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Abstract

This paper is concerned with secure state estimation of non-linear systems under mali-
cious cyber-attacks. The application of target tracking over a wireless sensor network is
investigated. The existence of rotational manoeuvre in the target movement introduces
non-linear behaviour in the dynamic model of the system. Moreover, in wireless sensor
networks under cyber-attacks, erroneous information is spread in the whole network by
imperilling some nodes and consequently their neighbours. Thus, they can deteriorate the
performance of tracking. Despite the development of target tracking techniques in wire-
less sensor networks, the problem of rotational manoeuvring target tracking under cyber-
attacks is still challenging. To deal with the model non-linearity due to target rotational
manoeuvres, an unscented Kalman filter is employed to estimate the target state variables
consisting of the position and velocity. A diffusion-based distributed unscented Kalman
filtering combined with a trust-based scheme is applied to ensure robustness against the
cyber-attacks in manoeuvring target tracking applications over a wireless sensor network
with secured nodes. Simulation results demonstrate the effectiveness of the proposed strat-
egy in terms of tracking accuracy, while random attacks, false data injection attacks, and
replay attacks are considered.

1 INTRODUCTION

Recently, cyber-physical systems (CPSs) have received
widespread attention in different fields of studies, such as
industrial automation systems, transportation networks, smart
grids, and wireless sensor networks (WSNs) [1, 2]. WSNs have a
wide range of applications, among which, target tracking is one
of the most practical applications. Other applications include
environmental monitoring, information collection, and control
of unmanned aerial vehicles [3, 4]. A typical distributed WSN
consists of several sensors that communicate with the rest of
the network. In a distributed WSN, a sensor node collaborates
with its neighbouring sensors to estimate the states of the
target based on a given graph topology. Thus, the problem
of target tracking over a WSN is considered as a distributed
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state estimation (DSE) problem. Due to the properties such
as structural flexibility, higher scalability, and robustness to a
node or link failures, distributed state estimation techniques are
preferred compared to the centralised ones [5].

Generally, there are two strategies to deal with DSE: consen-
sus strategy and diffusion strategy. To fuse estimations in a dis-
tributed manner, in consensus-based DSE, a consensus gain is
multiplied by the differences of the estimation of one node and
its neighbouring estimations, while in diffusion-based DSE, a
weighted average of all the neighbouring estimates of a node
(including itself) is calculated [6]. In distributed state estimation
applications, diffusion strategy has a better estimation perfor-
mance with respect to consensus strategy [6].

Among information fusion approaches, the Kalman filter
(KF) is one of the most widely used techniques. Consequently,
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distributed Kalman filtering has received widespread atten-
tion from researchers in distributed state estimation problems
[7, 8]. Consensus and diffusion Kalman filters are applied
to estimate the states of linear systems in [9, 10]. Due to
the applications such as power systems monitoring and rota-
tional manoeuvring target tracking in WSNs, a huge amount
of research has been devoted to distributed state estimation of
non-linear dynamical systems [11–13]. Extended Kalman filter
(EKF) is a non-linear filter that estimates the state variables
using the linearization technique. The use of the first-order Tay-
lor series expansion makes EKF inappropriate for highly non-
linear systems, because the linearization step may lead to large
errors [14]. Unscented Kalman filter (UKF) is another tool for
non-linear state estimation. In comparison with EKF, UKF pro-
vides higher accuracy, because it does not require linearization
computations. Thus, UKF is much applicable to the models
with high non-linearities. However, UKF has a higher compu-
tational burden to obtain unscented transformation. In [12], the
problem of distributed non-linear filtering has been investigated
using a cooperative unscented Kalman filter. The issue of the
stability of consensus EKF has been considered in [15]. Besides,
the diffusion-based non-linear filtering using EKF and UKF is
applied in [16].

CPSs are vulnerable to cyber-attacks. Thus, security is an
important issue in the filtering problem of CPSs to avoid deteri-
oration of system performance. Three common types of attacks
are denial-of-service (DoS) attacks [17], false data injection
(FDI) attacks [18], and replay attacks [19]. DoS attacks can
interrupt data transfer by injecting ineffective data to waste
resources [20]. In an FDI attack, the attackers manipulate the
nodes data by injecting malicious information into the measure-
ments or estimations [21]. To launch a replay attack, the attacker
records valid data (sensor measurement or local estimation) in
a period of time. Then, the recorded data is repeated to modify
the true data [20]. The attacker can compromise sensor mea-
surements, estimated state variables, or even the fusion centre.
Therefore, the compromised data is broadcasted between the
system components. Despite the importance of distributed fil-
tering under cyber-attacks, only a few studies have addressed
this issue.

