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Abstrakt

Práce formuluje v́ıceparametrickou okrajovou úlohu s jedńım parametrem v rovnici a druhým
parametrem v okrajové podmı́nce s ćılem vyšetřit, pro které dvojice parametr̊u źıskáme netriviálńı
řešeńı. Lineárńı verze úlohy je vyřešena zcela zvlášť a jej́ı výsledky se následně promı́taj́ı do
nelineárńıch úloh. U nelineárńıch úloh nás zaj́ımaj́ı předevš́ım vlastnosti řešeńı a jejich existence
pro r̊uzné dvojice parametr̊u. Práce a výsledky v ńı použité jsou ilustrovány pomoćı diagramů,
vytvořených v softwaru Matlab.

Kĺıčová slova: okrajová úloha, parametr, vlastńı č́ısla, Sturm-Liouvillova úloha, Steklovova
úloha na vlastńı č́ısla, bifurkačńı diagram

Abstract

This work formulates a multi-parametric boundary value problem with one parameter included
in an equation and the other parameter in a boundary condition. The task is to examine the
pairs of the parameter which the problem has a non-trivial solution for. A linear version of
the problem is solved separately and the obtained results are furthermore used in a nonlinear
versions of the problem. For the nonlinear problems, we are interested especially in properties
and existence of the solution for different pairs of the parameters. The work and the included
results are illustrated with diagrams created in Matlab.

Keywords: boundary problem, parameter, eigenvalues, Sturm-Liouville problem, Steklov eigen-
value problem, bifurcation diagram
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Preface

This work formulates a nonlinear ordinary differential equation

u′′ = −λg(u),

where g is any continous function and λ ∈ R, and specifies the task to finding all the non-trivial
solutions satisfying associated boundary conditions.

However, one of the boundary conditions is always supplemented with a real parameter µ yielding
a multi-parameter boundary value problem

u′′ = −λg(u),

u′(1) = µu(1),

u(0) = 0.

(∗)

Including the second parameter µ makes the problem a lot more interesting.

There are several important notes to point out.

Firstly, by adding a parameter to a boundary condition, we create a Steklov eigenvalue problem.
This problem, however, is usually interesting only in multi-dimensional spaces. For this reason,
the problem includes one additional parameter in the equation itself.

Secondly, if we fix µ as an arbitrary real number, we get a standard Robin’s boundary condition.

Thirdly, if g(u) = u, the problem simplifies to a linear eigenvalue problem with a parameter in one
of the boundary conditions, and, for a particular value of µ, we get a Sturm-Liouville eigenvalue
problem to be solved. Multi-parametric forms of Sturm-Liouville BVPs were described in [1].
After solving the problem, we obtain all the pairs (λ, µ) ∈ R2 which provide a non-trivial solution
of (∗). These pairs form so called “eigencurves”, and since the problem is linear, we should be
able to determine these eigencurves very precisely. This point of view on a multi-parameter
boundary problem is analyzed for instance in [2].

Nevertheless, it is impossible to suggest analytic results for any g. For this reason, the work is
divided into two chapters.

The first chapter analyzes the linear case of (∗) and thoroughly describes the set of all pairs
(λ, µ) which (∗) has a non-trivial solution for.

The second chapter, unsurprisingly, examines nonlinear cases. In this chapter, numerical exper-
iments become more important to give us ability to visually describe the results. The results
are introduced in two separated subchapters. Since we cannot find the solution analytically,
the first subchapter shows properties of the solution. Another question, answered in the second
subchapter, is which pairs of (λ, µ) provide a solution, or, respectively, which pairs certainly do
not provide any solution or solution of the expected properties.

The second chapter also shows a connection of the nonlinear and the linear case of the problem.
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This work and the multi-parameter problem have a potential to be extended in several ways.
One of them is using a jumping nonlinearity to involve the theory of Fuč́ık spektrum with
suspension bridges as a real-life application, as it was introduced in [5].
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Chapter 1

Linear problem

Let us consider a homogeneous second order differential equation

−u′′ = λu, (1.1)

where λ is a real parameter, together with boundary conditions{
u′(1) = µu(1),

u(0) = 0,
(1.2)

with a real parameter µ. The task is to find all pairs of λ and µ which the problem has a
non-trivial solution for.

Theorem 1.1 (Necessary condition No. 1 for existence of non-trivial solution). Let there exist
a non-trivial solution of the boundary value problem (1.1), (1.2). Then (λ, µ) /∈ (−∞, 0] ×
(−∞, 1] \ {(0, 1)}.

Proof. The proof will be carried out by contradiction. Let λ ≤ 0, µ ≤ 0 and u be a non-trivial
solution of (1.1), (1.2). Since u is non-trivial and from (1.2) we know that u(0) = 0, u′ is
obviously a non-trivial function on the interval (0, 1).

Multiplying (1.1) by u and integrating both sides over the interval (0, t) with t ∈ (0, 1], we get∫ t

0
−u′′ udx =

∫ t

0
λu2 dx.

After integrating by parts we obtain

−
(
u(t)u′(t)− u(0)u′(0)−

∫ t

0
(u′)2 dx

)
= λ

∫ t

0
u2 dx.

Applying (1.2) and using a trivial operation yields∫ t

0
(u′)2dx− λ

∫ t

0
u2dx = u(t)u′(t).

Since λ ≤ 0 and an integral of non-negative function is positive, the left-hand side of the above
equation is positive. Thus

u(t)u′(t) > 0. (1.3)
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Using (1.3) for t ∈ (0, 1] we know:

u(t) 6= 0, u′(t) 6= 0, (1.4)

sgnu(t) = sgnu′(t). (1.5)

Relations (1.1), (1.5) for t ∈ (0, 1] imply:

for λ < 0: sgnu(t) = sgnu′(t) = sgnu′′(t), (1.6)

for λ = 0: u′′(t) = 0. (1.7)

For λ ≤ 0 the following holds:

for u′(0) > 0 : u is positive and strictly increasing on (0, 1), (1.8)

for u′(0) < 0 : u is negative and strictly decreasing on (0, 1). (1.9)

Let us consider u′(0) > 0.
First, let µ ≤ 0. Applying (1.2) yields

u(1)u′(1) ≤ 0,

which gives us a contradiction with (1.3).
Next, let µ ∈ (0, 1]. From (1.2), (1.8) we have:

0 < u′(1) ≤ u(1), (1.10)

with the equality only for µ = 1.
Now we apply Lagrange’s finite-increment theorem to u on [0, 1] (see [7, p. 216, Th. 1]). Thus
there exists ξ ∈ (0, 1) such that

u′(ξ) = u(1). (1.11)

If λ < 0, then u is convex on (0, 1), thus u′ is strictly increasing on (0, 1). Applying (1.11) we
get

u′(1) > u′(ξ) = u(1)

as a contradiction with (1.10).
For λ = 0, (1.7), (1.11) yields

u′(1) = u′(ξ) = u(1). (1.12)

Thus, applying (1.10) we get a contradiction for µ ∈ (0, 1) and (λ, µ) = (0, 1) is the only pair
admissible.
For u′(0) < 0, the proof will be carried out analogically.

Theorem 1.2 (Necessary condition No. 2 for existence of non-trivial solution). Let there exist
a non-trivial solution of the boundary value problem (1.1), (1.2). Then µ2 > −λ, i.e.,

(λ, µ) /∈ {(λ, µ) ∈ R2, µ2 ≤ −λ}.

Proof. For (1.1), (1.2), let us have a non-trivial solution u. Multiplying the equation (1.1) by u′

and integrating both sides over the interval (0, 1), we obtain

−
∫ 1

0
u′′ u′ dx = λ

∫ 1

0
uu′ dx.
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We know that

1

2

(
u2
)′

= uu′ (1.13)

1

2

((
u′
)2)′

= u′ u′′ (1.14)

Using the relations (1.13), (1.14), we get

−[u′(1)]2 + [u′(0)]2 = λu2(1)− λu2(0).

Applying boundary conditions (1.2) yields

[u′(0)]2 = (λ+ µ2)u2(1)

and, since u is non-trivial and u′(0) 6= 0, we have the following condition for u, λ, µ:

λ+ µ2 > 0 ∧ u(1) 6= 0.

Thus µ2 > −λ.

Let C([0, 1]) be the space of continuous functions on the interval [0, 1] with the standard norm
‖u‖C := max

x∈[0,1]
|u(x)|.

Let L2(0, 1) be the space of square integrable functions on the inverval [0, 1] with the standard

norm ‖u‖L2 :=

√∫ 1

0
u2(x)dx.

Lemma 1.3. Let u be a non-trivial continuously differentiable function on the interval [0, 1] and
u(0) = 0. Then

‖u‖L2 < ‖u‖C ≤ ‖u′‖L2 .

Proof. Obviously, since u is a non-trivial function and u(0) = 0, we know

‖u‖2L2 =

∫ 1

0
u2(x)dx < ‖u‖2C ,

hence
‖u‖L2 < ‖u‖C . (1.15)

Now let us consider xm, xn ∈ [0, 1] such that for all x ∈ [0, 1], um := u(xm) ≥ u(x) and
un := u(xn) ≤ u(x). Then applying Cauchy-Schwartz inequality gives

um = u(xm)− u(0) =

∫ xm

0
u′(x)dx ≤

√∫ xm

0
[u′(x)]2dx

√∫ xm

0
dx,

thus
um ≤ ‖u′‖L2

√
xm ≤ ‖u′‖L2 . (1.16)

Since u(0) = 0, we know that un ≤ 0. Thus, analogically, we have

−un ≤ ‖u′‖L2

√
xn ≤ ‖u′‖L2 . (1.17)

Obviously, ‖u‖C = max{um,−un} and using relations (1.16), (1.17) yields

‖u‖C ≤ ‖u′‖L2 . (1.18)
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Lemma 1.3 now allows us to formulate the necessary condition for existence of non-trivial solution
of (1.1), (1.2) in a more accurate way.

