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In biomechanics, electrochemical interactions between ions and negatively charged surfaces of
the porous material occur in a few types of biological tissues. Our interest lies in the modeling
of the cortical bone porous structure, where the transport of the ions in the proximity of charged
collagen-apatite matrix has shown to play a role in bone regrowth and remodeling. Upon stress,
bone tissue generates an electrical potential that directly influences the activity of bone cells.
With this in mind, we derive the model of electrolyte flow through piezoelectric porous media
and apply it to simulate the processes in cortical bone.

The cortical bone is a strictly hierarchical system with a complicated porous structure on
different scale levels. The cortical bone tissue comprises a system of approximately cylindrical
sub-units called osteons, see Fig. 1. Each osteon has a radius of approximately 100-150µm,
[5], with a hollow canal in its center. It is called the Haversian canal (HC) and contains blood
vessels and nerves with rest of the space occupied by the bone fluid. The walls of the HC
are covered by bone cells. Behind this bone cell layer, the walls of the HC are perforated by
a network of small interconnected channels known as canaliculi, [5]. The canaliculi network
connects the HC and lacunae, which are ellipsoidal cavities containing one bone-creating cell
each, i.e., an osteocyte. The lacunar-canalicular network (LCN) is also saturated by bone fluid
that transports nutrients and information about mechanical loading.

The cortical bone consists of two phases at the microscopic scale: the collagen-hydroxyapatite
matrix and the bone fluid that fills the LCN. For modeling, we imagine the bone fluid as a salt-

Fig. 1. Cortical bone structure: (left) the osteonal structure in cortical bone tissue, scale of 100µm;
(right) the illustration of lacunar-canalicunar network in the osteonal structure
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water solution. Thus, there are two types of ions (further indexed by α = 1, 2 ) with opposite
polarization and that are defined by their respective diffusivity coefficients D0

α. The bone fluid
is an incompressible Newtonian fluid characterized by dynamic viscosity ηf .

Due to the presence of collagen, the bone matrix is deformable. Moreover, it exhibits piezo-
electric behavior that was first reported by [2]. Biopolymers, such as collagen-hydroxyapatite,
usually have the specific symmetry type: the piezoelectric coupling tensor g and dielectric ten-
sor d are defined by their components g14, g25 = −g14, and d11, d22 = d11, d33. Elastic properties
of this type of material are transversal isotropic with the elastic tensor characterized by Young’s
moduli E1, E3, shear modulus G13 and Poisson’s ratios ν12, ν31, [3].

The modeling of cortical bone tissue presents a unique challenge because of its highly hier-
archical structure and complex interaction between phases. To simulate such material by direct
modeling of its whole microstructure in its complexity would be very taxing on the computa-
tional memory requirements and not practical for bigger and more complex simulations. In-
stead, the material’s heterogeneity is dealt with by applying a suitable homogenization method,
such as unfolding homogenization (UFH). The UFM also respects the microstructure of the
porous medium and, through the introduction of scale separation formulae, provides us with
tools to reconstruct the macroscopic solution on the microscopic scale.

To successfully apply the UFH, we assume that the cortical bone tissue occupies domain
Ω. The domain Ω is decomposed into solid and fluid phase, Ωs and Ωf , that have designated
parts of the external boundary, ∂extΩs and ∂extΩf , and interface Γ = ∂Ωs ∪ ∂Ωf . Domain Ω is
generated by periodical repeating copies of representative volume element (RVE) Y scale by ε.
The RVE Y is decomposed into solid and fluid phase, Ys and Yf , with interface ΓY = Ȳs ∪ Ȳf .

