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Tailoring the electronic structure and optical
properties of cadmium-doped zinc oxides
nanosheet

Saleem Ayaz Khan?, Sikander Azam?, Mohammed Benali Kanoun?, Ghulam Murtaza*, Malika Rani®
and Souraya Goumri-Said3*

Abstract: Cd-doped ZnO nanosheet (ZnO NS) were investigated using a full-potential
linearized augmented plane wave method within the generalized gradient approxi-
mation (GGA) to calculate the electronic structure and its optical response. The
calculated band structures have shown that the Cd-doped ZnO NS is a direct band
gap semiconductor at I with 1.50 eV band gap. The contribution of each atom/orbit-
al were commented in light of total and partial densities of states. We also derived
the optical constants (mainly the dielectric constants «,(0) and &,(0)), the absorption
coefficient I(w), refractive index n(w), extinction coefficient k(w), and energy-loss
function L(w). The spectrum of absorption coefficient has revealed to increase rap-
idly for photon energies higher than 2.5 eV. The absorption spectrum was found to
be limited in energy region due to different contributions electronic transitions that
occurred within ZnO NS and effect of Cd doping. Reducing the band gap of ZnO NS to
low values is suitable process for light-emitting devices and solar cells applications.

Subjects: Chemistry; Material Science; Metals & Alloys

Keywords: ZnO nanosheet; solar cells; DFT; optical properties; electronic structure

1. Introduction

A monolayer layer of carbon atoms in honeycomb structure, graphene, is offering exceptional prop-
erties (Avouris, Chen, & Perebeinos, 2007; Geim & Novoselov, 2007; Katsnelson, Novoselov, & Geim,
2006) that have led to important applications in various fields, such as spintronics, (Novoselov et al.,
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Figure 1. Structures of ZnO
nanosheet and Cd-doped
ZnO nanosheet used in
computational works.

2005) optoelectronic (Ma, Yan, Xiao, & Chen, 2010), and energy (Ouyang, Peng, Liu, & Liu, 2011).
Whereas, graphene was found semi-metallic and its electrons and holes behave like a massless
Dirac fermion. Two-dimensional (2D) boron nitride (BN) (Lin & Connell, 2012) Group III-V is gra-
phene-like sheets form were found to be a wide band gap semiconductors. Further, it has been real-
ized that other I1I-V compounds can stabilized also in 2D monolayer honeycomb structures, such as
ZnO and its nanowires that have shown the possibility of graphitic ZnO growth (Claeyssens, 2005;
Kulkarni, Zhou, Sarasamak, & Limpijumnong, 2006; Wang, Fan, & Sun, 2009). In fact, zinc oxide (ZnO)
materials have attracted extensive attention for half a century because of their excellent perfor-
mance in different areas such as optolectronics, photoelectronics, catalytic (Al-Sunaidi & Goumri-
Said, 2011; Duan, Huang, & Wang, 2005; Huang et al., 2006; Khan, Azam, Shah, & Amin, 2015; Wang,
Sun, Chen, Kawazoe, & Jena, 2008) and, most recently, spintronics (Bantounas et al., 2011).

Zn0 has a wide band gap of 3.3 eV and large exciton binding energy of 60 meV that has led to vari-
ous optoelectronic applications such as light-emitting diodes and photovoltaic (PV) devices (Hwang,
Oh, Lim, & Park, 2007; Law, Greene, Johnson, Saykally, & Yang, 2005; Ul Haq, Ahmed, & Goumri-Said,
2014). Recently, vacancy defects have been introduced intentionally ZnO in order to tune its optoe-
lectronic response using the electron irradiation technique. Similarly to the honeycomb graphene,
the vacancies have induced ferromagnetism as well as the doping using transition metal atoms
(Bantounas et al., 2011; Kanoun, Goumri-Said, Manchon, & Schwingenschlégl, 2015). The enhance-
ment of magnetic properties using dopants and defect might be useful for biomedical applications
(drug delivery) as ZnO has nontoxic nature that can compensate the metal ions toxicity.

A recent study based on sol-gel method has improved the photoluminescence properties and
performance of Cd-doped ZnO in quantum dots (QDs) (Zhang, Zhao, Zhang, Zhou, & Cai, 2012). Cd
dopant concentration has changed the structural and luminescent properties of ZnO-QDs. It was
observed that when the Cd concentration was increased, the QD particle size was reduced; leading
to a significant of fluorescence intensity activity. In similar way, using a one-step, wet-chemical
synthesis technique, it was possible to obtain a polycrystalline ZnO NS with potential use in a blue-
white fluorescent coating for UV sources (Vempati, Mitra, & Dawson, 2012).

