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Abstract

A convenient geometrical description of the microvascular network is necessary for compu-

tationally efficient mathematical modelling of liver perfusion, metabolic and other physiologi-

cal processes. The tissue models currently used are based on the generally accepted

schematic structure of the parenchyma at the lobular level, assuming its perfect regular

structure and geometrical symmetries. Hepatic lobule, portal lobule, or liver acinus are con-

sidered usually as autonomous functional units on which particular physiological problems

are studied. We propose a new periodic unit—the liver representative periodic cell (LRPC)

and establish its geometrical parametrization. The LRPC is constituted by two portal lobu-

lae, such that it contains the liver acinus as a substructure. As a remarkable advantage over

the classical phenomenological modelling approaches, the LRPC enables for multiscale

modelling based on the periodic homogenization method. Derived macroscopic equations

involve so called effective medium parameters, such as the tissue permeability, which

reflect the LRPC geometry. In this way, mutual influences between the macroscopic phe-

nomena, such as inhomogeneous perfusion, and the local processes relevant to the lobular

(mesoscopic) level are respected. The LRPC based model is intended for its use within a

complete hierarchical model of the whole liver. Using the Double-permeability Darcy model

obtained by the homogenization, we illustrate the usefulness of the LRPC based modelling

to describe the blood perfusion in the parenchyma.

Introduction

The liver as a vital organ plays in the human body a fundamental role in its numerous func-

tions. Thus, any disease or pathological state of the liver tissue can cause serious health prob-

lems, even death of the patient and needs to be appropriately treated. The understanding of

liver perfusion on the multiple scales is crucial for the surgical treatment as the liver resection,

transplantation but also for understanding how the liver perfusion is modified by diffuse par-

enchymatous diseases such as cirrhosis, steatohepatitis, sinusoidal obstruction syndrome (last

two are connected with modern chemotherapies regiment), etc [1, 2]. The need of understand-

ing of liver perfusion and also liver regeneration, which is dependent upon perfusion status,
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comes from the progress of liver surgery. Now we are able to perform extended liver resection

with large loss of future liver remnant volume, stage procedures combined with portal vein

embolization and also repeated procedures for recurrence of malignant liver lesions [3–5]. All

these procedures are absolutely dependent upon radiological paging and remnant volume

computation (i.e. CT volumetry) [6]. In case we are able to predict the liver regeneration

capacity and also future achieved volume of remnant liver parenchyma, we could perform

named surgical procedures also at the patients with diseases modifying liver regeneration.

At the macroscopic scale the liver receives blood from the two separated vascular system,

one belonging to the hepatic artery and the other to the portal vein. These two vascular trees

branch repeatedly, until they reach the microcirculation at the level of so-called hepatic units,

typically considered as hexagonal lobules mutually separated by thin vascular septum, [7]. At

this level, the blood from both the supplying vascular trees is mixed in the small hepatic

capillaries also called sinusoids which enable for the the metabolic activity of hepatocytes sur-

rounding these microvessels with fenestrated walls. From the sinusoids, the blood is drained to

the central veins, which constitute another vascular network drained in the hepatic veins.

Computational modelling of flows in this system of precapillary vessels and fenestrated

capillaries was treated in a number of works using the Computational Fluid Dynamics (CFD)

tools with non-Newtonian fluid rheology and constructed idealized geometrical models [8], or

image-based models [9]. Motivated by understanding the physiological background of the

sinusoidal network organization, in works [10, 11] a constructive algorithm was proposed to

generate the hepatic capillaries within the whole lobule volume based on modelling the trans-

port and metabolism processes.

In silicomodels can be a powerful tool to study liver perfusion on multiple scales [12, 13].

Existing models of blood flow in liver are more focused on the macrocirculation in the trees of

hepatic artery and portal vein; besides the image-based approaches [14], various strategies

have been proposed to construct branching structures, also called dendritic architectures [15],

including about 20 bifurcation generations. While the global constrained constructive optimi-

zation [16], cf. [17] is based on purely geometrical features, algorithms incorporating more or

less physiology-based rules [18] can account also for evolutionary processes. Recently, a few

computational studies were made on the microcirculation determining perfusion between the

portal track and the central vein at lobular level. These studies usually consider the conceptual

hexagonal liver lobule as the hepatic functional unit, that reflects only anatomical conditions.

For computer simulations of normal and pathological liver perfusion, we have to accept physi-

ological view of this problem [19]. Papers published until now were working only with healthy

liver, however, the future and most important impact of computational modelling is in diag-

nostics of diffused liver diseases, such as liver cirrhosis, steatofibrosis, where the fibrotisation

of the tissue (septic parts mostly) is crucial for understanding the problem and for helping

solve clinically important questions. In this respect, irregularities in blood flows and hepatic

functionality in neighboring lobules should be taken into account [20, 21].

Using the poroelastic theory [22], developed an idealized 2D model of the blood flow in the

longitudinal section of lobules. Siggers et al. [23] modelled the blood interstitial flow in the

liver tissue, represented by a lattice of hexagonal lobules. The lobules were assumed to be long

enough to neglect the effect of their ends and thus only a 2D problem was considered. The 2D

model of microcirculation within a single liver lobule, which admits a blood inflow via the vas-

cular septa connecting adjacent portal segments, was presented by [24] in context of cytokine

distribution. Höhme et al. [25] presented the idealized model of lobule with the basic unit to

be individual hepatocyte in the context of liver regeneration and restoration of micro-architec-

ture. This model was extended in recent work [26], presenting more complex 3D simulations

of disease pathogenesis through liver tissue. However, the modeling was still based on the
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classical concept of one hexagonal lobule. Deabbaut et al. [7] focused on the perfusion model-

ing in the sinusoids based on the micro-CT images of real 3D sinusoidal geometries of human

liver, using CFD methods. This model was recently used in multilevel modeling of hepatic per-

fusion [27] as a tool to obtain perfusion characteristic for modeling of single lobule, whereby

importance of the interlobular septa in modeling of the lobule perfusion has been discussed.