In [3] and [22], a distributed Kalman filter has been applied
for target tracking in a WSN. The trusted nodes have been
selected using the K -means clustering approach, and their infor-
mation has been used for data fusion. The robustness of the
proposed method against different cyber-attacks has been illus-
trated. The problem of secure fusion filtering in the presence
of cyber-attacks has been investigated in [23] where local mea-
surements and local estimates have been transmitted in a sensor
network. To deal with the effects of attacks, both transmitted
measurements and estimates have been classified into normal
and compromised classes. In [4], distributed l2-l∞ state estima-
tor has been developed in the presence of deception attacks over
WSNs. Moreover, improved data fusion algorithms could tackle
cyber-attacks as proposed in [24]. Despite the improvement in
secure fusion filtering strategies in the presence of cyber-attacks,
erroneous information can be spread in the network, thus, the
estimation performance might deteriorate. For example, in the

secure fusion filtering as presented in [22], if a large number
of neighbours of a secure node are under attack, the secured
node strategy cannot avoid spreading erroneous information in
the network.

Generally, the target movement is classified into manoeu-
vring and non-manoeuvring. The non-manoeuvring movement
is described by the constant velocity (CV) and nearly constant
velocity (NCV) models. Based on the target manoeuvres, and
the knowledge of tuning rate, the dynamic models of manoeu-
vring movement are divided into three classes: constant accel-
eration (CA), abrupt acceleration (AA), and nearly coordina-
tion turn (NCT) models. Among different dynamic models, CV,
NCV, CA, and AA models are linear. If the target moves with
rotational manoeuvres with unknown turning rates, the dynamic
NCT model is non-linear. In some practical applications such as
military applications, the targets use manoeuvres to escape from
a tracker. Manoeuvring target tracking is more complicated than
non-manoeuvring target tracking. Besides, manoeuvring target
tracking under cyber-attacks is more challenging. In most pre-
vious work in the field of secure state estimation in the pres-
ence of cyber-attacks for a moving target over a WSN, the target
dynamic has been described by a linear model. Nevertheless, if
the target has some rotational manoeuvres, the dynamic model
of the target movement should possess some non-linearity.
Thereafter, non-linear filtering approaches are utilised to esti-
mate the state vector.

Due to cyber-attacks, the information of some sensor
nodes becomes compromised. Thus, the polluted informa-
tion may spread in the whole network, and consequently,
deteriorate the estimation results. To prevent spreading pol-
luted information in the network, some approaches have been
proposed in the literature. For example, trusted-based Kalman
filtering based on K -means clustering using majority voting and
a secure node is presented in [3] and [22]. But the clustering
approaches are not efficient enough to prevent spreading pol-
luted information in the network.

Motivated by the above discussion, the distributed secure
estimation problem of a non-linear system under cyber-attacks
is investigated. To be more specific, in this article, the problem
of rotational manoeuvring target tracking over a WSN under
cyber-attacks is considered. Despite the importance of the prob-
lem of distributed non-linear state estimation in presence of
cyber-attacks, this issue has been less addressed in the litera-
ture. This issue is investigated in this article with application
to the problem of tracking a manoeuvring target in a WSN.
Besides the non-linearity of the process model, which is caused
by target rotational manoeuvres, the observation model is also
assumed to be non-linear. As mentioned before, the existence of
rotational manoeuvres in the target movement introduces non-
linear behaviour in the dynamic model of the system. Further,
linearization-based estimators might not be applicable to the
models with high non-linearities. A distributed UKF is utilised
to solve the problem. Due to cyber-attacks, the information of
some sensor nodes becomes compromised. Thus, the polluted
information may spread in the whole network and consequently
deteriorate the estimation results. To prevent spreading pol-
luted information in the network, some approaches have been
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TABLE 1 Comparison of distributed filtering under cyber-attacks

Fusion strategy

Process model Measurement model Distributed filter

Reference no. Linear Nonlinear Linear Nonlinear KF/EKF UKF Others

Majority

voting

Secure

node

Modified

secure node Others

[3]
√ √ √ √

[4]
√ √ √ √

[22]
√ √ √ √ √

[25]
√ √ √ √

[26]
√ √ √ √

[27]
√ √ √ √ √

[28]
√ √ √ √

[29]
√ √ √ √ √

[30]
√ √ √ √

Proposed method
√ √ √ √ √ √

FIGURE 1 The method overview

proposed in the literature. For example, trusted-based Kalman
filtering based on K -means clustering using majority voting and
a secure node is presented in [3] and [22]. But the clustering
approaches are not efficient enough to prevent spreading pol-
luted information in the network. As shown in the compara-
tive literature review, there is a research gap about considering
the distributed non-linear state estimation in presence of cyber-
attacks. This paper tries to fill such a research gap by propos-
ing a trust-based UKF, which modifies the clustering approach
based on the modified secure node strategy and avoids spread-
ing the manipulated information in the network. To clarify the
research gap, Table 1 compares the distributed filtering algo-
rithms under cyber-attacks.