Theorem 1.4 (Necessary condition No. 3 for existence of non-trivial solution). Let there exist
a non-trivial solution of the boundary value problem (1.1), (1.2). Then:

(λ, µ) /∈ {(λ, µ) ∈ R2; µ ≤ 1− λ, µ ≤ 1, λ ≤ 1} \ {(0, 1)}.

Proof. Let us multiply the equation (1.1) by u and integrate both sides over (0, 1). Integration
the left-hand side by parts and using (1.2) yields

−µu2(1) + ‖u′‖2L2 = λ‖u‖2L2 . (1.19)

Now, let us distinguish the following four cases:

1. λ ≤ 0, µ ≤ 0
Since u, u′ are non-trivial functions, we know that the left-hand side of the equation (1.19)
is positive and the right-hand side is non-positive, which gives us a contradiction. Thus,
λ ≤ 0, µ ≤ 0 is not an admissible case.

2. λ > 0, µ > 0
Using Lemma 1.3 for (1.19) yields

−µu2(1) + ‖u‖2C < λ‖u‖2C .

We know that

u2(1) ≤ ‖u‖2C , (1.20)

thus

−µ‖u‖2C + ‖u‖2C < λ‖u‖2C

and trivially

µ > 1− λ.

3. λ ≤ 0, µ > 0
Applying (1.18) and (1.20) gives −µu2(1) ≥ −µ‖u′‖2L2 . We know that

λ‖u‖2L2 ≤ 0

with the equality only for λ = 0. Hence, the equation (1.19) gives

−µ‖u′‖2L2 + ‖u′‖2L2 < 0 for λ < 0,

−µ‖u′‖2L2 + ‖u′‖2L2 = 0 for λ = 0,

which yields

µ > 1 for λ < 0,

µ = 1 for λ = 0.
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4. λ > 0, µ ≤ 0
Obviously −µu2(1) + ‖u′‖2L2 ≥ ‖u′‖2L2 . Hence, using Lemma 1.3 for (1.19) gives

‖u′‖2L2 ≤ ‖u′‖2L2 − µu2(1) = λ‖u‖L2 < λ‖u′‖2L2

and thus

λ > 1.

Corollary 1.5 (Necessary conditions for existence of non-trivial solution). Let there exist a
non-trivial solution of the boundary value problem (1.1), (1.2). Then necessarily:

(λ, µ) /∈ {(λ, µ) ∈ R2 \ {(0, 1)}; µ ≤ 1− λ, µ ≤ 1, λ ≤ 1} ∪ {(λ, µ) ∈ R2; µ2 ≤ −λ}.

Proof. Theorems 1.1 - 1.4 give directly the statement.

In the Figure 1.1, there are the pairs (λ, µ) ∈ R2 which, according to the Corollary 1.5, do not
provide a non-trivial solution.

1.1 General solution

The general solution of (1.1) depends on a particular choice of the parameter λ. More specifically,
we have to distinguish three cases for positive, negative and zero parameters.

1. for λ = 0:

After substitution and a few trivial operations we get the following equation

u′′ = 0

and the corresponding characteristic equation

γ2 = 0,

with double root γ1,2 = 0. We obtain a fundamental system {1, x}. The general solution
of (1.1) is an arbitrary linear combination of the elements in the fundamental system.

2. for λ > 0:

The characteristic equation corresponding to (1.1) takes the form

γ2 = −λ

with roots

γ1,2 = ±i
√
λ.

Using the Euler identity we obtain a fundamental system {cos
√
λx, sin

√
λx}. The general

solution of (1.1) is an arbitrary linear combination of the elements in the fundamental
system.
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µ

λ

Fig. 1.1: The set of pairs (λ, µ) ∈ R2 which certainly do not give a non-trivial solution of the
boundary value problem (1.1), (1.2).

3. for λ < 0:

We solve the same characteristic equation as in the previous case. However, applying the
condition λ < 0 we get two real roots

γ1,2 = ±
√
−λ.

Thus the fundamental system is {cosh
√
−λx, sinh

√
−λx}. The general solution of (1.1)

is an arbitrary linear combination of the elements in the fundamental system.

To sum up, the general solution of the equation (1.1) can be written as:

for λ = 0 : u = Ax+B; A,B ∈ R,
for λ > 0 : u = A cos

√
λx+B sin

√
λx; A,B ∈ R,

for λ < 0 : u = A cosh
√
−λx+B sinh

√
−λx; A,B ∈ R.

1.2 Boundary value problem

We apply the boundary conditions (1.2):

Case λ = 0:
Differentiating the general equation and substituting x = 1 we obtain A = µu(1). Hence,

A = µ(A+B) = µA

and thus obviously

µ = 1. (1.21)
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Case λ > 0:
The second part of the condition (1.2) yields

u(0) = A cos 0 +B sin 0 = A = 0. (1.22)

Differentiating the function u a substituting to the first part of the boundary conditions we get

µ sin
√
λ =
√
λ cos

√
λ. (1.23)

Since the functions sine and cosine are linearly independent, the last equation can be rewritten
to

µ =
√
λ cotg

√
λ. (1.24)

Case λ < 0:
The second part of the boundary condition trivially gives

A = 0. (1.25)

After differentiating of the general solution we get

u′ = A
√
−λ sinh

√
−λx+B

√
−λ cosh

√
−λx.

Substituting to the first part of the boundary equation (1.2) and using (1.25) we obtain

√
−λ cosh

√
−λ = µ sinh

√
−λ, (1.26)

or
µ =
√
−λ cotgh

√
−λ, (1.27)

respectively.

1.2.1 Set of non-trivial solutions

Theorem 1.6. Let Σ be a set of all the ordered pairs of parameters (λ, µ) which give a non-trivial
solution of the boundary value problem (1.1), (1.2). Then

Σ = Σ1 ∪ Σ2 ∪ Σ3,

where Σ1, Σ2 and Σ3 have the following properties:
Σ1 = {(0, 1)},
Σ2 =

{(
λ,
√
λ cotg

√
λ
)

; λ ∈ R+
}
,

Σ3 =
{(
λ,
√
−λ cotgh

√
−λ
)

; λ ∈ R−
}

.

Proof. The statement can be proved using relations (1.21), (1.24) and (1.27).

Having λ given, the Theorem 1.6 gives us µ such that (λ, µ) ∈ Σ. However, for a particular
µ, the BVP (1.1) becomes a BVP in Sturm-Liouville form and finding corresponding λ to keep
(λ, µ) ∈ Σ means to find all the eigenvalues of the Sturm-Liouville BVP. Therefore it would be
undoubtedly helpful to find a relation characterizing a dependance of λ on µ.
Unfortunately, the relations of λ and µ given by the Theorem 1.6 are not invertible. Thus
we introduce a few Lemmas, Propositions and Theorems describing the properties of Σ for a
particular µ.
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Lemma 1.7. Let µ 6= 0 be an arbitrary constant. Let us consider an equation

tghx =
x

µ
. (1.28)

For roots x ∈ R of (1.28) the following holds:
If µ > 1, then there are exactly 3 roots x1, x2, x3 of (1.28), where x1 < 0, x2 = 0, x3 > 0.
If µ ∈ (−∞, 1] \ {0}, then there is exactly one root x = 0 of (1.28).

Proof. We define a function G(x) := x
µ − tghx. Obviously, for an arbitrary µ 6= 0 we have:

G(0) = 0. (1.29)

Thus (1.28) has a root x = 0.
Let us show that the root x = 0 is the only root of (1.28) for µ ∈ (−∞, 1] \ 0.
G is continuously differentiable on R. For all x ∈ R it holds that:

If µ > 0:

lim
x→−∞

G(x) = −∞, (1.30)

lim
x→+∞

G(x) = +∞, (1.31)

in particular, for µ ∈ (0, 1):
G′(x) > 0 (1.32)

and for µ = 1:
G′(x) ≥ 0 ∧ (G′(x) = 0⇔ x = 0). (1.33)

If µ < 0, then:

lim
x→−∞

G(x) = +∞, (1.34)

lim
x→+∞

G(x) = −∞, (1.35)

G′(x) < 0. (1.36)

Since G is continuous, using (1.30)-(1.33), there exists exactly one root of (1.28) for µ ∈ (0, 1].
Applying (1.34)-(1.36) leads to the existence of exactly one root of (1.28) for µ < 0.

Let us prove the statement for µ > 1. Let us define α := argcosh(
√
µ).

For µ > 1, the following holds:

G′(x) = 0⇔ x = ±α, (1.37)

G′(0) =
1

µ
− 1 < 0. (1.38)

Relations (1.37), (1.38) imply that G is strictly decreasing on (−α, α). Obviously, G(−α) > 0
and G(α) < 0 due to (1.29). Using (1.30), (1.31) gives the claim for µ > 1.

Lemma 1.8. Let µ be an arbitrary real constant. Let us consider the following equations

tg
√
λ =

√
λ

µ
, λ ≥ 0, (1.39)

tgh
√
−λ =

√
−λ
µ

, λ < 0. (1.40)

Then:
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� If µ ∈ (−∞, 1] \ {0}, then (λ, µ) ∈ Σ ⇔ λ is a root of (1.39).

� If µ = 0, then (λ, 0) ∈ Σ ⇔ λ =
(
π
2 + kπ

)2
, k ∈ N0.

� If µ > 1, then (λ, µ) ∈ Σ ⇔ λ is a root of either (1.39), or (1.40).

