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In this paper the dynamic mode decomposition (DMD) method is introduced. It is a data-driven
and model-free method which decomposes a given set of signals to DMD modes and associated
DMD eigenvalues, [2, 4]. Thus it offers a very interesting alternative to the proper orthogonal
decomposition (POD) and similar methods usually used for the low-rank representation of the
high-dimensional data. The advantage of DMD is better physical interpretation of the decom-
position as the DMD modes have monofrequency content and the complex DMD eigenvalues
provide the frequency as well as the growth/decay rate of particular mode, [4]. Moreover the
DMD has solid theoretical underpinnings given by the Koopman operator, [2]. The disadvan-
tage of DMD is a relative ambiguity of DMD mode selection which are not sorted as in the case
POD decomposition, [1]. Finally an application example of the DMD analysis to the numerical
simulation of flutter vibrations is presented.
DMD theory In the beginning let us assume that we study dynamical system of the form

∂x

∂t
= f(x, t, µ), (1)

where x(t) ∈ Rn is a state vector at time t, µ represents parameters of the system and function
f(·) is generally nonlinear. Further we denote xk = x(tk) as solution of Eq. (1) at time instant
tk (for example assuming tk = k · ∆t). The states xk are typically very large and they can
arise from the spatial discretization of a partial differential equation or they can be collected
from measurements of the dynamical system. Next we have got a data set D consisting of
D = {x1, . . . ,xN} for which we would like to find low-dimensional representation.

The DMD method is based on the matrix A describing time development of the system in
the form

xk+1 = Axk, k ∈ {1, . . . , N − 1} (2)

as best fit in least-square sense, i.e., minimizing
N−1∑

k=1

||xk+1 − Axk||2. (3)

It is now clear from Eq. (2) that the DMD actually locally linearizes the original system (1), [2].
Quite interestingly, the DMD method can be theoretically viewed as the finite-dimensional ap-
proximation of the Koopman operator. The Koopman operator is a linear, infinite-dimensional
operator that precisely represents the nonlinear operator of the dynamical system with finite
dimension, [2].

The dynamics of system (1) (or more accurately the dynamics hidden in the data set D)
is given by the DMD matrix A. The key to it (and the key of the DMD) is to perform the
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eigendecomposition of matrix A to eigenvalues λi and eigenvectors Φi. Then the analyzed
state-space trajectory (given by D) can be reproduced according to the formula

x(tk+1) = xk+1 ≈ Akx1 =
N−1∑

i=1

Φi exp(ωi tk) bi, (4)

where ωi are approximate continuous-time eigenvalues given by ωi = ln(λi)/∆t and b = (bi)
are the initial coefficients of mode participation for each DMD mode, i.e., b = Φ†x1 with † no-
tation of pseudo-inverse. The real and the imaginary part of ωi provides us information about the
exponential growth/decay rate and the frequency content of the particular mode, respectively,
see [4].

In practice the DMD matrix is replaced by the projection of the matrix A onto first r left-
singular vectors obtained by singular value decomposition (SVD) and corresponding to the
biggest r singular values of A, i.e., by matrix Ã. Then also the summation in formula (4) is
typically restricted to M � r, i.e., it is enough to choose a few dominant DMD modes (here M
modes) acceptably representing the system dynamics, [2].

In next paragraph we shortly present the numerical simulation on which results the DMD
was applied.

FSI simulation Numerical simulation of flow-induced vibration of vocal folds (VFs) with
the full channel configuration was conducted with in-house solver described in [5]. The VF
geometry and simulation parameters are based on article [5]. Particularly, the constant time
step ∆t is chosen as 4 · 10−5 s and the inlet velocity vin = 1.98 m/s is prescribed with the aid
of penalization parameter ε = 1

2000
s/m. Such choice of the inlet velocity together with the

penalization parameter exceeds the critical flutter velocity estimated to be vcrit ≈ 1.9 m/s, [6].
Fig. 1 shows the VF displacement recorded at the top point of bottom VF. The gradual

increase of vibration amplitude can be observed when the increase in last 0.05 s has obviously
the exponential character typical for flutter phenomenon. At time instant t = 0.2956 s the
simulation failed due to too distorted computational fluid mesh. This is a big disadvantage of
ALE method and an open issue for the simulation of healthy human phonation.

