
1286 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

Improved Calibration of Numerical Integration Error in Sigma-Point Filters
Jakub Prüher , Toni Karvonen , Chris J. Oates , Ondřej Straka , and Simo Särkkä

Abstract—The sigma-point filters, such as the unscented
Kalman filter, are popular alternatives to the ubiquitous extended
Kalman filter. The classical quadrature rules used in the sigma-
point filters are motivated via polynomial approximation of the inte-
grand; however, in the applied context, these assumptions cannot
always be justified. As a result, a quadrature error can introduce
bias into estimated moments, for which there is no compensatory
mechanism in the classical sigma-point filters. This can lead in
turn to estimates and predictions that are poorly calibrated. In this
article, we investigate the Bayes–Sard quadrature method in the
context of sigma-point filters, which enables uncertainty due to
quadrature error to be formalized within a probabilistic model.
Our first contribution is to derive the well-known classical quadra-
tures as special cases of the Bayes–Sard quadrature method.
Based on this, a general-purpose moment transform is developed
and utilized in the design of a novel sigma-point filter, which ex-
plicitly accounts for the additional uncertainty due to quadrature
error.

Index Terms—Bayesian quadrature (BQ), Gaussian processes
(GPs), Kalman filters, quantification of uncertainty, sigma points.

I. INTRODUCTION

This article is concerned with quantification of uncertainty asso-
ciated with sigma-point approximations, which are widely employed
in nonlinear filtering algorithms, such as the unscented Kalman filter
(UKF). The goal of filtering algorithms is to estimate the state of a
dynamical stochastic system based on all measurements obtained until
the present. The applications of filters are manifold, ranging from global
positioning [1], object tracking [2], [3], and simultaneous localization
and mapping [4] to weather forecasting [5] and finance [6].
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Instead of keeping track of the whole state posterior, the sigma-point
filters only work with mean and covariance of the state and the mea-
surement. For nonlinear systems and/or measurements, the moments
are defined by intractable integrals that have to be approximated using
numerical quadratures, also known as the sigma-point rules (which is
where the filters get their name). The classical quadrature rules, such
as the Gauss–Hermite (GH) rule, are designed with the assumption that
the nonlinear integrand is well approximated with a polynomial of a
given maximal degree. Since these assumptions are almost never met
in practice, there will always be a quadrature error involved. Standard
sigma-point filters do not attempt to compensate for this source of error,
and in practice, this can lead to estimates and predictions that are biased
and overconfident [7], [8].

In recent years, the Bayesian quadrature (BQ) has received much
attention in the probabilistic numerics community [9]–[12]. The BQ
approach posits that the integrand can be modeled by a stochastic pro-
cess defined on the domain of integration. This model is subsequently
refined by conditioning on pointwise evaluations of the integrand, which
induces a posterior distribution over the value of the integral. The
posterior mean of this distribution is point estimate of the value of the
integral, while the posterior variance quantifies the integration error.

Applications of the BQ in nonlinear filtering have appeared previ-
ously in [13] and [14] with encouraging results. These BQ-based filters
do not generally coincide with any classical sigma-point filter, such
as the UKF or Gauss–Hermite Kalman filter (GHKF), and tend to be
rather sensitive to specification of the stochastic process model for the
integrand. It has been shown that classical sigma-point rules can be
cast as degenerate BQ rules [9], [13]. This is to say that the variance
associated with the integral vanishes, being thus of no use in modeling
integration error.

In this article, we utilize the recently proposed Bayes–Sard quadra-
ture (BSQ) [15] for the design of novel sigma-point filters, which can be
viewed as probabilistic versions of the well-known sigma-point filters.
Namely, under certain conditions, the BSQ allows us to recover the
classical sigma-point rules and, at the same time, endow the sigma-point
rule with nondegenerate probabilistic output. We, thus, obtain versions
of standard sigma-point filters that are, to some extent, capable of
accounting for numerical integration error in filtering by inflating the
error covariance. In some cases, such covariance inflation is known to
improve stability of nonlinear Kalman filters (see, for instance, [16,
Remark 1], [17, Sec. 3.3], and [18, Sec. V.C]).

The rest of this article is structured as follows. In II, we formally
outline the nonlinear filtering problem and the nature of sigma-point
approximations. III identifies the moment transformation problem as
the central issue in sigma-point filtering and describes the structure of
sigma-point moment transforms. The BSQ is formalized in IV, which is
later used in V to design the Bayes–Sard quadrature moment transform
(BSQMT). Finally, VII concludes this article.