Only rarely, in the papers mentioned above, the importance of the interlobular septa for the

interlobular permeability has been discussed and aspects of increased septic fibrotisation that

remarkably influences this permeability was neglected. Zonal variation of the sinusoidal net-

work and the related microdosimetry was studied in [19] using the single hepatic lobule, in the

context of the microcirculation related to the hepatocyte functionality.

Aims

The modelling of microcirculation in the liver is based usually on the classic hexagon represen-

tation of lobule. Although these structures are presented in the liver parenchyma, their role as

the autonomous hepatic functional units is at least questionable [5]. Therefore, we propose a

two-scale approach to the liver perfusion modelling which respects the hexagonal lobular

structure, however, drops any assumption of the autonomous functional units.

In this paper, we pursue the following aims:

• To propose a concept of the geometric structure of the liver parenchyma at lobular level as

an integral part of a complex multiscale model of the blood perfusion and related coupled

physiological processes. In particular, relaxing the usual symmetry assumption on the

hepatic functional unit should enable to assess the role of the interlobular septum permeabil-

ity potentially influenced by diffusion diseases.

• To create a parametric model of the liver lobule which generates a periodic three dimen-

sional (3D) structure. This will allow for studying the perfusion response sensitivity with

respect to morphological parameters of the tissue microstructure.

• As a proof of concept, to apply one of the tissue perfusion models previously developed

using the homogenization method [36] to the periodic liver structure generated by the

LRPC. The aim is to demonstrate qualitative features of the two-scale computational analysis

of the liver perfusion.

The LRPC based models of the liver parenchyma derived using homogenization techniques

can serve only a part of hierarchical models of the whole liver. The other part to be connected

with comprises convenient models of the blood flow at higher level vasculature associated with

the portal and hepatic veins, and hepatic artery, cf. [14, 17, 28].

Methods and models

Functional units of the liver—Geometrical idealizations

The liver parenchyma at the mesoscopic level with characteristic lengths�100μm is consti-

tuted by functional units which are defined in terms of the principal microvascular vessels

associated with portal vein (PV), hepatic vein (HV), and hepatic artery (HA). In an idealized

geometrical model, PV and HV can be represented as straight parallel vessels (cylindrical

tubes).

In a transversal plane, orthogonal to these vessels, these functional units are schematically

depicted in Fig 1:

PLOS ONE Geometrical model of lobular structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0260068 December 2, 2021 3 / 21

https://doi.org/10.1371/journal.pone.0260068


• Hepatic lobule is the regular hexagon with its center determined by the terminal branch of

HV (often called the central vein) and six vertices constituted by terminal branches of the

PV, often called the vertex vessels, cf. [8]. Most often, geometrical model of the liver paren-

chyma is introduced as regular honeycomb structure generated by the hepatic lobule.

• Portal lobule is the regular triangle determined by any three HV, whereas the barrycenter is

identified with the portal triad comprising PV, HA and the bile duct.

• Liver acinus is the smallest physiologically autonomous unit; it is a triangle whose vertices

are defined by two closest PV (incorporated in portal triads) and by the central vessel (HV).

This 2D representation can be elevated to a 3D model where each lobule generates a hexag-

onal polyhedron. Interconnecting vessels between neighboring PV constitute the so-called vas-

cular septum (VS) identified with faces of the above mentioned lobular polyhedron. The

presence of VS influences flows from the PV to HV. In particular, VS is more permeable than

the sinusoids, so that certain amount of the blood flows from the PV to VS and then from VS

to HV. Effectively this phenomenon contributes to a better exploitation of the sinusoids

Fig 1. Liver microstructure and functional units. The liver representative periodic cell (LRPC) incorporates the Portal lobule and also the Acinus.

Functional zones z. 1–3 are indicated.

https://doi.org/10.1371/journal.pone.0260068.g001
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transport capacity, [29], and the metabolic processes. Within acinus, three metabolic zones are

distinguished according to different rates of oxygen and nutrients consumption, usually

denoted by numbers 1, 2, and 3, see [30], also indicated in Fig 1.

The above idealized picture of the liver parenchyma is a basis for introducing the so-called

liver representative periodic cell (LRPC) which can generate the liver tissue as a periodic lattice.

In reality, the vasculature at the lobular level is the terminal part joining the perfusion trees

associated with the PV, HV and HA, so that the liver parenchyma can only be approximated as

a locally periodic structure.

In addition to the above described functional units, a conical microvascular subunit of clas-

sic hexagonal lobule has been proposed in the literature [31], being called the primary lobule;

it consists of a group of sinusoids supplied by a single portal track and its associated branches,

[32].

Mathematical description of the periodic lobular structure

As the main contribution of the paper, we introduce the ground structure generating two pre-

capillary periodic vasculatures and define the liver representative periodic cell (LRPC) which

enables the flow modelling using the periodic homogenization method [33, 34]. To show, how

the geometric model can be applied, below we present an illustrative example of the flow

modelling using the so-called double-porosity media approach [35–37].

Perfusion modelling using the homogenization approach. The existing mathematical

models are relevant purely to the lobular level of the liver, so the simulations of flow and other

transport processes are performed for domains constituted by one, or several hexagonal lob-

ules [20], whereby artificial boundary conditions have to be specified. Our approach is differ-

ent. We aim to treat the perfusion as the two-scale problem, so that the macroscopic and

microscopic phenomena are coupled by virtue of the homogenization method [36, 38, 39].