Proof. Obivously, (0, 1) ∈ Σ1 ⊂ Σ (see (1.21)). For µ = 1, λ = 0 is a root of (1.39).
For equation (1.23) and λ > 0 we distinguish the two following cases:

1. µ = 0

After substitution we get

cos
√
λ = 0,

thus √
λk =

π

2
+ kπ, k ∈ N0. (1.41)

Hence, the problem (1.1), (1.2) has a non-trivial solution for (λ, µ) = (λk,0, 0), where

λk,0 =
(
π
2 + kπ

)2
, k ∈ N0.

2. µ 6= 0

The equation (1.23) can be rewritten to

tg
√
λ =

√
λ

µ
.

and the corresponding roots λ satisfy (λ, µ) ∈ Σ2 ⊂ Σ, µ 6= 0.

For equation (1.26) and λ < 0 we distinguish the two following cases:

1. µ = 0

The equation (1.26) is reduced to

√
−λ cosh

√
−λ = 0.

There is the only solution of the above equation λ = 0, which is not admissible due to the
condition λ < 0.

2. µ 6= 0

The equation (1.26) can be rewritten to

tgh
√
−λ =

√
−λ
µ

and for its roots λ we can state: (λ, µ) ∈ Σ3 ⊂ Σ, µ 6= 0.

Hence, for µ 6= 0 and (λ, µ) ∈ Σ, λ must be a root of either (1.39), or (1.40).
The lemma 1.7 implies that (1.40) has the only root λ < 0 for µ > 1 and no root for µ ∈
(∞, 1] \ {0}.
Thus, for µ ∈ (−∞, 1] \ {0}, λ is a root of the equation (1.39), and, for µ > 1, λ is a root of
either (1.39), or (1.40).

Lemma 1.9. Let µ 6= 0 be an arbitrary real constant. Then the equation tg x =
x

µ
has exactly

one solution on the interval Ik := (kπ, (k + 1)π) for any k ∈ N.
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Proof. For any k ∈ N, we define intervals I
′
k := (kπ, π2 + kπ) and I

′′
k := (π2 + kπ, (k + 1)π).

Let us prove the existence of the solution of tg x =
x

µ
on Ik.

Apparently, x = π
2 + kπ is not a solution for any k ∈ N. Let us prove that there is a solution on

I
′
k ⊂ Ik for µ > 0.

For x ∈ I ′k, we define a function F (x) :=
x

µ
− tg x. Then:

lim
x→kπ+

F (x) > 0, (1.42)

lim
x→(π2+kπ)−

F (x) = lim
x→(π2+kπ)−

(
x

µ
− tg x

)
= −∞. (1.43)

Relations (1.42), (1.43) and continuity of F on I
′
k yield that there exist real numbers a, b ∈ I ′k

such that a < b, F (a) > 0 and F (b) < 0.
Now we apply the Bolzano-Cauchy intermediate-value theorem to F on [a, b] (see [7, p. 160, Th.
2]). Thus, there exists ξ on (a, b) such that F (ξ) = 0.

Hence, for µ > 0, there exists a solution of tg x =
x

µ
na I

′
k.

The existence of a solution for µ < 0 on I
′′
k ⊂ Ik can be proved analogically.

Let us prove that the solution on Ik is unique.
Firstly, let us show that there exists exactly one solution for µ > 0 and no solution for µ < 0 on
the interval I

′
k.

The function F is continuously differentiable on I
′
k. The first derivative of F is negative for

µ ≥ 1 and an arbitrary x ∈ I ′k. Therefore, F is strictly decreasing (thus one-to-one) function on
I
′
k. (1.42), (1.43) imply, that there exists exactly one x ∈ I ′k such that F (x) = 0.

For µ ∈ (0, 1), we have:

lim
x→kπ+

F ′(x) = lim
x→kπ+

(
1

µ
− 1

cos2 x

)
> 0. (1.44)

The first derivative of F is zero wherever

cosx = ±√µ.

But there is exactly one solution of the above equation on I
′
k. Thus F can change its monotonoc-

ity in at most one point. Relations (1.42), (1.43), (1.44) imply that there exists exactly one
element x ∈ I ′k such that F (x) = 0.
For µ < 0, we have:

lim
x→kπ+

F (x) < 0,

lim
x→(π2+kπ)−

F (x) = lim
x→(π2+kπ)−

(
x

µ
− tg x

)
= −∞,

lim
x→kπ+

F ′(x) = lim
x→kπ+

(
1

µ
− 1

cos2 x

)
< 0.

Obviously, for µ < 0, F 6= 0 on I
′
k, therefore there is no solution of tg x =

x

µ
on I

′
k.

Analogically, we can prove that there exists exactly one solution for µ < 0 and no solution for
µ > 0 on the interval I

′′
k .

12



Lemma 1.10. Let µ 6= 0 be an arbitrary constant and let us define intervals Ia :=
(
0, π2

)
,

Ib :=
(
π
2 , π

)
. Then, for the equation tg x =

x

µ
we have:

� a solution on Ia if and only if µ ∈ (0, 1),

� a solution on Ib if and only if µ < 0.

Moreover, if there exists a solution on I0 := Ia ∪ Ib, then the solution is unique.

Proof. Let us prove the claim for Ia.
Let us consider the function F on Ia. F is continuously differentiable on Ia and

lim
x→0+

F (x) = 0. (1.45)

For µ ∈ R \ [0, 1) and x ∈ Ia, the first derivative F ′ is negative, thus F is strictly decreasing and

F 6= 0 for any x ∈ I0. Therefore, for µ ∈ R \ [0, 1), the equation tg x =
x

µ
has no solution on Ia.

For µ ∈ (0, 1) and Ia, the proof is analogical as for Lemma 1.9.

For the interval Ib, the prove can be carried out analogically as for Ia.

Proposition 1.11. Let µ1, µ2 ∈ R. Then, for any k ∈ N, there exists exactly one pair x1, x2 ∈ Ik
such that

tg xi =
xi
µi
, i ∈ {1, 2}.

Moreover:
If µ1 > µ2 > 0, then kπ < x1 < x2 <

π
2 + kπ.

If µ2 < µ1 < 0, then π
2 + kπ < x1 < x2 < (k + 1)π.

Proof. Let us define functions f1(x) :=
x

µ1
and f2(x) :=

x

µ2
on Ik. Lemma 1.9 implies, that both

f1, f2 equal g := tg x in the exactly one point.

Now, let us consider arbitrary constants µ1 > µ2 > 0. We have:

∀x ∈ I ′k : f1(x) < f2(x). (1.46)

Let us assume that f1 equals g in x1 and f2 equals g in x2. Since g is strictly increasing, the
relation (1.46) gives the claim.

For any constants µ2 < µ1 < 0, the claim can be proved analogically.

Proposition 1.12. Let µ1, µ2 be arbitrary constants and x1 ∈ I0, x2 ∈ I0 be roots of

tg xi =
xi
µi
, i ∈ {1, 2}.

Then:

the pair x1, x2 exists if and only if µ1, µ2 ∈ (−∞, 1) \ {0}.
Moreover, if the pair x1, x2 exists, then it is unique and the following holds:

If 1 > µ1 > µ2 > 0, then 0 < x1 < x2 <
π

2
.

If µ2 < µ1 < 0, then
π

2
< x1 < x2 < π.

13



Proof. Let us consider f1, f2 on I0. Lemma 1.10 implies that f1 equals g and f2 equals g if and
only if µ ∈ (−∞, 1) \ {0}.
First, let us consider 1 > µ1 > µ2 > 0. For Ia we have:

∀x ∈ Ia : f1(x) < f2(x). (1.47)

Let us assume that f1 equals g in x1 and f2 equals g in x2. Since g is strictly increasing, the
relation (1.47) gives the claim.
For µ2 < µ1 < 0 we can prove the claim analogically.

Proposition 1.13. Let µ 6= 0 be an arbitrary constant. Then there exists a sequence (xk,µ)+∞k=0

such that xk,µ > 0 are solutions of tg x =
x

µ
in Ik and the sequence has the following properties:

1. Let k ∈ N0:

(a) for µ→ 0+: xk,µ →
(
π
2 + kπ

)
−,

(b) for µ→ 0−: xk,µ →
(
π
2 + kπ

)
+,

(c) for µ→ −∞: xk,µ → (k + 1)π − .

2. Let k ∈ N:

(a) xk,µ ∈ Ik,
(b) for µ→ +∞: xk,µ → kπ+,

3. Let k = 0:

(a) xk,µ ∈

{
Ib for µ < 0,

Ia for µ ∈ (0, 1),

xk,µ does not exist for µ ≥ 1,

(b) for µ→ 1−: xk,µ → 0+.

Proof. For k ∈ N0 we know:

lim
xk,µ→(π

2
+kπ)−

tg x = +∞, (1.48)

lim
xk,µ→kπ

tg x = 0, (1.49)

lim
x→(π

2
+kπ)+

tg x = −∞. (1.50)

Let k ∈ N. Lemma 1.9 implies (2a). Proposition 1.11 and relations (1.48)–(1.50) yield (1a)–(1c),
(2b) for k ∈ N.
Let k = 0. Lemma 1.10 implies (3a). Proposition 1.12 and relations (1.48)–(1.50) yield (1a)–(1c)
and (3b) for k = 0.

Theorem 1.14. Let µ be an arbitrary constant. Then there exists a sequence (λk,µ)+∞k=0 such
that for k ∈ N, all the λk,µ satisfy (λk,µ, µ) ∈ Σ and the sequence has the following properties:

� for µ > 1 : λ0,µ ∈ R−,
� for µ = 1 : λ0,µ = 0,

� for µ < 1 : λ0,µ ∈
(
0, π2

)
,

14



and for k ∈ N we have:

� λk,µ ∈
(
(kπ)2, (k + 1)2 π2

)
,

� for µ→ +∞ : λk,µ → (kπ)2+,

� for µ→ −∞ : λk,µ → ((k + 1)π)2−,

� for µ→ 0 : λk,µ →
(
π
2 + kπ

)2
.

