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Acoustic streaming (AS) is a non-intuitive phenomenon occurring in a high-intensity sound
field. In general, AS is a quasi-stationary flow generated by a nonlinear acoustic wave propa-
gating in a viscous fluid. This flow is produced due to inhomogeneities in a viscous fluid due to
non-zero divergence of the Reynolds stress (due to the kinetic energy of the acoustic wave), or
due to vibrating fluid-solid interface (effects of surface acoustic waves). It is observed at fluid
boundary layers as the Rayleigh streaming due thermal and/or viscous phenomena, or in the
bulk fluid as the high-frequency Eckart streaming. The so-called micro-streaming in the vicin-
ity of channel walls can provoke cavitation associated with actions of microbubbles (cavitation
microstreaming). Mathematical modelling of the AS was originated by Rayleigh (1884). Major
pioneering contributions are due to Nyborg and Lighthill [1, 3] who established the fundamental
framework for the nonlinear acoustic wave treatment using the perturbation theory.

In the present study, we explore the AS induced by the vibrating fluid-solid interface pro-
ducing surface acoustic waves. For this, we consider laminar flows in vibrating channels, as
shown in Fig. 1. A viscous barotropic fluid is considered, such that the adiabatic condition
holds.

By pursuing the standard perturbation analysis, the flow field variables are decomposed into
time-periodic components, representing the primary acoustic response, and the components
representing the secondary quasi-stationary effects which can describe the acoustic streaming
phenomenon. Besides the model arising due this perturbation analysis, we apply the standard
approach of computational analysis by means of the relevant flow model, thus, providing di-
rect numerical simulations (DNS) of the phenomenon. Open source software OpenFOAM is
employed to solve both the types of the evolutionary boundary value problems.

Fig. 1. Flow domain and boundaries conditions
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U ‖ n U · n = 0

Fig. 2. Acoustic streaming due to vibrating wall Γw with normal (left) U1 = 0, and tangential (right)
U2 = 0 displacement amplitude, see (3). Note the different vortex orientations

Flow in a confined 2D layer with vibrating walls We consider a 2D thin slab Ω =]0, L[×]0, b[
⊂ R2 representing a section of the infinite layer ]− ∞,+∞[×]0, b[ occupied by a viscous
barotropic fluid. Domain Ω is bounded by ∂Ω consisting of four parts Γw,Γ0 and Γ#. The
flow is induced by harmonic oscillations of the inferior wall Γw = {x ∈ ∂Ω|x2 = 0}, whereas
fixed superior wall Γ0 = {x ∈ ∂Ω|x2 = b} is considered, cf. [2]. For practical reasons of the
numerical simulations, periodic conditions are prescribed on the vertical boundary segments,
Γ# = {x ∈ ∂Ω|x1 = 0, L}. The velocity vector u, the density ρ and the pressure p satisfy the
Navier-Stokes equations involving the mass and momentum conservation equations,

∂tρ+∇.(ρu) = 0 ,

∂t(ρu) +∇.(ρu⊗ u) = −∇p+∇ · σvi(u) ,
(1)

where the viscous part of the stress σvi is defined using the viscosity coefficients µ and η. Thus,
we may introduce operator Â(u), as follows

Â(u) := ∇ · σvi(u) = µ∇2u + (η +
1

3
µ)∇(∇ · u) . (2)

Besides the barotropic fluid, we may consider an incompressible fluid which yields Â(u) =
µ∇2u.

The vibrations of the wall Γw are defined in terms of prescribed fluid velocity v = w,

w(x, t) = U cos

(
2πx

L

)
sin

(
2πt

T

)
, (3)

where U = (U1, U2) is a given amplitude and T is the time period.
Although the fluid oscillates with frequency ω = 2π/T in the response to the vibrating wall,

we are interested in the behaviour observed at a time scale much larger than the period T . For
this, any quantity q(x, t) is averaged to define q(x, t),

q(x, t) := 〈q〉 :=
1

T

∫ t+T

t

q(x, τ)dτ . (4)

Solution methods The flow equations (1) can be either solved directly (the DNS approach)
or in a decomposed form [3] obtained due to the expansion of the state variables with respect to
a perturbation parameter ε, such that

u(x, t) = εu1(x, t) + ε2u2(x, t) ,
p(x, t) = p0 + εp1(x, t) + ε2p2(x, t) ,
ρ(x, t) = ρ0 + ερ1(x, t) + ε2ρ2(x, t) .