The macroscopic pressures associated with the terminal PV and HV branches may vary with

the macroscopic position at the organ level, even though the lobular structure is described as a

periodic lattice generated by the LRPC. As an advantage, the so-called characteristic response

of the LRPC enables to establish effective coefficients of the perfusion model, so that the com-

putation relevant to the macroscopic scale reflects geometrical features of the microstructure.

The most obvious periodical structure in the liver tissue are hepatic lobules. However, as

stated above, other functional units, namely the portal lobule and acinus are more important

for description of the liver physiology. Therefore, for the mathematical construction of the

periodic structure, we propose the smallest possible cell, which contains both these units and

which generate a periodic layout quite straightforwardly. We consider a rhombus unit involv-

ing two portal tracks and four central veins, one situated at each corner, see Fig 2. This unit is

formed by two neighboring portal lobules and contains one whole acinus. Using the geometri-

cal parameters of the hepatic lobule taken from the literature, e.g. [23], we may construct the

LRPC geometry and define a permeability of the sinusoidal porosity representing the capillary

network [40].

Geometry of LRPC and periodic lobular structure. The proposed model of the lobular

structure is constituted by the principal and transversal cylindrical vessels. Both these groups

of vessels are involved in the two distinguished vasculatures Yp and Yh connected to the portal

vein (PV) and to the hepatic vein (HV), respectively. Below we introduce the primary and dual

lattices which enable us to construct the two mutually disjoint vasculatures associated with the

central and the vertex veins. The primary lattice is used to define the periodic lobular structure.

It is characterized by the representative periodic cell occupying domain Y which is decom-

posed into three disjoint parts Yh, Yp and Ym, associated with the precapillary parts of HV, PV,
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and with the sinusoidal porosity (the matrix), respectively, such that Y = Yh [ Yp [ Ym, see

Figs 2 and 7.

In what follows, we employ the notation and geometrical entities introduced formally in

the Appendix. The LRPC generating the periodic lattice is based on two ground structures.

The first one is constituted by points {hi}i, i = 1, . . ., 4, see Eq (16) and Fig 3, which define posi-

tions of the central hepatic veins. Analogously, points {pi}i, i = 1, . . ., 4 constituting the second

ground structure determine positions of the vertex portal veins, see Eq (17). The central vein

centered at point h4 is not involved in the portal lobulus, see Fig 4, but is needed to establish

the LRPC and transverse vessels interconnecting the central vein tracks, see below. These two

groups of the points are introduced using the primary and the dual lattices associated with two

parameters �a and �b ¼ �a
ffiffiffi
3
p

=3 and defined in terms of the bases {ek}k and {gk}k, k = 1, . . ., 3,

respectively, see Eq (15).

Precapillary vessels Yh and Yp. Structures Yh and Yp consist of the principal and transver-

sal vessels constituted by cylinders T which are defined by a position x, a unit vector n deter-

mining the vessel axis, and by the vessel length L and radius R, see Fig 5,

T ðx; n; L;RÞ ¼ fy 2 Ej0 < dðy; xÞ � n < L; jrðdÞj < Rg ;

where dðy; xÞ ¼ y � x ;

rðdÞ ¼ d � ðn � dÞn ;

ð1Þ

Fig 2. The LRPC geometry with descriptions of the PV and HV tracks connected with the central and vertex veins of the lobule.

https://doi.org/10.1371/journal.pone.0260068.g002

PLOS ONE Geometrical model of lobular structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0260068 December 2, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0260068.g002
https://doi.org/10.1371/journal.pone.0260068


where the radial relative position r with respect to the vessel axis is evaluated using the projec-

tion of d into n.

The principal vessels include the hepatic (central) veins T H , and the portal (vertex) veins

T P which are generated according to Eq (1),

T k
Hðh

k
; e3; LH;RHÞ ; k ¼ 1; � � � ; 4 ; T l

Pðp
l; e3; LP;RPÞ ; l ¼ 1; � � � ; 4 : ð2Þ

Note that the portal lobule is constituted by 3 veins T k
H , with k = 1, 2, 3 and one T 1

P, only, how-

ever, four vessels of the two groups are employed below to define the LRPC.

The length of both the vessel types have equal lengths LH ¼ LP ¼ �L equal to the thickness of

the representative cell Y. The central vein vessels are interconnected by transversal cylindrical

vessels U i
, i ¼ 1; . . . ;�i. Each of them is determined by positions yAi and yBi of the end nodes sit-

uated on axes of two central veins, see Eq (3), being parameterized by x
A
i , x

B
i 2 ½0;

�L� and by

the radius Ri. For the i-th vessel, Table 1 provides the two links (A, i) 7! k and (B, i) 7! l so

that, the specific couple (A, B) is associated with two particular central hepatic veins labeled by

Fig 3. Positions of the nodes generating the primary and dual lattices. Left: The generating unit is defined using unit vectors of the primary and dual

bases, {ei} and {gi}, respectively. Right: position of the vertex pk and the central hk points within the generating unit—the portal lobule.

https://doi.org/10.1371/journal.pone.0260068.g003

Fig 4. Construction of the LRPC. Left: Portal lobule unit associated with Yd , d = h, p. Middle & Right: The LRPC is obtained by translations, see Eqs

(5) and (6), and generate the periodic lattice.

https://doi.org/10.1371/journal.pone.0260068.g004
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k, l 2 {1, . . ., 4}. The same expression Eq (1) is employed to define U i
ðyAi ; ni; Li;RiÞ, whereby

yAi ¼ hk þ xAi e3 ; yBi ¼ hl þ xBi e3 ; Li ¼ jyBi � yAi j ; ni ¼ ðyBi � yAi Þ=Li : ð3Þ

In analogy, the vertex veins are interconnected by transversal cylindrical vessels Vj,

j ¼ 1; . . . ;�j, see Table 2. The j-th vessel of this group is parameterized by ZAj , ZBj 2 0; �L, associ-

ated with two particular indices of vertex portal veins, and by the radius Rj. Table 2 provides

the two links (A, j) 7! k and (B, j) 7! l. Vessel Vj ¼ T ðyAj ; nj; Lj;RjÞ is defined according to Eq

Fig 5. Generating vessel T ðx; n; L;RÞ, see Eq (1).

https://doi.org/10.1371/journal.pone.0260068.g005

Table 1. Transversal vessels U i
, i = 1, 2, 3 of the central vein vasculature. The structure is generated by three vessels,

see Eq (3).