Proof. Let us consider λ < 0.

Lemma 1.8 implies (λ, µ) ∈ Σ if µ > 1 and λ is a solution of tgh
√
−λ =

√
−λ
µ . Lemma 1.7 states

that this solution is unique. Let λ0,µ denote this solution for the corresponding µ.

Let us consider λ = 0.

Lemma 1.8 shows that µ = 1 is the only µ which satisfies (0, µ) ∈ Σ. Therefore λ0,1 = 0.

Now, let us consider λ > 0 and µ = 0.

According to Lemma 1.8, (λ, 0) ∈ Σ if λ = (π2 + kπ)2 =: λk,0, k ∈ N0.

Finally, let us consider λ > 0 and µ 6= 0.

Using a substitution x =
√
λ and Proposition 1.13 we get that positive solutions of the equation

tg
√
λ =

√
λ
µ give a sequence (λk,µ)+∞k=0 with the listed properties and that λ0,µ ∈ (0, π2) is unique

for any µ ∈ (−∞, 0) ∪ (0, 1).

Thus, obviously, we have exactly one λ0,µ and a sequence (λk,µ)+∞k=1 for any µ ∈ R.

The set of all pairs (λ, µ) ∈ Σ is described in Figure 1.2.

-20 20 40 60 80

-40

-30

-20

-10

10

20

30

40

µ

λ

Fig. 1.2: The set of all the pairs (λ, µ) ∈ R2 which give a non-trivial solution of the boundary
value problem (1.1), (1.2).

In Figure 1.3, there are a few examples of non-trivial solutions u of the boundary value problem
(1.1), (1.2) for particular choices of µ.

15



x

u(x)

(a) µ = 5, 3 a λ = −28, 09

x

u(x)

(b) µ = 0, 7 a λ = 0, 85

x

u(x)

(c) µ = −2, 4 a λ = 5, 59

x

u(x)

(d) µ = −12 a λ = 77, 307

Fig. 1.3: Examples of non-trivial solutions u of the boundary value problem (1.1), (1.2) for
particular choices of µ.
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Chapter 2

Nonlinear problem

Let us consider a nonlinear BVP: 
−u′′ = λg(u),

u′(1) = µu(1),

u(0) = 0,

(2.1)

where g(u) represents an arbitrary nonlinear continuous function. Our task is to determine
properties of a non-trivial solution u depending on the function g.
Obviously, the results are highly dependent on properties of the function g. Thus we introduce
several assumptions we will further use in this thesis to make clear which properties of g are
important for a particular result.

Assumption A1. sgn g(u) = sgnu,

Assumption A2. g is globally Lipschitz continuous,

Assumption A3. g is odd,

Assumption A4. |g(u)| ≤ |u| for any u.

2.1 Bifurcation diagram

Generally speaking, since g is nonlinear, we cannot get an exact solution. Trying to visualize
the results, we are the most of the time limited to numerical experiments.
Among other properties, we are interested in an existence and multiplicity of solutions or, to be
more specific, in the pairs of (λ, µ) ∈ R2 which provide a non-trivial solution of BVP (2.1) with
a particular property. That makes the visualization even more complicated.
To begin with, a bifurcation diagram is a simple visual description of (2.1). Let us choose
arbitrary fixed µ and then let us examine the corresponding BVP (2.1) with respect to λ. For
the purpose of the visualization, we will consider an auxiliary initial value problem

−u′′ = λg(u),

u(0) = 0,

u′(0) = A

(2.2)

with g(u) denoting an arbitrary nonlinear continuous function and A ∈ R.
For any pair (λ,A), we can get a numerical solution of (2.2) easily. To determine whether the
solution solves also BVP (2.1), we have to check the other boundary condition u′(1) = µu(1). If
this condition is satisfied, the pair (λ,A) provides a solution of BVP (2.1).
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As we mentioned before, the results highly depend on properties of g. Initially, if g satisfies
g(0) = 0 (or even (A1)), for A = 0, any λ ∈ R provides a solution of (2.1) and this solution is
always trivial. On contrary, for A 6= 0, if any pair (λ,A) provides a solution of (2.1), then the
solution is non-trivial.

Consequently, all the pairs (λ,A) providing any solution of (2.1) can be drawn into a λA bifur-
cation diagram. In Figure 2.1, there can be seen examples of such diagrams for the particular
choices of µ and for g(u) = arctanu.

λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. 2.1: Bifurcation diagram for g(u) = arctanu and the particular choices of µ.

For g(u) = arctanu, it has been experimentally verified that the values of λ such that for (λ, 0)
a bifurcation occurs match with the values λ such that (λ, µ) ∈ Σ (see Theorem 1.6 in the Linear
problem chapter). In other words, for this particular choice of g and an arbitrary value of µ,
there occurs a bifurcation in λA diagram if and only if λ is an eigenvalue of linear BVP (1.1),
(1.2) for the particular µ.

Bifurcation λA diagram for a general g does not have this connection with BVP (1.1), (1.2).
The diagrams for a few other functions g are shown in Appendix A.
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2.2 Solution properties

In the following part of the text, we will introduce statements providing properties of the solution
of (2.1) based on knowledge of g or its key properties and the parameters λ, µ.

2.2.1 An auxiliary initial value problem

For simplicity, instead of (2.1), we will temporarily consider an auxiliary initial value problem
(2.2) with g(u) denoting an arbitrary nonlinear continuous function and A ∈ R \ {0}.
Let I be an intersection of R and the interval of existence of the maximal solution. Moreover
we assume that [0, 1] ⊂ I. Since we will look for properties of the solution of (2.2), considering
only an interval [0, 1], all the results will be valid also for (2.1).

If λ = 0, regardless of the properties of g, we get u = Ax, I = R, in other words:

� u′(x) = A, u′′(x) = 0 for any x ∈ I and A ∈ R \ {0},

� if A > 0, u is strictly increasing, positive on I,

� if A < 0, u is strictly decreasing, positive on I.

In this case, any property of g does not affect the function u. Thus, unless stated otherwise, we
will consider λ 6= 0 anywhere in this subchapter.
Now let us show how properties of nonlinear function g affect the function u.

Lemma 2.1. For a nonlinear IVP (2.2) with g satisfying (A1), we can claim:

1. For λ 6= 0, u′′(x) = 0 wherever u(x) = 0 on I.

2. For λ < 0 and u′(0) < 0, both u and u′′ are negative on right neighbourhood of 0. Conse-
quently, u(x) and u′(x) are negative and strictly decreasing for any x ∈ I.

3. Analogically, for λ < 0 and u′(0) > 0, u(x) and u′(x) are positive and strictly increasing
for any x ∈ I.

4. For λ > 0, u is concave (convex) wherever u is positive (negative).

5. For λ < 0, u is concave (convex) wherever u is negative (positive).

Proof. Let g(u) be a function satisfying (A1), then the equation (2.1) directly gives

sgnu′′ = − sgn(λu)

implying the claims of this Lemma.

To make sure that some necessary properties of u will be preserved, we will further consider g
satisfying (A2). Moreover, this assumption automatically garantuees that [0, 1] ⊂ I = R (see [6,
p. 39, Corollary 2.6]).

Notation 2.2. By Xp we donote a set containing all x ∈ R+
0 , such that for any xp ∈ Xp,

u(xp) = 0. Since u is continuous and non-trivial and g satisfies (A2), elements of the set
Xp are at most countable. Let us denote each element xpn where n ∈ M ⊂ N0, such that
xp0 < xp1 < xp2 < . . ..
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Remark 2.3. Trivially, |Xp| ≥ 1 and xp0 = 0.

Properties of a solution are further developed by the following Proposition.

Proposition 2.4. Let us consider a nonlinear IVP (2.2), where g(u) is any function satisfying
(A1), (A2). Then we have:

1. For λ < 0 and u′(0) > 0, u is positive, strictly increasing, and convex on I, u′ is positive
and strictly increasing on I.

2. For λ < 0 and u′(0) < 0, u is negative, strictly decreasing, and concave on I, u′ is negative
and strictly decreasing on I.

3. For any xpn ∈ Xp, it holds that

u′(xpn) =

{
−u′(0) for n ∈ N odd,

u′(0) for n ∈ N even.

Moreover, if we suppose that |Xp| > 1, then we get:

4. For λ > 0 and u′(0) > 0, u is positive and concave on (0, xp1), u
′ is strictly decreasing on

(0, xp1).

5. For λ > 0 and u′(0) < 0, u is negative and convex on (0, xp1), u
′ is strictly increasing on

(0, xp1).

Proof. Lemma 2.1 gives directly the statement in the points 1 and 2.

For λ ∈ R and t ∈ (0, T ), T ∈ I, let us multiply the equation in (2.2) by u′ and integrate over

(0, t). Since G(u) :=
∫ u(t)
0 g(s) ds is a primitive function to g(s) and(

(u′)2

2

)′
= u′′u′,

(G(u))′ = g(u)u′,

we obtain
(u′(t))2

2
− (u′(0))2

2
= −λG(u(t)).

For t = xpn ∈ Xp, we get

(u′(xpn))
2

2
− (u′(0))2

2
= −λG(0) = 0,

hence
|u′(xpn)| = |u′(0)|. (2.3)

Now let us assume that u′(xpn) > 0, n ∈ N0. The function u is continuous and u(xpn) = 0, therefore
u > 0 on (xpn, x

p
n+1) and using (2.3) yields that u′(xpn) = −u′(xpn+1). For u′(xpn) < 0, n ∈ N0, this

would be carried out analogically.
Thus the point 3 holds.