The method overview is shown in Figure 1. The problem of
rotational manoeuvring target tracking over a WSN is consid-
ered. The WSN is composed of secure and non-secure nodes,
where the non-secure nodes depending on being under cyber-

attack are divided into general and compromised nodes. Each
sensor node measures the position and bearing of the target.
However, the sensors’ measurements might be manipulated
under cyber-attacks. To estimate the trajectory of the target, a
trust-based UKF based on a modified secure node strategy is
applied. In each node, a local estimation is obtained using UKF
and the node measurement (UKF measurement update). The
attackers might compromise the local estimations of non-secure
nodes. To avoid spreading polluted information in the network
and achieve an accurate estimated trajectory, data fusion is per-
formed based on the proposed modified secure node strategy.
First, each secure node exchanges its information between its
secure node neighbours based on the majority voting strategy.
Other non-secure neighbours of a secure node do not partici-
pate in exchanging information to avoid deteriorating the esti-
mation of secure nodes. Then, each non-secure node exchanges
its information between its all neighbours based on the



1990 ADELI ET AL.

combination of majority voting and secure node strategies. The
information fusion results in secure nodes from the previous
stage are applied in this stage to mitigating the effect of cyber-
attack in compromised nodes. After the information fusion step,
UKF time updating is performed for all nodes. Hence, the esti-
mated trajectory is achieved in each node.

A new secure fusion non-linear filter inspired by the K -means
clustering approach proposed in [3] and [22] is employed to
track the target trajectory. In [3], the cluster-based informa-
tion fusion has been using a majority voting strategy to classify
trusted and non-trusted neighbour nodes. Besides, the majority
voting strategy and secure node strategy have been applied to
cluster the neighbour nodes in the information fusion step in
[22]. The simulation results in [22] illustrated that using a secure
node strategy provided more accurate estimates. A drawback of
the secure node strategy presented in [22] is that the compro-
mised nodes could destroy the estimates of secure nodes based
on the proposed fusion algorithm. A modified secure node
strategy combined with the majority voting strategy is utilised in
the clustering stage of information fusion to improve the per-
formance of the fusion filter. The robustness of the proposed
method against three types of cyber-attacks (random attack,
FDI attack, and replay attack) is illustrated by simulations.

The major contributions of this article are as follows:

∙ Modifying the cluster-based distributed filtering presented in
[3] and [22];

∙ Considering non-linearity for both process and observa-
tion dynamics (rotational manoeuvring target movement and
non-linear sensors);

∙ Investigating the robustness of the proposed estimation
method against different cyber-attacks (random attack, FDI
attack, and replay attack);

∙ Applicability of the proposed estimation method to other
applications, such as secure state estimation of power net-
works.

The article is structured as follows. Section 2 presents pre-
liminaries and problem statements consisting of WSN architec-
ture, cyber-attacks, and the dynamic model of the manoeuvring
target. The trust-based unscented Kalman filter is proposed in
Section 3. The trust-based fusion scheme is also described in
detail in this section. Simulation results on a manoeuvring tar-
get over a WSN are presented in Section 4, where the results
are compared to the related works. The conclusion is given in
Section 5.

2 PROBLEM STATEMENT

This paper studies the distributed trust-based estimation prob-
lem of a non-linear system over a WSN under cyber-attacks.
WSN architecture, the model of moving target, and the mea-
surement model are presented in this section. Moreover, differ-
ent cyber-attacks are described.

2.1 WSN architecture

A manoeuvring moving target is considered in a 2D environ-
ment covered by a WSN equipped with N sensor nodes. The
sensor nodes measure the distance and direction of the tar-
get. The nodes would be divided into two groups; secure and
non-secure nodes, belonging to the sets S and NS , respec-
tively. The secure nodes would be selected to apply intensified
physical and cyber protection. Due to a large number of sensor
nodes, it is costly to protect all nodes against attackers. Instead,
some strategic and crucial nodes, namely the secure nodes, are
selected to be specially protected. It is assumed that the attackers
cannot compromise the secure nodes because of the additional
protection schemes. The implementation of this idea could be
feasible and requires less cost. nS and nNS denote the number
of secure nodes and non-secure nodes, respectively. It is clear
that N = nS + nNS . The attackers could not compromise the
secure nodes’ data, whereas the measurements and/or estimates
of non-secure nodes might be compromised by the attackers.
The set of neighbours of node s is represented as s .

2.2 Cyber-attacks

Three types of cyber-attacks that manipulate local measure-
ments or estimates are considered as follows:

∙ Random attack: The sensor measurements are manipulated
by an attacker. It is assumed that the measurements of some
nodes are manipulated by an attacker. The random attack
vectors can be random zero-mean signals with different vari-
ances. The attack vectors are added to the measurements and
manipulate the sensor measurements.

∙ FDI attack: It is assumed that the attackers have access to
some estimators. They inject malicious data to compromise
the local estimates covertly.

∙ Replay attack: The attacker records valid data (sensor mea-
surement or local estimation) in a period of time. Then, the
recorded data is repeated to modify the true data.