#/i A/k B/l ξA ξB R

1 1 2 0:3�L 0:3�L 0:1�a

2 1 3 0:8�L 0:8�L 0:1�a

3 2 3 0:5�L 0:5�L 0:1�a

https://doi.org/10.1371/journal.pone.0260068.t001

Table 2. Transversal vessels Vj
, j = 1, 2, 3 of the vertex vein vasculature. The structure is generated by three vessels,

see Eq (4).

#/j A/k B/l ηA ηB R

1 1 2 0:1�L 0:1�L 0:12�b
2 1 3 0:4�L 0:4�L 0:12�b
3 1 4 0:7�L 0:7�L 0:12�b

https://doi.org/10.1371/journal.pone.0260068.t002
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(1), where

yAj ¼ pk þ ZAj e3 ; yBj ¼ pl þ ZBj e3 ; Lj ¼ jyBj � yAj j ; nj ¼ ðyBj � yAj Þ=Lj : ð4Þ

Using the principal vessels T k
H , T l

P and the transverse vessels U i
, V j

established above in Eqs

(2)–(4), we can construct the precapillary vascular networks of the portal and hepatic veins,

Yh ¼
[

k¼1;2;3

T k
H [ UH ;

UH ¼
[

i¼1;2;3

U i [ Û 1 [ Û 2 ; where Û j ¼ U j þ �aej ; j ¼ 1; 2 ;

ð5Þ

so involving translated vessels Û j, see Fig 6, and

Yp ¼
[

l¼1;2;3

T l
P [ VP ;

VP ¼
[

j¼1;2;3

Vj [ V̂ 2 [ V̂ 3 ; where V̂ 2 ¼ V2 þ �ae1 ; V̂ 3 ¼ V3 þ �bð2g
1
þ g

2
Þ :

ð6Þ

Periodic lattice based on the LRPC. The LRPC occupying domain Y is defined within the

primary lattice based on the ground structure of the central vessels,

Y ¼ fy 2 E j y ¼
X3

i¼1

ciei ; 0 < ck < �a; k ¼ 1; 2 ; 0 < c3 < �Lg : ð7Þ

It can be seen, that Y corresponds anatomically to two adjacent portal lobules and, thus, con-

tain one whole acinus. Indeed, in the plane determined by vectors e1 and e2, the liver acinus is

the convex hull of the ground structure nodes p1, p2, h2 and h3.

Fig 6. Translations employed to define Yp and Yh, see Eqs (5) and (6).

https://doi.org/10.1371/journal.pone.0260068.g006
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The LRPC introduced in Eq (7) is decomposed in three disjoint parts Yh, Yp, and Ym which

are defined, as follows,

Yh ¼ Yh \ Y ;

Yp ¼ Yp \ Y ;

Ym ¼ YnðYh [ YpÞ :

ð8Þ

The periodic structure of the liver tissue is generated by copies of the LRPC rescaled by param-

eter ε> 0 which determines the ration between the characteristic sizes of lobular structure (�

10−4m) and the whole liver (� 10−1m). While �a and �L are fixed and close to 1, hence the vol-

ume jYj ¼ �a�L
ffiffiffi
3
p

=2 � 1, a real size of the hepatic lobule represented by domain εY is given by

aε ¼ ε�a and Lε ¼ ε�L.

For the homogenization-based modelling of the heterogeneous liver tissue we need periodic

lattices, Lε
d, associated with the three subparts d =m, h, p. These are defined by translating Yd

in the directions of the primary lattice,

Lε
d ¼ εLd ¼

[

k2Z3

ε Yd þ
X3

i¼1

kie
i

 !

; ð9Þ

where the triplet k = (k1, k2, k3) determines the placement of copies of εYd. For a convenient

“micromodel” describing blood flows in these lattices, a macroscopic model describing effec-

tive flows in the homogenized lobular structure can be derived by the limit analysis ε! 0. An

example is reported below.

LRPC based model of flows in homogenized parenchyma

The blood perfusion in a liver tissue sample occupying a bounded domain O � R3 can be

described by an effective flow model obtained by the homogenization method. To this aim, at

the heterogeneity level of the tissue decomposed in the three compartments represented by

domains O
ε
d ¼ O \ Lε

d, d =m, h, p, see Eq (9), the so-called Double-permeability Darcy (DD)

flow model can be employed. It is characterized by a special ε-scaling of the permeability asso-

ciated with the dual porosity representing the sinusoidal network situated in Lε
m. In this sec-

tion, we report equations of the effective (macroscopic) flow model which has been derived by

the limit analysis ε! 0 of the DD model [28], cf. [41]. Because of the double permeability

effect associated with the sinusoidal, the limit model of the homogenized flow must be inter-

preted for a given ε0� 10−3.