II. SIGMA-POINT FILTERING

This section is devoted to the sigma-point filters, which are a subset
of nonlinear filtering algorithms characterized by their reliance on a
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Gaussian approximation together with a numerical quadrature method.
Let the stochastic dynamical system and the process by which its state
is observed be described by the state-space model

xk = f(xk−1) + qk−1 (1)

zk = h(xk) + rk (2)

where the function f : Rdx → Rdx is the system dynamics,h : Rdx →
Rdz is the measurement model, xk ∈ Rdx is the latent state vector, and
zk ∈ Rdz is the measurement vector. Both the process noise qk−1 ∼
N(0,Q) and the measurement noise rk ∼ N(0,R) are zero-mean
white Gaussian sequences, independent of each other and independent
of the system initial condition x0 ∼ N(mx

0 ,P
x
0).

The Bayesian formulation of the filtering problem can be summa-
rized by the following two general relations. The state posterior is
p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1), where the likelihood p(zk |xk)
is obtained from the measurement model (2) and z1:k � {z1, . . . , zk}.
The predictive density is given by the Chapman–Kolmogorov equation
p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, where the tran-

sition density p(xk|xk−1) is obtained from the system dynamics (1).
A vast majority of well-known filters, such as extended Kalman

filter (EKF), UKF and GHKF, can be recovered from the Bayesian
formulation under a Gaussian approximation of the joint density of the
state and measurement. That is, when the density p(xk, zk | z1:k−1) =
p(zk | xk)p(xk | z1:k−1) is approximated by a Gaussian density of the
form

N

([
xk

zk

] ∣∣∣∣
[
mx

k|k−1

mz
k|−1

]
,

[
px
k|k−1 pxz

k|k−1

Pzx
k|k−1 Pz

k|k−1

])
(3)

then the mean and covariance of the state posterior have analytical form,
given by1

mx
k|k = mx

k|k−1 +Gk

(
zk −mz

k|k−1

)
(4)

Px
k|k = Px

k|k−1 −GkP
z
k|k−1G

�
k (5)

where Gk = Pxz
k|k−1(P

z
k|k−1)

−1 is the Kalman gain. The predictive
moments of the state, mx

k|k−1 and Px
k|k−1, and the moments of mea-

surements, mz
k|k−1, Pz

k|k−1, and Pxz
k|k−1, are defined as integrals of the

form

Ex[g(x)] �
∫

g(x)N(x | m,P)dx. (6)

Table I shows which quantities have to be substituted for x(x), x, m,
andP to obtain any of the above predictive moments. Since the function
g being integrated is nonlinear in each case, these integrals cannot be
typically computed analytically, and some type of approximation needs
to be employed. Each nonlinear filter is distinguished solely by the type
of integral approximation it uses. For example, the EKF employs the
first-order Taylor expansion to linearize g in the vicinity of m, which,
in turn, facilitates analytic tractability of the moment integrals. On the
other hand, the sigma-point filters, such as the UKF and the GHKF,
leverage numerical quadrature for approximation of the integral. Since
quadratures are typically designed to be used with standard Gaussian,
the integrals of the form (6) need to be converted by employing a
stochastic decoupling substitution x(n) = m+ Lξ(n), which leads to

1Note that mx
k|k � Ex[xk | z1:k] and Px

k|k �
Ex[(xk −mx

k|k)(xk −mx
k|k)

� | z1:k].

TABLE I
QUANTITIES THAT NEED TO BE SUBSTITUTED INTO THE GAUSSIAN
INTEGRAL (6) IN ORDER TO OBTAIN EVERY PREDICTIVE MOMENT

NECESSARY TO COMPUTE THE MOMENTS OF THE STATE POSTERIOR

The following shorthand notation is used: Δf = f(xk−1)−mx
k|k−1

, Δh =

h(xk)−mz
k|k−1

, and Δx = xk −mx
k|k−1

.

an approximation

Ex[g(x)] ≈
N∑

n=1

wng(m+ Lξ(n)) =

N∑
n=1

wng̃(ξ
(n)) (7)

where ξ(n) denotes the nth unit sigma point, wn ∈ R is the nth weight,
N is the total number of sigma points, L is a matrix factor such that
P = LL�, and g̃(ξ) � g(m+ Lξ). Note that various quadrature rules
are distinguished by different weights and sigma points they prescribe
to satisfy various optimality criteria.