The homogenization procedure yields the expressions for computing the effective tensors
that describe the behavior at the macroscopic scale. The tensors relevant to the ionic transport
are tensor of permeability K, migration-diffusion tensors J β , Onsager tensors Lβ , diffusivity
tensors Dαβ and two new tensors Qαβ and Sαβ . Further, it gives tensors related to the piezo-
electricity, which are piezoelasticity tensor A, modified Biot’s tensor B, and ionic potential
tensor Cα. Then, the dimensionless macroscopic homogenized system of equations, where the
external electrical field is omitted, reads: Find global pressure P 0, displacement u0 and ionic
potentials Φ0

α, α = 1, 2, such that
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for α = 1, 2 and completed by boundary conditions given below. We can distinguish the fluid
seepage velocity w0, the ionic diffusion fluxes j0α, α = 1, 2, and the porous body stress σ0,

w0 =
∑

β

J β∇xΦ
0
β −K(∇xP

0 − f) in Ω,

σ0 = Aex(u0)− P 0B̂ +
∑

β

CβΦ0
β in Ω, (2)

j0α =
∑

β

Dαβ∇xΦ
0
β −Lα(∇xP

0 − f) in Ω, α = 1, 2.

28



(a) (b) (c)

Fig. 2. (a) Mesh representation of RVE Y; (b) mesh representation of single bone osteon, i.e., domain Ω;
(c) definition of boundaries of domain Ω

The system (1) needs to be completed by a set of boundary conditions given below.
For numerical modeling, we simplify the bone structure into two structural levels and pro-

pose their geometry representation, as follows:

• The microscopic level represents the LCN filled with bone fluid. The cubic RVE Y rep-
resents three channels with a single ellipsoidal lacuna, see Fig. 2a. The three channels
have a cross-sectional area corresponding to the sum of cross-sectional areas of all the
canaliculi in the given direction to preserve the flow rate between lacunae, [1].

• The macroscopic level is represented by a single osteon which has an approximately
cylindrical shape with a hollow canal in its center, see Fig. 2b.

To respect the orientation of LCN in osteon, the computed effective coefficients are circumfer-
entially rotated around the x3-axis of the central canal.

We consider the inner osteonal wall ΓI to be non-permeable. The gradual compression is
applied at the top of the osteon, i.e., at ΓT . This is realized through the following boundary
value problem (BVP), which is defined by (1) and by the boundary conditions of Neumann
and Dirichlet type. The boundary conditions are applied to the parts of macroscopic specimen
boundary, in the following manner (for all t ∈]0, T [):

• u1 = u2 = 0, u3(t) = ū(t)t, n · jα = 0, n · w = 0 on ΓT ,

• u(t) = 0, n · jα = 0, n · w = 0 on ΓB,

• n · jα = 0, n · w = 0, n · σps = 0 on ΓO,

• P = P̄ , Φ1 = Φ̄1, Φ2 = Φ̄2, n · σps = 0 on ΓI ,

where σ,w and jα, α = 1, 2, are given by (2) and ū(t) = 0.1t. The prescribed values of
boundary conditions are P̄ = 1.0, Φ̄1 = −0.01, Φ̄2 = 0.01.

Initial conditions are taken from the steady-state solution (i.e., for t = 0) of the macroscopic
problem (1) with a set of boundary conditions given above. The numerical implementation of
the homogenized model completed by suitable choice of initial and boundary conditions was
made in python-based FEM software SfePy. Let us note that the macroscopic problem is solved
in its dimensionless form. However, its results can be easily dimensionalized. Thus, all the
following results are in dimensionalized form denoted by teff .
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All the presented results are axially symmetric, which is the direct consequence of the cir-
cumferential orientation of the microstructure in the macroscopic specimen. Thus, Fig. 3 shows
the distribution of macroscopic solution (peff ,ueff ,Φeff

α ), α = 1, 2, of BVP at t = T along the
radial axis that passes through the point A, see Fig. 2c.

Fig. 3. BVP IV: Distribution of macroscopic fields (peff ,ueff ,Φeff
α ), α = 1, 2, at t = T along the radial

axis. The values of radius of HC ro and radius of osteon R0 are denoted by red vertical lines

The presented model computational model can be used not only for studying processes in
the cortical bone but also for a wide range of other applications due to the derivation of equations
in general dimensionless form. The chosen homogenization method also enables us to study the
effect of the macroscopic fields on the microscale. This work is the extension of our previous
research, so we refer to it for more details, [4].
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