2.3 Manoeuvring target dynamic model

A manoeuvring target moving in a 2D plane over a WSN is con-
sidered [31]. The state vector is described by

x(k) =
[
px (k) vx (k) py (k) vy (k) 𝜔(k)

]T
, (1)

where px (k) and py (k) denote the target position, and vx (k) and
vy (k) represent the target velocity in x-axis and y-axis, respec-
tively. 𝜔(k) is the turn rate. As presented in [32], the target
movement is expressed by a nearly coordination turn (NCT)
model described as follows

x(k + 1) = f (x(k)) + Gw(k), (2)
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where f (x(k)) and G are described in (3).

f (x(k)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px (k) +
sin(𝜔(k)T )

𝜔(k)
vx (k) −

1 − cos(𝜔(k)T )
𝜔(k)

vy (k)

cos(𝜔(k)T )vx (k) − sin(𝜔(k)T )vy (k)

1 − cos(𝜔(k)T )
𝜔(k)

vx (k) + py (k) −
sin(𝜔(k)T )

𝜔(k)
vy (k)

sin(𝜔(k)T )vx (k) + cos(𝜔(k)T )vy (k)

𝛽𝜔(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡⎢⎢⎢⎢⎢⎢⎣

T 2∕2 0 0

T 0 0

0 T 2∕2 0

0 T 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(3)

T is the sampling time and 𝛽 = e
−

T

𝜏𝜔 = e−𝛼T . The param-
eter 𝛼 = 1∕𝜏𝜔 depends on the manoeuvre duration, and 𝜏𝜔
is the correlation time constant for the turn rate. w(k) =
[wx (k) wy (k) w𝜔(k)]T represents a zero-mean white noise,
whose first and second elements are noisy accelerations in x and
y orientations, respectively, and w𝜔(k) is noise term for turn rate.
The covariance of w(k) is presented as

Q = cov(w(k)) = diag{SwQ1,Q𝜔}, (4)

where Sw is the power spectral density of a continuous-time
white noise w(t ), Q𝜔 denotes the covariance of w𝜔(k), and Q1 is
described as (5).

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(𝜔T − sin𝜔T )

𝜔3

1 − cos𝜔T

𝜔2
0

𝜔T − sin𝜔T

𝜔2

1 − cos𝜔T

𝜔2
T −

𝜔T − sin𝜔T

𝜔2
0

0 −
𝜔T − sin𝜔T

𝜔2

2(𝜔T − sin𝜔T )

𝜔3

1 − cos𝜔T

𝜔2

𝜔T − sin𝜔T

𝜔2
0

1 − cos𝜔T

𝜔2
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The nodes of the aforementioned WSN are equipped with a
distance sensor, a bearing sensor, and an estimator. The non-
linear observation model of ith node is represented by

yi (k) = h
(
x(k)

)
+ vi (k) =

⎡⎢⎢⎢⎣
√

p2
x (k) + p2

y (k)

arctan

(
py (k)

px (k)

)⎤⎥⎥⎥⎦ + vi (k). (6)

In (6), vi (k) is measurement noise in the form of
 (0,Ri (k)), where  denotes Gaussian distribution and
Ri (k) = diag{𝜎2

d
, 𝜎2

𝜃
} is the variance of measurement noise for

ith node at kth time step.

3 TRUST-BASED UNSCENTED
KALMAN FILTERING

In this section, a trust-based unscented Kalman filter is
described to track a manoeuvring target under cyber-attacks
over a WSN. Both process model and observation model are
non-linear. To cope with the non-linearities in the model and
estimate the target state variables, an unscented Kalman filter
is utilised. A new secure fusion non-linear filter is proposed by
modifying the K -means clustering approach presented in [3] and
[22]. The proposed method prevents destroying the estimates of
secure nodes by the compromised nodes. The proposed method
is robust against different cyber-attacks.

In the trust-based UKF, each node i computes the predicted
state mean and its covariance, then the local data is exchanged
among the nodes belonging to the trusted neighbourhood. A
trusted node is a node whose information is not compromised
and is appropriate to use in data fusion. A trusted node is deter-
mined by the clustering approach. It is obvious that the compro-
mised nodes are unknown. The clustering approach specifies
which neighbour nodes have not been compromised and can
participate in data fusion. These nodes are called trusted nodes.
Using the clustering approach, the secure nodes are recognised
as trusted nodes. But non-secure nodes can be either trusted
or non-trusted depending on whether they are under attack
or not. After information fusion, state mean and covariance
are updated.

In the time step k = 0, for each node i, initial mean and
covariance are considered as X̂ +

i (0) and P+
i (0), respectively.

According to (2) by applying an unscented transformation (UT),
X̂i (1) and Pi (1) are obtained.

3.1 UKF update step

Given predicted mean X̂i (k) and covariance Pi (k), the sigma
points X

( j )
i (k) are calculated as follows [33]
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X
( j )

i (k) = X̂i (k) + x̃
( j )
i , j = 1, … , 2n

x̃
( j )
i =

(√
nPi (k)

)T

j
, j = 1, … , n

x̃
( j+n)
i = −

(√
nPi (k)

)T

j
, j = 1, … , n, (7)

where n denotes the number of state variables.
Using the non-linear observation model as presented in (6),

the sigma points X
( j )

i (k) are transformed into ŷ
( j )
i as

ŷ
( j )
i = h

(
X

( j )
i (k)

)
. (8)

The predicted measurement at time k is obtained by

ŷi (k) =
1
2n

2n∑
j=1

ŷ
( j )
i . (9)

The predicted measurement covariance and the cross-
covariance between X̂i (k) and ŷi (k) are calculated as presented
in (10) and (11), respectively.