III. SIGMA-POINT MOMENT TRANSFORMS

From the above exposition, it is apparent that the central issue in
filtering is the design of the so-called moment transformations, which
generate approximations to the moments of a random variable under a
nonlinear transformation.

Let x ∈ RD be an input Gaussian random variable and y ∈ RE an
output random variable defined by

y = g(x), x ∼ N(m,P). (8)

If the transformation g is nonlinear, the joint density p(x, y) will be
non-Gaussian in general. However, there are many applied situations,
where g is approximately linear in the region where probability mass is
concentrated. In such situations, the principal error term in the moment
transform is numerical quadrature error. This error is the focus this
article, and therefore, in what follows, we proceed under the assumption
that the Gaussian approximation

N

([
x
y

] ∣∣∣∣
[
m
μ

]
,

[
P C
C� Π

])
(9)

of p(x, y) can be justified. In this setting, the moment transformation
then reduces to computing the output mean μ, covariance Π, and
cross-covariance C as accurately as possible, when supplied with the
input moments, m and P. This is a specific instance of uncertainty
propagation [19].

In this article, we focus on the sigma-point approximations, exempli-
fied by (7), to the moment integrals in Table I. The well-known classical
approximations, such as the GH, the spherical–radial, and the unscented
transform (UT), are conventionally written in the form

μ ≈ μ̂ =

N∑
n=1

wng̃(ξ
(n)) (10)
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Π ≈ Π̂ =
N∑

n=1

wn(g̃(ξ
(n))− μ̂)(g̃(ξ(n))− μ̂)� (11)

C ≈ Ĉ = L
N∑

n=1

wnξ
(n)(g̃(ξ(n))− μ̂)� (12)

which, under the assumption that
∑

wn = 1 and
∑

wnξ
(n) = 0, we

will prefer to write using the matrix notation as

μ̂ = Y�w (13a)

Π̂ = Y�WY − μ̂μ̂� (13b)

Ĉ = LΞWcY (13c)

where Ξ = [ξ(1) . . . ξ(N)] and the matrix of integrand evaluations is
given by [Y]ne � g̃e(ξ

(n)), where e indexes outputs of g̃ and [ · ]ne

denotes the matrix element at position (n, e). The vector w contains
the weights and W = Wc = diag(w) for any classical sigma-point
moment transform. Each moment transform uses a different set of sigma
points and weights.

A. Unscented Transform

The UT of D-dimensional input uses N = 2D + 1 sigma points,
which exploit symmetry of the Gaussian distribution, given, for d =
1, . . . ,D, by

ξ(0) = 0, ξ(d) =
√
c ed, ξ(D+d) = −√

c eD+d (14)

where ed is the standard unit vector and c = D + κ for a scaling pa-
rameter κ. The weights are defined asw0 = κ

c
and wd = wD+d = 1

2c
.

This selection of sigma points and weights yields a quadrature rule that
integrates exactly all polynomials of (total) degree at most three; the
derivation is essentially contained in the proof of 1. The spherical-radial
rule, which is used in the cubature Kalman filter [20], is equivalent to
the UT with κ = 0; it, therefore, lacks the central sigma point.

B. GH Rule

From nonsingularity of the Vandermonde matrix [V]nm = xm−1
n

for any distinct sigma points x1, . . . , xp ∈ R, it follows that there are
unique weights such that

∑p
n=1 wnx

m
n =

∫
xmN(x | 0, 1) dx for ev-

erym ≤ p− 1 (i.e., the rule has a degree of exactness p− 1). However,
degree of exactness 2p− 1 can be achieved with p sigma points if these
are selected to be the roots of the pth-degree Hermite polynomial Hp.
The weights are then given by wn = p!

p2Hp−1(ξ
(n))2

. This is the GH

rule [21]–[24]. In multivariate versions, the sigma points are formed
as Cartesian products of the aforementioned one-dimensional points,
and the weights are products of wn. The multivariate GH rule exactly
integrates functions in the space

Πmax
2p−1 � span

{
xα : α ∈ ND

0 , max
d=1,...,D

αd ≤ 2p− 1

}
(15)

wherexα =
∏D

d=1 x
αd
d denotes multivariate monomial. Because of the

Cartesian product design, the number of points, N = pD , in the GH
rule grows exponentially with dimension, which makes it practically
unattractive for D > 5 [22]. The problem can be partially mitigated by
using sparse grids [25].