In the present work, a comprehensive study was conducted to understand the relationship be-
tween the electronic structure and the optical response of cadmium-doped ZnO in nanosheet form.
We used the state of art of density functional theory (DFT) to explore the electronic band structure,
density of states, and related optical properties. These properties have leaded us to broaden our
knowledge about tailoring the optoelectronic properties of Cd-doped ZnO NS for potential use in
LEDs and PV applications as the Cd has trend to reduce drastically the ZnO band gap.

2. Computational detail

In the present computational work, we considered the stable structure for pure ZnO crystal: wurtzite.
It consists of Zn and O plane stacked alternatively along c-axis. We constructed the ZnO NS supercell
from the optimized bulk ZnO with lattice parameters a =3.29 A, c = 5.3 A (Kanoun et al.,, 2015). The
2D ZnO NS modeled by cutting from bulk ZnO (0001) plane, as shown in Figure 1, containing 30 for-
mula units. We used a vacuum region of 15 A to the (0001) plane to avoid artificial interactions be-
tween two layers. To this aim, we replace one Zn atom in this supercell by Cd, which gives rise to a
doping level of 6.67%.
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The computations were performed using the first principle full-potential linear augmented plane
wave (FP-LAPW) method, as implemented in WIEN2 K code (Blaha, Schwarz, Madsen, Kvasnicka, &
Luitz, 2008), based on the generalized gradient approximation (GGA) (Hohenberg & Kohn, 1964;
Perdew, Burke, & Ernzerhof, 1996) for the exchange-correlation potential within the framework of
density functional theory (DFT) (Delin, Ravindran, Eriksson, & Wills, 1998). The wave function, charge
density, and potential were expanded in spherical harmonic functions inside the non-overlapping
muffin tin (MT) spheres and among Fourier series in the interstitial region. The plane waves cut-off
parameter was KMAX X RMT =7.0, in order to achieve the convergence for energy eigenvalues.
Atomic sphere radii of Zn/Cd, and O atoms are set to 1.89, and 1.63 a.u., respectively. The orbitals of
Zn (3d10 4s2), Cd (4d10 5s2), and O (2s2 2p4) were treated as valence electrons, while the lower
states are deal as a core states. The self-consistent potentials were performedona 7 X 7 x 1 k-mesh
in the Brillouin zone. The Brillouin zone (BZ) is represented by the set of 7 X 7 x 1 k-points (Kittel,
1996) for our calculations. The structural relaxation is done until the forces on each atom are smaller
than 0.0001 meV A

The dielectric function &(w) = ¢,(w) + €,(w) has a direct relation with the band structure of materi-
als. It (dielectric function) is considered as a key for the calculation of the optical response of the
solid materials to electromagnetic interference. In principle the dielectric function, should consist of
intra- and inter-band transitions. But, the intra-band transition is limited to metals. The inter-band
transitions have split into direct and indirect band transitions. Here, in our calculations, the phonon
contribution is ignored and the direct transition zone between the occupied (valence) and unoccu-
pied (conduction) states is considered. The imaginary part of dielectric function ¢,(w) (Penn, 1960)
can be calculated using the following expression:

2,2
e = 4”26 - X Y <kna|p,.|kn a><kn 0|pj|kn0'> X fin(1 =i )8 (E,,; — Eyy — hw) 1)
Vm e e

where m and e are the mass and charge of the electron, whereas o is the frequency of the incident
photons on the crystal. V is volume of unit cell. The |kna) represents the crystal wave function with
k being the crystal momentum and o spin. Fermi distribution function f, , counts transition between
the occupied and unoccupied states. The electric dipole transitions between valence and conduction
band give rise to the peaks in the optical response.

The real part ¢, (w) is calculated from imaginary part using Kramers-Kronig relation (Penn, 1960):

g(@)y=1+=P . do' )
V4 0 CO’ _ a)Z

2 [w_@)

where p is the principle value of integral.

Besides, for obtaining exact optical absorption spectra in low energy range, the scissors correction
(Fiorentini & Baldereschi, 1995) has been carried out in optical absorption of pure and Cd-doped ZnO
NS using the calculated band gap with from the present DFT electronic structure.

3. Results and discussion

To illustrate the electronic structure, we have calculated the band structure of the pure and Cd-
doped ZnO NS, as displayed in Figure 2. Our results show that both systems have direct band gaps.
The nature of the direct band gap semiconductor is observed at the I'-symmetry point. The calcu-
lated direct band gap value for pure ZnO NS is 1.70 eV. While replacing Zn by Cd pull the conduction
band down toward the Fermi level (EF) that decreases the energy band gap value to 1.50 eV, as
shown in Table 1. Further elucidating the nature of the electronic structure, the total and partial
density of states (TDOS and PDOS) for Cd-doped ZnO NS have been calculated, as shown in Figure 3.
The total density of states (TDOS) of pure and Cd-doped ZnO NS, see Figure 1(a), and shows a similar
behavior except that doping ZnO NS by Cd, the minimum conduction band moves toward lower
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Figure 2. Band structures of
ZnO nanosheet and Cd-doped
ZnO nanosheet.
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Table 1. Calculated band gap, static value of the birefringence and effective masses as
calculated for ZnO NS and Cd-doped ZnO NS systems