Pi,y =
1
2n

2n∑
j=1

(
ŷ

( j )
i − ŷi (k)

)(
ŷ

( j )
i − ŷi (k)

)T
+ Ri (k), (10)

Pi,xy =
1
2n

2n∑
j=1

(
X̂

( j )
i (k) − X̂i (k)

)(
ŷ

( j )
i − ŷi (k)

)T
. (11)

As presented in [33], the updated mean and covariance are
calculated using a conventional Kalman filter as follows

Ki (k) = Pi,xyP
−1

i,y (12)

X̂ +
i (k) = X̂i (k) + Ki (k)

(
yi (k) − ŷi (k)

)
(13)

P+
i (k) = P−

i (k) − Ki (k)Pi,yK
T
i (k). (14)

3.2 Clustering approach

After measurement update, for each node k, the obtained mean
X̂ +

i (k) and covariance P+
i (k) are exchanged with correspond-

ing trusted neighbours. In the information fusion step, appro-
priate weights should be allocated to each neighbour node infor-
mation. The trusted nodes with more accurate estimates get
larger weights, but the weights of non-trusted nodes are con-
sidered zero. Thus, the information of non-trusted nodes is dis-
sembled in information fusion. Using the clustering K-means
algorithm, the neighbour nodes are classified into two clusters,
named trusted nodes and non-trusted nodes. It is assumed that

there are some secure nodes in WSN, such that the attackers
could not compromise their data (consisting of measurements
and estimations). The cluster that contains at least one secure
node is considered a trusted cluster. If none of the two clusters
include any secure node, the majority voting strategy is used to
determine which cluster is the trusted cluster. According to the
majority voting strategy, the cluster with more nodes is selected
as the trusted cluster.

The information fusion stage based on clustering using a
secure node strategy that was used in [22], perform the same
for all nodes (secure nodes and non-secure nodes). Accord-
ing to the proposed algorithm [22], the compromised nodes
in the neighbourhood of a secure node may deteriorate the
resulting estimates of the secure nodes after fusion. There-
fore, the secure node strategy is modified in a way that each
secure node exchanges the information only between the neigh-
bour nodes which are secure nodes. This cooperative manner
between secure nodes could lead to a more accurate estima-
tion. The new trust-based information fusion is summarised in
Remark 1.

Remark 1. The new trust-based information fusion:

i. For the neighbours of non-secure nodes, the trusted cluster
is determined such that at least one secure node is in that
cluster;

ii. If none of the two clusters include any secure node, the
majority voting strategy is used to determine which cluster
is the trusted cluster;

iii. For the secure nodes, the data is exchanged only between
the neighbour nodes, which are secure nodes.

3.2.1 State clustering

For non-secure nodei, i ∈ NS , the goal is to classify ni esti-
mated state means {X̂ +

l
(k), l ∈ i} into two clusters (trusted

and non-trusted). ni is the number of neighbours of node i. The
centres of clusters are specified by x

(1)
i and x

(2)
i with random

initial values. Based on squared Euclidean distance d (.) between
the estimated state mean X̂ +

l
(k) and the centres of clusters, the

estimated state means {X̂ +
l

(k), l ∈ i} are allocated to cluster
z , if

z = arg min
t

{
d
(

x
(t )
i , X̂ +

l
(k)

)}
, for t = 1, 2. (15)

The indicator r
(z )
l

is defined to illustrate the allocation. The value

of r
(z )
l

is determined as explained below.

r
(1)
l

=

⎧⎪⎨⎪⎩
1, d

(
x

(1)
i , X̂ +

l
(k)

)
< d

(
x

(2)
i , X̂ +

l
(k)

)
0, d

(
x

(2)
i , X̂ +

l
(k)

)
< d

(
x

(1)
i , X̂ +

l
(k)

) (16)
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r
(2)
l

=

⎧⎪⎨⎪⎩
0, d

(
x

(1)
i , X̂ +

l
(k)

)
< d

(
x

(2)
i , X̂ +

l
(k)

)
1, d

(
x

(2)
i , X̂ +

l
(k)

)
< d

(
x

(1)
i , X̂ +

l
(k)

)
.

(17)

The cluster centres are updated as follows

x
(t )
i =

∑
l

r
(t )
l

X̂ +
l

(k)∑
l

r
(t )
l

, for t = 1, 2. (18)

The aforementioned procedure described by (15)–(18) is
repeated until the allocation indicators r

(z )
l

, z = 1, 2 do not
change. If there is at least one secure node in the set i,1 = {l ∈

i |r (1)
l

= 1}, cluster 1 is selected as the trusted cluster. Simi-
larly, if there is at least one secure node in the set i,2 = {l ∈

i |r (2)
l

= 1}, cluster 2 is selected as the trusted cluster. If none
of the clusters include any secure node, the majority voting strat-
egy is used to determine which cluster is the trusted cluster. In
this case, trusted cluster is selected as follows

Trustedcluster =

{
1, card(i,1) > card(i,2)

2, otherwise,
(19)

where card(.) denotes the set cardinality, which means the num-
ber of elements of the set.