Macroscopic equations. At the macroscopic scale, the flow in the lobular structure occu-

pying a domain O is described in terms of two pressure fields, ph and pp, associated with the

portal and hepatic compartments. The parallel flows and the fluid exchange between these

compartments is governed by the macroscopic equations

� r � Kprpp þ Gðpp � phÞ ¼ fp ;

� r � Khrph � Gðpp � phÞ ¼ fh ;
ð10Þ

involving the so-called permeability tensor Kd ¼ ðK
ij
d Þ, i, j = 1, . . ., 3, associated with the portal

and hepatic compartments, labelled by d = h, p, and the so-called perfusion coefficient G repre-

senting the permeability of the sinusoidal porosity. The r.h.s. terms fp and fh represent sources

and sinks, respectively, connecting the parenchyma model with upper hierarchies of the PV
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and HV vascular trees. Typically, fp and fh attain forms of distributions supported at locations

of terminal branches of those trees, see the Discussion below and references [17, 28], cf. [14].

Both Kd and G can be obtained using the periodic homogenization of the Darcy flow in the

double porosity medium with the periodic structure generated by the LRPC Y. The sinusoids

distributed in Ym form a microporosity characterized by a highly anisotropic permeability Dm
which reflects the blood flow in the capillary network, cf. [7, 42]. Also in the precapillary ves-

sels represented by channels Yh and Yp, the flow is described approximately by the diffusion

equations with the permeabilities Dh and Dp which are established as an approximation of the

Poiseuille-Stokes flow.

To obtain a unique solution of Eq (10), boundary conditions (BCs) must be prescribed on

@O, the boundary of O (by @D we denote the boundary of any open bounded domain

D � R3). The most natural BCs describe imposed pressures �pp and �ph on two boundary seg-

ments Γp� @O and Γh� @O which may not be disjoint, in general. The rest of the boundary

is considered as impermeable, so that

pd ¼ �pd on Gd ; d ¼ p; h ;

n � Kdrpd ¼ 0 on @OnGd :
ð11Þ

IfO represents the whole organ, Γd may vanishes, so that solvability conditions impose con-

straint
R
O(fp + fh) = 0 expressing the mass conservation.

Effective parameters computed using the LRPC. We explain, how the parameters Kd
and G are computed for a specific geometry of the periodic liver tissue generated by the LRPC.

The boundary @Yd = @# Yd [ Γd consists of the “periodic” part, @# Yd = @Yd \ @Y, and of the

interface part, Gd ¼ @Ydn@Y , for d = h, p,m. Further, the notion of the so-called Y-periodicity

is employed: any function ψ(y) defined for y 2 E is Y-periodic, if cðy þ �aekÞ ¼ cðyÞ for k = 1,

2, and cðy þ �Le3Þ ¼ cðyÞ for any y.

With this notation in hand, we present two kinds of the boundary value problems for the

characteristic responses φid, 1 = 1, 2, 3, and φ̂m. The first characteristic responses φid describes

the dependence of the Darcy flow in the portal (d = p), or the hepatic (d = h) vessels on the

macroscopic pressure gradientsrpd. Functions φid, i = 1, 2, 3 defined in Yd, are Y-periodic and

satisfy:

r � wi
d ¼ 0 ; in Yd ; d ¼ h; p ; where wi

d ¼ � Ddrðφid þ y
iÞ ;

n � wi
d ¼ 0 on Gd ;

ð12Þ

where ν is the unit normal vector outward to Yd and Dd is the permeability established for the

channel systems T p and T h. The second characteristic response φ̂m describes the dependence

of the Darcy flow in the sinusoidal porosity on the pressure difference between the vertex and

central vein networks. Function φ̂m is Y-periodic and satisfies:

r � ŵm ¼ 0 ; where ŵm ¼ �
�Dmrφ̂m in Ym ;

φ̂m ¼

( 0 on Gh ;

1 on Gp :

ð13Þ
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Then, using the solutions of Eqs (12) and (13), the macroscopic flow coefficients are computed

by the following two integrals,

Kij
d ¼

1

jYj

Z

Yd

½Ddrðφ
i
d þ z

iÞ� � rðφjd þ z
jÞ ¼ 0 ; d ¼ h; p ;

G ¼
1

jYj

Z

Gh

n � ðDmrφ̂Þ ;

ð14Þ

where |Y| is the volume of Y.

Two-scale simulations of the liver perfusion. To illustrate, how the geometrical model

can be used for the perfusion modelling, we report an example of the flow simulation in a

domain representing a tissue specimen constituted by the periodic lobular structure. The

finite-element mesh of the LRPC used to compute numerically the characteristic responses

defined in Eqs (12) and (13) was obtained using the software GMSH [43] which enables to

implement the geometry parametrization, see Fig 7.

The sinusoidal capillary network distributed in Ym form a microporosity characterized by a

highly anisotropic permeability Dm involved in problem Eq (13). We used the results of [7,

42], from where the permeability tensors can be reconstructed locally with respect to cylindri-

cal coordinate systems established with its “z”-axes (basis vector e3, see Fig 2) aligned with the

central veins T k
H , k = 1, . . ., 4. This yields four tensors Dk

mðyÞ at any point y 2 Ym, consequently

a unique tensor Dm(y) employed in Eq (13) is obtained by linear interpolation using the barry-

centric coordinates over each of the two portal lobulae involved in the LRPC, as determined by

points {h1, h2, h3} and {h2, h4, h3}.

By virtue of the Darcy flow homogenization with the high-contrast permeability ansatz

leading to the DD model Eq (10), the dual permeability involved in Eq (13) is scaled by ε� 2
0

,

thus, �Dm ¼ ε
� 2
0
Dm if Ym is the zoomed cell, such that jYmj � �a2�L. On contrary, if the real-sized

cell ε0 Ym is used instead of Ym, one employs �Dm ≔ Dm.