(5)
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The “zero order” variables labelled by 0 are constant in time, whereas the “first order” ones
labelled by 1 are assumed to be T -periodic in time. Note that the equilibrium velocity is assumed
to vanish (u0 = 0) and the equilibrium pressure p0 and density ρ0 are constants. Obviously, for
an incompressible fluid, ρ = ρ0. In other cases, we assume the wave propagation as an adiabatic
process and employ the following barotropic approximation relating the pressure perturbation
to the density perturbation through the sound speed c0, see also [4]. By virtue of (5), the Taylor
expansion of the pressure p in response to ρ yields

p1 = c2
0ρ1 , p2 = c2

0ρ2 + c0d0ρ
2
1 , where c0 =

√(
∂p

∂ρ

)

s

, d0 :=

(
∂c0

∂ρ

)

s

. (6)

Below the rescaled pressure p̂1 := p1/ρ0 is employed.
Upon substituting (5) and (6) in (1) and pursuing the standard split according to orders in ε,

two problems for the couples (p̂1,u1) and (p̂2,u2) are identified being governed by the following
linear equations (here we consider the barotropic fluid) whereby the averaging (4) is applied,

∂tp̂1 + c2
0∇ · u1 = 0 ,

∂tu1 = −∇p̂1 + Â(u1) ,

∂tp̂2 + c2
0∇ · u2 = N ,

∂tu2 = F−∇p̂2 + Â(ū2) ,
(7)

see (2), where N and F are computed, as follows

N := −〈∇.(p̂1u1)〉 , F := −〈∇.(u1 ⊗ u1)〉 , (8)

providing the driving forces for the acoustic streaming. For the incompressible case, the conti-
nuity equations in (7) are reduced to ∇ · u1 = 0 and ∇ · u2 = 0. This decomposed form of the
AS problem can be solved using any standard CFD computational tool. For this we employed
the OpenFOAM to write our own solvers.

To illustrate the AS phenomenon, in Fig. 2 we depict the flow field ū2 in domain Ω. The
steady state vortices are generated by vibrations of the lower edge in the normal direction,
i.e., with an amplitude U = (0, U2), see (3). Similar pattern is obtained for the tangential
vibrations when U = (U1, 0), whereby small differences between the barotropic and incom-
pressible fluids were observed. In Fig. 3, the relative magnitude |ū|/u∗ of the velocity ob-
tained using the DNS method is displayed along a horizontal and a vertical sections located at
x2/b = 0, 1/4, 1/2, 3/4 and x1/L = 0, 3/8, 1/4, respectively, whereby u∗ = 1

|Ω|
∫

Ω
ūdx. Quite

similar curves are obtained while plotting the solution ū2 of the expanded problem (7). The
difference (|ū| − |ū2|)/u∗ between the two solutions is less than 5% (Fig. 4).

Remarks and perspectives The computational study reported very briefly in this paper en-
abled to reveal the Acoustic Streaming (AS) phenomenon in the context of numerical solution
methods. Although the phenomenon has been studied and reported in the literature over past
decades in various contexts, our intent is to study the AS in periodic scaffolds and to account for
thermal and deformation effects which bring a two-way coupling between the first and second-
order problems of the decomposed form, see (7).
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Fig. 3. Velocity magnitude |ū|/u∗ along the vertical (left) and horizontal (right) line sections

Fig. 4. Relative differences (|ū| − |ū2|)/u∗ between the direct and expansion resolution in %
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