Now let us assume λ > 0 and t ∈ [0, xp1], x
p
1 is supposed to exist.
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Integrating the equation in (2.2) on (0, t), we get

u′(t)− u′(0) = −λ
∫ t

0
g(u(x))dx.

If u′(0) > 0, we have an integral of a positive function on the right side of the above equation,
hence

u′(t) = u′(0)− λ
∫ t

0
g(u(x))dx < u′(0). (2.4)

Analogically, assuming u′(0) < 0 yields

u′(0) = u′(t) + λ

∫ t

0
g(u(x))dx < u′(t). (2.5)

The equations (2.4),(2.5) imply that

u′(0) =


max
x∈[0,xp1]

u′(x) if u′(0) > 0,

min
x∈[0,xp1]

u′(x) if u′(0) < 0.
(2.6)

Using (2.6) and Lemma 6 gives the claim for the points 4, 5.

Remark 2.5. The first two points of Proposition 2.4 imply, that if |Xp| > 1, then λ > 0.

∗ ∗ ∗

Furthermore, we will consider g with properties (A1), (A2), (A3).

In the following statements we will work with oddness of function u. We know that with (A2)
satisfied we have I = R, which allows us to formulate the statements correctly.

Proposition 2.6. Let us consider a nonlinear IVP (2.2), where g(u) satisfies (A1), (A2), (A3).
Then u is an odd function.

Proof. We know that

g(u) = −g(−u). (2.7)

Let us define function v(x) := −u(−x). Then v′′(x) = −u′′(−x) = λg(−v(x)). Using (2.7) yields

v′′(x) = −λg(v(x)). (2.8)

Trivially

v(0) = −u(0) = 0, (2.9)

v′(0) = u′(0) = A. (2.10)

Formulating an auxiliary IVP (2.8)-(2.10), we get an IVP equivalent to (2.2). Since g is Lipschitz
continuous, there exists exactly one solution on R and therefore we get a relation

u(x) = v(x) = −u(−x)

giving directly the claim.
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Theorem 2.7 (Symmetry of the solution). Let u be a non-trivial solution of IVP (2.2), where
g(u) is any function satisfying (A1), (A2), (A3).
If there exists xp1 ∈ Xp, then for any n ∈ N0, there exists xpn = nxp1 ∈ Xp, and

u(x) = u(x− xp2n) = −u(x− xp2n+1) = u(xp2n+1 − x),

more specifically for n ∈ N0:

� we call the part of u on [xpn, x
p
n+1] an “arc”,

� every arc for x = [xpn, x
p
n+1], n ∈ N0 is axially symmetric with respect to an axis xen+1 :=

xpn+x
p
n+1

2 ,

� every arc is strictly increasing on [xpn, xen+1] and strictly decreasing on [xen+1, x
p
n+1], or vice

versa,

� arcs for x ∈ [xp2n, x
p
2n+1] and x ∈ [xp2n+1, x

p
2(n+1)] are centrally symmetric with respect to a

point x = xp2n+1,

� arcs for x ∈ [xp2n, x
p
2n+1] and x ∈ [xp2(n+1), x

p
2n+3] are axially symmetric with respect to an

axis x =
xp2n+x

p
2n+3

2 .

Proof. Firstly, let us define v1(x) := −u(x− xp1). Then

v′′1(x) = −u′′(x− xp1) = λg(−v1(x)).

Since g is an odd function, the above relation yields

v′′1(x) = −λg(v1(x)). (2.11)

Using the Proposition (2.6), we get

v1(0) = −u(−xp1) = u(xp1) = 0, (2.12)

v′1(0) = −u′(−xp1) = −u′(xp1) = A. (2.13)

Now let us define v2(x) := u(xp1 − x). Then

v′′2(x) = u′′(xp1 − x) = −λg(v2(x)), (2.14)

v2(0) = u(xp1) = 0, (2.15)

v′2(0) = −u′(xp1) = A. (2.16)

The relations (2.11)-(2.13) and (2.14)-(2.16) give us two IVPs equivalent to (2.2). Since g is
Lipschitz continuous, using Picard-Lindelöf Theorem (see [3, p. 350, Th. 8.13]), there exists
exactly one solution of (2.2) on I and therefore

v1(x) = u(x) = −u(x− xp1), (2.17)

v2(x) = u(x) = u(xp1 − x). (2.18)

Now we show that there exists xpn ∈ Xp for any n ∈ N.
Using the identity (2.17) for x = 2xp1, we get u(2xp1) = 0.
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Identity (2.17) also yields that there is no other x ∈ (xp1, 2x
p
1), such that u(x) = 0. Thus

xp2 := 2xp1 ∈ Xp.
The last step we can repeat step by step for any x = nxp1, n ∈ N, hence

xpn ∈ Xp, n ∈ N0.

That allows us to define v3(x) := u(x− xp2n), n ∈ N. Then

v′′3(x) = u′′(x− xp2n) = −λg(v1(x)). (2.19)

Since u is, according to the Proposition 2.6, odd, u′ is even. Thus

v3(0) = u(−xp2n) = −u(xp2n) = 0, (2.20)

v′3(0) = u′(−xp2n) = u′(xp2n) = A. (2.21)

Using the relations (2.19)-(2.21) and Picard-Lindelöf Theorem once again yields the following
identity:

v3(x) = u(x) = u(x− xp2n), n ∈ N,

which allows us to formulate (2.17) and (2.18) generally:

v1(x) = u(x) = −u(x− xp2n+1), (2.22)

v2(x) = u(x) = u(xp2n+1 − x). (2.23)

The above relations, among other properties, show that every arc for x = [xpn, x
p
n+1], n ∈ N0 is

axially symmetric with respect to an axis xen+1 =
xpn+x

p
n+1

2 . In the last part of the proof we will
show a course of a single arc.
Without loss of generality, we assume that u′(0) > 0. According to the Remark 2.5, λ > 0. Using
Proposition 4, we know that u is positive and concave on (0, xp1) and u′ is strictly decreasing
on (0, xp1). Since u is continuous on [0, xp1], Rolle’s Theorem (see [7, p. 215, Prop. 1]) gives us
ξ ∈ (0, xp1) such that u′(ξ) = 0.
Since u is concave, ξ is a point of a local maximum and even the only point of a local extremum
on (0, xp1). Because of the symmetry described above, ξ = xe1. Hence u is strictly increasing on
(0, xe1) and strictly decreasing on (xe1, x

p
1). Analogically, we get the statement for all the arcs.

Corollary 2.8. Let us consider a nonlinear IVP (2.2), where g(u) is any function satisfying
(A1), (A2), (A3). Then

|u′(0)| = max
x∈I
|u′(x)|.

Proof. Applying the relation (2.6) to all the arcs of u using the Theorem 2.7 gives the claim.

Remark 2.9. Results brought by Theorem 2.7 imply that a non-trivial solution u of IVP (2.2)
is a periodic function with a period 2xp1.

2.2.2 Back to the boundary value problem

Now we will consider the original BVP (2.1). All the results gained in the previous subchapter
are still valid. Involving the other boundary condition brings us more properties of the solution
of (2.1).
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Lemma 2.10. Let u be a non-trivial solution of (2.1). Then u(1) 6= 0.

Proof. The proof will be carried out by contradiction.
Let us suppose u(1) = 0 and u is non-trivial. From (2.1), we know that u(1) = u′(1) = 0. Thus,
trivially, u(x) ≡ 0 for any x ∈ [0, 1].

λ

A

(a) Chosen point (λ,A) on the second branch
of bifurcation diagram

→ x

u(x)

(b) Corresponding solution of (2.1) with two
nodes

λ

A

(c) Chosen point (λ,A) on the third branch of
bifurcation diagram

→
x

u(x)

(d) Corresponding solution of (2.1) with three
nodes

Fig. 2.2: Connection between m and the bifurcation diagram for (2.1) with g(u) = arctanu.

Before we introduce the following notations and remarks, we remind the following:
Xp denotes a set of points x ≥ 0 such that u(x) = 0. From the assumption (A2) and thanks to
the non-triviality of u, Xp is at most countable and the elements of Xp can be ordered into a
sequence xp0 < xp1 < xp2 < ....

Theorem 2.7 brought xen+1 =
xpn+x

p
n+1

2 for any n ∈ N0 and it showed that an arc on [xpn, x
p
n+1]

has the only point of local extremum in xen+1.

Notation 2.11. By m we denote cardinality of |Xp| ∩ [0, 1].
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Remark 2.12. Value m− 1 corresponds to a count of completed arcs of u on [0, 1].

For an interpretation of the further results, it is important to notice another meaning of m
discovered experimentally.

For g(u) = arctanu, the connection of the bifurcation diagram and the linear problem has been
described in the beginning of this chapter. Each point (λ,A), A 6= 0 in the bifurcation diagram
provides exactly one non-trivial solution of (2.1). Simultaneously, every non-trivial solution is
connected to one of the points. All of these points can be assigned to so called “branch”. These
branches can be ordered from left to right with positive integers. Experiments showed that this
ordering corresponds with m. In other words, if the particular u(x) solving (2.1) has m = 2
(there exists exactly two points between 0 and 1 such that u equals to zero), u solves also (2.2)
for (λ,A) which lies on the second branch of the bifurcation diagram. At the same time, if (λ,A)
lies on the third branch, then solution of (2.2) also solves (2.1) and m = 3.

This connection is also described in Figure 2.2.

Notation 2.13. Let Xe be a set of xen such that xen ≤ 1 for any n ∈ N.