Also in the precapillary vessels channels Yp and Yh, see Eqs (5), (6) and (8), representing the

primary porosity, the flow is described approximately by the diffusion equations with the per-

meabilities Dp and Dh which are established as an approximation of the Poiseuille-Stokes flow,

whereby no rescaling applies. Since the precapillary vessels defining the channels Yd, d = p, h
of both the PV and HV venous systems are defined as cylindrical tubes, for any i-the vessel of

the two systems Yp and Yh, see Eq (5), the axial permeability can be established by �Ki;a ¼

pR2
i ðzÞ=8m with an equivalent fluid viscosity μ. Hence, in the i-th vessel T i involved in Yd, d =

Fig 7. Finite element mesh of the LRPC (right). Decomposition of domain Y (left).

https://doi.org/10.1371/journal.pone.0260068.g007

PLOS ONE Geometrical model of lobular structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0260068 December 2, 2021 12 / 21

https://doi.org/10.1371/journal.pone.0260068.g007
https://doi.org/10.1371/journal.pone.0260068


p, h, permeability Dd≔Di involved in problem Eq (12) is defined by

DiðyÞ ¼ �Kiνi � νi þ kI ; y 2 T i ;

where νi� νi is the rank-one tensor generated by the vessel axial direction νi, while κ I is the

isotropic permeability part given for a small regularization parameter κ> 0. Due to the tube

overlaps in the vessel junctions, an average of involved permeabilities Di computed for each

relevant i is taken. With permeabilities so established in channels Yd, d = p, h, problems Eq

(13) were solved.

In Fig 8, the macroscopic distributions of the pressures pp and ph are depicted for two dif-

ferent orientations of the lobular lattice. The same pressure slope on the opposite sites of the

specimen was prescribed in both the cases, as well as other boundary conditions were consid-

ered identical. The different patterns are due to different orientations of the lobular structure.

In Fig 9, the pressure and flow reconstructions are depicted for a selected macroscopic

position.

Fig 8. Liver perfusion simulations for two different orientations of the lobular lattice (upper and lower rows). The same boundary conditions

according to Eq (11) are prescribed in both cases, whereby surfaces Γp and Γh form opposite sides of the specimen. Middle: orientations of the generating

LRPC; Left: distributions of pp; Right: distributions of ph.

https://doi.org/10.1371/journal.pone.0260068.g008

PLOS ONE Geometrical model of lobular structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0260068 December 2, 2021 13 / 21

https://doi.org/10.1371/journal.pone.0260068.g008
https://doi.org/10.1371/journal.pone.0260068


Discussion

The proposed geometric model of the periodic lobular structure is based on the LRPC which is

associated with the primary lattice defined by the central hepatic veins. The LRPC is based on

the union of two neighboring portal lobulae and contain one acinus, see Fig 1. The lobular

structure representation based on the LRPC opens new perspectives of modelling physiological

processes in the liver parenchyma. Let us recall that the postulated LRPC enables to generate a

useful periodic structure of the liver tissue by the translation only, without necessity of any

rotation.

The following advantages of the proposed model over the existing conceptions based on the

standard functional units (the hepatic lobule, portal lobule, or the acinus) should be

distinguished:

Fig 9. Reconstructions of the microflows in a copy of the LRPC located at a selected point of the liver tissue specimen. a),b) velocity fields in the

precapillary vessels of the PV and HV systems. c),d) Sinusoidal flow.

https://doi.org/10.1371/journal.pone.0260068.g009
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1. Macroscopic gradients, inhomogeneity. Up to our knowledge, the existing computational

studies, cf. [23, 24, 44], are based on the domain of the hexagonal hepatic lobulus and assume

a) all symmetries of the geometry, material parameters within this functional unit, and b) the

macroscopic homogeneity. With these limitations, the lobular perfusion, oxygen and nutri-

ent transport, and other physiological processes can be described only locally without rele-

vancy to the macroscopic scale. Indeed, the symmetry assumption excludes in advance any

influence of the macroscopic gradients of quantities of interest. Althoug the above men-

tioned computational studies bring a valuable insight into the lobule functionality, the

restrictive assumptions disable to capture more realistic situations reflecting localized patho-

logical or states after hepatectomy when hydraulic relations in the liver are disbalanced sig-

nificantly. Obviously, any localized defect perturbs the whole system, such that the

symmetry assumption allowing to reduce the computations one lobule cannot be accepted.

On the contrary, the proposed LRPC based homogenization upscaling provides an avenue

for multiscale modelling approaches which enable to respect the influence of nonuniform

blood flows in the whole liver on the unevenly distributed pressure in different vertex veins

of the lobules, thus, generating a nonsymmetric velocity field. By the consequence, this flow

nonuniformity affects physiological processes related to the transport and concentrations of

species dissolved in the blood. In particular, the change of the blood flow in liver after a sur-

gical intervention (hepatectomy) can be described [12]. This is an important aspect to be

respected namely when dealing with regeneration processes. Therefore, it is challenging to

apply the LRPC based homogenization also in the context of earlier works [22, 45], where

the phenomenological approach based on the Theory of Porous Media has been employed

to simulate the perfusion and metabolic processes in one lobule only, or in a group of several

lobules, adhering the symmetry assumptions.