IV. BAYESIAN QUADRATURE

This section reviews the underlying philosophy of the BQ as an
alternative perspective on numerical integration and describes the BSQ
as a necessary stepping stone on the way to building the Bayes–Sard

moment transform proposed in V. A general formulation of the BQ is
presented for integrals

Ex[g
†(x)] =

∫
g†(x)p(x)dx (16)

with arbitrary density function p. Vector-valued integrands are dis-
cussed in Section IV-B. The moment transform proposed in Section V
then specializes to the case p(x) = N(x | 0, I). Throughout this sec-
tion, the true integrand will be denoted by g† to distinguish it from the
stochastic model of the integrand.

From (7), it is clear that the quadrature approximation of the integral
(6) is based on limited knowledge about the behavior of the integrand,
because it only relies on finitely many evaluations. The design of
classical quadrature rules typically involves formation of polynomial
interpolant passing through the observed function values, which is
then integrated instead of the intractable integrand. The polynomial
interpolation of the integrand consequently implies that the classical
rules are only able to integrate polynomial integrands exactly. Another
downside of the classical rules is that they are unable to account for
the functional uncertainty (interpolation error), which occurs when the
integrand is not a polynomial.

The Bayesian approach to quadrature [11], [26], [27] aims to ad-
dress these limitations by treating the numerical approximation of
intractable integrals as a problem of Bayesian statistical inference,
where a prior for the integrand is specified by a stochastic process
model g(x) with the user-defined mean function m(x) = Eg[g(x)]
and the covariance (or kernel) function k(x,x′) = Cg[g(x), g(x

′)],
where x′ denotes the second argument (not a transpose). The dataset
D = {(x(n), g†(x(n)))}Nn=1 comprises evaluations of the integrand
g†(x(n)) at predefined points x(n). Conditioning on D leads to a
posterior stochastic process, with mean mD(x) = Eg|D[g(x)] and
covariance kD(x,x′) = Cg|D[g(x), g(x′)], which, in turn, induces a
posterior marginal distribution on the value of the integral Ex[g(x)],
with the first two moments given by [28]

Eg|D[Ex[g(x)]] = Ex[Eg|D[g(x)]] (17)

Vg|D[Ex[g(x)]] = Ex,x′ , [Cg|D[g(x), g(x′)]]. (18)

The mean is a convenient point estimate, while the full posterior serves
as a probabilistic model of the integration error. The most common
stochastic process model of the integrand is a Gaussian process (GP),
which has been studied extensively [11], [29].

A. Bayes–Sard GP Model

Let π be a linear function space spanned by Q ≤ N functions
φ1, . . . , φQ : RD → R. Modeling of the scalar integrand g† : RD →
R in the BSQ begins by considering a hierarchical GP prior given by

γ ∼ N(0,Σπ), γ ∈ RQ (19)

m(x) =

Q∑
q=1

γqφq(x) (20)

g(x) ∼ GP(m(x), k(x,x′; θ)) (21)

where the prior mean function m(x) : RD → R is composed of ba-
sis functions φq(x) of Q-dimensional linear space π and the prior
covariance function (kernel) k(x,x′; θ) : RD × RD → R can be any
symmetric positive-definite function parameterized by the vector θ (see
Section IV-E for concrete example). The dependence on θ will be tacitly
assumed and explicitly denoted only when required. Discussion about
the particular choice of the kernel and its effects is postponed to IV-E.
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The above model differs from the one often used in GP-based BQ, in
that the prior mean function is nonzero and its coefficients are random.

The next phase in modeling is to consider a flat prior limit on the mean
function coefficients, such that Σπ → ∞ [30, Ch. 4]. In order for the
GP posterior to be well defined, the setχ = {x(1), . . . , x(N)} of sigma
points must meet the following condition of π-unisolvency, which is
related to existence of interpolants formed out of linear combinations
of φ1, . . . , φq .

Definition 1 (π-unisolvency): Let π be a Q-dimensional linear
space spanned by {φ1, . . . , φq}. A point setχ is said to be π-unisolvent
if and only if the N ×Q alternant matrix [Φ]qn � φq(x

(n)) is of full
rank.