Remark 2.14. Let the assumptions of Theorem 2.7 be satisfied. Then the Theorem also claims
that M := max

x∈[0,1]
|u| = |u(xen)| for any n ∈ N.

Lemma 2.15. Let us consider λ > 0. Let u be a non-trivial solution of (2.1), where g(u) is any
function satisfying (A1), (A2), (A3), and m > 1. Then µ = 0 if and only if M = |u(1)|.

Proof. Since m > 1, we know that u has at least one completed arc on [0, 1] and M = |u(xe1)|.
Firstly, let us assume that µ = 0. We know that u′(1) = µu(1) = 0 and Lemma 2.10 shows that
u(1) 6= 0. Thus x = 1 has to be a point of local extremum. Using Remark 2.14, we have that
M = |u(1)|.
Secondly, let us suppose that M = |u(1)|, more specifically that x = 1 is a point of local
extremum of u. Hence |u(xe1)| = |u(1)| and using symmetry from Theorem 2.7 yields that
|u′(xe1)| = 0 = |u′(1)|. Since u′(1) = µu(1) and u(1) 6= 0 from Lemma 2.10, certainly, µ = 0.

Lemma 2.16. Let µ be an arbitrary constant and let u be a non-trivial solution of (2.1) with
g(u) satisfying (A1), (A2), (A3). Furthermore let m > 1. Then for λ > 0 and n ∈ {1, ..., |Xe|}
we have the following:

� if µ > 0, then 2n−1
2m−1 < xen <

2n−1
2(m−1) ,

� if µ < 0, then 2n−1
2m < xen <

2n−1
2m−1 ,

� if µ = 0, then xen = 2n−1
2m−1 ,

and for n ∈ {1, ...,m} we can say:

� if µ > 0, then 2n
2m−1 < xpn <

n
m−1 ,

� if µ < 0, then n
m < xpn <

2n
2m−1 ,

� if µ = 0, then xpn = 2n
2m−1 .
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Proof. Firstly, let us prove the statement for xe1.

From Lemma 2.10 we know that u(1) 6= 0.

Let us assume that u(1) > 0.

For µ = 0, we have u(1) = M . Due to symmetry given by Theorem 2.7, we get 1 = (2m− 1)xe1
and hence

xe1 =
1

2m− 1
.

For µ > 0, u′(1) = µu(1) > 0, thus the m-th arc of u does not reach its maximum. Moreover, u
completed m− 1 arcs. Therefore, using Theorem 2.7, naturally

1

2m− 1
< xe1 <

1

2(m− 1)
.

On contrary, for µ < 0, u′(1) = µu(1) < 0, which implies that the m − th arc of u reaches its
maximum, but it is not completed yet. In other words, after using Theorem 2.7

1

2m
< xe1 <

1

2m− 1
.

Theorem 2.7 allows us to use the above results for any xen ∈ Xe, which yields the first part of
the statement.

Moreover, it holds that

xpn = 2nxe1

and that gives us the second part of the statement.

For u(1) < 0, the proof would be carried out analogically.

Since, according to Lemma 2.10, u(1) 6= 0, we have proved the statement.

Lemma 2.17. Let µ be an arbitrary constant and let u be a non-trivial solution of (2.1) with g
satisfying (A1), (A2), (A3). Let m > 1 and let us denote D := |u′(0)| and

P :=

{
2(m− 1) for µ > 0,

2m− 1 for µ ≤ 0.

Then PM < D.

Proof. From Lemma 2.16, we know that xe1 ≤ 1
P and Corollary 2.8 says that D ≥ |u′(x)| for any

x ∈ [0, 1]. Since m > 1, certainly, λ > 0.

Lemma 2.1 implies that for any x ∈ [0, xp1] it holds that |u(x)| < Dx.

Therefore

M = |u(xe1)| < Dxe1 ≤
D

P
,

in other words PM < D.

Proposition 2.18. Let u be a non-trivial solution of (2.1) with g satisfying (A1), (A2), (A3)
and let |g(x)| ≤ c for any x ∈ R. Furthermore, let us suppose m > 1. Then

D ≤ λc

P
.
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Proof. From m > 1 we know that λ > 0 and that at least one arc of u is completed. Thus there
exists xe1.
From the assumption that absolute value of g is bounded by c, we have the following system of
inequalities:

−cλ ≤ −λg(u(x)) = u′′(x) ≤ λc. (2.24)

After integration from 0 to xe1 with respect to x, the first inequality of (2.24) gives

u′(0) ≤ λ c xe1
and using Lemma 2.16 yields

u′(0) ≤ λc

P
.

Analogically, from the second inequality of (2.24), we have

u′(0) ≥ −λc
P

and hence

D ≤ λ c

P
.

The result of Proposition 2.18 is described in Figures 2.3 and 2.4.

2.3 Solution existence

This subchapter will present results related to existence of the solution. The main aim is to
bring statements which prove that with certain properties of g and with particular values of the
parameters λ and µ, BVP (2.1) does not provide any non-trivial solution.

Proposition 2.4 gave us a few elementary properties for IVP with g satisfying (A1). (A2). Now
we involve the other boundary condition of (2.1), which yields the following Corollary.

Corollary 2.19. Let there exist a non-trivial solution of the BVP (2.1) with g satisfying (A1).
Then certainly:

(λ, µ) /∈ (−∞, 0)× (−∞, 0].

Proof. From Proposition 2.4, for λ < 0 we know that both u(x) and u′(x) are strictly increasing
(decreasing) for u′(0) positive (negative), therefore

sgnu′(1) = sgnu′(0) = sgnu(0) = sgnu(1).

The first boundary condition of (2.1) gives us

u′(1) = µu(1),

thus, necessarily, µ > 0.

For the purpose of the following Lemma, we will shortly remind an auxiliary notation from the
previous subchapter:

P =

{
2(m− 1) for µ > 0,

2m− 1 for µ ≤ 0.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. 2.3: Points (λ,A) (red) which certainly do not lie on the second branch (green) of the
bifurcation diagram.

Lemma 2.20. Let m > 1 and let u be a non-trivial solution of (2.1), with g(u) satisfying (A1),
(A2), (A3), and (A4). Then λ > 2P 2.

Proof. As it was shown before, since m > 1, we have λ > 0 and there exists xe1 on [0, 1], because
at least one arc is completed.

Let u′(0) 6= 0. By integrating the equation in (2.1) from 0 to xe1, we get

D = λ

∣∣∣∣∫ xe1

0
g(u(x)) dx

∣∣∣∣ ≤ ∫ xe1

0
|g(u(x))| dx.

Since |u(x)| ≥ |g(u(x))| for any x, we now have

D ≤ λ
∫ xe1

0
|u(x)| dx.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. 2.4: Points (λ,A) (red) which certainly do not lie on the third branch (green) of the
bifurcation diagram.

Since |u(x)| is concave and positive on (0, xe1) and it holds that |u(xe1)| < Dxe1, we can say∫ xe1

0
|u(x)| dx <

D (xe1)
2

2
.

Combining the last two inequalities together using Lemma 2.16, a trivial operation yields

2P 2 < λ,

which gives the claim.

Lemma 2.21. Let u be a non-trivial solution of (2.1) with g satisfying (A1), (A2), (A3), and
(A4). Let µ > 0 and m ≥ 3. Then the following holds:

� For m odd:

λ >
(2m− 1)2 (2m− 2− µ)

m− 1
if µ < 2(m− 1),

λ > (1− 2m)(−2 + 2m− µ) if µ > 2(m− 1),
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� for m even:

λ >
(2m− 1)2 (2m− 2− µ)

9(m− 1)
if µ < 2(m− 1),

λ >
1

3
(1− 2m)(2m− 2− µ) if µ > 2(m− 1).

Proof. Without loss of generality, we assume u′(0) > 0.
If m ≥ 3, we can use the periodicity of u given by Theorem 2.7 and described in Remark 2.9.
Thus we can write:

if m is even, then

∫ 1

0
g(u(x))dx =

∫ 1

xpm−2

g(u(x))dx,

if m is odd, then

∫ 1

0
g(u(x))dx =

∫ 1

xpm−1

g(u(x))dx.

Now let us consider m odd. After integrating the equation in (2.1) from 0 to 1, we have

−u′(1) + u′(0) = λ

∫ 1

xpm−1

g(u(x))dx. (2.25)

Using (A4), we are allowed to apply a similar procedure as in the proof of Lemma 2.17. More
specifically, we use ∫ 1

xpm−1

g(u(x))dx ≤
∫ 1

xpm−1

u(x)dx < D
(1− xpm−1)2

2
.

Since m > 1, we get λ > 0 and the following holds

D < Dλ
(1− xpm−1)2

2
+ u′(1). (2.26)

From Lemma 2.16, we have

(1− xpm−1)
2 ≤

(
1− 2(m− 1)

2m− 1

)2

=

(
1

2m− 1

)2

and that together with the boundary conditions in (2.1) yield

D
2− λ

(
1

2m−1

)2
2

< µu(1) < µM.

Using Lemma 2.17, we have

D
2− λ

(
1

2m−1

)2
2

< µ
D

2(m− 1)
.

Trivial operations yield
2− µ

m−1(
1

2m−1

)2 < λ,
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which can be rewritten to
(2m− 1)2(2m− 2− µ)

m− 1
< λ.

Although this inequality is valid for any µ, the left hand side becomes non-positive for µ ≥ 2(m−
1) and we know that λ > 0. For this reason, we consider this inequality only for µ < 2(m− 1).

For m even, equation (2.25) changes to

−u′(1) + u′(0) = λ

∫ 1

xpm−2

g(u(x))dx.

and as an analogy to (2.26) we have

D < λ
(1− xpm−2)2D

2
+ u′(1).