A subset of i including the trusted nodes is denoted as the
set Φi . The weights of trusted neighbour nodes for node i are
calculated by

wm,i (k) =
1

card(Φi )
, for i ∈ Φi , (20)

whereas the weights of other neighbour nodes that are not
trusted are considered zero.

For secure node I , I ∈ S , the number of secure neigh-
bour nodes is denoted by NSecureNeighbor ,I . Thus, weights of secure
neighbour nodes for node I are computed as follows

wm,I (k) =
1

NSecureNeighbour ,I
, for I ∈ S . (21)

3.2.2 Covariance clustering

Similar to the state clustering procedure, covariance clustering
is performed. The vector of diagonal elements p+

J
(k) is used

in calculations instead of the covariance matrix P+
J

(k), for j =

1, … ,N .
For non-secure nodei, i ∈ NS , the goal is to classify ni

neighbour nodes into two clusters based on the covariance
matrix. The cluster centres are specified by p

(1)
i and p

(2)
i with

random initial values. According to squared Euclidean dis-
tance between p+

l
(k) and the centres of clusters, the covariance

{p+
l

(k), l ∈ i} are allocated to cluster z , if

z = arg min
t

{
d
(

p
(t )
i , p+

l
(k)

)}
, for t = 1, 2. (22)

The value of indicator r
(z )
l

is determined as explained below.

r
(1)
l

=

⎧⎪⎨⎪⎩
1, d

(
p

(1)
i , p+

l
(k)

)
< d

(
p

(2)
i , p+

l
(k)

)
0, d

(
p

(2)
i , p+

l
(k)

)
< d

(
p

(1)
i , p+

l
(k)

) (23)

r
(2)
l

=

⎧⎪⎨⎪⎩
0, d

(
p

(1)
i
, p+

l
(k)

)
< d

(
p

(2)
i
, p+

l
(k)

)
1, d

(
p

(2)
i , p+

l
(k)

)
< d

(
p

(1)
i , p+

l
(k)

) (24)

The cluster centres are updated as follows

p
(t )
i =

∑
l

r
(t )
l

p+
l

(k)∑
l

r
(t )
l

, for t = 1, 2. (25)

The procedure described by (22)–(25) is repeated until the allo-
cation indicators r

(z )
l

, z = 1, 2 do not change. The determina-
tion of the trusted nodes is similar to what is described in the
state clustering part.

A subset of i including the trusted nodes is denoted as the
set Ψi . The weights of trusted neighbour nodes for node i are
calculated as

wp,i (k) =
1

card(Ψi )
, for i ∈ Ψi . (26)

For secure nodeI , I ∈ S , the weights of secure neighbour
nodes for node I are computed as

wp,I (k) =
1

NSecureNeighbour ,I
, for I ∈ S . (27)

3.3 Information fusion

The fused state means for secure and non-secure nodes are
denoted by X̃ +

I
and X̃ +

i , respectively. Moreover, P̃+
I

and P̃+
i

denote the fused covariances for secure and non-secure nodes.
The fused state means and covariances using trust-base cluster-
ing are computed as follows

X̃ +
I

(k) =
∑
l∈Φi

wm,I (k)X̂ +
l

(k), for I = 1, … ,NS , (28)

X̃ +
i (k) =

∑
l∈Φi

wm,i (k)X̂ +
l

(k), for i = 1, … ,NNS , (29)
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P̃+
I

(k) =
∑
l∈Ψi

wp,I (k)P+
l

(k), for I = 1, … ,NS , (30)

P̃+
i (k) =

∑
l∈Ψi

wp,i (k)P+
l

(k), for i = 1, … ,NNS . (31)

3.4 UKF prediction step

As presented in [33], the propagation from time step k to (k +
1) needs calculating new sigma points X

( j )
i (k + 1) as

X
( j )

i (k) = X̃ +
i (k) + x̃

( j )
i ; j = 1, … , 2n

x̃
( j )
i =

(√
nP̃+

i (k)

)T

j

, j = 1, … , n

x̃
( j+n)
i = −

(√
nP̃+

i (k)

)T

j

, j = 1, … , n. (32)

The sigma points X
( j )

i (k) are transformed into X̂
( j )

i (k + 1)
according to the non-linear model as presented in (2) and (3).
The transformed sigma points are calculated as

X̂
( j )

i (k + 1) = f (X
( j )

i (k)). (33)

The state estimation and covariance matrix at time step (k +
1) are updated as (34) and (35).

X̂i (k + 1) =
1
2n

2n∑
j=1

X̂
( j )

i (k + 1) (34)

Pi (k + 1) =
1
2n

2n∑
j=1

(
X̂

( j )
i (k + 1) − X̂i (k + 1)

)
(

X̂
( j )

i (k + 1) − X̂i (k + 1)
)T

+ Q(k). (35)

Algorithm 1 sums the proposed non-linear trust-based filter.
It is mentioned that the application of this algorithm is not lim-
ited to the problem of moving targets and can be used for any
similar class of non-linear system, because no restrictive con-
ditions on the parameters of the model have been used in the
proposed method.