We further restrict the model to the case when N = Q, which means
that the alternant matrix Φ is square and, due to π-unisolvency of χ,
invertible.

With all the assumptions laid out, the final step is to condition
the GP on the set of sigma points χ and the corresponding integrand
evaluations, to arrive at the posterior moments of the Bayes–Sard GP
model given by [15] as

Eg|D[g(x)] = φ(x)�Φ−1y (22)

Cg|D[g(x), g(x′)] = k(x,x′)− 2k(x)�Φ−�φ(x′)

+ φ(x)�[Φ�K−1Φ]−1φ(x′) (23)

where [k(x)]n � k(x,x(n)), [φ(x)]q � φq(x), and [y]n � g†(x(n)),
where [ · ]n denotes the nth element of the given vector. Note that the
posterior mean now only depends on the choice of the function space π,
and the kernel affects only the posterior covariance. It is worth pointing
out that all sigma-point sets in the established classical filters are π-
unisolvent.

B. Vector-Valued Integrands

Until now, we have only considered scalar-valued integrands. The
model specified by (22) and (23) can be straightforwardly extended to
vector-valued integrands g† : RD → RE that comply with the spec-
ification of the moment transformation problem in (8). Noting that
we can decompose the integrand as g†(x) = [g†1(x) . . . g†E(x)]

�,
the simplest solution is to use (22) and (23) to model each coordinate
function independently, either using a common kernel parameter for all
outputs, which is accomplished by

ge(x) | D ∼ GP(mD(x), kD(x,x′; θ)) (24)

or using a different kernel parameter values for each output, so that

ge(x) | D ∼ GP(mD(x), kD(x,x′; θe)) (25)

for all e = 1, . . . , E. In both cases, the GP posterior mean function is
given as

mD(x) � Eg|D[g(x)] = Y�Φ−1φ(x) (26)

where [Y]ne = g†e(x
(n)). For the single-parameter model (24), the

posterior covariance becomes

KD(x,x′) � Cg|D[g(x),g(x′)] = kD(x,x′; θ) IE (27)

and for the multiparameter model (25), we get

KD(x,x′) = diag ([kD(x,x′; θ1) . . . kD(x,x′; θE)]) . (28)

Both of these modeling choices assume that the outputs are condition-
ally independent given the inputs. Alternatively, the use of multioutput
GPs [31], [32] would make it possible to model correlations between
coordinate functions and use coordinate-dependent sigma points at the
expense of increased computational cost.

C. Bayes–Sard Quadrature

The advantage of using a GP for modeling the integrand is that
as it gets transformed by the integral, which is a linear operator, the
resulting distribution over the value of the integral is also Gaussian.
The BSQ [15], [27], [33] enables enforcing exactness conditions of the
form

Eg|D[Ex[g(x)]] =

∫
g†(x)p(x)dx

for all functions g† : RD → RE such that g†e ∈ π for each e =
1, . . . , E. As shown in IV-D, the classical quadrature methods can be
replicated by judicious choice of the function space π. The posterior
integral mean and variance under the BSQ are straightforwardly derived
by plugging the Bayes–Sard GP model moments from (26) and (28)
into the general BQ expressions in (17) and (18).

For the mean of the posterior distribution of the integral, we have

Eg|D[Ex[g(x)]] = Ex[mD(x)],Y�Φ−1φ̄ (29)

where [φ̄]q = Ex[φq(x)] =
∫
φq(x)p(x)dx. Recognizing that the

vector of quadrature weights is w = Φ−1φ̄, we see that the posterior
mean of the integral

Eg|D[Ex[g(x)]] = Y�w =

N∑
n=1

wng
†(x(n)) (30)

takes on the form of weighted sum from (7). The integral covariance
becomes

Vg|D[Ex[g(x)]] = Ex,x′ [KD(x,x′)] = diag
([
k̄1
D . . . k̄E

D
])

(31)

where k̄e
D � Ex,x′ [kD(x,x′;θe)] and

k̄e
D = k̄ − 2K̄�Φ−�φ̄+ φ̄�[Φ�K−1Φ]−1φ̄. (32)

Since the single-parameter model in (27) is a special case of (28),
the posterior integral variance under this model would be a trivial
modification of (31).

