 shows the result of the third neural net-
work.

The Pix2Pix implementation proved to be inferior to
the CycleGAN implementation both in terms of train-
ing time and network evaluation time. CycleGAN can
be evaluated in 40ms, which would be fast enough for
actual real-time performance for full resolution targets.

S LIMITATIONS AND FUTURE WORK

We plan to apply Wasserstein loss for the CycleGAN
network, which has been proven to be useful in similar
neural rendering applications [FIM18].
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Figure 5: Stochastically rendered inputs (left), recon-
structed surface images (middle), and target images
(right).

Training the ray-tracing network with a fixed environ-
ment means that the method cannot be used for dynamic
settings, including moving solid bodies mixed in the
fluid. Such a static environment is acceptable in appli-
cations like computer games, where the game levels and
rooms are designed in advance, and pre-training a fluid-
lighting network for every relevant location would be
reasonable. However, a solution using an environment
map or scene capture on-the-fly would certainly extend
the applicability of our approach. The most promising
avenue would be training a network to render fluids and
their lighting interactions with solid geometry and the
environment in a single run.

Currently, the ray-tracing network does not only learn
to shade the fluid surface, but also to create the back-
ground. This may diminish its ability to correctly ren-
der reflections and refractions. Modifying the train-
ing process to exclude backgrounds, and rendering the
background in a forward manner would be desirable.

6 CONCLUSIONS

We have described a solution for enhancing fast fluid
rendering with neural networks train in an adversarial
manner. Our results indicate that the approach is vi-
able, but further research is needed to extend the so-
Iution to more dynamic use cases and further improve
performance.
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