Using the same procedure as in the case with m odd yields

(2m− 1)2(2m− 2− µ)

9(m− 1)
< λ.

Again, this inequality comes to consideration only for µ < 2(m− 1).

Now for m odd we know∫ 1

xpm−1

g(u(x))dx ≤
∫ 1

xpm−1

u(x)dx < (1− xpm−1)u(1),

which, applied on (2.25), yields

D < λ(1− xpm−1)u(1) + u′(1).

Using the boundary conditions, Lemma 2.16, Lemma 2.17, and relation u(1) < M , we get

2(m− 1)M <
λ

2m− 1
+ µM,

which gives
(1− 2m)(−2 + 2m− µ) < λ,

which is useful only if µ > 2(m− 1).

For m even and µ > 2(m− 1), using the very same procedure, we obtain

1

3
(1− 2m)(2m− 2− µ) < λ.

Remark 2.22. It is possible to formulate Lemma 2.21 even for µ < 0, however, the results would
be always worse than the results given by Lemma 2.20.

∗ ∗ ∗
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If we apply tools of the Functional analysis, we can further develop the set of pairs (λ, µ) ∈ R2

which do not provide a non-trivial solution.
Using a Green function, we will introduce the operator describing our BVP (2.1).

Definition 2.23. By the Green function corresponding to (2.1) we call any function meeting
the following properties:

1. γ(s, x) is continuous,

2. γ′′(s, x) = 0 for s ∈ (0, x) and s ∈ (x, 1),

3. γ′(x−, x) = γ′(x+, x) + 1,

4. γ(0, x) = 0,

5. γ′(1, x) = µγ(1, x).

Lemma 2.24. Let µ 6= 1 be an arbitrary constant. A function

γ(s, x) :=


(

µ

1− µ
x+ 1

)
s for s ∈ [0, x],(

µ

1− µ
s+ 1

)
x for s ∈ (x, 1]

(2.27)

is the Green function corresponding to BVP (2.1).

Proof. The Green function γ(s, x), x ∈ [0, 1], s ∈ [0, 1] for (2.1) must satisfy the properties 1 - 5
from Definition 2.23.
Since γ′′(s, x) = 0 from property 2, the Green function can be generally written as

γ(s, x) :=

{
A(x)s+B(x) for s ∈ [0, x],

C(x)s+D(x) for s ∈ (x, 1]

and naturally

γ′(s, x) :=

{
A(x) for s ∈ [0, x],

C(x) for s ∈ (x, 1].

Property 4 causes
B(x) = 0. (2.28)

Relation in property 5 yields C = µ(C +D), thus for µ 6= 1

C(x) =
µ

1− µ
D(x). (2.29)

From property 3, we get
A(x) = C(x) + 1 (2.30)

and property 1 used for s = x gives

A(x)x+B(x) = C(x)x+D(x),

µ

1− µ
D(x)x+ x =

µ

1− µ
D(x)x+D(x),

thus
D(x) = x. (2.31)

Identities (2.28)-(2.31) imply the statement.
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(f) µ = 0.8 (contours)

xs

γ(s, x)
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(h) µ = 1.5 (contours)
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xs

γ(s, x)

(i) µ = 4

s

x

(j) µ = 4 (contours)

Fig. 2.5: Green function and its contours for the particular choices of µ

The Green function (2.27) for a few values of µ is shown in the Figure 2.5.

Lemma 2.25. Let µ 6= 1 and let T : C([0, 1])→ C([0, 1]) be an operator defined as

T (u)(x) := λ

∫ 1

0
γ(s, x) g(u(s))ds

with Green function γ(s, x). Let u(x) be a solution of (2.1). Then u(x) = T (u)(x).

Proof. Apparently, T is well-defined and any continuous function is mapped on a continuous
function.
Let us multiply the equation in (2.1) by γ(s, x) and then let us integrate the equation over (0, 1)
with respect to s. That yields

−
∫ t

0
u′′(s)γ(s, x)ds−

∫ 1

t
u′′(s)γ(s, x)ds = λ

∫ 1

0
γ(s, x)g(u(s))ds = T (u)(x).

Integrating by parts gives

−
[
u′(s)γ(s, x)− u(s)γ′(s, x)

]s=t
s=0
−
[
u′(s)γ(s, x)− u(s)γ′(s, x)

]s=1

s=t
= λ

∫ 1

0
γ(s, x)g(u(s))ds

−u′(x)γ(x−, x) + u(x)γ′(x−, x) + u′(0)γ(0, x)− u(0)γ′(0, x)− u′(1)γ(1, x) + u(1)γ′(1, x)+

+u′(x)γ(x+, x)− u(x)γ′(x+, x) = λ
∫ 1
0 γ(s, x)g(u(s))ds.

The boundary conditions of (2.1) and properties 4, 5 from Definition 2.23 state:

u(0) = γ(0, x) = 0, u′(1) = µu(1), and γ′(1, x) = µγ(1, x).

With that being used, we get

u(x) (γ′(x−, x)− γ′(x+, x)) + u′(x) (γ(x+, x)− γ(x−, x)) + u(1) (−µγ(1, x) + µγ(1, x)) =

= λ

∫ 1

0
γ(s, x)g(u(s))ds.

Properties 1 and 3 from Definition 2.23 yield

u(x) = λ

∫ 1

0
γ(s, x)g(u(s))ds.
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Using Banach contraction principle, the operator T can be utilized in the proof of the following
Theorem, which determines the pairs (λ, µ) which do not provide any solution but the trivial
one.

Theorem 2.26. Let u be a non-trivial solution of (2.1) with g satisfying g(0) = 0, (A2) with L
as a constant of Lipschitz continuity. Moreover, let us suppose that µ 6= 1. Then necessarily

|λ| ≥ 1

S L
,

where

S :=



(2− µ)2

2(2− 2µ)2
if µ ≤ 0,

µ

2(1− µ)
+

1

2
if µ ∈ (0, 1),

(µ2 − 2µ+ 2)2

2(2µ2 − 2µ)2
if (µ > 2) ∧ (µ4 − 8µ3 + 12µ2 − 8µ+ 4 > 0),

−µ
2(1− µ)

− 1

2
otherwise.

Before we prove Theorem 2.26, we introduce the following Lemma showing a connection of the
Green function (2.27) and the constant S defined in Theorem 2.26. This Lemma will be used in
the proof of Theorem 2.26.

Lemma 2.27. Let µ 6= 1 be an arbitrary constant and let γ(s, x) be defined by (2.27). Then

J(µ, x) :=

∫ 1

0
|γ(s, x)|ds ≤ S = max

x∈[0,1]

∫ 1

0
|γ(s, x)|ds.

Proof. In this proof, we will look for x such that
∫ 1
0 |γ(s, x)|ds is maximal for a particular µ. This

value of x will be denoted by xm(µ). Existence of such xm(µ) on [0, 1] is given by Weierstrass
maximum-value Theorem (see [7, p. 161, Th. 3]).
Since

µ

1− µ
= −1 +

−1

µ− 1
,

for γ(s, t), we have to distinguish the three following cases with respect to µ. These cases are
also described in Figure 2.6.

1. µ ≤ 0:
In this instance µ

1−µ ∈ (−1, 0].

Since γ(s, x) is positive for any allowed s and x, we can write

J =

∫ x

0

(
µ

1− µ
x s+ s

)
ds+

∫ 1

x

(
µ

1− µ
x s+ x

)
ds. (2.32)

After integrating we get

J =
−x2

2
+

(
µ

2 (1− µ)
+ 1

)
x
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and then

J ′ :=
∂J

∂x
=

µ

2 (1− µ)
+ 1− x.

Thus, for x ∈ [0, 1], we consider three suspicious points x1 = 0, x2 = µ
2 (1−µ) + 1, x3 = 1.

Clearly, x1 is a point of minimum.

Since J(µ, x2) = (2−µ)2
2(2−2µ)2 and J(µ, x3) = 1

2−2µ , after trivial operation we get

J(µ, x3) ≤ J(µ, x2)⇔ µ2(µ− 1) < 0,

which is certainly satisfied for µ ≤ 0.

Hence for µ ≤ 0, xm(µ) = µ
2 (1−µ) + 1 and J(µ, xm(µ)) = (2−µ)2

2(2−2µ)2 .

2. 0 < µ < 1 :
In this case, µ

1−µ > 0 and relation (2.32) is preserved. However, in this case we have only
two suspicious points x1 = 0 and x3 = 1, because x2 /∈ [0, 1]. Since x1 is clearly a point of
minimum, we directly get

xm(µ) = 1,

J(µ, xm(µ)) =
µ

2(1− µ)
+

1

2
.

3. µ > 1 :
Now µ

1−µ < −1 and a curse of the functions in the arguments of the integrals in J depends
on x.

For µ
1−µx s+ s we know:

� it is equal to zero for s = 0,

� it is strictly increasing for x ∈
[
0, 1− 1

µ

)
and strictly decreasing for x ∈

(
1− 1

µ , 1
]
,

� it does not change its sign for any s ∈ (0, 1].

Similarly, for µ
1−µxs+ x we have:

� regardless of x, it is strictly decreasing,

� it is negative if s = 1 and x ∈ [0, 1],

� if it changes its sign, the change occurs for s = 1− 1
µ .

Considering all the properties together, we have to furthermore distinguish two cases with
respect to x:

(a) 0 ≤ x < 1− 1
µ < 1:

We get

J =

∫ x

0

(
µ

1− µ
x s+ s

)
ds+

∫ 1− 1
µ

x

(
µ

1− µ
x s+ x

)
ds+

+

∫ 1

1− 1
µ

(
− µ

1− µ
x s− x

)
ds
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and

J ′ = −x+
µ2 − 2µ+ 2

2µ2 − 2µ
.