D. Relationship to Classical Sigma-Point Rules

As stated in the previous section, careful selection of π (via the
basis functions φq) allows for recovery of many well-known classical
quadrature rules used in nonlinear filtering. In the following, we show
that the UT and the GH rule are special cases of the BSQ whenever
the space π is spanned by suitably selected polynomial basis. Similar
results can be proved for many other sigma-point rules. Note that the
BSQ reports a nonzero integral variance even for g† whose coordinate
functions are in π (and hence integrated exactly). This behavior is
desirable because, given only a finite set of function values, one can
never tell with certainty the true nature of the integrand.

Theorem 1: Consider the standard Gaussian distribution p(x) =
N(x|0, I). Select the 2D + 1 dimensional function space

π = span{1, x1, . . . , xD, x2
1, . . . , x

2
D} (33)

and the N = 2D + 1 UT points (14). Then, the Bayes–Sard weights
w = Φ−1φ̄ that determine the posterior mean (29) coincide with the
UT weights.

Proof: Because dim(π) = N , the Bayes–Sard weightsw solve the
linear system Φw = φ̄. That is, they are the unique weights such that

2D∑
n=0

wnv(ξ
(n)) =

∫
v(x)N(x|0, I)dx (34)
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for every polynomial v∈π. In the following, let d = 1, . . . , D.
We have

∫
N(x|0, I)dx = 1 and

∫
x2
dN(x|0, I)dx = 1. Conse-

quently, (34) is equivalent to
∑2D

n=0 wn = 1,
∑2D

n=0 wnxn,d = 0,
and

∑2D
n=0 wnx

2
n,d = 1. Because ξd = −ξD+d, the second of these

equations implies that wd = wD+d, while the third one yields wd =
wD+d = 1

2c
. Furthermore, w0 = κ

c
due to the weights summing up to

1. We have thus solved the BSQ weights w = Φ−1φ̄ and see that they
are precisely UT weights in Section III-A. �

Theorem 2: Consider the standard Gaussian distribution p(x) =
N(x |0, I), and let p ≥ 1. Select the pD dimensional function
space π = Πmax

p−1 � span{xα : α ∈ ND
0 ,maxd=1,...,D αd ≤ p− 1},

and the points that constitute the Cartesian product of the roots of
the pth-degree Hermite polynomial. Then, the Bayes–Sard weights
w = Φ−1φ̄ that determine the posterior mean (29) coincide with the
classical GH weights from III-B.

Proof: Since the Bayes–Sard weights yield, by their definition, a
quadrature rule exact for functions in π and it is known that, given the
GH points, the GH weights are the unique weights that determine a
quadrature rule exact for this very same function space (see III-B), the
result follows. �

E. Choice of Kernel

As already noted, the posterior mean for the integral produced by the
BSQ depends only on π and the kernel controls the posterior variance
of the integral. The reasonableness of the BSQ output depends on the
reasonableness of the assumption that g† is “well modeled” by the
GP specified by the kernel k. Consequently, selection of the kernel is
important in order to ensure that the integral variance is meaningful in
modeling the integration error. At the same time, the functional form of
the kernel is constrained by the requirement in the BSQ to analytically
compute the integral of the kernel. To facilitate analytic tractability of
the Bayes–Sard moment transform, introduced next, we use the radial
basis function (RBF) kernel

k(x,x′) = α2

D∏
d=1

exp(− (xd − x′
d)

2

2
2d
(35)

throughout the remainder. The parameters θ of this kernel consist of
the scale parameter α > 0 and dimensionwise lengthscale parameters

1, . . . , 
D > 0. A particular modeling assumption associated with this
kernel is that the integrand is infinitely differentiable. If this is not
the case (i.e., there is model misspecification), the proposed method
still works, but the uncertainty quantification for the integral may be
rendered less meaningful. For certain classes of kernels, it has been
shown that convergence rates to the true integral as N → ∞ are not
much affected by model misspecification [34].

V. BAYES–SARD MOMENT TRANSFORM

The simplest way to design a moment transform is to use the BSQ
directly for approximation of the moment integrals in (13a)–(13c).
However, this design does not reflect integral uncertainty, which is
the key advantage of BQ, not to mention the fact that we would only
obtain the classical rules as a result. To resolve this issue, we employ
the same general conceptual framework used in the design of the GPQ
moment transform in [14], which can account for the variance of the
mean integral (13a).