Fig. 1. VF displacement in x-direction monitored at point S = [4.99;−0.505]mm. Five different time
intervals are chosen for the application of DMD, marked by letters A-E

DMD application Here we apply the DMD on the numerical approximation of structural
displacements uh only. We choose 5 time intervals of 150 or 300 time steps covering the one
or two periods of the most dominant frequency, see Fig. 1. The SVD is truncated such that all
singular values greater than 10−3 are kept. The DMD mode with the highest mode participation
measured as zi = |∑N−1

k=1 exp(ωi tk) bi| is chosen together with the DMD modes satisfying
zi > 0.1 · zmax, see [1].
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The data sets from five different time intervals as shown in Fig. 1 are chosen. The DMD
decomposition is performed for each of them and the chosen statistics are listed in Table 1. In all
cases the DMD mode with frequency≈ 168 Hz is present, in cases A, B, D is the dominant one.
In cases B and E the highest contribution is associated with the mode representing asymmetry
of the solution and having significant growth rate and rather unimportant frequency content.
Formula (4) can be also used for the future state prediction for choice k > N . Employing this
DMD feature the DMD prediction can be compared with the numerical solution in the cases
A, B, C. The L2 norm of the error epred of the DMD prediction for k = N + 150 (i.e., at
the future 150th time step) against the simulation is listed in the fifth column of Table 1. The
reasonable agreement is achieved in case C, cases A and B fit well the given data sets but the
correct prediction would need to better represent the interplay of two natural eigenmodes in
the training data set. Similar problematic behaviour exhibits prediction in case E where the
dominant DMD mode has too large growth rate which extrapolation gives wrong prediction
clearly visible by eye. Omitting this dominant mode with excessive growth rate leads to an
expectable DMD prediction.

Table 1. Five different data sets are analyzed by the DMD. The third column shows number of selected
DMD modes. The error epred can not be computed in cases D and E as there is no simulation results to
compare with

interval time steps # DMD modes ω of the dominant mode epred · 10−3

A 150 6 5.81 + 168.5 · 2π · i 1.3096
B 300 6 53.2 + 5.8 · 2π · i 1.2364
C 150 4 9.8 + 168.5 · 2π · i 0.47357
D 150 5 65.69 + 167.3 · 2π · i ’small’
E 300 5 1000.5 + 101.5 · 2π · i ’big’

Fig. 2. (Left) DMD approximation of continuous-time eigenvalue spectrum. Vertical magenta line is the
imaginary axis, i.e., stability boundary. The selected eigenvalues are highlighted by red circles. (Middle)
Time behaviour of DMD mode participation coefficients (i.e., amplitudes). Three bold lines represents
four selected DMD modes as the complex conjugated modes have the same real part of time behaviour.
(Right) Comparison of the original displacement and the DMD prediction at point S. The state-space
trajectory is reconstruction in time interval 0.2 − 0.206 s (i.e., it is the data set) and the trajectory is
predicted by the DMD based on Eq. (4) in time interval 0.206− 0.212 s. All results concern case C

Figs. 2 and 3 show more details about the DMD analysis for case C. The mentioned graphs
for other cases are similar. Interestingly, the DMD mode with frequency ≈ 168 Hz is different
from eigenmodes obtained by modal analysis. Its frequency lies between the second and the
third natural eigenfrequency (155.8 Hz and 179.9 Hz) suggesting it is a vibration pattern arisen
by merging of these two eigenmodes as it is typical for flutter phenomenon, see [7].
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Fig. 3. Two selected DMD modes in case C. The left DMD mode has significant growth rate and
frequency content 168.45Hz. The relevance of the right DMD mode rapidly decaying with time as
Re(ω)� 0 and it has no frequency content, i.e., it helps to reconstruct the simulation asymmetry in the
given data set only

Conclusion The DMD method is very interesting allowing us to uncover dynamics of given
system without deep knowledge of it. The data set which it tries to reconstruct can be obtained
by measurements or simulations. Therefore the DMD method has reached a lot of attention
and many improvements of it have been developed, see e.g. [3]. Here it was applied on the
flow-induced vocal fold vibrations. The presented analyses show that DMD can not be used as
the all-able black-box but rather a little parameter tuning is needed.
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