4 SIMULATIONS

The performance of proposed trust-based unscented Kalman
filtering based on modified secure node strategy is evaluated
for the problem of manoeuvring target tracking under differ-
ent types of cyber-attacks via computer simulations in this sec-
tion. Besides, the results are compared with the related meth-

ALGORITHM 1 Distributed trust-based unscented Kalman filter

ods which have used a majority voting strategy [3], secure node
strategy [22], and also standard data fusion. Forasmuch as a rota-
tional manoeuvre is considered in the target tracking problem,
the moving target model is highly non-linear. Hence, the sim-
ilar proposed method based on EKF diverges, therefore, the
simulations are performed only based on the trust-based UKF.
The convergence proof of a distributed UKF approach could be
followed in [34]. Moreover, some Monte Carlo simulations are
done to illustrate the improved performance of the proposed
method by comparing root-mean-square errors (RMSEs).

A WSN with 10 nodes is considered, that is, N = 10. The
corresponding graph of the WSN is shown in Figure 2. The
nodes 1 and 7 are the secure nodes and the attackers can-
not manipulate their measurements and estimations. Two kinds
of links are used to demonstrate the information exchange
between two kinds of nodes. The bi-directional links show the
information exchange between two similar nodes (two secure
nodes or two non-secure nodes). The uni-directional links from
secure nodes to non-secure nodes show that the information of
a non-secure node does not participate in secure node calcula-
tions, but the information of a secure node is utilised in non-
secure node calculations.

A manoeuvring target moves over the aforementioned WSN.
The dynamic model of the target has been described in Sec-
tion 2.3 by (2)–(6). The sample time and correlation time con-
stant are considered as T = 1 and 𝜏𝜔, respectively. The sim-
ulation is performed in 100 s. The power spectral density of
a continuous-time white noise w(t ) is set to be 0.01, and the
covariance of w𝜔(k) is 0.01. The variance of measurement noise
is selected to be the same for all nodes with the value of
Ri (k) = R = diag{0.1, 0.001}. The initial value of the target’s
states is considered as X (0) = [0, 0, 0, 0, 0]T with covariance
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FIGURE 2 The graph topology of a typical WSN

matrix P (0) = 0.001 × I. The initial estimated state and covari-
ance are considered being X̂ +

i (0) = [1, 1, 1, 1, 1]T and P+
i (0) =

1 × I, respectively.

4.1 Test results

To illustrate the effectiveness of the proposed trust-based
unscented Kalman filter, it is applied to three following scenar-
ios:

∙ The first scenario: random attack;
∙ The second scenario: FDI attack;
∙ The third scenario: replay attack.

4.1.1 The first scenario: Random attack

In the first scenario, it is assumed that the measurements of
nodes 3, 5, and 8 are manipulated by an attacker. The ran-
dom attack vectors are random zero-mean signals with vari-
ances 0.2, 0.16, and 0.2 for the nodes 3, 5, and 8, respec-
tively. Figure 3 demonstrates the actual trajectory of the target
and the estimated trajectories applying the proposed trust-based
unscented Kalman filter based on modified secure node strat-
egy, the majority voting strategy, the secure node strategy, and
the standard data fusion for one of the compromised nodes,
for example, node 8. As shown in Figure 3, the performance
of the proposed method in presence of random attacks is not
the best in some limited time steps, but there is not a gross
tracking error. Due to the random nature of the attack, it is nor-
mal for the results and this does not indicate the worse perfor-
mance of the proposed method. Since the pointwise compar-
ison of methods is not reliable, the Monte Carlo method has
been used in order to make a more accurate comparison con-
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FIGURE 3 The actual and estimated trajectories under a random attack

TABLE 2 Position RMSEs in 50 Monte Carlo runs

Position RMSE Random attack FDI attack Replay attack

Trust-based UKF with 691.87 × 10−3 3.2917 699.23 × 10−3

majority voting

Trust-based UKF with 651.55 × 10−3 1.0396 629.18 × 10−3

modified secure node

Trust-based UKF with 696.34 × 10−3 1.2886 687.98 × 10−3

secure node

Distributed UKF with 825.70 × 10−3 2.0788 825.97 × 10−3

standard fusion

sidering the position RMSEs. Moreover, in the time steps in
which the proposed method is not the best, its performance
is reasonable, and, according to Table 2, the proposed method
is totally better than the others. Therefore, to overcome the
inherent nature of randomness that has led to this problem, the
Monte Carlo method has been used in order to make a more
accurate comparison between the methods. To compare the per-
formance of the proposed method and the related works, the
position RMSEs have been shown in Figure 4 for 50 indepen-
dent Monte Carlo runs. As shown in Figure 4, the Monte Carlo
method reduces the effect of the randomness nature of the ran-
dom attack, and in most of the time steps, the proposed method
has less RMSE than the other methods.