Thus we have 2 suspicious points x1 = 0, x2 = 1− 1
µ and the third potential suspicious

point x3 = µ2−2µ+2
2µ2−2µ .

We have to examine a range of µ which x3 is in interval
(

0, 1− 1
µ

)
for.

Clearly, x3 > 0. Considering

x3 < 1− 1

µ
,

trivial operations simplifies the inequality to

µ2(µ− 2) > 0.

Thus x3 is a suspicious point if µ > 2.

(b) 1− 1
µ ≤ x ≤ 1:

We have:

J =

∫ x

0

(
− µ

1− µ
x s− s

)
ds+

∫ 1

x

(
− µ

1− µ
x s− x

)
ds,

J ′ = x− 1− µ

2(1− µ)
.

Since 1 + µ
2(1−µ) < 1− 1

µ , we get the only suspicious point x4 = 1.

Now we have to choose the correct point of maximum.

Again, x1 is a point of minimum.

Inequality J(µ, x2) < J(µ, x4) holds if and only if µ2 − µ + 1 > 0, which is satisfied
for any µ.

An inequality J(µ, x3) > J(µ, x4) can be reduced to

µ4 − 8µ3 + 12µ2 − 8µ+ 4 > 0.

Thus if µ > 2 and µ4 − 8µ3 + 12µ2 − 8µ + 4 > 0, then xm(µ) = µ2−2µ+2
2µ2−2µ and

J(µ, xm(µ)) = (µ2−2µ+2)2

2(2µ2−2µ)2 . Otherwise xm(µ) = 1 and J(µ, xm(µ)) = − µ
2(1−µ) −

1
2 .

Hence

S = max
x∈[0,1]

∫ 1

0
|γ(s, x)| ds.
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s

γ(s, 0.5)

(a) µ ≤ 0

s

γ(s, 0.5)

(b) µ ∈ (0, 1)

s

γ(s, 0.5)

(c) µ > 1 and 0 ≤ x < 1− 1
µ ≤ 1

s

γ(s, 0.5)

(d) µ > 1 and 1− 1
µ ≤ x ≤ 1

Fig. 2.6: Green function γ(s, x) for x = 0.5 and the particular µ.

Remark 2.28. It can be shown that the condition

(µ > 2) ∧ (µ4 − 8µ3 + 12µ2 − 8µ+ 4 > 0)

can be reduced to µ > 2 +
√

3 +
√

3 + 2
√

3 ≈ 6.2745.

Proof (of Theorem 2.26). Let (C([0, 1]), ρ∞) be a metric space of continuous functions on [0, 1]
with a metric ρ∞ induced by a norm

‖f‖∞ := sup
x∈[0,1]

|f(x)|.

Firstly, we will prove that T (u)(x) brought by Lemma 2.25 is a contraction mapping.
For any u1, u2 ∈ C([0, 1]) and any x ∈ [0, 1], we have

K(x) :=

∣∣∣∣λ ∫ 1

0
γ(s, x)(g(u1(s))− g(u2(s)))ds

∣∣∣∣ ≤ |λ| ∫ 1

0
|γ(s, x)(g(u1(s))− g(u2(s)))|ds,

38



where γ(s, x) corresponds to (2.27).
Using the assumption (A2) with L being the constant of Lipschitz continuity for g, we get

K(x) ≤ L|λ|
∫ 1

0
|γ(s, t)||u1(s)− u2(s)|ds.

Using Lemma 2.27 yields
K(x) ≤ SL |λ| sup

s∈[0,1]
|u1(s)− u2(s)|.

Since |λ| < 1
SL , it holds that

K(x) ≤ q ρ∞(u1, u2), q ∈ [0, 1).

The last inequality is valid for any x ∈ [0, 1] and ρ∞(T (u1), T (u2)) = sup
x∈[0,1]

K(x), thus, un-

doubtedly,
ρ∞(T (u1), T (u2)) ≤ q ρ∞(u1, u2), q ∈ [0, 1),

in other words T is a contraction mapping.
Since we assume g(0) = 0, BVP (2.1) has always a trivial solution. Moreover, since (X, ρ∞) is a
complete metric space, we can apply Banach Fixed-Point Theorem (see [4, p. 300, Th. 5.1-2]),
which yields that there exists exactly one u ∈ C([0, 1]) such that T (u)(x) = u(x). That means
that if |λ| < 1

SL , BVP (2.1) has only the trivial solution.

To visualize the results of Theorem 2.26 we can use the bifurcation diagram shown in Figure
2.1. In Figure 2.9, there are the pairs (λ,A) which, according to the Theorem 2.26, certainly
do not provide any non-trivial solution. From Figure 2.9, it is certain that the accuracy of the
limitation for λ differs with respect to µ.
In the beginning of this chapter, we described the connection of the bifurcation diagram for
g(u) = arctanu with the linear problem (1.1), (1.2). Since, for the particular µ, (1.1), (1.2)
becomes a Sturm-Liouvell problem, a set containing absolute values of all the eigenvalues of
(1.1), (1.2) has a minimum. The minimum will be denoted by λmin.
If we compare λmin and the results of Theorem 2.26 (see Figure 2.10), we get a diagram of the
accuracy of 1

SL with respect to µ. This diagram is shown in Figure 2.11.

2.4 Multiplicity of the solution

Since BVP (2.1) contains two parameters λ and µ, it would be probably useful to determine
which pairs (λ, µ) ∈ R2 provide a non-trivial solution.
For simplicity, let us stick with g(u) = arctanu, which satisfies all the assumptions (A1)–(A4).
Going through the values of λ > 0 from zero to the infinity, the experiments showed that once
new branch comes into being, it never disappears. This observation can be partially supported
by Proposition 2.18.
That means that for any fixed µ ∈ R, if we choose a pair (λ, µ) for any λ bigger than the lowest
positive eigenvalue of (1.1), (1.2), we always get at least one non-trivial solution.
Therefore, it makes more sense to pose a different question: for a certain pair (λ, µ) ∈ R2, how
many non-trivial solution we can get from BVP (2.1)?
This thesis will not answer this question completely, but, according to the experiments, for this
particular choice of g, the multiplicity of the non-trivial solution is strictly connected to the set
Σ, shown in Figure 1.2.
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λ

A

Fig. 2.7: Non-trivial solutions (green) of BVP (2.1) for g(u) = arctanu mapped in the bifurcation
diagram for λ = 80 (black line) and µ = 0 with eigenvalues of (1.1), (1.2) (red).

To be more specific, let us have g = arctanu and a pair (λ̃, µ̃) ∈ R+ × R. Let us assume
that for µ = µ̃, linear problem (1.1), (1.2) has k positive eigenvalues lower than λ̃. Then for
(λ, µ) = (λ̃, µ̃), BVP (2.1) has exactly 2k non-trivial solutions. Moreover, since g satisfies (A3),
it is certain that if (λ, µ) provides a non-trivial solution u, then −u is also a non-trivial solution.
In Figure 2.7, there is shown an example for g(u) = arctanu and (λ̃, µ̃) = (80, 0). In the bifur-
cation diagram, there are all the positive eigenvalues lower than 80 marked by red points and,
as green points, there can be seen all six non-trivial solutions for this particular configuration.
For λ < 0, we get a completely different result. As it was proved in Corollary 2.19, any pair
(λ, µ) ∈ R− × R− do not provide any non-trivial solution. As Figures 1.2 and 2.1 suggest,
a branch in the bifurcation diagram for λ < 0 appears only for µ > 1. It seems that for
(λ, µ) ∈ R− × (1,∞), there exists two non-trivial solutions u and −u as long as λ is lower than
the only negative eigenvalue of (1.1), (1.2) for µ given.
This is illustrated in Figure 2.8.

Additionally, using the results of Corollary 2.19, Lemmas 2.17, 2.21, and Theorem 2.26 for a
certain m, we can numerically generate a set of pairs (λ, µ) which certainly do not provide a
non-trivial solution with m nodes.
In Figure 2.12, there are several examples of the sets of (λ, µ) which certainly do not provide a
solution with m given.
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λ

A

Fig. 2.8: Non-trivial solutions (green) of BVP (2.1) for g(u) = arctanu mapped in the bifurcation
diagram for λ = −35 (black line) and µ = 2.2 with eigenvalues of (1.1), (1.2) (red).
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. 2.9: Examples of the pairs (λ,A) (red) which, according to the Theorem 2.26, do not provide
any trivial solution.
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µ

Fig. 2.10: λmin (blue) and the values of 1
SL for g(u) = arctanu (orange).

µ

λmin − 1
SL

Fig. 2.11: Accuracy of the limitations brought by Theorem (2.26) for g(u) = arctanu, i.e.: value
of λmin − 1

SL .
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λ

µ

(a) m = 2

λ

µ

(b) m = 3

λ

µ

(c) m = 4

λ

µ

(d) m = 5

Fig. 2.12: The pairs (λ, µ) which certainly do not provide any non-trivial solution with m given
(red).
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Appendix A

Bifurcation diagrams

λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. A.1: Bifurcation diagram for g(u) = tanhu and the particular choices of µ.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. A.2: Bifurcation diagram for g(u) = eu − 1 and the particular choices of µ.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. A.3: Bifurcation diagram for g(u) = u+ u3 and the particular choices of µ.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. A.4: Bifurcation diagram for g(u) = sinu and the particular choices of µ.
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λ

A

(a) µ = −0.5

λ

A

(b) µ = 0

λ

A

(c) µ = 0.8

λ

A

(d) µ = 2.2

Fig. A.5: Bifurcation diagram for g(u) = cosu and the particular choices of µ.
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