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1. Introduction
We focus on efficient numerical solution of the incompressible Navier-Stokes equations using
our in-house solver based on the isogeometric analysis (IgA) approach. IgA uses the isopara-
metric approach, i.e., the same basis functions are used for description of the computational
domain geometry and also for representation of the solution. The primary goal of using isoge-
ometric analysis is to be always geometrically exact, independently of the discretization, and
to avoid generation of computational meshes which is often a very time-consuming step for
finite element (FEM) and finite volume (FVM) methods. Since the computational domains
are usually designed as B-spline or NURBS objects in the industrial practice, IgA relies on
B-spline/NURBS basis for representation of the solution. The B-spline/NURBS discretization
basis has several specific properties different from standard finite element basis, most impor-
tantly a higher interelement continuity leading to denser matrices. Our aim is also to developed
efficient solver of these systems by a preconditioned Krylov subspace method. Therefore, the
efficiency of the ideal and approximate versions of suitable state-of-the-art block precondition-
ers for the Navier-Stokes equations is also discussed.

2. Navier-Stokes equations
The mathematical model is based on the incompressible Navier-Stokes equations. Let Ω ⊂ Rd

be a bounded domain, d being the number of spatial dimensions, with the boundary ∂Ω consist-
ing of two complementary parts, Dirichlet ∂ΩD and Neumann ∂ΩN . The steady-state incom-
pressible Navier-Stokes problem is given as a system of d + 1 differential equations together
with boundary conditions

−ν∆u + (u · ∇)u +∇p = 0 in Ω,
∇ · u = 0 in Ω,

u = gD on ∂ΩD,
ν ∂u
∂n
− np = 0 on ∂ΩN ,

(1)

where u is the flow velocity, p is the kinematic pressure, ν is the kinematic viscosity and gD is
a given function. If the velocity is specified everywhere on the boundary, the pressure solution
is only unique up to a hydrostatic constant.
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3. Numerical model
The nonlinear problem (1) is linearized by Picard method and discretized using isogeomet-
ric analysis approach, see [1] for details. IgA is a relatively new discretization approach [2]
based on Galerkin method, where the basis of the discrete solution space is taken from the
B-spline/NURBS representation of the computational domain Ω. We limit ourselves to the B-
spline discretization basis in this work. The discretization, similarly to finite element method,
leads to a sparse non-symmetric linear system of saddle-point type

[
F BT

B 0

] [
u
p

]
=

[
f
g

]
, (2)

where F is block diagonal with the diagonal blocks consisting of the discretization of the vis-
cous term and the linearized convective term, BT and B are discrete gradient and negative
divergence operators, respectively. An efficient iterative solver is necessary for solving large
systems (2) because direct solvers are very time and memory consuming. Krylov subspace
methods are the most commonly used in similar applications and can be very efficient if com-
bined with a good preconditioning technique. Since our matrices are non-symmetric, we choose
a Krylov subspace method GMRES.

4. Preconditioning techniques
In contrast of standard finite element method, the B-spline basis is generally of higher con-
tinuity across the element boundaries. This leads to denser matrices, which makes the linear
system more expensive to solve. We are interested in the convergence behavior of the precon-
ditioned GMRES with several block preconditioners, which were developed for finite element
discretizations, especially its dependence on the B-spline basis degree and continuity.

Due to the form of linear system (2) we use some block preconditioners based on the de-
composition [

F BT

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
, (3)

where S = −BF−1BT is the Schur complement, which is approximated in different ways.
The tested precoditiners are LSC (Least-Squares Commutator), PCD (Pressure Convection-
Diffusion), AL (Augmented Lagrangian) and SIMPLE (Semi-Implicit Method for Pressure
Linked Equations) type preconditioners. An overview of these preconditioners can be found
e.g. in [3].

Fig. 1. Blade cascade flow
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5. Numerical experiments
We chose several test problems to show and compare convergence properties of GMRES method
with the particular preconditioners, especially dependence on the mesh refinements, Reynolds
number, the degree of continuity of the solution across the element interfaces, etc.

One of the test examples is the 2D laminar blade profile cascade flow, see Fig. 1 (right).
The computational domain is constructed by unfolding a cylindrical slice of the runner wheel
domain, see Fig. 1 (left). The second test example is the 3D flow over a backward facing step
domain. Both the steady and unsteady cases have been considered.

In Fig. 2 we can see example of convergence properties of selected preconditioners - residual
norm of the solution dependency on the numbers of iterations over three levels of uniform mesh
refinements. Third-order B-splines with C2 interelement continuity are considered.

Fig. 2. Sensitivity of convergence to uniform mesh refinement of 2D blade profile domain

6. Conclusions
We tested the block preconditioners on several test problems discretized using B-spline basis
of various degree and continuity. Based on these experiments, we can conclude, that higher
interelement continutity of the discretization, which is typical for IgA, does not have a negative
impact on the convergence of the preconditioned GMRES. Moreover, the opposite seems to be
true in many cases. For example, some tested preconditioners were less sensitive to uniform
mesh refinement for discretizations of high continuity. In the unsteady case, higher continuity
even improves the convergence of GMRES for most preconditioners.
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