Zno Cd/ZnO
E(eV) 1.695% 3.29-3.32° 1.4990*
8¢ -0.1086* -0.1159*
An(0) -0.1345* -0.1446*
m/m, 0.0107* 0.0336*
mi,/m, 0.0932* 0.0941*
m;,/m, 0.0483* 0.0329*

*Present work.
“Experimental work (Zhang et al., 2012).

energies. In Figure 3(b), we represented Zn/Cd 3d/4d and O 2p states. It appears that the valence
band maximum (VBM) mainly comprises Zn/Cd d and O p states hybridizations, where the Cd d and
O p states show strong hybridization than Zn d and O p states. The Zn/Cd d and anion O p states
show greater contribution in the region between -3.0 and —1.0 eV. Whereas, it shows the lowest
contribution in the upper valence band, i.e. the region between —4.0 and -3.0 eV. In addition, the
lowest conduction band is mainly comprises O p states. Thus, the band gap is shaped among the
occupied and unoccupied of Zn/Cd d states and O p unoccupied states. Analyzing the DOS, we found
that the O p anti-bonding interaction modifies the band gap value for Cd-doped ZnO NS. Moreover,
Figure 3(c) shows that Cd d states hybridized strongly with O p states in comparison with Zn d states.
This reflects that the bonding (covalent) between Cd-O will be stronger than Zn-0.

In order to better assess the bonding interaction within the NS, we have calculated the valence
electronic charge density (ECD) of pure and Cd-doped ZnO NS along the (001) crystallographic plane,
as illustrated in Figure 4. A significant covalent bonding character exists between Zn/Cd and O atoms
owing to the sharing of charge between them. Moreover, we show that there is charge transfer from
Zn and Cd atoms toward O atom. These charge rearrangements reflect the Pauling electronegative
nature of O where the Zn (Cd) and O have 1.6 (1.69) and 3.44 electronegativity. Furthermore, the
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Figure 3. (a) Total DOS of ZnO
nanosheet and Cd-doped ZnO
nanosheet. (b) Partial DOS for
ZnO0 nanosheet. (c) Partial DOS
for Cd-doped ZnO nanosheet.
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Figure 4. Charge densities of (a)
pure and (b) Cd-doped ZnO.
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covalent bonding became stronger when Zn replaced by Cd. This is due to strong hybridization be-
tween Cd and O.

The optical properties of Cd-doped ZnO NS can be illustrated using the complex symmetric tensor
of dielectric function (e(w)). Our investigated systems have a hexagonal symmetry that has two in-
dependent components, that corresponds to the electric field E, directed along a and b crystallo-
graphic axes. The average real part of the dielectric functions pure and Cd-doped ZnO NS have been
calculated, and displayed in Figure 5(a). The real part of the spectra allows us to find out the static
dielectric constant, «,(0) values. As we can see in Figure 5(a), the static value of the dielectric con-
stant shifts up when Zn was substituted by Cd, this is due to the energy gap (E,) change. The relation
between ¢,(0) and Eg can be enlightened on the basis of Penn Model (Kanoun et al., 2015),

2
g,=1+ (ha)p/Eg) , reflecting the inverse relation between the dielectric constant and the band

gap energy. The ¢,(0) contingent on the polarization directions which display an optical anisotropy
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Figure 5. Comparison of (a) 22
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that can affect other related optical properties derived from the dielectric function. In the present
work, we only considered the average of the polarization direction. As already mentioned, the sym-
metry of the considered systems leaded us to consider two major non-zero components from which
the uniaxial anisotropy was obtained using the formula: (6e = [(ef — ey)/eg"])- 5 was estimated
about —0.152 and -0.167 for pure and Cd-doped ZnO NS systems, respectively. This confirms the
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existence of the anisotropy. Taking in account the partial densities of states, we have calculated the
imaginary part in order to obtain the energy levels. Rendering to the dipolar selection rule only tran-
sitions whose angular momentum quantum number changes by unity (A = +1) are allowed.

Figure 5(b) gives the imaginary part of dielectric function of pure ZnO NS which shows three major
peaks. The first peak is mainly composed of the optical transitions between O 2p states (in the high-
est valence band) to Zn 4s states (in the lowest conduction band). The second and third peaks are
due to optical transition between the Zn 3d and O 2p states. Following the substitution of Cd, we
observed a small shift of the main peaks of Cd-doped ZnO NS toward lower energy (Figure 5(b)).
Moreover, the shift of the optical transition indicates that the direct band gap is decreasing, which is
in good agreement with the result of DOS. The calculated average imaginary part of dielectric func-
tion versus wavelength in Figure 5(c) shows that the peaks shift toward the higher energies and the
optical response of the Cd-doped ZnO NS shifted from violet to blue region.