4.1.2 The second scenario: FDI attack

The attacker injects false data to local estimations of nodes 3,
5, 8, and 10 in the second scenario. The estimated positions (px

and py) have been compromised by random vectors with Gaus-
sian distribution with mean 2 and variance 1. The actual and esti-
mated trajectories under the FDI attack have been illustrated in
Figure 5 for node 8. The position RMSEs under the FDI attack
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FIGURE 5 The actual and estimated trajectories under an FDI attack

have been shown in Figure 6 for 50 independent Monte Carlo
runs. Figures 5 and 6 demonstrate the better performance of
the proposed method under FDI attacks, in comparison with
the other methods.

4.1.3 The third scenario: replay attack

In the third scenario, the attacker records a valid estimation in a
period of time, and then, repeats the recorded date to destroy
the tracking or to dupe the operators. It is assumed that the
nodes 3, 8, and 10 are under replay attack. In computer simu-
lations, it is assumed that the attacker repeats in the time inter-
val from the time step 53 to 68, the previous time interval from
the time step 37 to 52. Figure 7 represents the actual and esti-
mated trajectories under the replay attack. Moreover, the posi-
tion RMSEs under a replay attack have been illustrated in Fig-
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FIGURE 7 The actual and estimated trajectories under a replay attack

ure 8 for 50 independent Monte Carlo runs. As shown in Fig-
ures 7 and 8, especially, from the time step 53 to 68, when the
replay attack is launched, the error between real and estimated
trajectory is less than the other methods, and the RMSE from
Monte Carlo simulation results confirm the superiority of the
proposed method in comparison with the other methods.

Therefore, Figures 5–8 show that the proposed method has
better performance in the presence of FDI and replay attacks
even in one run, and Figure 4 shows the better performance
in multi-run simulations. According to the model of the system
described by (1)–(7), after each run, different trajectories have
been obtained due to the existence of process noise. There-
fore, in order to make sure that the results are not limited to
a specific trajectory, three different trajectories have been inves-
tigated in simulation results. The average RMSEs of the afore-
mentioned methods in three scenarios are compared in Table 2.
As revealed by Table 2, the proposed method achieves a bet-
ter average RMSE in comparison with the related methods in
all scenarios.
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Regarding the comparison of the performance of the pro-
posed method and others during all time steps, it should be
noted that the RMSE for different simulations could be rea-
sonable to judge the performance of any method. As seen
in some time steps, the performance of the trust-based UKF
based on modified secure node strategy is not better than other
approaches. However, its accuracy is desired. To guarantee that
the discussed issue cannot affect the performance of the pro-
posed method, numerous simulations have been studied to
examine the effectiveness of the proposed method.

5 CONCLUSION

In this article, the distributed estimation problem of non-linear
systems under malicious cyber-attacks has been investigated.
Both process and observation models have been considered to
be non-linear. A new trust-based unscented Kalman filter based
on a modified secure node strategy has been proposed to esti-
mate the state vector of a manoeuvring target over a WSN under
cyber-attacks. A cluster-based fusion approach has been devel-
oped using majority voting and secure node strategies to prevent
broadcasting the compromised data through the network. As
revealed by the simulation results, the proposed method gives
the lowest average RMSE. Moreover, it is inferred that the pro-
posed method is robust against different cyber-attacks, such as
random, FDI, and replay attacks.

NOMENCLATURE

Ki Kalman gain
n The number of state variables

N The number of sensor nodes
nS , nNS The number of secure nodes and non-secure

nodes, respectively
s The set of neighbours of node s

S , NS The set of secure nodes and non-secure nodes,
respectively

NSecureNeighbour ,I The number of secure neighbour nodes
Pi , P

+
i The predicted and updated covariances

p
(t )
i The updated covariance cluster centre

Pi,xy, Pi,y The predicted measurement covariance and
the cross-covariance between X̂i (k) and ŷi (k),
respectively

P̃+
I
, P̃+

i The fused covariances for secure and non-
secure nodes, respectively

px , py The target position in x-axis and y-axis
Q The covariance matrix of w(t )

Q𝜔 The covariance matrix of w𝜔
Ri The variance of measurement noise

r
(z )
l

The allocation indicator
Sw The power spectral density of a continuous-

time white noise w(t )
T The sample time
vi The measurement noise

vx , vy The target velocity in x-axis and y-axis
w The zero-mean white noise

w(t ) The continuous-time white noise
wm,i The weights of trusted neighbour nodes for

node i in state clustering
wm,I The weights of secure neighbor nodes for

node I in state clustering
wp,i The weights of trusted neighbor nodes for

node i in covariance clustering
wp,I The weights of secure neighbor nodes for

node I in covariance clustering
wx , wy The noisy accelerations in x and y orientations,

respectively
w𝜔 The noise term of turn rate

x(k) The state vector
X̃ +

I
, X̃ +

i The fused state means for secure and non-
secure nodes, respectively

X̂i , X̂ +
i The predicted and updated mean, respectively

X
( j )

i The sigma points

x
(t )
i The updated mean cluster centre

yi , ŷi The observation and predicted measurement
of node i

𝛼 The manoeuvre duration
𝜏𝜔 The correlation time constant for the turn rate
𝜔 The turn rate
* The index i corresponds to the ith node
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