2. Irregular structure and generalization of the LRPC. Due to its construction and the

geometry parametrization, the LRPC design can capture large complexity of the precapil-

lary vasculature. In particular, the number of the transversal vessels U i and V j, as well as

their sizes ans shapes can vary within one unit represented by Yh and Yp, see Eq (5). This

option enables to respect the vascular septum, cf. [27]. Moreover, it is possible to create

aggregates by translation of the single LRPC in the principal lattice directions, so that larger

periodic cells consisting of subunits are constructed. As shown in Fig 10, such aggregates

can then be subject to a spatial transformation by a mapping which is periodic on the

boundary of the created aggregates. Upon introducing further topology modifications to

aggregated generating units Yh and Yp of the precapillary vessels, even more realistic micro-

structures can be created which capture more imperfections of the lobular structure. For

instance, hexagons can be commuted by pentagons.

3. Sinusoidal porosity. Individual hepatic capillaries are not distinguished within the pro-

posed LRPC geometric model, although such an extension is possible. Instead, the sinusoi-

dal microporosity geometry can be respected in the context of the hierarchical

homogenization by a locally periodic ultrastructure associated with a subscale, as proposed

e.g. in [39], cf. [46]. As described above for the perfusion model, the hydraulic permeability

can be introduced with respect to the radial, circumferential and axial directions, see e.g.

[7] clearly defined through the abscissas hi of the hepatic lobule centered at the HV.

4. Spatial grading of “quasi-periodic” and evolving microstructures. The regular structure

generated by a single LRPC can be subject to a geometrical transformation to create a

graded structure. In such a case, the LRPC can still be used, since such a transformation is

respected by the homogenization technique applied to any continuum model of flow, cf.
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[47, 48] This feature is essential for modelling tissue time-evolution, namely the remodel-

ling and regeneration, or degradation due to evolving pathologies. Coupling processes

undergoing at the local (microscopic) scales with physical conservation laws described at

the global level is essential and, in general, leads to the structure spatial grading, such as var-

iation of the volume fractions of capillaries, or size of the lobulae. Although, to describe the

tissue evolution, linear or linearized micromodels can be used to derive upscaled (homoge-

nized) macro-models, it is important to reflect the dependence of the effective (macro-

scopic) model parameters on the evolving microconfiguration. For this, the sensitivity

analysis approach reported in [49] can well be adapted.

5. The role of the LRPC in the multiscale hierarchical modelling. The liver presents a com-

plicated hierarchically organized structure which requires quite different models according

to the size of the heterogeneity distinguished at different scales. The LRPC based homogeni-

zation can provide just a part of a complete model of the whole liver. As pointed out in the

Introduction, the upper-level vasculatures (labelled as PV, HV and HA) can be character-

ized as perfusion trees arranged hierarchically over several scales in the context of available

imaging techniques with limited resolution intervals. Therefore adequate constructive tech-

niques are needed to bridge the scales and to provide complete perfusion trees with limited

data, see e.g. [14–16, 18] and references cited therein. In [17], a combined 3D–1D approach

has been proposed, incorporating a so-called multi-compartment Darcy flow model with

1D flow models accounting for the upper hierarchies of the vascular trees. As a remarkable

advantage, the model equations of each compartment associated with a specified hierarchy

of the perfusion tree attain the form of Eq (10) obtained at the lobular level characterized as

a (locally) periodic structure. This coherency of the two models provides a natural and con-

ceptually simple modelling transition from the bifurcating vasculature to the one repre-

sented by the LRPC. Alternatively, the branching vascular structures can be connected with

a continuum representation of the parenchyma directly [28].

Fig 10. Towards realistic lobular structures. Left: The aggregate of 4 LRPC consisting of two portal lobules enables to create a larger periodic unit (the

dark gray area), to consider nonuniform perturbations of the regular periodic structure which can comprise hexagonal and pentagonal hepatic lobulae

(right).

https://doi.org/10.1371/journal.pone.0260068.g010
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Concluding remarks and further challenges

We introduced a parameterized geometrical model of the liver parenchyma unit, the LRPC,

which comprises two functional liver units—the portal lobule and the acinus. By translations

of the LRPC, a periodic lattice can be generated to construct an idealized lobular structure

which, however, can be transformed locally according to the macroscopic position within the

whole liver. The LRPC based homogenization must be combined with other modelling

approaches which are adequate to treat the flow and also the fluid interaction with a homoge-

nized deforming parenchyma at the macroscopic scale. This issue is far beyond the scope of

this paper and has not been discussed.

It has been demonstrated, how the LRPC is applied in the perfusion modelling based on the

Double-Darcy model of the homogenized periodic structure. Alternative models can be con-

sidered, such as [38, 39, 41], which employ a similar homogenization concept, although a con-

venient model accounting correctly for the fluid-structure interaction and the blood rheology

in the transition between the precapillary vessels and the sinusoidal porosity remains an open

problem. As an advantage over the phenomenological approaches, such as the model based on

the multi-network poroelasticity theory [50, 51], by virtue of the effective model parameters

computed using the characteristic responses of the micromodel defined in the LRPC geometry,

the homogenization method enables to respect the geometrical features of the parenchyma.

With increasing knowledge of the metabolic and pathology mechanisms of the liver tissue, to

develop models for prediction of the tissue regeneration, it appears indispensable to couple the

processes undergoing at the microstructure level with the global, macroscopic processes

reflecting mass transport and other physical conservation laws relevant to the whole organ

level. This can be ensured by the homogenization based modelling which builds on the LRPC

providing the periodicity concept of the tissue heterogeneity. To approach realistic tissue mor-

phology, aggregates of perturbed, or distorted LRPC can be used, cf. [20]. Besides that, spatially

non-uniform distribution of the lobular structure, the macroscopically varying periodicity and

spatial grading can be achieved by transforming the LRPC according to macroscopic position

in the liver. A similar concept has been proposed to respect large deformation of the perfused

tissue leading to variations of the local micro-configurations [47].