A. Incorporating Integration Error

First, it is important to realize that the output variable y is now
subject to an additional source of uncertainty in g introduced by the

model. The key idea is to account for all sources of uncertainty in the
computed moments, which can be achieved with the following:

μ = Ex[g
†(x)] ≈ μ̂ = Ex,g|D[g(x)] (36)

Π = Cx[g
†(x),g†(x)] ≈ Π̂ = Cx,g|D[g(x),g(x)] (37)

C = Cx[x,g
†(x)] ≈ Ĉ = Cx,g|D[x,g(x)]. (38)

Using the law of total expectation and covariance, the approximate
moments of the output can be written as

μ̂ = Eg|D[Ex[g(x)]] = Ex[Eg|D[g(x)]] (39)

Π̂ = Cg|D[Ex[g(x)]] + Eg|D[Cx[g(x),g(x)]] (40)

= Cx[Eg|D[g(x)]] + Ex[Cg|D[g(x),g(x)]] (41)

Ĉ = Ex[xEg|D[g(x)]]− Ex[x]Eg|D,x[g(x)]]. (42)

The first equality exposes the fact that integral mean is obtained by
integrating the mean function of the integrand model. The way the in-
tegral uncertainty is incorporated into the output covariance is revealed
by (40). Note that since the model of the integrand has conditionally
independent outputs, the covariance of the integral, Cg|D[Ex[g(x)]],
and the model covariance, Cg|D[g(x),g(x)], are diagonal matrices.
When either of the covariances approaches zero, (39)–(42) approach
their true values. From now on, we will work with the output covariance
in the form (41) because it is easier to analyze and implement.

B. Derivation of Transformed Moments

In the following derivations, explicit conditioning on D in the ex-
pectations is omitted to reduce notational clutter. We also assume that
the stochastic decoupling substitution has taken place in the integrals,
so that g̃(ξ) = g(m+ Lξ).

Taking the expression for the mean function of the model in (26) and
plugging it into (39), the output mean of the BSQMT becomes

μ̂ = Eξ[Eg[g̃(ξ)]] = Y�Φ−�Eξ[φ(ξ)] = Y�w (43)

wherew = Φ−�Eξ[φ(ξ)] are the mean weights. The output covariance
becomes

Π̂ = Eξ[Eg[g̃(ξ)]Eg[g̃(ξ)]
�]− μ̂μ̂� + Eξ[Cg[g̃(ξ), g̃(ξ)]]

= Y�WY − μ̂μ̂� + σ̄2IE (44)

where the expected model variance is

σ̄2 = Eξ[k(ξ, ξ)]− tr[D�Φ−� +DΦ−1 −WK]. (45)

Here, D = Eξ[k(ξ)φ(ξ)
�] and the covariance weights are W =

Φ−�Eξ[φ(ξ)φ(ξ)
�]Φ−� Finally, the covariance between the input and

output becomes

Ĉ = Eξ[(m+ Lξ)Eg[g̃(ξ)]]− Eξ[m+ Lξ]Eg,ξ[g̃(ξ)]

= LEξ[ξφ(ξ)]Φ
−1Y = LWcY (46)

where the cross-covariance weights are Wc = Eξ[ξφ(ξ)]Φ
−1.

It has now become evident that the output moments depend on
the expectations of the basis functions. In IV, we have shown that
the classical moment transforms can be recovered when the basis
functions are multivariate polynomials. When this basis and the RBF
kernel (35) are used, the expectations above are available in closed
form. The complete algorithm of the Bayes–Sard moment transform is
summarized in Algorithm 1.

Theorem 3: The BSQ output covariance Π̂ is positive semidefinite.
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Proof: Using the expression for the BSQ mean weights from
Algorithm 1, we can write the output covariance as Π̂ =

Y�Φ−�(A− φ̄φ̄
�
)Φ−1Y + σ̄2IE . Define Z = Φ−1Y and Ã =

A− φ̄φ̄
�

; then, Π = Z�ÃZ+ σ̄2IE . We recognize that Ã =
V [φ(ξ)] = E[φ(ξ)φ(ξ)�]− E[φ(ξ)]E[φ(ξ)]� 
 0, which follows
from the properties of covariance matrices. This implies that Z�ÃZ 

0 for any matrix Z. Because σ̄2 ≥ 0, we have that Π̂ 
 0.