All the related optical constants can be derived from ¢, and ¢,, such as absorption coefficient I(w),
refractive index n(w), extinction coefficient k(w), and energy-loss function L(w). Our results indicate
that the spectrum of absorption coefficient I(w) has increased rapidly for photon energies higher
than 2.5 eV, as shown in Figure 6(a). From the last figure, the strong absorption extends in the region
between 2.5-10.0 eV. I(w) spectrum in the limited energy region exhibits different peaks that are
caused by different electronic transitions. The width of the absorption is contingent on the band gap
of a material. The peaks variation in the absorption spectrum shows that the investigated com-
pounds have potential application for optoelectronic devices. Hence, the I(w) spectrum shows
threshold energies occurring at 2.7 and 2.5 eV in the pure and Cd-doped ZnO NS. These values are
related to band edge absorption. Away from the threshold, the I(w) increase speedily as a result of
the strong band edge absorption, the region where we have strong absorption is interesting to ex-
plore for potential use in PV devices. For both systems (pure and doped), the curves of the absorption
coefficient plots are showing no significant difference.

The calculated refractive index spectra for the Cd-doped ZnO are plotted in Figure 6(b). It is obvi-
ous that at low energies the refractive index shows an inverse relation to the width of the band gap.
It is well known that the wider band gap semi-conducting materials have the lower refractive index
which undergoes an inverse relation between the zero frequency limit of the refractive index and
band gap of semiconductor. From Figure 6(b), we might observe that n(w) increases with energy in
transparent region reaching a peak around 2.0-4.0 eV. Beyond this limit, the refractive index drops
sharply. At low frequency (w = 0), the square root of ¢,(0) can be used to estimate the refractive in-
dex calculated as -0.135 and -0.145 for pure and Cd-doped ZnO NS, respectively. The maximum
peak of the n(w) appeared at 3.0 eV. Beyond this energy range, a decrease occurred with increasing
energies as well as several small peaks appeared at specific energies. The refractive index follows
the pattern of the real part of the dielectric function. The refractive index is a significant physical
parameter that is connected to the microscopic atomic interactions. Theoretically, n(w) is inter-relat-
ed to the local polarizability as well as the electronic density of the investigated compound. The bi-
refringence is essential merely in the non-absorbing region, which is beneath the energy gap. The
An(w) spectral reliance displays a strong oscillation in the energy range from 1.5 to 7.0 eV. The static
value of the birefringence An(0) is listed in Table 1 for pure ZnO NS and Cd-doped ZnO NS systems.

The calculated extinction coefficient k(w) is presented in Figure 6(c). It shows the same behavior
as ¢,(w). The local maxima are found at 3.0, 7.0, and 8.5 eV for both systems. It is obvious from Figure
5(a) that ¢, (w) shows lower values at these energies point. The broad edge (i.e. from 0.0 to 2.5 (2.3))
of the absorption spectra which indicate that the Cd-doped ZnO NS is transparent in this energy re-
gion and can be used as transparent semiconductor for a new fangled generation of optoelectronic
devices.

The energy loss function spectra represent the characteristic associated to plasma resonance and
might be used to illustrate macro- and microscopic properties of solid materials. The energy-loss
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Figure 6. (Continued).
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function shows a direct relation with the probability of a fast moving electron across a material loses
energy per unit length, as displayed in Figure 6(d). In the energy loss function spectra, the prominent
peaks are known as a plasmon peak, indicating the energy of collective excitations of the electronic
charge density in the material. The maximum peaks are located at 3.5, 7.0, and at 9.0 eV for both
systems. Finally, in Figure 6(e), we provide the reflectivity spectra for pure and Cd-doped ZnO NS.
These plots are exhibiting sharp peaks at 3.0, 6.0 and at 8.3 eV for both systems. These maximum
peaks are raised from inter-band transitions. Furthermore, in the reflectivity spectra, we observe a
rapid reduction at 9.2 eV confirming the existence of a collective plasma resonance.

4. Conclusion

In summary, we have explored the electronic and optical properties of Cd-doped ZnO NS using all
electrons full-potential linearized augmented plane wave (FP-LAPW) method based on DFT within
generalize gradient approximation (GGA). The calculated electronic band structure have shown that
Cd-doped ZnO NS exhibited a direct band gap of 1.5 eV compared to 1.7 eV of the pure ZnO NS. The
changes in the band gap have affected automatically the optical properties, that we investigated
with purpose to examine their potential impact in various applications. The reduction of the band
gap due to the Cd doping and the possibility of blue-white fluorophore transition, have made feasible
the use of Cd-doped ZnO NS for light-emitting devices and PV applications.
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