Appendix

Notation

In what follows, we employ the Euclidean vector space E ¼ Eð0; i1; i2; i3Þ defined by the ortho-

normal vector basis {ik}. To set the notation, any vector a 2 E is determined by the triplet (a1,

a2, a3), such that a ¼
P3

i¼1
aiii, where we use the upper and lower indices i and i to distinguish

different items, or different vectorial objects. The scalar product of any two vectors a; b 2 E is

denoted by a � b, while their vector product is a × b. The Euclidean norm of a is jaj ¼
ffiffiffiffiffiffiffiffiffi
a � a
p

.

The primary and the dual lattices

These lattices are established using two vectorial bases, {e1, e2, e3} and {g1, g2, g3}, where

ek; g l 2 E, satisfying |ek| = 1 and |gl| = 1, k, l = 1, . . ., 3. Their components are introduced, as

follows, see Fig 3,

e1 � e2 ¼ cosðp=3Þ ¼ 1=2 ; e3 ¼ ce1 � e2 with c ¼ 1=sinðp=3Þ � 1:1547 ;

g
1
¼ ðe1 þ e2Þ=ð2 cos p=6Þ ; g

2
¼ � e2 � e3 and g

3
¼ e3 :

ð15Þ
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The primary lattice with its characteristic size �a > 0 is generated by the ground structure

nodes {hk}k=1,. . .,4 which determine positions of the central veins,

h1
¼ 0 ; hk ¼ �aek; k ¼ 2; 3 ; h4

¼ �aðe1 þ e2Þ: ð16Þ

The dual lattice is generated by the ground structure nodes {pl}l=1,. . .,4 which determine

positions of the vertex veins,

p1 ¼
1

3

X3

k¼1

hk ; pl ¼ p1 þ �bg l� 1
; l ¼ 2; 3 ; p4 ¼ p1 � �bðg

1
þ g

2
Þ ; ð17Þ

where the dual lattice parameter �b ¼ �a
ffiffiffi
3
p

=3 � 0:5774�a. The ground structures are depicted

in Fig 3.
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18. Köppl T, Vidotto E, Wohlmuth B. A 3D-1D coupled blood flow and oxygen transport model to generate

microvascular networks. I Jour Num Meth Biomed Engrg. 2020; 36(10):e3386. PMID: 32659047

19. Fu X, Sluka JP, Clendenon SG, Dunn KW, Wang Z, Klaunig JE, et al. Modeling of xenobiotic transport

and metabolism in virtual hepatic lobule models. PLOS ONE. 2018; 13(9):1–34. https://doi.org/10.1371/

journal.pone.0198060 PMID: 30212461

20. Mosharaf-Dehkordi M. A fully coupled porous media and channels flow approach for simulation of blood

and bile flow through the liver lobules. Computer Methods in Biomechanics and Biomedical Engineer-

ing. 2019; 22(9):901–915. https://doi.org/10.1080/10255842.2019.1601180 PMID: 31124725

21. Ahmadi-Badejani R, Mosharaf-Dehkordi M, Ahmadikia H. An image-based geometric model for numeri-

cal simulation of blood perfusion within the liver lobules. Computer Methods in Biomechanics and Bio-

medical Engineering. 2020; 23(13):987–1004. https://doi.org/10.1080/10255842.2020.1782389 PMID:

32594768

22. Ricken T, Dahmen U, Dirsch O. A biphasic model for sinusoidal liver perfusion remodeling after outflow

obstruction. Biomechanics and modeling in mechanobiology. 2010; 9(4):435–450. https://doi.org/10.

1007/s10237-009-0186-x PMID: 20066463

23. Siggers JH, Leungchavaphongse K, Ho CH, Repetto R. Mathematical model of blood and interstitial

flow and lymph production in the liver. Biomechanics and modeling in mechanobiology. 2014; 13

(2):363–378. https://doi.org/10.1007/s10237-013-0516-x PMID: 23907149

24. Lettmann KA, Hardtke-Wolenski M. The importance of liver microcirculation in promoting autoimmune

hepatitis via maintaining an inflammatory cytokine milieu–A mathematical model study. Journal of theo-

retical biology. 2014; 348:33–46. https://doi.org/10.1016/j.jtbi.2014.01.016 PMID: 24486232

25. Höhme S, Hengstler JG, Brulport M, Schäfer M, Bauer A, Gebhardt R, et al. Mathematical modelling of

liver regeneration after intoxication with CCl4. Chemico-Biological Interactions. 2007; 168(1):74–93.

https://doi.org/10.1016/j.cbi.2007.01.010 PMID: 17442287
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49. Rohan E, Lukeš V. Modeling nonlinear phenomena in deforming fluid-saturated porous media using

homogenization and sensitivity analysis concepts. Applied Mathematics and Computation. 2015; 267

(1):583–595. https://doi.org/10.1016/j.amc.2015.01.054

50. Guo L, Vardakis JC, Chou D, Ventikos Y. A multiple-network poroelastic model for biological systems

and application to subject-specific modelling of cerebral fluid transport. International Journal of Engi-

neering Science. 2020; 147(1):103204. https://doi.org/10.1016/j.ijengsci.2019.103204

51. Chou D, Vardakis JC, Ventikos Y. Multiscale Modelling for Cerebrospinal Fluid Dynamics: Multicom-

partmental Poroelacticity and the Role of AQP4. J. of Biosciences and Medicines. 2014; 2(2):1–9.

https://doi.org/10.4236/jbm.2014.22001

PLOS ONE Geometrical model of lobular structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0260068 December 2, 2021 21 / 21

https://doi.org/10.1016/j.amc.2015.01.054
https://doi.org/10.1016/j.ijengsci.2019.103204
https://doi.org/10.4236/jbm.2014.22001
https://doi.org/10.1371/journal.pone.0260068