C. Relationship to the Gaussian Process Quadrature Moment
Transform

The recently proposed Gaussian process quadrature moment trans-
form (GPQMT) [14] and the BSQMT are both instances of the general
BQ framework. The GPQMT uses a zero-mean GP prior model of the
integrand as opposed to the more sophisticated hierarchical prior in
(19) and (21). As a result, the GPQMT weights are affected by the
choice of kernel and its parameter values, which is not the case in the
BSQMT, where the kernel only affects the last term of the transformed
covariance and the weights depend only on the sigma points and the
choice of the function spaceπ. Consequently, this makes BSQMT much
less sensitive to misspecification of the kernel parameters, which is a
notorious problem plaguing GPQMT. Discussion of the choice of kernel
parameters can be found in the original publication [14].

Compared to the zero-mean GP employed in GPQMT, the Bayes–
Sard GP is a stronger prior, which means it can provide better fit to the

integrand when conditioned on smaller datasets, such as the UT sigma
points, which are especially attractive in nonlinear filtering applications.

D. BSQ Moment Transform in Sigma-Point Filtering

As outlined in II, the filtering algorithms use the moment trans-
formations for computing the predictive moments of the system state
and measurement. Algorithm 2 summarizes the Bayes–Sard quadrature
Kalman filter (BSQKF), which employs the proposed BSQ moment
transform for computing the predictive moments from I. The BSQKF
takes two different kernel parameter values, θf and θh, because there
are two different functions that need to be integrated [see (1) and (2)].

VI. NUMERICAL EXPERIMENT

In order to test the sigma-point filters based on the BSQ moment
transform, we consider the univariate nonstationary growth model
(UNGM), which is often used to benchmark particle filters [35]. The
system dynamics and the observation model are given by

xk =
1

2
xk−1 +

25xk−1

1 + x2
k−1

+ 8 cos(1.2 k) + qk−1 (47)

zk =
1

20
x2
k−1 + rk (48)

with the state noise qk−1 ∼ N(0, 10), measurement noise rk ∼
N(0, 1), and initial conditions x0 = x0|0 ∼ N(0, 5). Kernel scaling
used in the BSQ with for the UT (κ = 2) and the seventh-order GH
points was set to α = 3 and the lengthscales to 
 = 0.3 and 
 = 0.4,
respectively. For the fifth-order GH points, the kernel parameters were
set to α = 5 and 
 = 0.6.

The root-mean-square error (RMSE) was used to measure the track-
ing performance. The inclination indication (INC) [36], given by

INC =
10

K

K∑
k=1

log10
(xk −mx

k|k)
�(Px

k|k)
−1(xk −mx

k|k)

(xk −mx
k|k)

�Σ−1
k (xk −mx

k|k)
(49)

where Σk is the mean-squared error matrix of the state, was used to
measure the credibility of the estimates. A perfectly balanced estimate
has INC = 0. For INC > 0, the estimate is said to be optimistic, which
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TABLE II
FILTER RMSE FOR THE UNGM EXAMPLE

TABLE III
FILTER INC FOR THE UNGM EXAMPLE

is to say the covariance is smaller than it should be, while negative values
indicate pessimism. We refer to [36] for other related credibility mea-
sures. We simulated the model forK = 500 time steps and averaged the
performance scores over 100 simulations. The variance of the average
scores was estimated by bootstrapping. The parentheses in contain the
uncertainty as the least significant digits of two standard deviations.

The BSQ filters with classical points were tested against the well-
known sigma-point filters as well as the GPQ filters from [14]. As
seen in II, the filters based on the BSQ outperform the classical sigma-
point filters in terms of RMSE. Assuming that the GH points are used,
BSQKFs can outperform the GPQ filters as well. In comparison with
the classical filters, the proposed BSQ filters also provide much more
balanced estimates as evidenced by the values of the INC in III.

VII. CONCLUSION AND DISCUSSION

In this article, we designed a general-purpose moment transforma-
tion based on BSQ, which allows for explicit modeling of numerical
integration error through the use of a stochastic process model. The
hierarchical GP prior was shown to be key in developing probabilis-
tic models, which lead to the classical quadrature rules used in the
sigma-point filters and whose variance is statistically meaningful. We
designed the BSQ Kalman filter by leveraging the proposed BSQ
moment transform for computation of the predictive moments. Overall,
the BSQ-based filters report more balanced estimates and tend to err
on the side of caution (the reported estimates are more likely to be
pessimistic).
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